slub.c revision 319d1e240683d37924ea8977c91730c3393fd453
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23#include <linux/memory.h>
24
25/*
26 * Lock order:
27 *   1. slab_lock(page)
28 *   2. slab->list_lock
29 *
30 *   The slab_lock protects operations on the object of a particular
31 *   slab and its metadata in the page struct. If the slab lock
32 *   has been taken then no allocations nor frees can be performed
33 *   on the objects in the slab nor can the slab be added or removed
34 *   from the partial or full lists since this would mean modifying
35 *   the page_struct of the slab.
36 *
37 *   The list_lock protects the partial and full list on each node and
38 *   the partial slab counter. If taken then no new slabs may be added or
39 *   removed from the lists nor make the number of partial slabs be modified.
40 *   (Note that the total number of slabs is an atomic value that may be
41 *   modified without taking the list lock).
42 *
43 *   The list_lock is a centralized lock and thus we avoid taking it as
44 *   much as possible. As long as SLUB does not have to handle partial
45 *   slabs, operations can continue without any centralized lock. F.e.
46 *   allocating a long series of objects that fill up slabs does not require
47 *   the list lock.
48 *
49 *   The lock order is sometimes inverted when we are trying to get a slab
50 *   off a list. We take the list_lock and then look for a page on the list
51 *   to use. While we do that objects in the slabs may be freed. We can
52 *   only operate on the slab if we have also taken the slab_lock. So we use
53 *   a slab_trylock() on the slab. If trylock was successful then no frees
54 *   can occur anymore and we can use the slab for allocations etc. If the
55 *   slab_trylock() does not succeed then frees are in progress in the slab and
56 *   we must stay away from it for a while since we may cause a bouncing
57 *   cacheline if we try to acquire the lock. So go onto the next slab.
58 *   If all pages are busy then we may allocate a new slab instead of reusing
59 *   a partial slab. A new slab has noone operating on it and thus there is
60 *   no danger of cacheline contention.
61 *
62 *   Interrupts are disabled during allocation and deallocation in order to
63 *   make the slab allocator safe to use in the context of an irq. In addition
64 *   interrupts are disabled to ensure that the processor does not change
65 *   while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
82 * PageActive 		The slab is frozen and exempt from list processing.
83 * 			This means that the slab is dedicated to a purpose
84 * 			such as satisfying allocations for a specific
85 * 			processor. Objects may be freed in the slab while
86 * 			it is frozen but slab_free will then skip the usual
87 * 			list operations. It is up to the processor holding
88 * 			the slab to integrate the slab into the slab lists
89 * 			when the slab is no longer needed.
90 *
91 * 			One use of this flag is to mark slabs that are
92 * 			used for allocations. Then such a slab becomes a cpu
93 * 			slab. The cpu slab may be equipped with an additional
94 * 			freelist that allows lockless access to
95 * 			free objects in addition to the regular freelist
96 * 			that requires the slab lock.
97 *
98 * PageError		Slab requires special handling due to debug
99 * 			options set. This moves	slab handling out of
100 * 			the fast path and disables lockless freelists.
101 */
102
103#define FROZEN (1 << PG_active)
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG (1 << PG_error)
107#else
108#define SLABDEBUG 0
109#endif
110
111static inline int SlabFrozen(struct page *page)
112{
113	return page->flags & FROZEN;
114}
115
116static inline void SetSlabFrozen(struct page *page)
117{
118	page->flags |= FROZEN;
119}
120
121static inline void ClearSlabFrozen(struct page *page)
122{
123	page->flags &= ~FROZEN;
124}
125
126static inline int SlabDebug(struct page *page)
127{
128	return page->flags & SLABDEBUG;
129}
130
131static inline void SetSlabDebug(struct page *page)
132{
133	page->flags |= SLABDEBUG;
134}
135
136static inline void ClearSlabDebug(struct page *page)
137{
138	page->flags &= ~SLABDEBUG;
139}
140
141/*
142 * Issues still to be resolved:
143 *
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
146 * - Variable sizing of the per node arrays
147 */
148
149/* Enable to test recovery from slab corruption on boot */
150#undef SLUB_RESILIENCY_TEST
151
152#if PAGE_SHIFT <= 12
153
154/*
155 * Small page size. Make sure that we do not fragment memory
156 */
157#define DEFAULT_MAX_ORDER 1
158#define DEFAULT_MIN_OBJECTS 4
159
160#else
161
162/*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166#define DEFAULT_MAX_ORDER 2
167#define DEFAULT_MIN_OBJECTS 8
168
169#endif
170
171/*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
175#define MIN_PARTIAL 5
176
177/*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182#define MAX_PARTIAL 10
183
184#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185				SLAB_POISON | SLAB_STORE_USER)
186
187/*
188 * Set of flags that will prevent slab merging
189 */
190#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194		SLAB_CACHE_DMA)
195
196#ifndef ARCH_KMALLOC_MINALIGN
197#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198#endif
199
200#ifndef ARCH_SLAB_MINALIGN
201#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202#endif
203
204/* Internal SLUB flags */
205#define __OBJECT_POISON		0x80000000 /* Poison object */
206#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
207
208/* Not all arches define cache_line_size */
209#ifndef cache_line_size
210#define cache_line_size()	L1_CACHE_BYTES
211#endif
212
213static int kmem_size = sizeof(struct kmem_cache);
214
215#ifdef CONFIG_SMP
216static struct notifier_block slab_notifier;
217#endif
218
219static enum {
220	DOWN,		/* No slab functionality available */
221	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
222	UP,		/* Everything works but does not show up in sysfs */
223	SYSFS		/* Sysfs up */
224} slab_state = DOWN;
225
226/* A list of all slab caches on the system */
227static DECLARE_RWSEM(slub_lock);
228static LIST_HEAD(slab_caches);
229
230/*
231 * Tracking user of a slab.
232 */
233struct track {
234	void *addr;		/* Called from address */
235	int cpu;		/* Was running on cpu */
236	int pid;		/* Pid context */
237	unsigned long when;	/* When did the operation occur */
238};
239
240enum track_item { TRACK_ALLOC, TRACK_FREE };
241
242#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
243static int sysfs_slab_add(struct kmem_cache *);
244static int sysfs_slab_alias(struct kmem_cache *, const char *);
245static void sysfs_slab_remove(struct kmem_cache *);
246
247#else
248static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
249static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
250							{ return 0; }
251static inline void sysfs_slab_remove(struct kmem_cache *s)
252{
253	kfree(s);
254}
255
256#endif
257
258static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
259{
260#ifdef CONFIG_SLUB_STATS
261	c->stat[si]++;
262#endif
263}
264
265/********************************************************************
266 * 			Core slab cache functions
267 *******************************************************************/
268
269int slab_is_available(void)
270{
271	return slab_state >= UP;
272}
273
274static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
275{
276#ifdef CONFIG_NUMA
277	return s->node[node];
278#else
279	return &s->local_node;
280#endif
281}
282
283static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
284{
285#ifdef CONFIG_SMP
286	return s->cpu_slab[cpu];
287#else
288	return &s->cpu_slab;
289#endif
290}
291
292/* Verify that a pointer has an address that is valid within a slab page */
293static inline int check_valid_pointer(struct kmem_cache *s,
294				struct page *page, const void *object)
295{
296	void *base;
297
298	if (!object)
299		return 1;
300
301	base = page_address(page);
302	if (object < base || object >= base + page->objects * s->size ||
303		(object - base) % s->size) {
304		return 0;
305	}
306
307	return 1;
308}
309
310/*
311 * Slow version of get and set free pointer.
312 *
313 * This version requires touching the cache lines of kmem_cache which
314 * we avoid to do in the fast alloc free paths. There we obtain the offset
315 * from the page struct.
316 */
317static inline void *get_freepointer(struct kmem_cache *s, void *object)
318{
319	return *(void **)(object + s->offset);
320}
321
322static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
323{
324	*(void **)(object + s->offset) = fp;
325}
326
327/* Loop over all objects in a slab */
328#define for_each_object(__p, __s, __addr, __objects) \
329	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
330			__p += (__s)->size)
331
332/* Scan freelist */
333#define for_each_free_object(__p, __s, __free) \
334	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
335
336/* Determine object index from a given position */
337static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
338{
339	return (p - addr) / s->size;
340}
341
342static inline struct kmem_cache_order_objects oo_make(int order,
343						unsigned long size)
344{
345	struct kmem_cache_order_objects x = {
346		(order << 16) + (PAGE_SIZE << order) / size
347	};
348
349	return x;
350}
351
352static inline int oo_order(struct kmem_cache_order_objects x)
353{
354	return x.x >> 16;
355}
356
357static inline int oo_objects(struct kmem_cache_order_objects x)
358{
359	return x.x & ((1 << 16) - 1);
360}
361
362#ifdef CONFIG_SLUB_DEBUG
363/*
364 * Debug settings:
365 */
366#ifdef CONFIG_SLUB_DEBUG_ON
367static int slub_debug = DEBUG_DEFAULT_FLAGS;
368#else
369static int slub_debug;
370#endif
371
372static char *slub_debug_slabs;
373
374/*
375 * Object debugging
376 */
377static void print_section(char *text, u8 *addr, unsigned int length)
378{
379	int i, offset;
380	int newline = 1;
381	char ascii[17];
382
383	ascii[16] = 0;
384
385	for (i = 0; i < length; i++) {
386		if (newline) {
387			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
388			newline = 0;
389		}
390		printk(KERN_CONT " %02x", addr[i]);
391		offset = i % 16;
392		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
393		if (offset == 15) {
394			printk(KERN_CONT " %s\n", ascii);
395			newline = 1;
396		}
397	}
398	if (!newline) {
399		i %= 16;
400		while (i < 16) {
401			printk(KERN_CONT "   ");
402			ascii[i] = ' ';
403			i++;
404		}
405		printk(KERN_CONT " %s\n", ascii);
406	}
407}
408
409static struct track *get_track(struct kmem_cache *s, void *object,
410	enum track_item alloc)
411{
412	struct track *p;
413
414	if (s->offset)
415		p = object + s->offset + sizeof(void *);
416	else
417		p = object + s->inuse;
418
419	return p + alloc;
420}
421
422static void set_track(struct kmem_cache *s, void *object,
423				enum track_item alloc, void *addr)
424{
425	struct track *p;
426
427	if (s->offset)
428		p = object + s->offset + sizeof(void *);
429	else
430		p = object + s->inuse;
431
432	p += alloc;
433	if (addr) {
434		p->addr = addr;
435		p->cpu = smp_processor_id();
436		p->pid = current ? current->pid : -1;
437		p->when = jiffies;
438	} else
439		memset(p, 0, sizeof(struct track));
440}
441
442static void init_tracking(struct kmem_cache *s, void *object)
443{
444	if (!(s->flags & SLAB_STORE_USER))
445		return;
446
447	set_track(s, object, TRACK_FREE, NULL);
448	set_track(s, object, TRACK_ALLOC, NULL);
449}
450
451static void print_track(const char *s, struct track *t)
452{
453	if (!t->addr)
454		return;
455
456	printk(KERN_ERR "INFO: %s in ", s);
457	__print_symbol("%s", (unsigned long)t->addr);
458	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
459}
460
461static void print_tracking(struct kmem_cache *s, void *object)
462{
463	if (!(s->flags & SLAB_STORE_USER))
464		return;
465
466	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
467	print_track("Freed", get_track(s, object, TRACK_FREE));
468}
469
470static void print_page_info(struct page *page)
471{
472	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
473		page, page->objects, page->inuse, page->freelist, page->flags);
474
475}
476
477static void slab_bug(struct kmem_cache *s, char *fmt, ...)
478{
479	va_list args;
480	char buf[100];
481
482	va_start(args, fmt);
483	vsnprintf(buf, sizeof(buf), fmt, args);
484	va_end(args);
485	printk(KERN_ERR "========================================"
486			"=====================================\n");
487	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
488	printk(KERN_ERR "----------------------------------------"
489			"-------------------------------------\n\n");
490}
491
492static void slab_fix(struct kmem_cache *s, char *fmt, ...)
493{
494	va_list args;
495	char buf[100];
496
497	va_start(args, fmt);
498	vsnprintf(buf, sizeof(buf), fmt, args);
499	va_end(args);
500	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
501}
502
503static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
504{
505	unsigned int off;	/* Offset of last byte */
506	u8 *addr = page_address(page);
507
508	print_tracking(s, p);
509
510	print_page_info(page);
511
512	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
513			p, p - addr, get_freepointer(s, p));
514
515	if (p > addr + 16)
516		print_section("Bytes b4", p - 16, 16);
517
518	print_section("Object", p, min(s->objsize, 128));
519
520	if (s->flags & SLAB_RED_ZONE)
521		print_section("Redzone", p + s->objsize,
522			s->inuse - s->objsize);
523
524	if (s->offset)
525		off = s->offset + sizeof(void *);
526	else
527		off = s->inuse;
528
529	if (s->flags & SLAB_STORE_USER)
530		off += 2 * sizeof(struct track);
531
532	if (off != s->size)
533		/* Beginning of the filler is the free pointer */
534		print_section("Padding", p + off, s->size - off);
535
536	dump_stack();
537}
538
539static void object_err(struct kmem_cache *s, struct page *page,
540			u8 *object, char *reason)
541{
542	slab_bug(s, "%s", reason);
543	print_trailer(s, page, object);
544}
545
546static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
547{
548	va_list args;
549	char buf[100];
550
551	va_start(args, fmt);
552	vsnprintf(buf, sizeof(buf), fmt, args);
553	va_end(args);
554	slab_bug(s, "%s", buf);
555	print_page_info(page);
556	dump_stack();
557}
558
559static void init_object(struct kmem_cache *s, void *object, int active)
560{
561	u8 *p = object;
562
563	if (s->flags & __OBJECT_POISON) {
564		memset(p, POISON_FREE, s->objsize - 1);
565		p[s->objsize - 1] = POISON_END;
566	}
567
568	if (s->flags & SLAB_RED_ZONE)
569		memset(p + s->objsize,
570			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
571			s->inuse - s->objsize);
572}
573
574static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
575{
576	while (bytes) {
577		if (*start != (u8)value)
578			return start;
579		start++;
580		bytes--;
581	}
582	return NULL;
583}
584
585static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
586						void *from, void *to)
587{
588	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
589	memset(from, data, to - from);
590}
591
592static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
593			u8 *object, char *what,
594			u8 *start, unsigned int value, unsigned int bytes)
595{
596	u8 *fault;
597	u8 *end;
598
599	fault = check_bytes(start, value, bytes);
600	if (!fault)
601		return 1;
602
603	end = start + bytes;
604	while (end > fault && end[-1] == value)
605		end--;
606
607	slab_bug(s, "%s overwritten", what);
608	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
609					fault, end - 1, fault[0], value);
610	print_trailer(s, page, object);
611
612	restore_bytes(s, what, value, fault, end);
613	return 0;
614}
615
616/*
617 * Object layout:
618 *
619 * object address
620 * 	Bytes of the object to be managed.
621 * 	If the freepointer may overlay the object then the free
622 * 	pointer is the first word of the object.
623 *
624 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
625 * 	0xa5 (POISON_END)
626 *
627 * object + s->objsize
628 * 	Padding to reach word boundary. This is also used for Redzoning.
629 * 	Padding is extended by another word if Redzoning is enabled and
630 * 	objsize == inuse.
631 *
632 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
633 * 	0xcc (RED_ACTIVE) for objects in use.
634 *
635 * object + s->inuse
636 * 	Meta data starts here.
637 *
638 * 	A. Free pointer (if we cannot overwrite object on free)
639 * 	B. Tracking data for SLAB_STORE_USER
640 * 	C. Padding to reach required alignment boundary or at mininum
641 * 		one word if debugging is on to be able to detect writes
642 * 		before the word boundary.
643 *
644 *	Padding is done using 0x5a (POISON_INUSE)
645 *
646 * object + s->size
647 * 	Nothing is used beyond s->size.
648 *
649 * If slabcaches are merged then the objsize and inuse boundaries are mostly
650 * ignored. And therefore no slab options that rely on these boundaries
651 * may be used with merged slabcaches.
652 */
653
654static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
655{
656	unsigned long off = s->inuse;	/* The end of info */
657
658	if (s->offset)
659		/* Freepointer is placed after the object. */
660		off += sizeof(void *);
661
662	if (s->flags & SLAB_STORE_USER)
663		/* We also have user information there */
664		off += 2 * sizeof(struct track);
665
666	if (s->size == off)
667		return 1;
668
669	return check_bytes_and_report(s, page, p, "Object padding",
670				p + off, POISON_INUSE, s->size - off);
671}
672
673/* Check the pad bytes at the end of a slab page */
674static int slab_pad_check(struct kmem_cache *s, struct page *page)
675{
676	u8 *start;
677	u8 *fault;
678	u8 *end;
679	int length;
680	int remainder;
681
682	if (!(s->flags & SLAB_POISON))
683		return 1;
684
685	start = page_address(page);
686	length = (PAGE_SIZE << compound_order(page));
687	end = start + length;
688	remainder = length % s->size;
689	if (!remainder)
690		return 1;
691
692	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
693	if (!fault)
694		return 1;
695	while (end > fault && end[-1] == POISON_INUSE)
696		end--;
697
698	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
699	print_section("Padding", end - remainder, remainder);
700
701	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
702	return 0;
703}
704
705static int check_object(struct kmem_cache *s, struct page *page,
706					void *object, int active)
707{
708	u8 *p = object;
709	u8 *endobject = object + s->objsize;
710
711	if (s->flags & SLAB_RED_ZONE) {
712		unsigned int red =
713			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
714
715		if (!check_bytes_and_report(s, page, object, "Redzone",
716			endobject, red, s->inuse - s->objsize))
717			return 0;
718	} else {
719		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
720			check_bytes_and_report(s, page, p, "Alignment padding",
721				endobject, POISON_INUSE, s->inuse - s->objsize);
722		}
723	}
724
725	if (s->flags & SLAB_POISON) {
726		if (!active && (s->flags & __OBJECT_POISON) &&
727			(!check_bytes_and_report(s, page, p, "Poison", p,
728					POISON_FREE, s->objsize - 1) ||
729			 !check_bytes_and_report(s, page, p, "Poison",
730				p + s->objsize - 1, POISON_END, 1)))
731			return 0;
732		/*
733		 * check_pad_bytes cleans up on its own.
734		 */
735		check_pad_bytes(s, page, p);
736	}
737
738	if (!s->offset && active)
739		/*
740		 * Object and freepointer overlap. Cannot check
741		 * freepointer while object is allocated.
742		 */
743		return 1;
744
745	/* Check free pointer validity */
746	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
747		object_err(s, page, p, "Freepointer corrupt");
748		/*
749		 * No choice but to zap it and thus loose the remainder
750		 * of the free objects in this slab. May cause
751		 * another error because the object count is now wrong.
752		 */
753		set_freepointer(s, p, NULL);
754		return 0;
755	}
756	return 1;
757}
758
759static int check_slab(struct kmem_cache *s, struct page *page)
760{
761	int maxobj;
762
763	VM_BUG_ON(!irqs_disabled());
764
765	if (!PageSlab(page)) {
766		slab_err(s, page, "Not a valid slab page");
767		return 0;
768	}
769
770	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
771	if (page->objects > maxobj) {
772		slab_err(s, page, "objects %u > max %u",
773			s->name, page->objects, maxobj);
774		return 0;
775	}
776	if (page->inuse > page->objects) {
777		slab_err(s, page, "inuse %u > max %u",
778			s->name, page->inuse, page->objects);
779		return 0;
780	}
781	/* Slab_pad_check fixes things up after itself */
782	slab_pad_check(s, page);
783	return 1;
784}
785
786/*
787 * Determine if a certain object on a page is on the freelist. Must hold the
788 * slab lock to guarantee that the chains are in a consistent state.
789 */
790static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
791{
792	int nr = 0;
793	void *fp = page->freelist;
794	void *object = NULL;
795	unsigned long max_objects;
796
797	while (fp && nr <= page->objects) {
798		if (fp == search)
799			return 1;
800		if (!check_valid_pointer(s, page, fp)) {
801			if (object) {
802				object_err(s, page, object,
803					"Freechain corrupt");
804				set_freepointer(s, object, NULL);
805				break;
806			} else {
807				slab_err(s, page, "Freepointer corrupt");
808				page->freelist = NULL;
809				page->inuse = page->objects;
810				slab_fix(s, "Freelist cleared");
811				return 0;
812			}
813			break;
814		}
815		object = fp;
816		fp = get_freepointer(s, object);
817		nr++;
818	}
819
820	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
821	if (max_objects > 65535)
822		max_objects = 65535;
823
824	if (page->objects != max_objects) {
825		slab_err(s, page, "Wrong number of objects. Found %d but "
826			"should be %d", page->objects, max_objects);
827		page->objects = max_objects;
828		slab_fix(s, "Number of objects adjusted.");
829	}
830	if (page->inuse != page->objects - nr) {
831		slab_err(s, page, "Wrong object count. Counter is %d but "
832			"counted were %d", page->inuse, page->objects - nr);
833		page->inuse = page->objects - nr;
834		slab_fix(s, "Object count adjusted.");
835	}
836	return search == NULL;
837}
838
839static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
840{
841	if (s->flags & SLAB_TRACE) {
842		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
843			s->name,
844			alloc ? "alloc" : "free",
845			object, page->inuse,
846			page->freelist);
847
848		if (!alloc)
849			print_section("Object", (void *)object, s->objsize);
850
851		dump_stack();
852	}
853}
854
855/*
856 * Tracking of fully allocated slabs for debugging purposes.
857 */
858static void add_full(struct kmem_cache_node *n, struct page *page)
859{
860	spin_lock(&n->list_lock);
861	list_add(&page->lru, &n->full);
862	spin_unlock(&n->list_lock);
863}
864
865static void remove_full(struct kmem_cache *s, struct page *page)
866{
867	struct kmem_cache_node *n;
868
869	if (!(s->flags & SLAB_STORE_USER))
870		return;
871
872	n = get_node(s, page_to_nid(page));
873
874	spin_lock(&n->list_lock);
875	list_del(&page->lru);
876	spin_unlock(&n->list_lock);
877}
878
879/* Tracking of the number of slabs for debugging purposes */
880static inline unsigned long slabs_node(struct kmem_cache *s, int node)
881{
882	struct kmem_cache_node *n = get_node(s, node);
883
884	return atomic_long_read(&n->nr_slabs);
885}
886
887static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
888{
889	struct kmem_cache_node *n = get_node(s, node);
890
891	/*
892	 * May be called early in order to allocate a slab for the
893	 * kmem_cache_node structure. Solve the chicken-egg
894	 * dilemma by deferring the increment of the count during
895	 * bootstrap (see early_kmem_cache_node_alloc).
896	 */
897	if (!NUMA_BUILD || n) {
898		atomic_long_inc(&n->nr_slabs);
899		atomic_long_add(objects, &n->total_objects);
900	}
901}
902static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
903{
904	struct kmem_cache_node *n = get_node(s, node);
905
906	atomic_long_dec(&n->nr_slabs);
907	atomic_long_sub(objects, &n->total_objects);
908}
909
910/* Object debug checks for alloc/free paths */
911static void setup_object_debug(struct kmem_cache *s, struct page *page,
912								void *object)
913{
914	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
915		return;
916
917	init_object(s, object, 0);
918	init_tracking(s, object);
919}
920
921static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
922						void *object, void *addr)
923{
924	if (!check_slab(s, page))
925		goto bad;
926
927	if (!on_freelist(s, page, object)) {
928		object_err(s, page, object, "Object already allocated");
929		goto bad;
930	}
931
932	if (!check_valid_pointer(s, page, object)) {
933		object_err(s, page, object, "Freelist Pointer check fails");
934		goto bad;
935	}
936
937	if (!check_object(s, page, object, 0))
938		goto bad;
939
940	/* Success perform special debug activities for allocs */
941	if (s->flags & SLAB_STORE_USER)
942		set_track(s, object, TRACK_ALLOC, addr);
943	trace(s, page, object, 1);
944	init_object(s, object, 1);
945	return 1;
946
947bad:
948	if (PageSlab(page)) {
949		/*
950		 * If this is a slab page then lets do the best we can
951		 * to avoid issues in the future. Marking all objects
952		 * as used avoids touching the remaining objects.
953		 */
954		slab_fix(s, "Marking all objects used");
955		page->inuse = page->objects;
956		page->freelist = NULL;
957	}
958	return 0;
959}
960
961static int free_debug_processing(struct kmem_cache *s, struct page *page,
962						void *object, void *addr)
963{
964	if (!check_slab(s, page))
965		goto fail;
966
967	if (!check_valid_pointer(s, page, object)) {
968		slab_err(s, page, "Invalid object pointer 0x%p", object);
969		goto fail;
970	}
971
972	if (on_freelist(s, page, object)) {
973		object_err(s, page, object, "Object already free");
974		goto fail;
975	}
976
977	if (!check_object(s, page, object, 1))
978		return 0;
979
980	if (unlikely(s != page->slab)) {
981		if (!PageSlab(page)) {
982			slab_err(s, page, "Attempt to free object(0x%p) "
983				"outside of slab", object);
984		} else if (!page->slab) {
985			printk(KERN_ERR
986				"SLUB <none>: no slab for object 0x%p.\n",
987						object);
988			dump_stack();
989		} else
990			object_err(s, page, object,
991					"page slab pointer corrupt.");
992		goto fail;
993	}
994
995	/* Special debug activities for freeing objects */
996	if (!SlabFrozen(page) && !page->freelist)
997		remove_full(s, page);
998	if (s->flags & SLAB_STORE_USER)
999		set_track(s, object, TRACK_FREE, addr);
1000	trace(s, page, object, 0);
1001	init_object(s, object, 0);
1002	return 1;
1003
1004fail:
1005	slab_fix(s, "Object at 0x%p not freed", object);
1006	return 0;
1007}
1008
1009static int __init setup_slub_debug(char *str)
1010{
1011	slub_debug = DEBUG_DEFAULT_FLAGS;
1012	if (*str++ != '=' || !*str)
1013		/*
1014		 * No options specified. Switch on full debugging.
1015		 */
1016		goto out;
1017
1018	if (*str == ',')
1019		/*
1020		 * No options but restriction on slabs. This means full
1021		 * debugging for slabs matching a pattern.
1022		 */
1023		goto check_slabs;
1024
1025	slub_debug = 0;
1026	if (*str == '-')
1027		/*
1028		 * Switch off all debugging measures.
1029		 */
1030		goto out;
1031
1032	/*
1033	 * Determine which debug features should be switched on
1034	 */
1035	for (; *str && *str != ','; str++) {
1036		switch (tolower(*str)) {
1037		case 'f':
1038			slub_debug |= SLAB_DEBUG_FREE;
1039			break;
1040		case 'z':
1041			slub_debug |= SLAB_RED_ZONE;
1042			break;
1043		case 'p':
1044			slub_debug |= SLAB_POISON;
1045			break;
1046		case 'u':
1047			slub_debug |= SLAB_STORE_USER;
1048			break;
1049		case 't':
1050			slub_debug |= SLAB_TRACE;
1051			break;
1052		default:
1053			printk(KERN_ERR "slub_debug option '%c' "
1054				"unknown. skipped\n", *str);
1055		}
1056	}
1057
1058check_slabs:
1059	if (*str == ',')
1060		slub_debug_slabs = str + 1;
1061out:
1062	return 1;
1063}
1064
1065__setup("slub_debug", setup_slub_debug);
1066
1067static unsigned long kmem_cache_flags(unsigned long objsize,
1068	unsigned long flags, const char *name,
1069	void (*ctor)(struct kmem_cache *, void *))
1070{
1071	/*
1072	 * Enable debugging if selected on the kernel commandline.
1073	 */
1074	if (slub_debug && (!slub_debug_slabs ||
1075	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1076			flags |= slub_debug;
1077
1078	return flags;
1079}
1080#else
1081static inline void setup_object_debug(struct kmem_cache *s,
1082			struct page *page, void *object) {}
1083
1084static inline int alloc_debug_processing(struct kmem_cache *s,
1085	struct page *page, void *object, void *addr) { return 0; }
1086
1087static inline int free_debug_processing(struct kmem_cache *s,
1088	struct page *page, void *object, void *addr) { return 0; }
1089
1090static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1091			{ return 1; }
1092static inline int check_object(struct kmem_cache *s, struct page *page,
1093			void *object, int active) { return 1; }
1094static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1095static inline unsigned long kmem_cache_flags(unsigned long objsize,
1096	unsigned long flags, const char *name,
1097	void (*ctor)(struct kmem_cache *, void *))
1098{
1099	return flags;
1100}
1101#define slub_debug 0
1102
1103static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1104							{ return 0; }
1105static inline void inc_slabs_node(struct kmem_cache *s, int node,
1106							int objects) {}
1107static inline void dec_slabs_node(struct kmem_cache *s, int node,
1108							int objects) {}
1109#endif
1110
1111/*
1112 * Slab allocation and freeing
1113 */
1114static inline struct page *alloc_slab_page(gfp_t flags, int node,
1115					struct kmem_cache_order_objects oo)
1116{
1117	int order = oo_order(oo);
1118
1119	if (node == -1)
1120		return alloc_pages(flags, order);
1121	else
1122		return alloc_pages_node(node, flags, order);
1123}
1124
1125static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1126{
1127	struct page *page;
1128	struct kmem_cache_order_objects oo = s->oo;
1129
1130	flags |= s->allocflags;
1131
1132	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1133									oo);
1134	if (unlikely(!page)) {
1135		oo = s->min;
1136		/*
1137		 * Allocation may have failed due to fragmentation.
1138		 * Try a lower order alloc if possible
1139		 */
1140		page = alloc_slab_page(flags, node, oo);
1141		if (!page)
1142			return NULL;
1143
1144		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1145	}
1146	page->objects = oo_objects(oo);
1147	mod_zone_page_state(page_zone(page),
1148		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1149		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1150		1 << oo_order(oo));
1151
1152	return page;
1153}
1154
1155static void setup_object(struct kmem_cache *s, struct page *page,
1156				void *object)
1157{
1158	setup_object_debug(s, page, object);
1159	if (unlikely(s->ctor))
1160		s->ctor(s, object);
1161}
1162
1163static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1164{
1165	struct page *page;
1166	void *start;
1167	void *last;
1168	void *p;
1169
1170	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1171
1172	page = allocate_slab(s,
1173		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1174	if (!page)
1175		goto out;
1176
1177	inc_slabs_node(s, page_to_nid(page), page->objects);
1178	page->slab = s;
1179	page->flags |= 1 << PG_slab;
1180	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1181			SLAB_STORE_USER | SLAB_TRACE))
1182		SetSlabDebug(page);
1183
1184	start = page_address(page);
1185
1186	if (unlikely(s->flags & SLAB_POISON))
1187		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1188
1189	last = start;
1190	for_each_object(p, s, start, page->objects) {
1191		setup_object(s, page, last);
1192		set_freepointer(s, last, p);
1193		last = p;
1194	}
1195	setup_object(s, page, last);
1196	set_freepointer(s, last, NULL);
1197
1198	page->freelist = start;
1199	page->inuse = 0;
1200out:
1201	return page;
1202}
1203
1204static void __free_slab(struct kmem_cache *s, struct page *page)
1205{
1206	int order = compound_order(page);
1207	int pages = 1 << order;
1208
1209	if (unlikely(SlabDebug(page))) {
1210		void *p;
1211
1212		slab_pad_check(s, page);
1213		for_each_object(p, s, page_address(page),
1214						page->objects)
1215			check_object(s, page, p, 0);
1216		ClearSlabDebug(page);
1217	}
1218
1219	mod_zone_page_state(page_zone(page),
1220		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1221		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1222		-pages);
1223
1224	__ClearPageSlab(page);
1225	reset_page_mapcount(page);
1226	__free_pages(page, order);
1227}
1228
1229static void rcu_free_slab(struct rcu_head *h)
1230{
1231	struct page *page;
1232
1233	page = container_of((struct list_head *)h, struct page, lru);
1234	__free_slab(page->slab, page);
1235}
1236
1237static void free_slab(struct kmem_cache *s, struct page *page)
1238{
1239	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1240		/*
1241		 * RCU free overloads the RCU head over the LRU
1242		 */
1243		struct rcu_head *head = (void *)&page->lru;
1244
1245		call_rcu(head, rcu_free_slab);
1246	} else
1247		__free_slab(s, page);
1248}
1249
1250static void discard_slab(struct kmem_cache *s, struct page *page)
1251{
1252	dec_slabs_node(s, page_to_nid(page), page->objects);
1253	free_slab(s, page);
1254}
1255
1256/*
1257 * Per slab locking using the pagelock
1258 */
1259static __always_inline void slab_lock(struct page *page)
1260{
1261	bit_spin_lock(PG_locked, &page->flags);
1262}
1263
1264static __always_inline void slab_unlock(struct page *page)
1265{
1266	__bit_spin_unlock(PG_locked, &page->flags);
1267}
1268
1269static __always_inline int slab_trylock(struct page *page)
1270{
1271	int rc = 1;
1272
1273	rc = bit_spin_trylock(PG_locked, &page->flags);
1274	return rc;
1275}
1276
1277/*
1278 * Management of partially allocated slabs
1279 */
1280static void add_partial(struct kmem_cache_node *n,
1281				struct page *page, int tail)
1282{
1283	spin_lock(&n->list_lock);
1284	n->nr_partial++;
1285	if (tail)
1286		list_add_tail(&page->lru, &n->partial);
1287	else
1288		list_add(&page->lru, &n->partial);
1289	spin_unlock(&n->list_lock);
1290}
1291
1292static void remove_partial(struct kmem_cache *s,
1293						struct page *page)
1294{
1295	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1296
1297	spin_lock(&n->list_lock);
1298	list_del(&page->lru);
1299	n->nr_partial--;
1300	spin_unlock(&n->list_lock);
1301}
1302
1303/*
1304 * Lock slab and remove from the partial list.
1305 *
1306 * Must hold list_lock.
1307 */
1308static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1309{
1310	if (slab_trylock(page)) {
1311		list_del(&page->lru);
1312		n->nr_partial--;
1313		SetSlabFrozen(page);
1314		return 1;
1315	}
1316	return 0;
1317}
1318
1319/*
1320 * Try to allocate a partial slab from a specific node.
1321 */
1322static struct page *get_partial_node(struct kmem_cache_node *n)
1323{
1324	struct page *page;
1325
1326	/*
1327	 * Racy check. If we mistakenly see no partial slabs then we
1328	 * just allocate an empty slab. If we mistakenly try to get a
1329	 * partial slab and there is none available then get_partials()
1330	 * will return NULL.
1331	 */
1332	if (!n || !n->nr_partial)
1333		return NULL;
1334
1335	spin_lock(&n->list_lock);
1336	list_for_each_entry(page, &n->partial, lru)
1337		if (lock_and_freeze_slab(n, page))
1338			goto out;
1339	page = NULL;
1340out:
1341	spin_unlock(&n->list_lock);
1342	return page;
1343}
1344
1345/*
1346 * Get a page from somewhere. Search in increasing NUMA distances.
1347 */
1348static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1349{
1350#ifdef CONFIG_NUMA
1351	struct zonelist *zonelist;
1352	struct zone **z;
1353	struct page *page;
1354
1355	/*
1356	 * The defrag ratio allows a configuration of the tradeoffs between
1357	 * inter node defragmentation and node local allocations. A lower
1358	 * defrag_ratio increases the tendency to do local allocations
1359	 * instead of attempting to obtain partial slabs from other nodes.
1360	 *
1361	 * If the defrag_ratio is set to 0 then kmalloc() always
1362	 * returns node local objects. If the ratio is higher then kmalloc()
1363	 * may return off node objects because partial slabs are obtained
1364	 * from other nodes and filled up.
1365	 *
1366	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1367	 * defrag_ratio = 1000) then every (well almost) allocation will
1368	 * first attempt to defrag slab caches on other nodes. This means
1369	 * scanning over all nodes to look for partial slabs which may be
1370	 * expensive if we do it every time we are trying to find a slab
1371	 * with available objects.
1372	 */
1373	if (!s->remote_node_defrag_ratio ||
1374			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1375		return NULL;
1376
1377	zonelist = &NODE_DATA(
1378		slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
1379	for (z = zonelist->zones; *z; z++) {
1380		struct kmem_cache_node *n;
1381
1382		n = get_node(s, zone_to_nid(*z));
1383
1384		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1385				n->nr_partial > MIN_PARTIAL) {
1386			page = get_partial_node(n);
1387			if (page)
1388				return page;
1389		}
1390	}
1391#endif
1392	return NULL;
1393}
1394
1395/*
1396 * Get a partial page, lock it and return it.
1397 */
1398static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1399{
1400	struct page *page;
1401	int searchnode = (node == -1) ? numa_node_id() : node;
1402
1403	page = get_partial_node(get_node(s, searchnode));
1404	if (page || (flags & __GFP_THISNODE))
1405		return page;
1406
1407	return get_any_partial(s, flags);
1408}
1409
1410/*
1411 * Move a page back to the lists.
1412 *
1413 * Must be called with the slab lock held.
1414 *
1415 * On exit the slab lock will have been dropped.
1416 */
1417static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1418{
1419	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1420	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1421
1422	ClearSlabFrozen(page);
1423	if (page->inuse) {
1424
1425		if (page->freelist) {
1426			add_partial(n, page, tail);
1427			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1428		} else {
1429			stat(c, DEACTIVATE_FULL);
1430			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1431				add_full(n, page);
1432		}
1433		slab_unlock(page);
1434	} else {
1435		stat(c, DEACTIVATE_EMPTY);
1436		if (n->nr_partial < MIN_PARTIAL) {
1437			/*
1438			 * Adding an empty slab to the partial slabs in order
1439			 * to avoid page allocator overhead. This slab needs
1440			 * to come after the other slabs with objects in
1441			 * so that the others get filled first. That way the
1442			 * size of the partial list stays small.
1443			 *
1444			 * kmem_cache_shrink can reclaim any empty slabs from the
1445			 * partial list.
1446			 */
1447			add_partial(n, page, 1);
1448			slab_unlock(page);
1449		} else {
1450			slab_unlock(page);
1451			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1452			discard_slab(s, page);
1453		}
1454	}
1455}
1456
1457/*
1458 * Remove the cpu slab
1459 */
1460static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1461{
1462	struct page *page = c->page;
1463	int tail = 1;
1464
1465	if (page->freelist)
1466		stat(c, DEACTIVATE_REMOTE_FREES);
1467	/*
1468	 * Merge cpu freelist into slab freelist. Typically we get here
1469	 * because both freelists are empty. So this is unlikely
1470	 * to occur.
1471	 */
1472	while (unlikely(c->freelist)) {
1473		void **object;
1474
1475		tail = 0;	/* Hot objects. Put the slab first */
1476
1477		/* Retrieve object from cpu_freelist */
1478		object = c->freelist;
1479		c->freelist = c->freelist[c->offset];
1480
1481		/* And put onto the regular freelist */
1482		object[c->offset] = page->freelist;
1483		page->freelist = object;
1484		page->inuse--;
1485	}
1486	c->page = NULL;
1487	unfreeze_slab(s, page, tail);
1488}
1489
1490static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1491{
1492	stat(c, CPUSLAB_FLUSH);
1493	slab_lock(c->page);
1494	deactivate_slab(s, c);
1495}
1496
1497/*
1498 * Flush cpu slab.
1499 *
1500 * Called from IPI handler with interrupts disabled.
1501 */
1502static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1503{
1504	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1505
1506	if (likely(c && c->page))
1507		flush_slab(s, c);
1508}
1509
1510static void flush_cpu_slab(void *d)
1511{
1512	struct kmem_cache *s = d;
1513
1514	__flush_cpu_slab(s, smp_processor_id());
1515}
1516
1517static void flush_all(struct kmem_cache *s)
1518{
1519#ifdef CONFIG_SMP
1520	on_each_cpu(flush_cpu_slab, s, 1, 1);
1521#else
1522	unsigned long flags;
1523
1524	local_irq_save(flags);
1525	flush_cpu_slab(s);
1526	local_irq_restore(flags);
1527#endif
1528}
1529
1530/*
1531 * Check if the objects in a per cpu structure fit numa
1532 * locality expectations.
1533 */
1534static inline int node_match(struct kmem_cache_cpu *c, int node)
1535{
1536#ifdef CONFIG_NUMA
1537	if (node != -1 && c->node != node)
1538		return 0;
1539#endif
1540	return 1;
1541}
1542
1543/*
1544 * Slow path. The lockless freelist is empty or we need to perform
1545 * debugging duties.
1546 *
1547 * Interrupts are disabled.
1548 *
1549 * Processing is still very fast if new objects have been freed to the
1550 * regular freelist. In that case we simply take over the regular freelist
1551 * as the lockless freelist and zap the regular freelist.
1552 *
1553 * If that is not working then we fall back to the partial lists. We take the
1554 * first element of the freelist as the object to allocate now and move the
1555 * rest of the freelist to the lockless freelist.
1556 *
1557 * And if we were unable to get a new slab from the partial slab lists then
1558 * we need to allocate a new slab. This is the slowest path since it involves
1559 * a call to the page allocator and the setup of a new slab.
1560 */
1561static void *__slab_alloc(struct kmem_cache *s,
1562		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1563{
1564	void **object;
1565	struct page *new;
1566
1567	/* We handle __GFP_ZERO in the caller */
1568	gfpflags &= ~__GFP_ZERO;
1569
1570	if (!c->page)
1571		goto new_slab;
1572
1573	slab_lock(c->page);
1574	if (unlikely(!node_match(c, node)))
1575		goto another_slab;
1576
1577	stat(c, ALLOC_REFILL);
1578
1579load_freelist:
1580	object = c->page->freelist;
1581	if (unlikely(!object))
1582		goto another_slab;
1583	if (unlikely(SlabDebug(c->page)))
1584		goto debug;
1585
1586	c->freelist = object[c->offset];
1587	c->page->inuse = c->page->objects;
1588	c->page->freelist = NULL;
1589	c->node = page_to_nid(c->page);
1590unlock_out:
1591	slab_unlock(c->page);
1592	stat(c, ALLOC_SLOWPATH);
1593	return object;
1594
1595another_slab:
1596	deactivate_slab(s, c);
1597
1598new_slab:
1599	new = get_partial(s, gfpflags, node);
1600	if (new) {
1601		c->page = new;
1602		stat(c, ALLOC_FROM_PARTIAL);
1603		goto load_freelist;
1604	}
1605
1606	if (gfpflags & __GFP_WAIT)
1607		local_irq_enable();
1608
1609	new = new_slab(s, gfpflags, node);
1610
1611	if (gfpflags & __GFP_WAIT)
1612		local_irq_disable();
1613
1614	if (new) {
1615		c = get_cpu_slab(s, smp_processor_id());
1616		stat(c, ALLOC_SLAB);
1617		if (c->page)
1618			flush_slab(s, c);
1619		slab_lock(new);
1620		SetSlabFrozen(new);
1621		c->page = new;
1622		goto load_freelist;
1623	}
1624	return NULL;
1625debug:
1626	if (!alloc_debug_processing(s, c->page, object, addr))
1627		goto another_slab;
1628
1629	c->page->inuse++;
1630	c->page->freelist = object[c->offset];
1631	c->node = -1;
1632	goto unlock_out;
1633}
1634
1635/*
1636 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1637 * have the fastpath folded into their functions. So no function call
1638 * overhead for requests that can be satisfied on the fastpath.
1639 *
1640 * The fastpath works by first checking if the lockless freelist can be used.
1641 * If not then __slab_alloc is called for slow processing.
1642 *
1643 * Otherwise we can simply pick the next object from the lockless free list.
1644 */
1645static __always_inline void *slab_alloc(struct kmem_cache *s,
1646		gfp_t gfpflags, int node, void *addr)
1647{
1648	void **object;
1649	struct kmem_cache_cpu *c;
1650	unsigned long flags;
1651
1652	local_irq_save(flags);
1653	c = get_cpu_slab(s, smp_processor_id());
1654	if (unlikely(!c->freelist || !node_match(c, node)))
1655
1656		object = __slab_alloc(s, gfpflags, node, addr, c);
1657
1658	else {
1659		object = c->freelist;
1660		c->freelist = object[c->offset];
1661		stat(c, ALLOC_FASTPATH);
1662	}
1663	local_irq_restore(flags);
1664
1665	if (unlikely((gfpflags & __GFP_ZERO) && object))
1666		memset(object, 0, c->objsize);
1667
1668	return object;
1669}
1670
1671void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1672{
1673	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1674}
1675EXPORT_SYMBOL(kmem_cache_alloc);
1676
1677#ifdef CONFIG_NUMA
1678void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1679{
1680	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1681}
1682EXPORT_SYMBOL(kmem_cache_alloc_node);
1683#endif
1684
1685/*
1686 * Slow patch handling. This may still be called frequently since objects
1687 * have a longer lifetime than the cpu slabs in most processing loads.
1688 *
1689 * So we still attempt to reduce cache line usage. Just take the slab
1690 * lock and free the item. If there is no additional partial page
1691 * handling required then we can return immediately.
1692 */
1693static void __slab_free(struct kmem_cache *s, struct page *page,
1694				void *x, void *addr, unsigned int offset)
1695{
1696	void *prior;
1697	void **object = (void *)x;
1698	struct kmem_cache_cpu *c;
1699
1700	c = get_cpu_slab(s, raw_smp_processor_id());
1701	stat(c, FREE_SLOWPATH);
1702	slab_lock(page);
1703
1704	if (unlikely(SlabDebug(page)))
1705		goto debug;
1706
1707checks_ok:
1708	prior = object[offset] = page->freelist;
1709	page->freelist = object;
1710	page->inuse--;
1711
1712	if (unlikely(SlabFrozen(page))) {
1713		stat(c, FREE_FROZEN);
1714		goto out_unlock;
1715	}
1716
1717	if (unlikely(!page->inuse))
1718		goto slab_empty;
1719
1720	/*
1721	 * Objects left in the slab. If it was not on the partial list before
1722	 * then add it.
1723	 */
1724	if (unlikely(!prior)) {
1725		add_partial(get_node(s, page_to_nid(page)), page, 1);
1726		stat(c, FREE_ADD_PARTIAL);
1727	}
1728
1729out_unlock:
1730	slab_unlock(page);
1731	return;
1732
1733slab_empty:
1734	if (prior) {
1735		/*
1736		 * Slab still on the partial list.
1737		 */
1738		remove_partial(s, page);
1739		stat(c, FREE_REMOVE_PARTIAL);
1740	}
1741	slab_unlock(page);
1742	stat(c, FREE_SLAB);
1743	discard_slab(s, page);
1744	return;
1745
1746debug:
1747	if (!free_debug_processing(s, page, x, addr))
1748		goto out_unlock;
1749	goto checks_ok;
1750}
1751
1752/*
1753 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1754 * can perform fastpath freeing without additional function calls.
1755 *
1756 * The fastpath is only possible if we are freeing to the current cpu slab
1757 * of this processor. This typically the case if we have just allocated
1758 * the item before.
1759 *
1760 * If fastpath is not possible then fall back to __slab_free where we deal
1761 * with all sorts of special processing.
1762 */
1763static __always_inline void slab_free(struct kmem_cache *s,
1764			struct page *page, void *x, void *addr)
1765{
1766	void **object = (void *)x;
1767	struct kmem_cache_cpu *c;
1768	unsigned long flags;
1769
1770	local_irq_save(flags);
1771	c = get_cpu_slab(s, smp_processor_id());
1772	debug_check_no_locks_freed(object, c->objsize);
1773	if (likely(page == c->page && c->node >= 0)) {
1774		object[c->offset] = c->freelist;
1775		c->freelist = object;
1776		stat(c, FREE_FASTPATH);
1777	} else
1778		__slab_free(s, page, x, addr, c->offset);
1779
1780	local_irq_restore(flags);
1781}
1782
1783void kmem_cache_free(struct kmem_cache *s, void *x)
1784{
1785	struct page *page;
1786
1787	page = virt_to_head_page(x);
1788
1789	slab_free(s, page, x, __builtin_return_address(0));
1790}
1791EXPORT_SYMBOL(kmem_cache_free);
1792
1793/* Figure out on which slab object the object resides */
1794static struct page *get_object_page(const void *x)
1795{
1796	struct page *page = virt_to_head_page(x);
1797
1798	if (!PageSlab(page))
1799		return NULL;
1800
1801	return page;
1802}
1803
1804/*
1805 * Object placement in a slab is made very easy because we always start at
1806 * offset 0. If we tune the size of the object to the alignment then we can
1807 * get the required alignment by putting one properly sized object after
1808 * another.
1809 *
1810 * Notice that the allocation order determines the sizes of the per cpu
1811 * caches. Each processor has always one slab available for allocations.
1812 * Increasing the allocation order reduces the number of times that slabs
1813 * must be moved on and off the partial lists and is therefore a factor in
1814 * locking overhead.
1815 */
1816
1817/*
1818 * Mininum / Maximum order of slab pages. This influences locking overhead
1819 * and slab fragmentation. A higher order reduces the number of partial slabs
1820 * and increases the number of allocations possible without having to
1821 * take the list_lock.
1822 */
1823static int slub_min_order;
1824static int slub_max_order = DEFAULT_MAX_ORDER;
1825static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1826
1827/*
1828 * Merge control. If this is set then no merging of slab caches will occur.
1829 * (Could be removed. This was introduced to pacify the merge skeptics.)
1830 */
1831static int slub_nomerge;
1832
1833/*
1834 * Calculate the order of allocation given an slab object size.
1835 *
1836 * The order of allocation has significant impact on performance and other
1837 * system components. Generally order 0 allocations should be preferred since
1838 * order 0 does not cause fragmentation in the page allocator. Larger objects
1839 * be problematic to put into order 0 slabs because there may be too much
1840 * unused space left. We go to a higher order if more than 1/8th of the slab
1841 * would be wasted.
1842 *
1843 * In order to reach satisfactory performance we must ensure that a minimum
1844 * number of objects is in one slab. Otherwise we may generate too much
1845 * activity on the partial lists which requires taking the list_lock. This is
1846 * less a concern for large slabs though which are rarely used.
1847 *
1848 * slub_max_order specifies the order where we begin to stop considering the
1849 * number of objects in a slab as critical. If we reach slub_max_order then
1850 * we try to keep the page order as low as possible. So we accept more waste
1851 * of space in favor of a small page order.
1852 *
1853 * Higher order allocations also allow the placement of more objects in a
1854 * slab and thereby reduce object handling overhead. If the user has
1855 * requested a higher mininum order then we start with that one instead of
1856 * the smallest order which will fit the object.
1857 */
1858static inline int slab_order(int size, int min_objects,
1859				int max_order, int fract_leftover)
1860{
1861	int order;
1862	int rem;
1863	int min_order = slub_min_order;
1864
1865	if ((PAGE_SIZE << min_order) / size > 65535)
1866		return get_order(size * 65535) - 1;
1867
1868	for (order = max(min_order,
1869				fls(min_objects * size - 1) - PAGE_SHIFT);
1870			order <= max_order; order++) {
1871
1872		unsigned long slab_size = PAGE_SIZE << order;
1873
1874		if (slab_size < min_objects * size)
1875			continue;
1876
1877		rem = slab_size % size;
1878
1879		if (rem <= slab_size / fract_leftover)
1880			break;
1881
1882	}
1883
1884	return order;
1885}
1886
1887static inline int calculate_order(int size)
1888{
1889	int order;
1890	int min_objects;
1891	int fraction;
1892
1893	/*
1894	 * Attempt to find best configuration for a slab. This
1895	 * works by first attempting to generate a layout with
1896	 * the best configuration and backing off gradually.
1897	 *
1898	 * First we reduce the acceptable waste in a slab. Then
1899	 * we reduce the minimum objects required in a slab.
1900	 */
1901	min_objects = slub_min_objects;
1902	while (min_objects > 1) {
1903		fraction = 8;
1904		while (fraction >= 4) {
1905			order = slab_order(size, min_objects,
1906						slub_max_order, fraction);
1907			if (order <= slub_max_order)
1908				return order;
1909			fraction /= 2;
1910		}
1911		min_objects /= 2;
1912	}
1913
1914	/*
1915	 * We were unable to place multiple objects in a slab. Now
1916	 * lets see if we can place a single object there.
1917	 */
1918	order = slab_order(size, 1, slub_max_order, 1);
1919	if (order <= slub_max_order)
1920		return order;
1921
1922	/*
1923	 * Doh this slab cannot be placed using slub_max_order.
1924	 */
1925	order = slab_order(size, 1, MAX_ORDER, 1);
1926	if (order <= MAX_ORDER)
1927		return order;
1928	return -ENOSYS;
1929}
1930
1931/*
1932 * Figure out what the alignment of the objects will be.
1933 */
1934static unsigned long calculate_alignment(unsigned long flags,
1935		unsigned long align, unsigned long size)
1936{
1937	/*
1938	 * If the user wants hardware cache aligned objects then follow that
1939	 * suggestion if the object is sufficiently large.
1940	 *
1941	 * The hardware cache alignment cannot override the specified
1942	 * alignment though. If that is greater then use it.
1943	 */
1944	if (flags & SLAB_HWCACHE_ALIGN) {
1945		unsigned long ralign = cache_line_size();
1946		while (size <= ralign / 2)
1947			ralign /= 2;
1948		align = max(align, ralign);
1949	}
1950
1951	if (align < ARCH_SLAB_MINALIGN)
1952		align = ARCH_SLAB_MINALIGN;
1953
1954	return ALIGN(align, sizeof(void *));
1955}
1956
1957static void init_kmem_cache_cpu(struct kmem_cache *s,
1958			struct kmem_cache_cpu *c)
1959{
1960	c->page = NULL;
1961	c->freelist = NULL;
1962	c->node = 0;
1963	c->offset = s->offset / sizeof(void *);
1964	c->objsize = s->objsize;
1965#ifdef CONFIG_SLUB_STATS
1966	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1967#endif
1968}
1969
1970static void init_kmem_cache_node(struct kmem_cache_node *n)
1971{
1972	n->nr_partial = 0;
1973	spin_lock_init(&n->list_lock);
1974	INIT_LIST_HEAD(&n->partial);
1975#ifdef CONFIG_SLUB_DEBUG
1976	atomic_long_set(&n->nr_slabs, 0);
1977	INIT_LIST_HEAD(&n->full);
1978#endif
1979}
1980
1981#ifdef CONFIG_SMP
1982/*
1983 * Per cpu array for per cpu structures.
1984 *
1985 * The per cpu array places all kmem_cache_cpu structures from one processor
1986 * close together meaning that it becomes possible that multiple per cpu
1987 * structures are contained in one cacheline. This may be particularly
1988 * beneficial for the kmalloc caches.
1989 *
1990 * A desktop system typically has around 60-80 slabs. With 100 here we are
1991 * likely able to get per cpu structures for all caches from the array defined
1992 * here. We must be able to cover all kmalloc caches during bootstrap.
1993 *
1994 * If the per cpu array is exhausted then fall back to kmalloc
1995 * of individual cachelines. No sharing is possible then.
1996 */
1997#define NR_KMEM_CACHE_CPU 100
1998
1999static DEFINE_PER_CPU(struct kmem_cache_cpu,
2000				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2001
2002static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2003static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
2004
2005static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2006							int cpu, gfp_t flags)
2007{
2008	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2009
2010	if (c)
2011		per_cpu(kmem_cache_cpu_free, cpu) =
2012				(void *)c->freelist;
2013	else {
2014		/* Table overflow: So allocate ourselves */
2015		c = kmalloc_node(
2016			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2017			flags, cpu_to_node(cpu));
2018		if (!c)
2019			return NULL;
2020	}
2021
2022	init_kmem_cache_cpu(s, c);
2023	return c;
2024}
2025
2026static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2027{
2028	if (c < per_cpu(kmem_cache_cpu, cpu) ||
2029			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2030		kfree(c);
2031		return;
2032	}
2033	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2034	per_cpu(kmem_cache_cpu_free, cpu) = c;
2035}
2036
2037static void free_kmem_cache_cpus(struct kmem_cache *s)
2038{
2039	int cpu;
2040
2041	for_each_online_cpu(cpu) {
2042		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2043
2044		if (c) {
2045			s->cpu_slab[cpu] = NULL;
2046			free_kmem_cache_cpu(c, cpu);
2047		}
2048	}
2049}
2050
2051static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2052{
2053	int cpu;
2054
2055	for_each_online_cpu(cpu) {
2056		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2057
2058		if (c)
2059			continue;
2060
2061		c = alloc_kmem_cache_cpu(s, cpu, flags);
2062		if (!c) {
2063			free_kmem_cache_cpus(s);
2064			return 0;
2065		}
2066		s->cpu_slab[cpu] = c;
2067	}
2068	return 1;
2069}
2070
2071/*
2072 * Initialize the per cpu array.
2073 */
2074static void init_alloc_cpu_cpu(int cpu)
2075{
2076	int i;
2077
2078	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2079		return;
2080
2081	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2082		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2083
2084	cpu_set(cpu, kmem_cach_cpu_free_init_once);
2085}
2086
2087static void __init init_alloc_cpu(void)
2088{
2089	int cpu;
2090
2091	for_each_online_cpu(cpu)
2092		init_alloc_cpu_cpu(cpu);
2093  }
2094
2095#else
2096static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2097static inline void init_alloc_cpu(void) {}
2098
2099static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2100{
2101	init_kmem_cache_cpu(s, &s->cpu_slab);
2102	return 1;
2103}
2104#endif
2105
2106#ifdef CONFIG_NUMA
2107/*
2108 * No kmalloc_node yet so do it by hand. We know that this is the first
2109 * slab on the node for this slabcache. There are no concurrent accesses
2110 * possible.
2111 *
2112 * Note that this function only works on the kmalloc_node_cache
2113 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2114 * memory on a fresh node that has no slab structures yet.
2115 */
2116static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2117							   int node)
2118{
2119	struct page *page;
2120	struct kmem_cache_node *n;
2121	unsigned long flags;
2122
2123	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2124
2125	page = new_slab(kmalloc_caches, gfpflags, node);
2126
2127	BUG_ON(!page);
2128	if (page_to_nid(page) != node) {
2129		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2130				"node %d\n", node);
2131		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2132				"in order to be able to continue\n");
2133	}
2134
2135	n = page->freelist;
2136	BUG_ON(!n);
2137	page->freelist = get_freepointer(kmalloc_caches, n);
2138	page->inuse++;
2139	kmalloc_caches->node[node] = n;
2140#ifdef CONFIG_SLUB_DEBUG
2141	init_object(kmalloc_caches, n, 1);
2142	init_tracking(kmalloc_caches, n);
2143#endif
2144	init_kmem_cache_node(n);
2145	inc_slabs_node(kmalloc_caches, node, page->objects);
2146
2147	/*
2148	 * lockdep requires consistent irq usage for each lock
2149	 * so even though there cannot be a race this early in
2150	 * the boot sequence, we still disable irqs.
2151	 */
2152	local_irq_save(flags);
2153	add_partial(n, page, 0);
2154	local_irq_restore(flags);
2155	return n;
2156}
2157
2158static void free_kmem_cache_nodes(struct kmem_cache *s)
2159{
2160	int node;
2161
2162	for_each_node_state(node, N_NORMAL_MEMORY) {
2163		struct kmem_cache_node *n = s->node[node];
2164		if (n && n != &s->local_node)
2165			kmem_cache_free(kmalloc_caches, n);
2166		s->node[node] = NULL;
2167	}
2168}
2169
2170static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2171{
2172	int node;
2173	int local_node;
2174
2175	if (slab_state >= UP)
2176		local_node = page_to_nid(virt_to_page(s));
2177	else
2178		local_node = 0;
2179
2180	for_each_node_state(node, N_NORMAL_MEMORY) {
2181		struct kmem_cache_node *n;
2182
2183		if (local_node == node)
2184			n = &s->local_node;
2185		else {
2186			if (slab_state == DOWN) {
2187				n = early_kmem_cache_node_alloc(gfpflags,
2188								node);
2189				continue;
2190			}
2191			n = kmem_cache_alloc_node(kmalloc_caches,
2192							gfpflags, node);
2193
2194			if (!n) {
2195				free_kmem_cache_nodes(s);
2196				return 0;
2197			}
2198
2199		}
2200		s->node[node] = n;
2201		init_kmem_cache_node(n);
2202	}
2203	return 1;
2204}
2205#else
2206static void free_kmem_cache_nodes(struct kmem_cache *s)
2207{
2208}
2209
2210static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2211{
2212	init_kmem_cache_node(&s->local_node);
2213	return 1;
2214}
2215#endif
2216
2217/*
2218 * calculate_sizes() determines the order and the distribution of data within
2219 * a slab object.
2220 */
2221static int calculate_sizes(struct kmem_cache *s)
2222{
2223	unsigned long flags = s->flags;
2224	unsigned long size = s->objsize;
2225	unsigned long align = s->align;
2226	int order;
2227
2228	/*
2229	 * Round up object size to the next word boundary. We can only
2230	 * place the free pointer at word boundaries and this determines
2231	 * the possible location of the free pointer.
2232	 */
2233	size = ALIGN(size, sizeof(void *));
2234
2235#ifdef CONFIG_SLUB_DEBUG
2236	/*
2237	 * Determine if we can poison the object itself. If the user of
2238	 * the slab may touch the object after free or before allocation
2239	 * then we should never poison the object itself.
2240	 */
2241	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2242			!s->ctor)
2243		s->flags |= __OBJECT_POISON;
2244	else
2245		s->flags &= ~__OBJECT_POISON;
2246
2247
2248	/*
2249	 * If we are Redzoning then check if there is some space between the
2250	 * end of the object and the free pointer. If not then add an
2251	 * additional word to have some bytes to store Redzone information.
2252	 */
2253	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2254		size += sizeof(void *);
2255#endif
2256
2257	/*
2258	 * With that we have determined the number of bytes in actual use
2259	 * by the object. This is the potential offset to the free pointer.
2260	 */
2261	s->inuse = size;
2262
2263	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2264		s->ctor)) {
2265		/*
2266		 * Relocate free pointer after the object if it is not
2267		 * permitted to overwrite the first word of the object on
2268		 * kmem_cache_free.
2269		 *
2270		 * This is the case if we do RCU, have a constructor or
2271		 * destructor or are poisoning the objects.
2272		 */
2273		s->offset = size;
2274		size += sizeof(void *);
2275	}
2276
2277#ifdef CONFIG_SLUB_DEBUG
2278	if (flags & SLAB_STORE_USER)
2279		/*
2280		 * Need to store information about allocs and frees after
2281		 * the object.
2282		 */
2283		size += 2 * sizeof(struct track);
2284
2285	if (flags & SLAB_RED_ZONE)
2286		/*
2287		 * Add some empty padding so that we can catch
2288		 * overwrites from earlier objects rather than let
2289		 * tracking information or the free pointer be
2290		 * corrupted if an user writes before the start
2291		 * of the object.
2292		 */
2293		size += sizeof(void *);
2294#endif
2295
2296	/*
2297	 * Determine the alignment based on various parameters that the
2298	 * user specified and the dynamic determination of cache line size
2299	 * on bootup.
2300	 */
2301	align = calculate_alignment(flags, align, s->objsize);
2302
2303	/*
2304	 * SLUB stores one object immediately after another beginning from
2305	 * offset 0. In order to align the objects we have to simply size
2306	 * each object to conform to the alignment.
2307	 */
2308	size = ALIGN(size, align);
2309	s->size = size;
2310	order = calculate_order(size);
2311
2312	if (order < 0)
2313		return 0;
2314
2315	s->allocflags = 0;
2316	if (order)
2317		s->allocflags |= __GFP_COMP;
2318
2319	if (s->flags & SLAB_CACHE_DMA)
2320		s->allocflags |= SLUB_DMA;
2321
2322	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2323		s->allocflags |= __GFP_RECLAIMABLE;
2324
2325	/*
2326	 * Determine the number of objects per slab
2327	 */
2328	s->oo = oo_make(order, size);
2329	s->min = oo_make(get_order(size), size);
2330	if (oo_objects(s->oo) > oo_objects(s->max))
2331		s->max = s->oo;
2332
2333	return !!oo_objects(s->oo);
2334
2335}
2336
2337static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2338		const char *name, size_t size,
2339		size_t align, unsigned long flags,
2340		void (*ctor)(struct kmem_cache *, void *))
2341{
2342	memset(s, 0, kmem_size);
2343	s->name = name;
2344	s->ctor = ctor;
2345	s->objsize = size;
2346	s->align = align;
2347	s->flags = kmem_cache_flags(size, flags, name, ctor);
2348
2349	if (!calculate_sizes(s))
2350		goto error;
2351
2352	s->refcount = 1;
2353#ifdef CONFIG_NUMA
2354	s->remote_node_defrag_ratio = 100;
2355#endif
2356	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2357		goto error;
2358
2359	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2360		return 1;
2361	free_kmem_cache_nodes(s);
2362error:
2363	if (flags & SLAB_PANIC)
2364		panic("Cannot create slab %s size=%lu realsize=%u "
2365			"order=%u offset=%u flags=%lx\n",
2366			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2367			s->offset, flags);
2368	return 0;
2369}
2370
2371/*
2372 * Check if a given pointer is valid
2373 */
2374int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2375{
2376	struct page *page;
2377
2378	page = get_object_page(object);
2379
2380	if (!page || s != page->slab)
2381		/* No slab or wrong slab */
2382		return 0;
2383
2384	if (!check_valid_pointer(s, page, object))
2385		return 0;
2386
2387	/*
2388	 * We could also check if the object is on the slabs freelist.
2389	 * But this would be too expensive and it seems that the main
2390	 * purpose of kmem_ptr_valid() is to check if the object belongs
2391	 * to a certain slab.
2392	 */
2393	return 1;
2394}
2395EXPORT_SYMBOL(kmem_ptr_validate);
2396
2397/*
2398 * Determine the size of a slab object
2399 */
2400unsigned int kmem_cache_size(struct kmem_cache *s)
2401{
2402	return s->objsize;
2403}
2404EXPORT_SYMBOL(kmem_cache_size);
2405
2406const char *kmem_cache_name(struct kmem_cache *s)
2407{
2408	return s->name;
2409}
2410EXPORT_SYMBOL(kmem_cache_name);
2411
2412static void list_slab_objects(struct kmem_cache *s, struct page *page,
2413							const char *text)
2414{
2415#ifdef CONFIG_SLUB_DEBUG
2416	void *addr = page_address(page);
2417	void *p;
2418	DECLARE_BITMAP(map, page->objects);
2419
2420	bitmap_zero(map, page->objects);
2421	slab_err(s, page, "%s", text);
2422	slab_lock(page);
2423	for_each_free_object(p, s, page->freelist)
2424		set_bit(slab_index(p, s, addr), map);
2425
2426	for_each_object(p, s, addr, page->objects) {
2427
2428		if (!test_bit(slab_index(p, s, addr), map)) {
2429			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2430							p, p - addr);
2431			print_tracking(s, p);
2432		}
2433	}
2434	slab_unlock(page);
2435#endif
2436}
2437
2438/*
2439 * Attempt to free all partial slabs on a node.
2440 */
2441static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2442{
2443	unsigned long flags;
2444	struct page *page, *h;
2445
2446	spin_lock_irqsave(&n->list_lock, flags);
2447	list_for_each_entry_safe(page, h, &n->partial, lru) {
2448		if (!page->inuse) {
2449			list_del(&page->lru);
2450			discard_slab(s, page);
2451			n->nr_partial--;
2452		} else {
2453			list_slab_objects(s, page,
2454				"Objects remaining on kmem_cache_close()");
2455		}
2456	}
2457	spin_unlock_irqrestore(&n->list_lock, flags);
2458}
2459
2460/*
2461 * Release all resources used by a slab cache.
2462 */
2463static inline int kmem_cache_close(struct kmem_cache *s)
2464{
2465	int node;
2466
2467	flush_all(s);
2468
2469	/* Attempt to free all objects */
2470	free_kmem_cache_cpus(s);
2471	for_each_node_state(node, N_NORMAL_MEMORY) {
2472		struct kmem_cache_node *n = get_node(s, node);
2473
2474		free_partial(s, n);
2475		if (n->nr_partial || slabs_node(s, node))
2476			return 1;
2477	}
2478	free_kmem_cache_nodes(s);
2479	return 0;
2480}
2481
2482/*
2483 * Close a cache and release the kmem_cache structure
2484 * (must be used for caches created using kmem_cache_create)
2485 */
2486void kmem_cache_destroy(struct kmem_cache *s)
2487{
2488	down_write(&slub_lock);
2489	s->refcount--;
2490	if (!s->refcount) {
2491		list_del(&s->list);
2492		up_write(&slub_lock);
2493		if (kmem_cache_close(s)) {
2494			printk(KERN_ERR "SLUB %s: %s called for cache that "
2495				"still has objects.\n", s->name, __func__);
2496			dump_stack();
2497		}
2498		sysfs_slab_remove(s);
2499	} else
2500		up_write(&slub_lock);
2501}
2502EXPORT_SYMBOL(kmem_cache_destroy);
2503
2504/********************************************************************
2505 *		Kmalloc subsystem
2506 *******************************************************************/
2507
2508struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2509EXPORT_SYMBOL(kmalloc_caches);
2510
2511static int __init setup_slub_min_order(char *str)
2512{
2513	get_option(&str, &slub_min_order);
2514
2515	return 1;
2516}
2517
2518__setup("slub_min_order=", setup_slub_min_order);
2519
2520static int __init setup_slub_max_order(char *str)
2521{
2522	get_option(&str, &slub_max_order);
2523
2524	return 1;
2525}
2526
2527__setup("slub_max_order=", setup_slub_max_order);
2528
2529static int __init setup_slub_min_objects(char *str)
2530{
2531	get_option(&str, &slub_min_objects);
2532
2533	return 1;
2534}
2535
2536__setup("slub_min_objects=", setup_slub_min_objects);
2537
2538static int __init setup_slub_nomerge(char *str)
2539{
2540	slub_nomerge = 1;
2541	return 1;
2542}
2543
2544__setup("slub_nomerge", setup_slub_nomerge);
2545
2546static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2547		const char *name, int size, gfp_t gfp_flags)
2548{
2549	unsigned int flags = 0;
2550
2551	if (gfp_flags & SLUB_DMA)
2552		flags = SLAB_CACHE_DMA;
2553
2554	down_write(&slub_lock);
2555	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2556								flags, NULL))
2557		goto panic;
2558
2559	list_add(&s->list, &slab_caches);
2560	up_write(&slub_lock);
2561	if (sysfs_slab_add(s))
2562		goto panic;
2563	return s;
2564
2565panic:
2566	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2567}
2568
2569#ifdef CONFIG_ZONE_DMA
2570static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2571
2572static void sysfs_add_func(struct work_struct *w)
2573{
2574	struct kmem_cache *s;
2575
2576	down_write(&slub_lock);
2577	list_for_each_entry(s, &slab_caches, list) {
2578		if (s->flags & __SYSFS_ADD_DEFERRED) {
2579			s->flags &= ~__SYSFS_ADD_DEFERRED;
2580			sysfs_slab_add(s);
2581		}
2582	}
2583	up_write(&slub_lock);
2584}
2585
2586static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2587
2588static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2589{
2590	struct kmem_cache *s;
2591	char *text;
2592	size_t realsize;
2593
2594	s = kmalloc_caches_dma[index];
2595	if (s)
2596		return s;
2597
2598	/* Dynamically create dma cache */
2599	if (flags & __GFP_WAIT)
2600		down_write(&slub_lock);
2601	else {
2602		if (!down_write_trylock(&slub_lock))
2603			goto out;
2604	}
2605
2606	if (kmalloc_caches_dma[index])
2607		goto unlock_out;
2608
2609	realsize = kmalloc_caches[index].objsize;
2610	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2611			 (unsigned int)realsize);
2612	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2613
2614	if (!s || !text || !kmem_cache_open(s, flags, text,
2615			realsize, ARCH_KMALLOC_MINALIGN,
2616			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2617		kfree(s);
2618		kfree(text);
2619		goto unlock_out;
2620	}
2621
2622	list_add(&s->list, &slab_caches);
2623	kmalloc_caches_dma[index] = s;
2624
2625	schedule_work(&sysfs_add_work);
2626
2627unlock_out:
2628	up_write(&slub_lock);
2629out:
2630	return kmalloc_caches_dma[index];
2631}
2632#endif
2633
2634/*
2635 * Conversion table for small slabs sizes / 8 to the index in the
2636 * kmalloc array. This is necessary for slabs < 192 since we have non power
2637 * of two cache sizes there. The size of larger slabs can be determined using
2638 * fls.
2639 */
2640static s8 size_index[24] = {
2641	3,	/* 8 */
2642	4,	/* 16 */
2643	5,	/* 24 */
2644	5,	/* 32 */
2645	6,	/* 40 */
2646	6,	/* 48 */
2647	6,	/* 56 */
2648	6,	/* 64 */
2649	1,	/* 72 */
2650	1,	/* 80 */
2651	1,	/* 88 */
2652	1,	/* 96 */
2653	7,	/* 104 */
2654	7,	/* 112 */
2655	7,	/* 120 */
2656	7,	/* 128 */
2657	2,	/* 136 */
2658	2,	/* 144 */
2659	2,	/* 152 */
2660	2,	/* 160 */
2661	2,	/* 168 */
2662	2,	/* 176 */
2663	2,	/* 184 */
2664	2	/* 192 */
2665};
2666
2667static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2668{
2669	int index;
2670
2671	if (size <= 192) {
2672		if (!size)
2673			return ZERO_SIZE_PTR;
2674
2675		index = size_index[(size - 1) / 8];
2676	} else
2677		index = fls(size - 1);
2678
2679#ifdef CONFIG_ZONE_DMA
2680	if (unlikely((flags & SLUB_DMA)))
2681		return dma_kmalloc_cache(index, flags);
2682
2683#endif
2684	return &kmalloc_caches[index];
2685}
2686
2687void *__kmalloc(size_t size, gfp_t flags)
2688{
2689	struct kmem_cache *s;
2690
2691	if (unlikely(size > PAGE_SIZE))
2692		return kmalloc_large(size, flags);
2693
2694	s = get_slab(size, flags);
2695
2696	if (unlikely(ZERO_OR_NULL_PTR(s)))
2697		return s;
2698
2699	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2700}
2701EXPORT_SYMBOL(__kmalloc);
2702
2703static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2704{
2705	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2706						get_order(size));
2707
2708	if (page)
2709		return page_address(page);
2710	else
2711		return NULL;
2712}
2713
2714#ifdef CONFIG_NUMA
2715void *__kmalloc_node(size_t size, gfp_t flags, int node)
2716{
2717	struct kmem_cache *s;
2718
2719	if (unlikely(size > PAGE_SIZE))
2720		return kmalloc_large_node(size, flags, node);
2721
2722	s = get_slab(size, flags);
2723
2724	if (unlikely(ZERO_OR_NULL_PTR(s)))
2725		return s;
2726
2727	return slab_alloc(s, flags, node, __builtin_return_address(0));
2728}
2729EXPORT_SYMBOL(__kmalloc_node);
2730#endif
2731
2732size_t ksize(const void *object)
2733{
2734	struct page *page;
2735	struct kmem_cache *s;
2736
2737	if (unlikely(object == ZERO_SIZE_PTR))
2738		return 0;
2739
2740	page = virt_to_head_page(object);
2741
2742	if (unlikely(!PageSlab(page)))
2743		return PAGE_SIZE << compound_order(page);
2744
2745	s = page->slab;
2746
2747#ifdef CONFIG_SLUB_DEBUG
2748	/*
2749	 * Debugging requires use of the padding between object
2750	 * and whatever may come after it.
2751	 */
2752	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2753		return s->objsize;
2754
2755#endif
2756	/*
2757	 * If we have the need to store the freelist pointer
2758	 * back there or track user information then we can
2759	 * only use the space before that information.
2760	 */
2761	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2762		return s->inuse;
2763	/*
2764	 * Else we can use all the padding etc for the allocation
2765	 */
2766	return s->size;
2767}
2768EXPORT_SYMBOL(ksize);
2769
2770void kfree(const void *x)
2771{
2772	struct page *page;
2773	void *object = (void *)x;
2774
2775	if (unlikely(ZERO_OR_NULL_PTR(x)))
2776		return;
2777
2778	page = virt_to_head_page(x);
2779	if (unlikely(!PageSlab(page))) {
2780		put_page(page);
2781		return;
2782	}
2783	slab_free(page->slab, page, object, __builtin_return_address(0));
2784}
2785EXPORT_SYMBOL(kfree);
2786
2787/*
2788 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2789 * the remaining slabs by the number of items in use. The slabs with the
2790 * most items in use come first. New allocations will then fill those up
2791 * and thus they can be removed from the partial lists.
2792 *
2793 * The slabs with the least items are placed last. This results in them
2794 * being allocated from last increasing the chance that the last objects
2795 * are freed in them.
2796 */
2797int kmem_cache_shrink(struct kmem_cache *s)
2798{
2799	int node;
2800	int i;
2801	struct kmem_cache_node *n;
2802	struct page *page;
2803	struct page *t;
2804	int objects = oo_objects(s->max);
2805	struct list_head *slabs_by_inuse =
2806		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2807	unsigned long flags;
2808
2809	if (!slabs_by_inuse)
2810		return -ENOMEM;
2811
2812	flush_all(s);
2813	for_each_node_state(node, N_NORMAL_MEMORY) {
2814		n = get_node(s, node);
2815
2816		if (!n->nr_partial)
2817			continue;
2818
2819		for (i = 0; i < objects; i++)
2820			INIT_LIST_HEAD(slabs_by_inuse + i);
2821
2822		spin_lock_irqsave(&n->list_lock, flags);
2823
2824		/*
2825		 * Build lists indexed by the items in use in each slab.
2826		 *
2827		 * Note that concurrent frees may occur while we hold the
2828		 * list_lock. page->inuse here is the upper limit.
2829		 */
2830		list_for_each_entry_safe(page, t, &n->partial, lru) {
2831			if (!page->inuse && slab_trylock(page)) {
2832				/*
2833				 * Must hold slab lock here because slab_free
2834				 * may have freed the last object and be
2835				 * waiting to release the slab.
2836				 */
2837				list_del(&page->lru);
2838				n->nr_partial--;
2839				slab_unlock(page);
2840				discard_slab(s, page);
2841			} else {
2842				list_move(&page->lru,
2843				slabs_by_inuse + page->inuse);
2844			}
2845		}
2846
2847		/*
2848		 * Rebuild the partial list with the slabs filled up most
2849		 * first and the least used slabs at the end.
2850		 */
2851		for (i = objects - 1; i >= 0; i--)
2852			list_splice(slabs_by_inuse + i, n->partial.prev);
2853
2854		spin_unlock_irqrestore(&n->list_lock, flags);
2855	}
2856
2857	kfree(slabs_by_inuse);
2858	return 0;
2859}
2860EXPORT_SYMBOL(kmem_cache_shrink);
2861
2862#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2863static int slab_mem_going_offline_callback(void *arg)
2864{
2865	struct kmem_cache *s;
2866
2867	down_read(&slub_lock);
2868	list_for_each_entry(s, &slab_caches, list)
2869		kmem_cache_shrink(s);
2870	up_read(&slub_lock);
2871
2872	return 0;
2873}
2874
2875static void slab_mem_offline_callback(void *arg)
2876{
2877	struct kmem_cache_node *n;
2878	struct kmem_cache *s;
2879	struct memory_notify *marg = arg;
2880	int offline_node;
2881
2882	offline_node = marg->status_change_nid;
2883
2884	/*
2885	 * If the node still has available memory. we need kmem_cache_node
2886	 * for it yet.
2887	 */
2888	if (offline_node < 0)
2889		return;
2890
2891	down_read(&slub_lock);
2892	list_for_each_entry(s, &slab_caches, list) {
2893		n = get_node(s, offline_node);
2894		if (n) {
2895			/*
2896			 * if n->nr_slabs > 0, slabs still exist on the node
2897			 * that is going down. We were unable to free them,
2898			 * and offline_pages() function shoudn't call this
2899			 * callback. So, we must fail.
2900			 */
2901			BUG_ON(slabs_node(s, offline_node));
2902
2903			s->node[offline_node] = NULL;
2904			kmem_cache_free(kmalloc_caches, n);
2905		}
2906	}
2907	up_read(&slub_lock);
2908}
2909
2910static int slab_mem_going_online_callback(void *arg)
2911{
2912	struct kmem_cache_node *n;
2913	struct kmem_cache *s;
2914	struct memory_notify *marg = arg;
2915	int nid = marg->status_change_nid;
2916	int ret = 0;
2917
2918	/*
2919	 * If the node's memory is already available, then kmem_cache_node is
2920	 * already created. Nothing to do.
2921	 */
2922	if (nid < 0)
2923		return 0;
2924
2925	/*
2926	 * We are bringing a node online. No memory is availabe yet. We must
2927	 * allocate a kmem_cache_node structure in order to bring the node
2928	 * online.
2929	 */
2930	down_read(&slub_lock);
2931	list_for_each_entry(s, &slab_caches, list) {
2932		/*
2933		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2934		 *      since memory is not yet available from the node that
2935		 *      is brought up.
2936		 */
2937		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2938		if (!n) {
2939			ret = -ENOMEM;
2940			goto out;
2941		}
2942		init_kmem_cache_node(n);
2943		s->node[nid] = n;
2944	}
2945out:
2946	up_read(&slub_lock);
2947	return ret;
2948}
2949
2950static int slab_memory_callback(struct notifier_block *self,
2951				unsigned long action, void *arg)
2952{
2953	int ret = 0;
2954
2955	switch (action) {
2956	case MEM_GOING_ONLINE:
2957		ret = slab_mem_going_online_callback(arg);
2958		break;
2959	case MEM_GOING_OFFLINE:
2960		ret = slab_mem_going_offline_callback(arg);
2961		break;
2962	case MEM_OFFLINE:
2963	case MEM_CANCEL_ONLINE:
2964		slab_mem_offline_callback(arg);
2965		break;
2966	case MEM_ONLINE:
2967	case MEM_CANCEL_OFFLINE:
2968		break;
2969	}
2970
2971	ret = notifier_from_errno(ret);
2972	return ret;
2973}
2974
2975#endif /* CONFIG_MEMORY_HOTPLUG */
2976
2977/********************************************************************
2978 *			Basic setup of slabs
2979 *******************************************************************/
2980
2981void __init kmem_cache_init(void)
2982{
2983	int i;
2984	int caches = 0;
2985
2986	init_alloc_cpu();
2987
2988#ifdef CONFIG_NUMA
2989	/*
2990	 * Must first have the slab cache available for the allocations of the
2991	 * struct kmem_cache_node's. There is special bootstrap code in
2992	 * kmem_cache_open for slab_state == DOWN.
2993	 */
2994	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2995		sizeof(struct kmem_cache_node), GFP_KERNEL);
2996	kmalloc_caches[0].refcount = -1;
2997	caches++;
2998
2999	hotplug_memory_notifier(slab_memory_callback, 1);
3000#endif
3001
3002	/* Able to allocate the per node structures */
3003	slab_state = PARTIAL;
3004
3005	/* Caches that are not of the two-to-the-power-of size */
3006	if (KMALLOC_MIN_SIZE <= 64) {
3007		create_kmalloc_cache(&kmalloc_caches[1],
3008				"kmalloc-96", 96, GFP_KERNEL);
3009		caches++;
3010	}
3011	if (KMALLOC_MIN_SIZE <= 128) {
3012		create_kmalloc_cache(&kmalloc_caches[2],
3013				"kmalloc-192", 192, GFP_KERNEL);
3014		caches++;
3015	}
3016
3017	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
3018		create_kmalloc_cache(&kmalloc_caches[i],
3019			"kmalloc", 1 << i, GFP_KERNEL);
3020		caches++;
3021	}
3022
3023
3024	/*
3025	 * Patch up the size_index table if we have strange large alignment
3026	 * requirements for the kmalloc array. This is only the case for
3027	 * MIPS it seems. The standard arches will not generate any code here.
3028	 *
3029	 * Largest permitted alignment is 256 bytes due to the way we
3030	 * handle the index determination for the smaller caches.
3031	 *
3032	 * Make sure that nothing crazy happens if someone starts tinkering
3033	 * around with ARCH_KMALLOC_MINALIGN
3034	 */
3035	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3036		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3037
3038	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3039		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3040
3041	slab_state = UP;
3042
3043	/* Provide the correct kmalloc names now that the caches are up */
3044	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3045		kmalloc_caches[i]. name =
3046			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3047
3048#ifdef CONFIG_SMP
3049	register_cpu_notifier(&slab_notifier);
3050	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3051				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3052#else
3053	kmem_size = sizeof(struct kmem_cache);
3054#endif
3055
3056	printk(KERN_INFO
3057		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3058		" CPUs=%d, Nodes=%d\n",
3059		caches, cache_line_size(),
3060		slub_min_order, slub_max_order, slub_min_objects,
3061		nr_cpu_ids, nr_node_ids);
3062}
3063
3064/*
3065 * Find a mergeable slab cache
3066 */
3067static int slab_unmergeable(struct kmem_cache *s)
3068{
3069	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3070		return 1;
3071
3072	if (s->ctor)
3073		return 1;
3074
3075	/*
3076	 * We may have set a slab to be unmergeable during bootstrap.
3077	 */
3078	if (s->refcount < 0)
3079		return 1;
3080
3081	return 0;
3082}
3083
3084static struct kmem_cache *find_mergeable(size_t size,
3085		size_t align, unsigned long flags, const char *name,
3086		void (*ctor)(struct kmem_cache *, void *))
3087{
3088	struct kmem_cache *s;
3089
3090	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3091		return NULL;
3092
3093	if (ctor)
3094		return NULL;
3095
3096	size = ALIGN(size, sizeof(void *));
3097	align = calculate_alignment(flags, align, size);
3098	size = ALIGN(size, align);
3099	flags = kmem_cache_flags(size, flags, name, NULL);
3100
3101	list_for_each_entry(s, &slab_caches, list) {
3102		if (slab_unmergeable(s))
3103			continue;
3104
3105		if (size > s->size)
3106			continue;
3107
3108		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3109				continue;
3110		/*
3111		 * Check if alignment is compatible.
3112		 * Courtesy of Adrian Drzewiecki
3113		 */
3114		if ((s->size & ~(align - 1)) != s->size)
3115			continue;
3116
3117		if (s->size - size >= sizeof(void *))
3118			continue;
3119
3120		return s;
3121	}
3122	return NULL;
3123}
3124
3125struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3126		size_t align, unsigned long flags,
3127		void (*ctor)(struct kmem_cache *, void *))
3128{
3129	struct kmem_cache *s;
3130
3131	down_write(&slub_lock);
3132	s = find_mergeable(size, align, flags, name, ctor);
3133	if (s) {
3134		int cpu;
3135
3136		s->refcount++;
3137		/*
3138		 * Adjust the object sizes so that we clear
3139		 * the complete object on kzalloc.
3140		 */
3141		s->objsize = max(s->objsize, (int)size);
3142
3143		/*
3144		 * And then we need to update the object size in the
3145		 * per cpu structures
3146		 */
3147		for_each_online_cpu(cpu)
3148			get_cpu_slab(s, cpu)->objsize = s->objsize;
3149
3150		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3151		up_write(&slub_lock);
3152
3153		if (sysfs_slab_alias(s, name))
3154			goto err;
3155		return s;
3156	}
3157
3158	s = kmalloc(kmem_size, GFP_KERNEL);
3159	if (s) {
3160		if (kmem_cache_open(s, GFP_KERNEL, name,
3161				size, align, flags, ctor)) {
3162			list_add(&s->list, &slab_caches);
3163			up_write(&slub_lock);
3164			if (sysfs_slab_add(s))
3165				goto err;
3166			return s;
3167		}
3168		kfree(s);
3169	}
3170	up_write(&slub_lock);
3171
3172err:
3173	if (flags & SLAB_PANIC)
3174		panic("Cannot create slabcache %s\n", name);
3175	else
3176		s = NULL;
3177	return s;
3178}
3179EXPORT_SYMBOL(kmem_cache_create);
3180
3181#ifdef CONFIG_SMP
3182/*
3183 * Use the cpu notifier to insure that the cpu slabs are flushed when
3184 * necessary.
3185 */
3186static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3187		unsigned long action, void *hcpu)
3188{
3189	long cpu = (long)hcpu;
3190	struct kmem_cache *s;
3191	unsigned long flags;
3192
3193	switch (action) {
3194	case CPU_UP_PREPARE:
3195	case CPU_UP_PREPARE_FROZEN:
3196		init_alloc_cpu_cpu(cpu);
3197		down_read(&slub_lock);
3198		list_for_each_entry(s, &slab_caches, list)
3199			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3200							GFP_KERNEL);
3201		up_read(&slub_lock);
3202		break;
3203
3204	case CPU_UP_CANCELED:
3205	case CPU_UP_CANCELED_FROZEN:
3206	case CPU_DEAD:
3207	case CPU_DEAD_FROZEN:
3208		down_read(&slub_lock);
3209		list_for_each_entry(s, &slab_caches, list) {
3210			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3211
3212			local_irq_save(flags);
3213			__flush_cpu_slab(s, cpu);
3214			local_irq_restore(flags);
3215			free_kmem_cache_cpu(c, cpu);
3216			s->cpu_slab[cpu] = NULL;
3217		}
3218		up_read(&slub_lock);
3219		break;
3220	default:
3221		break;
3222	}
3223	return NOTIFY_OK;
3224}
3225
3226static struct notifier_block __cpuinitdata slab_notifier = {
3227	.notifier_call = slab_cpuup_callback
3228};
3229
3230#endif
3231
3232void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3233{
3234	struct kmem_cache *s;
3235
3236	if (unlikely(size > PAGE_SIZE))
3237		return kmalloc_large(size, gfpflags);
3238
3239	s = get_slab(size, gfpflags);
3240
3241	if (unlikely(ZERO_OR_NULL_PTR(s)))
3242		return s;
3243
3244	return slab_alloc(s, gfpflags, -1, caller);
3245}
3246
3247void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3248					int node, void *caller)
3249{
3250	struct kmem_cache *s;
3251
3252	if (unlikely(size > PAGE_SIZE))
3253		return kmalloc_large_node(size, gfpflags, node);
3254
3255	s = get_slab(size, gfpflags);
3256
3257	if (unlikely(ZERO_OR_NULL_PTR(s)))
3258		return s;
3259
3260	return slab_alloc(s, gfpflags, node, caller);
3261}
3262
3263#if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
3264static unsigned long count_partial(struct kmem_cache_node *n,
3265					int (*get_count)(struct page *))
3266{
3267	unsigned long flags;
3268	unsigned long x = 0;
3269	struct page *page;
3270
3271	spin_lock_irqsave(&n->list_lock, flags);
3272	list_for_each_entry(page, &n->partial, lru)
3273		x += get_count(page);
3274	spin_unlock_irqrestore(&n->list_lock, flags);
3275	return x;
3276}
3277
3278static int count_inuse(struct page *page)
3279{
3280	return page->inuse;
3281}
3282
3283static int count_total(struct page *page)
3284{
3285	return page->objects;
3286}
3287
3288static int count_free(struct page *page)
3289{
3290	return page->objects - page->inuse;
3291}
3292#endif
3293
3294#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3295static int validate_slab(struct kmem_cache *s, struct page *page,
3296						unsigned long *map)
3297{
3298	void *p;
3299	void *addr = page_address(page);
3300
3301	if (!check_slab(s, page) ||
3302			!on_freelist(s, page, NULL))
3303		return 0;
3304
3305	/* Now we know that a valid freelist exists */
3306	bitmap_zero(map, page->objects);
3307
3308	for_each_free_object(p, s, page->freelist) {
3309		set_bit(slab_index(p, s, addr), map);
3310		if (!check_object(s, page, p, 0))
3311			return 0;
3312	}
3313
3314	for_each_object(p, s, addr, page->objects)
3315		if (!test_bit(slab_index(p, s, addr), map))
3316			if (!check_object(s, page, p, 1))
3317				return 0;
3318	return 1;
3319}
3320
3321static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3322						unsigned long *map)
3323{
3324	if (slab_trylock(page)) {
3325		validate_slab(s, page, map);
3326		slab_unlock(page);
3327	} else
3328		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3329			s->name, page);
3330
3331	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3332		if (!SlabDebug(page))
3333			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3334				"on slab 0x%p\n", s->name, page);
3335	} else {
3336		if (SlabDebug(page))
3337			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3338				"slab 0x%p\n", s->name, page);
3339	}
3340}
3341
3342static int validate_slab_node(struct kmem_cache *s,
3343		struct kmem_cache_node *n, unsigned long *map)
3344{
3345	unsigned long count = 0;
3346	struct page *page;
3347	unsigned long flags;
3348
3349	spin_lock_irqsave(&n->list_lock, flags);
3350
3351	list_for_each_entry(page, &n->partial, lru) {
3352		validate_slab_slab(s, page, map);
3353		count++;
3354	}
3355	if (count != n->nr_partial)
3356		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3357			"counter=%ld\n", s->name, count, n->nr_partial);
3358
3359	if (!(s->flags & SLAB_STORE_USER))
3360		goto out;
3361
3362	list_for_each_entry(page, &n->full, lru) {
3363		validate_slab_slab(s, page, map);
3364		count++;
3365	}
3366	if (count != atomic_long_read(&n->nr_slabs))
3367		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3368			"counter=%ld\n", s->name, count,
3369			atomic_long_read(&n->nr_slabs));
3370
3371out:
3372	spin_unlock_irqrestore(&n->list_lock, flags);
3373	return count;
3374}
3375
3376static long validate_slab_cache(struct kmem_cache *s)
3377{
3378	int node;
3379	unsigned long count = 0;
3380	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3381				sizeof(unsigned long), GFP_KERNEL);
3382
3383	if (!map)
3384		return -ENOMEM;
3385
3386	flush_all(s);
3387	for_each_node_state(node, N_NORMAL_MEMORY) {
3388		struct kmem_cache_node *n = get_node(s, node);
3389
3390		count += validate_slab_node(s, n, map);
3391	}
3392	kfree(map);
3393	return count;
3394}
3395
3396#ifdef SLUB_RESILIENCY_TEST
3397static void resiliency_test(void)
3398{
3399	u8 *p;
3400
3401	printk(KERN_ERR "SLUB resiliency testing\n");
3402	printk(KERN_ERR "-----------------------\n");
3403	printk(KERN_ERR "A. Corruption after allocation\n");
3404
3405	p = kzalloc(16, GFP_KERNEL);
3406	p[16] = 0x12;
3407	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3408			" 0x12->0x%p\n\n", p + 16);
3409
3410	validate_slab_cache(kmalloc_caches + 4);
3411
3412	/* Hmmm... The next two are dangerous */
3413	p = kzalloc(32, GFP_KERNEL);
3414	p[32 + sizeof(void *)] = 0x34;
3415	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3416			" 0x34 -> -0x%p\n", p);
3417	printk(KERN_ERR
3418		"If allocated object is overwritten then not detectable\n\n");
3419
3420	validate_slab_cache(kmalloc_caches + 5);
3421	p = kzalloc(64, GFP_KERNEL);
3422	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3423	*p = 0x56;
3424	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3425									p);
3426	printk(KERN_ERR
3427		"If allocated object is overwritten then not detectable\n\n");
3428	validate_slab_cache(kmalloc_caches + 6);
3429
3430	printk(KERN_ERR "\nB. Corruption after free\n");
3431	p = kzalloc(128, GFP_KERNEL);
3432	kfree(p);
3433	*p = 0x78;
3434	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3435	validate_slab_cache(kmalloc_caches + 7);
3436
3437	p = kzalloc(256, GFP_KERNEL);
3438	kfree(p);
3439	p[50] = 0x9a;
3440	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3441			p);
3442	validate_slab_cache(kmalloc_caches + 8);
3443
3444	p = kzalloc(512, GFP_KERNEL);
3445	kfree(p);
3446	p[512] = 0xab;
3447	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3448	validate_slab_cache(kmalloc_caches + 9);
3449}
3450#else
3451static void resiliency_test(void) {};
3452#endif
3453
3454/*
3455 * Generate lists of code addresses where slabcache objects are allocated
3456 * and freed.
3457 */
3458
3459struct location {
3460	unsigned long count;
3461	void *addr;
3462	long long sum_time;
3463	long min_time;
3464	long max_time;
3465	long min_pid;
3466	long max_pid;
3467	cpumask_t cpus;
3468	nodemask_t nodes;
3469};
3470
3471struct loc_track {
3472	unsigned long max;
3473	unsigned long count;
3474	struct location *loc;
3475};
3476
3477static void free_loc_track(struct loc_track *t)
3478{
3479	if (t->max)
3480		free_pages((unsigned long)t->loc,
3481			get_order(sizeof(struct location) * t->max));
3482}
3483
3484static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3485{
3486	struct location *l;
3487	int order;
3488
3489	order = get_order(sizeof(struct location) * max);
3490
3491	l = (void *)__get_free_pages(flags, order);
3492	if (!l)
3493		return 0;
3494
3495	if (t->count) {
3496		memcpy(l, t->loc, sizeof(struct location) * t->count);
3497		free_loc_track(t);
3498	}
3499	t->max = max;
3500	t->loc = l;
3501	return 1;
3502}
3503
3504static int add_location(struct loc_track *t, struct kmem_cache *s,
3505				const struct track *track)
3506{
3507	long start, end, pos;
3508	struct location *l;
3509	void *caddr;
3510	unsigned long age = jiffies - track->when;
3511
3512	start = -1;
3513	end = t->count;
3514
3515	for ( ; ; ) {
3516		pos = start + (end - start + 1) / 2;
3517
3518		/*
3519		 * There is nothing at "end". If we end up there
3520		 * we need to add something to before end.
3521		 */
3522		if (pos == end)
3523			break;
3524
3525		caddr = t->loc[pos].addr;
3526		if (track->addr == caddr) {
3527
3528			l = &t->loc[pos];
3529			l->count++;
3530			if (track->when) {
3531				l->sum_time += age;
3532				if (age < l->min_time)
3533					l->min_time = age;
3534				if (age > l->max_time)
3535					l->max_time = age;
3536
3537				if (track->pid < l->min_pid)
3538					l->min_pid = track->pid;
3539				if (track->pid > l->max_pid)
3540					l->max_pid = track->pid;
3541
3542				cpu_set(track->cpu, l->cpus);
3543			}
3544			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3545			return 1;
3546		}
3547
3548		if (track->addr < caddr)
3549			end = pos;
3550		else
3551			start = pos;
3552	}
3553
3554	/*
3555	 * Not found. Insert new tracking element.
3556	 */
3557	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3558		return 0;
3559
3560	l = t->loc + pos;
3561	if (pos < t->count)
3562		memmove(l + 1, l,
3563			(t->count - pos) * sizeof(struct location));
3564	t->count++;
3565	l->count = 1;
3566	l->addr = track->addr;
3567	l->sum_time = age;
3568	l->min_time = age;
3569	l->max_time = age;
3570	l->min_pid = track->pid;
3571	l->max_pid = track->pid;
3572	cpus_clear(l->cpus);
3573	cpu_set(track->cpu, l->cpus);
3574	nodes_clear(l->nodes);
3575	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3576	return 1;
3577}
3578
3579static void process_slab(struct loc_track *t, struct kmem_cache *s,
3580		struct page *page, enum track_item alloc)
3581{
3582	void *addr = page_address(page);
3583	DECLARE_BITMAP(map, page->objects);
3584	void *p;
3585
3586	bitmap_zero(map, page->objects);
3587	for_each_free_object(p, s, page->freelist)
3588		set_bit(slab_index(p, s, addr), map);
3589
3590	for_each_object(p, s, addr, page->objects)
3591		if (!test_bit(slab_index(p, s, addr), map))
3592			add_location(t, s, get_track(s, p, alloc));
3593}
3594
3595static int list_locations(struct kmem_cache *s, char *buf,
3596					enum track_item alloc)
3597{
3598	int len = 0;
3599	unsigned long i;
3600	struct loc_track t = { 0, 0, NULL };
3601	int node;
3602
3603	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3604			GFP_TEMPORARY))
3605		return sprintf(buf, "Out of memory\n");
3606
3607	/* Push back cpu slabs */
3608	flush_all(s);
3609
3610	for_each_node_state(node, N_NORMAL_MEMORY) {
3611		struct kmem_cache_node *n = get_node(s, node);
3612		unsigned long flags;
3613		struct page *page;
3614
3615		if (!atomic_long_read(&n->nr_slabs))
3616			continue;
3617
3618		spin_lock_irqsave(&n->list_lock, flags);
3619		list_for_each_entry(page, &n->partial, lru)
3620			process_slab(&t, s, page, alloc);
3621		list_for_each_entry(page, &n->full, lru)
3622			process_slab(&t, s, page, alloc);
3623		spin_unlock_irqrestore(&n->list_lock, flags);
3624	}
3625
3626	for (i = 0; i < t.count; i++) {
3627		struct location *l = &t.loc[i];
3628
3629		if (len > PAGE_SIZE - 100)
3630			break;
3631		len += sprintf(buf + len, "%7ld ", l->count);
3632
3633		if (l->addr)
3634			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3635		else
3636			len += sprintf(buf + len, "<not-available>");
3637
3638		if (l->sum_time != l->min_time) {
3639			unsigned long remainder;
3640
3641			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3642			l->min_time,
3643			div_long_long_rem(l->sum_time, l->count, &remainder),
3644			l->max_time);
3645		} else
3646			len += sprintf(buf + len, " age=%ld",
3647				l->min_time);
3648
3649		if (l->min_pid != l->max_pid)
3650			len += sprintf(buf + len, " pid=%ld-%ld",
3651				l->min_pid, l->max_pid);
3652		else
3653			len += sprintf(buf + len, " pid=%ld",
3654				l->min_pid);
3655
3656		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3657				len < PAGE_SIZE - 60) {
3658			len += sprintf(buf + len, " cpus=");
3659			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3660					l->cpus);
3661		}
3662
3663		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3664				len < PAGE_SIZE - 60) {
3665			len += sprintf(buf + len, " nodes=");
3666			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3667					l->nodes);
3668		}
3669
3670		len += sprintf(buf + len, "\n");
3671	}
3672
3673	free_loc_track(&t);
3674	if (!t.count)
3675		len += sprintf(buf, "No data\n");
3676	return len;
3677}
3678
3679enum slab_stat_type {
3680	SL_ALL,			/* All slabs */
3681	SL_PARTIAL,		/* Only partially allocated slabs */
3682	SL_CPU,			/* Only slabs used for cpu caches */
3683	SL_OBJECTS,		/* Determine allocated objects not slabs */
3684	SL_TOTAL		/* Determine object capacity not slabs */
3685};
3686
3687#define SO_ALL		(1 << SL_ALL)
3688#define SO_PARTIAL	(1 << SL_PARTIAL)
3689#define SO_CPU		(1 << SL_CPU)
3690#define SO_OBJECTS	(1 << SL_OBJECTS)
3691#define SO_TOTAL	(1 << SL_TOTAL)
3692
3693static ssize_t show_slab_objects(struct kmem_cache *s,
3694			    char *buf, unsigned long flags)
3695{
3696	unsigned long total = 0;
3697	int node;
3698	int x;
3699	unsigned long *nodes;
3700	unsigned long *per_cpu;
3701
3702	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3703	if (!nodes)
3704		return -ENOMEM;
3705	per_cpu = nodes + nr_node_ids;
3706
3707	if (flags & SO_CPU) {
3708		int cpu;
3709
3710		for_each_possible_cpu(cpu) {
3711			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3712
3713			if (!c || c->node < 0)
3714				continue;
3715
3716			if (c->page) {
3717					if (flags & SO_TOTAL)
3718						x = c->page->objects;
3719				else if (flags & SO_OBJECTS)
3720					x = c->page->inuse;
3721				else
3722					x = 1;
3723
3724				total += x;
3725				nodes[c->node] += x;
3726			}
3727			per_cpu[c->node]++;
3728		}
3729	}
3730
3731	if (flags & SO_ALL) {
3732		for_each_node_state(node, N_NORMAL_MEMORY) {
3733			struct kmem_cache_node *n = get_node(s, node);
3734
3735		if (flags & SO_TOTAL)
3736			x = atomic_long_read(&n->total_objects);
3737		else if (flags & SO_OBJECTS)
3738			x = atomic_long_read(&n->total_objects) -
3739				count_partial(n, count_free);
3740
3741			else
3742				x = atomic_long_read(&n->nr_slabs);
3743			total += x;
3744			nodes[node] += x;
3745		}
3746
3747	} else if (flags & SO_PARTIAL) {
3748		for_each_node_state(node, N_NORMAL_MEMORY) {
3749			struct kmem_cache_node *n = get_node(s, node);
3750
3751			if (flags & SO_TOTAL)
3752				x = count_partial(n, count_total);
3753			else if (flags & SO_OBJECTS)
3754				x = count_partial(n, count_inuse);
3755			else
3756				x = n->nr_partial;
3757			total += x;
3758			nodes[node] += x;
3759		}
3760	}
3761	x = sprintf(buf, "%lu", total);
3762#ifdef CONFIG_NUMA
3763	for_each_node_state(node, N_NORMAL_MEMORY)
3764		if (nodes[node])
3765			x += sprintf(buf + x, " N%d=%lu",
3766					node, nodes[node]);
3767#endif
3768	kfree(nodes);
3769	return x + sprintf(buf + x, "\n");
3770}
3771
3772static int any_slab_objects(struct kmem_cache *s)
3773{
3774	int node;
3775	int cpu;
3776
3777	for_each_possible_cpu(cpu) {
3778		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3779
3780		if (c && c->page)
3781			return 1;
3782	}
3783
3784	for_each_online_node(node) {
3785		struct kmem_cache_node *n = get_node(s, node);
3786
3787		if (!n)
3788			continue;
3789
3790		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3791			return 1;
3792	}
3793	return 0;
3794}
3795
3796#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3797#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3798
3799struct slab_attribute {
3800	struct attribute attr;
3801	ssize_t (*show)(struct kmem_cache *s, char *buf);
3802	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3803};
3804
3805#define SLAB_ATTR_RO(_name) \
3806	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3807
3808#define SLAB_ATTR(_name) \
3809	static struct slab_attribute _name##_attr =  \
3810	__ATTR(_name, 0644, _name##_show, _name##_store)
3811
3812static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3813{
3814	return sprintf(buf, "%d\n", s->size);
3815}
3816SLAB_ATTR_RO(slab_size);
3817
3818static ssize_t align_show(struct kmem_cache *s, char *buf)
3819{
3820	return sprintf(buf, "%d\n", s->align);
3821}
3822SLAB_ATTR_RO(align);
3823
3824static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3825{
3826	return sprintf(buf, "%d\n", s->objsize);
3827}
3828SLAB_ATTR_RO(object_size);
3829
3830static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3831{
3832	return sprintf(buf, "%d\n", oo_objects(s->oo));
3833}
3834SLAB_ATTR_RO(objs_per_slab);
3835
3836static ssize_t order_show(struct kmem_cache *s, char *buf)
3837{
3838	return sprintf(buf, "%d\n", oo_order(s->oo));
3839}
3840SLAB_ATTR_RO(order);
3841
3842static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3843{
3844	if (s->ctor) {
3845		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3846
3847		return n + sprintf(buf + n, "\n");
3848	}
3849	return 0;
3850}
3851SLAB_ATTR_RO(ctor);
3852
3853static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3854{
3855	return sprintf(buf, "%d\n", s->refcount - 1);
3856}
3857SLAB_ATTR_RO(aliases);
3858
3859static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3860{
3861	return show_slab_objects(s, buf, SO_ALL);
3862}
3863SLAB_ATTR_RO(slabs);
3864
3865static ssize_t partial_show(struct kmem_cache *s, char *buf)
3866{
3867	return show_slab_objects(s, buf, SO_PARTIAL);
3868}
3869SLAB_ATTR_RO(partial);
3870
3871static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3872{
3873	return show_slab_objects(s, buf, SO_CPU);
3874}
3875SLAB_ATTR_RO(cpu_slabs);
3876
3877static ssize_t objects_show(struct kmem_cache *s, char *buf)
3878{
3879	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3880}
3881SLAB_ATTR_RO(objects);
3882
3883static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3884{
3885	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3886}
3887SLAB_ATTR_RO(objects_partial);
3888
3889static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3890{
3891	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3892}
3893SLAB_ATTR_RO(total_objects);
3894
3895static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3896{
3897	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3898}
3899
3900static ssize_t sanity_checks_store(struct kmem_cache *s,
3901				const char *buf, size_t length)
3902{
3903	s->flags &= ~SLAB_DEBUG_FREE;
3904	if (buf[0] == '1')
3905		s->flags |= SLAB_DEBUG_FREE;
3906	return length;
3907}
3908SLAB_ATTR(sanity_checks);
3909
3910static ssize_t trace_show(struct kmem_cache *s, char *buf)
3911{
3912	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3913}
3914
3915static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3916							size_t length)
3917{
3918	s->flags &= ~SLAB_TRACE;
3919	if (buf[0] == '1')
3920		s->flags |= SLAB_TRACE;
3921	return length;
3922}
3923SLAB_ATTR(trace);
3924
3925static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3926{
3927	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3928}
3929
3930static ssize_t reclaim_account_store(struct kmem_cache *s,
3931				const char *buf, size_t length)
3932{
3933	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3934	if (buf[0] == '1')
3935		s->flags |= SLAB_RECLAIM_ACCOUNT;
3936	return length;
3937}
3938SLAB_ATTR(reclaim_account);
3939
3940static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3941{
3942	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3943}
3944SLAB_ATTR_RO(hwcache_align);
3945
3946#ifdef CONFIG_ZONE_DMA
3947static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3948{
3949	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3950}
3951SLAB_ATTR_RO(cache_dma);
3952#endif
3953
3954static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3955{
3956	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3957}
3958SLAB_ATTR_RO(destroy_by_rcu);
3959
3960static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3961{
3962	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3963}
3964
3965static ssize_t red_zone_store(struct kmem_cache *s,
3966				const char *buf, size_t length)
3967{
3968	if (any_slab_objects(s))
3969		return -EBUSY;
3970
3971	s->flags &= ~SLAB_RED_ZONE;
3972	if (buf[0] == '1')
3973		s->flags |= SLAB_RED_ZONE;
3974	calculate_sizes(s);
3975	return length;
3976}
3977SLAB_ATTR(red_zone);
3978
3979static ssize_t poison_show(struct kmem_cache *s, char *buf)
3980{
3981	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3982}
3983
3984static ssize_t poison_store(struct kmem_cache *s,
3985				const char *buf, size_t length)
3986{
3987	if (any_slab_objects(s))
3988		return -EBUSY;
3989
3990	s->flags &= ~SLAB_POISON;
3991	if (buf[0] == '1')
3992		s->flags |= SLAB_POISON;
3993	calculate_sizes(s);
3994	return length;
3995}
3996SLAB_ATTR(poison);
3997
3998static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3999{
4000	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4001}
4002
4003static ssize_t store_user_store(struct kmem_cache *s,
4004				const char *buf, size_t length)
4005{
4006	if (any_slab_objects(s))
4007		return -EBUSY;
4008
4009	s->flags &= ~SLAB_STORE_USER;
4010	if (buf[0] == '1')
4011		s->flags |= SLAB_STORE_USER;
4012	calculate_sizes(s);
4013	return length;
4014}
4015SLAB_ATTR(store_user);
4016
4017static ssize_t validate_show(struct kmem_cache *s, char *buf)
4018{
4019	return 0;
4020}
4021
4022static ssize_t validate_store(struct kmem_cache *s,
4023			const char *buf, size_t length)
4024{
4025	int ret = -EINVAL;
4026
4027	if (buf[0] == '1') {
4028		ret = validate_slab_cache(s);
4029		if (ret >= 0)
4030			ret = length;
4031	}
4032	return ret;
4033}
4034SLAB_ATTR(validate);
4035
4036static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4037{
4038	return 0;
4039}
4040
4041static ssize_t shrink_store(struct kmem_cache *s,
4042			const char *buf, size_t length)
4043{
4044	if (buf[0] == '1') {
4045		int rc = kmem_cache_shrink(s);
4046
4047		if (rc)
4048			return rc;
4049	} else
4050		return -EINVAL;
4051	return length;
4052}
4053SLAB_ATTR(shrink);
4054
4055static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4056{
4057	if (!(s->flags & SLAB_STORE_USER))
4058		return -ENOSYS;
4059	return list_locations(s, buf, TRACK_ALLOC);
4060}
4061SLAB_ATTR_RO(alloc_calls);
4062
4063static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4064{
4065	if (!(s->flags & SLAB_STORE_USER))
4066		return -ENOSYS;
4067	return list_locations(s, buf, TRACK_FREE);
4068}
4069SLAB_ATTR_RO(free_calls);
4070
4071#ifdef CONFIG_NUMA
4072static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4073{
4074	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4075}
4076
4077static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4078				const char *buf, size_t length)
4079{
4080	int n = simple_strtoul(buf, NULL, 10);
4081
4082	if (n < 100)
4083		s->remote_node_defrag_ratio = n * 10;
4084	return length;
4085}
4086SLAB_ATTR(remote_node_defrag_ratio);
4087#endif
4088
4089#ifdef CONFIG_SLUB_STATS
4090static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4091{
4092	unsigned long sum  = 0;
4093	int cpu;
4094	int len;
4095	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4096
4097	if (!data)
4098		return -ENOMEM;
4099
4100	for_each_online_cpu(cpu) {
4101		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4102
4103		data[cpu] = x;
4104		sum += x;
4105	}
4106
4107	len = sprintf(buf, "%lu", sum);
4108
4109#ifdef CONFIG_SMP
4110	for_each_online_cpu(cpu) {
4111		if (data[cpu] && len < PAGE_SIZE - 20)
4112			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4113	}
4114#endif
4115	kfree(data);
4116	return len + sprintf(buf + len, "\n");
4117}
4118
4119#define STAT_ATTR(si, text) 					\
4120static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4121{								\
4122	return show_stat(s, buf, si);				\
4123}								\
4124SLAB_ATTR_RO(text);						\
4125
4126STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4127STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4128STAT_ATTR(FREE_FASTPATH, free_fastpath);
4129STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4130STAT_ATTR(FREE_FROZEN, free_frozen);
4131STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4132STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4133STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4134STAT_ATTR(ALLOC_SLAB, alloc_slab);
4135STAT_ATTR(ALLOC_REFILL, alloc_refill);
4136STAT_ATTR(FREE_SLAB, free_slab);
4137STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4138STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4139STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4140STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4141STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4142STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4143STAT_ATTR(ORDER_FALLBACK, order_fallback);
4144#endif
4145
4146static struct attribute *slab_attrs[] = {
4147	&slab_size_attr.attr,
4148	&object_size_attr.attr,
4149	&objs_per_slab_attr.attr,
4150	&order_attr.attr,
4151	&objects_attr.attr,
4152	&objects_partial_attr.attr,
4153	&total_objects_attr.attr,
4154	&slabs_attr.attr,
4155	&partial_attr.attr,
4156	&cpu_slabs_attr.attr,
4157	&ctor_attr.attr,
4158	&aliases_attr.attr,
4159	&align_attr.attr,
4160	&sanity_checks_attr.attr,
4161	&trace_attr.attr,
4162	&hwcache_align_attr.attr,
4163	&reclaim_account_attr.attr,
4164	&destroy_by_rcu_attr.attr,
4165	&red_zone_attr.attr,
4166	&poison_attr.attr,
4167	&store_user_attr.attr,
4168	&validate_attr.attr,
4169	&shrink_attr.attr,
4170	&alloc_calls_attr.attr,
4171	&free_calls_attr.attr,
4172#ifdef CONFIG_ZONE_DMA
4173	&cache_dma_attr.attr,
4174#endif
4175#ifdef CONFIG_NUMA
4176	&remote_node_defrag_ratio_attr.attr,
4177#endif
4178#ifdef CONFIG_SLUB_STATS
4179	&alloc_fastpath_attr.attr,
4180	&alloc_slowpath_attr.attr,
4181	&free_fastpath_attr.attr,
4182	&free_slowpath_attr.attr,
4183	&free_frozen_attr.attr,
4184	&free_add_partial_attr.attr,
4185	&free_remove_partial_attr.attr,
4186	&alloc_from_partial_attr.attr,
4187	&alloc_slab_attr.attr,
4188	&alloc_refill_attr.attr,
4189	&free_slab_attr.attr,
4190	&cpuslab_flush_attr.attr,
4191	&deactivate_full_attr.attr,
4192	&deactivate_empty_attr.attr,
4193	&deactivate_to_head_attr.attr,
4194	&deactivate_to_tail_attr.attr,
4195	&deactivate_remote_frees_attr.attr,
4196	&order_fallback_attr.attr,
4197#endif
4198	NULL
4199};
4200
4201static struct attribute_group slab_attr_group = {
4202	.attrs = slab_attrs,
4203};
4204
4205static ssize_t slab_attr_show(struct kobject *kobj,
4206				struct attribute *attr,
4207				char *buf)
4208{
4209	struct slab_attribute *attribute;
4210	struct kmem_cache *s;
4211	int err;
4212
4213	attribute = to_slab_attr(attr);
4214	s = to_slab(kobj);
4215
4216	if (!attribute->show)
4217		return -EIO;
4218
4219	err = attribute->show(s, buf);
4220
4221	return err;
4222}
4223
4224static ssize_t slab_attr_store(struct kobject *kobj,
4225				struct attribute *attr,
4226				const char *buf, size_t len)
4227{
4228	struct slab_attribute *attribute;
4229	struct kmem_cache *s;
4230	int err;
4231
4232	attribute = to_slab_attr(attr);
4233	s = to_slab(kobj);
4234
4235	if (!attribute->store)
4236		return -EIO;
4237
4238	err = attribute->store(s, buf, len);
4239
4240	return err;
4241}
4242
4243static void kmem_cache_release(struct kobject *kobj)
4244{
4245	struct kmem_cache *s = to_slab(kobj);
4246
4247	kfree(s);
4248}
4249
4250static struct sysfs_ops slab_sysfs_ops = {
4251	.show = slab_attr_show,
4252	.store = slab_attr_store,
4253};
4254
4255static struct kobj_type slab_ktype = {
4256	.sysfs_ops = &slab_sysfs_ops,
4257	.release = kmem_cache_release
4258};
4259
4260static int uevent_filter(struct kset *kset, struct kobject *kobj)
4261{
4262	struct kobj_type *ktype = get_ktype(kobj);
4263
4264	if (ktype == &slab_ktype)
4265		return 1;
4266	return 0;
4267}
4268
4269static struct kset_uevent_ops slab_uevent_ops = {
4270	.filter = uevent_filter,
4271};
4272
4273static struct kset *slab_kset;
4274
4275#define ID_STR_LENGTH 64
4276
4277/* Create a unique string id for a slab cache:
4278 *
4279 * Format	:[flags-]size
4280 */
4281static char *create_unique_id(struct kmem_cache *s)
4282{
4283	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4284	char *p = name;
4285
4286	BUG_ON(!name);
4287
4288	*p++ = ':';
4289	/*
4290	 * First flags affecting slabcache operations. We will only
4291	 * get here for aliasable slabs so we do not need to support
4292	 * too many flags. The flags here must cover all flags that
4293	 * are matched during merging to guarantee that the id is
4294	 * unique.
4295	 */
4296	if (s->flags & SLAB_CACHE_DMA)
4297		*p++ = 'd';
4298	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4299		*p++ = 'a';
4300	if (s->flags & SLAB_DEBUG_FREE)
4301		*p++ = 'F';
4302	if (p != name + 1)
4303		*p++ = '-';
4304	p += sprintf(p, "%07d", s->size);
4305	BUG_ON(p > name + ID_STR_LENGTH - 1);
4306	return name;
4307}
4308
4309static int sysfs_slab_add(struct kmem_cache *s)
4310{
4311	int err;
4312	const char *name;
4313	int unmergeable;
4314
4315	if (slab_state < SYSFS)
4316		/* Defer until later */
4317		return 0;
4318
4319	unmergeable = slab_unmergeable(s);
4320	if (unmergeable) {
4321		/*
4322		 * Slabcache can never be merged so we can use the name proper.
4323		 * This is typically the case for debug situations. In that
4324		 * case we can catch duplicate names easily.
4325		 */
4326		sysfs_remove_link(&slab_kset->kobj, s->name);
4327		name = s->name;
4328	} else {
4329		/*
4330		 * Create a unique name for the slab as a target
4331		 * for the symlinks.
4332		 */
4333		name = create_unique_id(s);
4334	}
4335
4336	s->kobj.kset = slab_kset;
4337	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4338	if (err) {
4339		kobject_put(&s->kobj);
4340		return err;
4341	}
4342
4343	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4344	if (err)
4345		return err;
4346	kobject_uevent(&s->kobj, KOBJ_ADD);
4347	if (!unmergeable) {
4348		/* Setup first alias */
4349		sysfs_slab_alias(s, s->name);
4350		kfree(name);
4351	}
4352	return 0;
4353}
4354
4355static void sysfs_slab_remove(struct kmem_cache *s)
4356{
4357	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4358	kobject_del(&s->kobj);
4359	kobject_put(&s->kobj);
4360}
4361
4362/*
4363 * Need to buffer aliases during bootup until sysfs becomes
4364 * available lest we loose that information.
4365 */
4366struct saved_alias {
4367	struct kmem_cache *s;
4368	const char *name;
4369	struct saved_alias *next;
4370};
4371
4372static struct saved_alias *alias_list;
4373
4374static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4375{
4376	struct saved_alias *al;
4377
4378	if (slab_state == SYSFS) {
4379		/*
4380		 * If we have a leftover link then remove it.
4381		 */
4382		sysfs_remove_link(&slab_kset->kobj, name);
4383		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4384	}
4385
4386	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4387	if (!al)
4388		return -ENOMEM;
4389
4390	al->s = s;
4391	al->name = name;
4392	al->next = alias_list;
4393	alias_list = al;
4394	return 0;
4395}
4396
4397static int __init slab_sysfs_init(void)
4398{
4399	struct kmem_cache *s;
4400	int err;
4401
4402	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4403	if (!slab_kset) {
4404		printk(KERN_ERR "Cannot register slab subsystem.\n");
4405		return -ENOSYS;
4406	}
4407
4408	slab_state = SYSFS;
4409
4410	list_for_each_entry(s, &slab_caches, list) {
4411		err = sysfs_slab_add(s);
4412		if (err)
4413			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4414						" to sysfs\n", s->name);
4415	}
4416
4417	while (alias_list) {
4418		struct saved_alias *al = alias_list;
4419
4420		alias_list = alias_list->next;
4421		err = sysfs_slab_alias(al->s, al->name);
4422		if (err)
4423			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4424					" %s to sysfs\n", s->name);
4425		kfree(al);
4426	}
4427
4428	resiliency_test();
4429	return 0;
4430}
4431
4432__initcall(slab_sysfs_init);
4433#endif
4434
4435/*
4436 * The /proc/slabinfo ABI
4437 */
4438#ifdef CONFIG_SLABINFO
4439
4440ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4441                       size_t count, loff_t *ppos)
4442{
4443	return -EINVAL;
4444}
4445
4446
4447static void print_slabinfo_header(struct seq_file *m)
4448{
4449	seq_puts(m, "slabinfo - version: 2.1\n");
4450	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4451		 "<objperslab> <pagesperslab>");
4452	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4453	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4454	seq_putc(m, '\n');
4455}
4456
4457static void *s_start(struct seq_file *m, loff_t *pos)
4458{
4459	loff_t n = *pos;
4460
4461	down_read(&slub_lock);
4462	if (!n)
4463		print_slabinfo_header(m);
4464
4465	return seq_list_start(&slab_caches, *pos);
4466}
4467
4468static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4469{
4470	return seq_list_next(p, &slab_caches, pos);
4471}
4472
4473static void s_stop(struct seq_file *m, void *p)
4474{
4475	up_read(&slub_lock);
4476}
4477
4478static int s_show(struct seq_file *m, void *p)
4479{
4480	unsigned long nr_partials = 0;
4481	unsigned long nr_slabs = 0;
4482	unsigned long nr_inuse = 0;
4483	unsigned long nr_objs = 0;
4484	unsigned long nr_free = 0;
4485	struct kmem_cache *s;
4486	int node;
4487
4488	s = list_entry(p, struct kmem_cache, list);
4489
4490	for_each_online_node(node) {
4491		struct kmem_cache_node *n = get_node(s, node);
4492
4493		if (!n)
4494			continue;
4495
4496		nr_partials += n->nr_partial;
4497		nr_slabs += atomic_long_read(&n->nr_slabs);
4498		nr_objs += atomic_long_read(&n->total_objects);
4499		nr_free += count_partial(n, count_free);
4500	}
4501
4502	nr_inuse = nr_objs - nr_free;
4503
4504	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4505		   nr_objs, s->size, oo_objects(s->oo),
4506		   (1 << oo_order(s->oo)));
4507	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4508	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4509		   0UL);
4510	seq_putc(m, '\n');
4511	return 0;
4512}
4513
4514const struct seq_operations slabinfo_op = {
4515	.start = s_start,
4516	.next = s_next,
4517	.stop = s_stop,
4518	.show = s_show,
4519};
4520
4521#endif /* CONFIG_SLABINFO */
4522