slub.c revision 33de04ec4cb80b6bd0782e88a64954e60bc15dc1
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/swap.h> /* struct reclaim_state */
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
18#include <linux/proc_fs.h>
19#include <linux/seq_file.h>
20#include <linux/kmemcheck.h>
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
25#include <linux/debugobjects.h>
26#include <linux/kallsyms.h>
27#include <linux/memory.h>
28#include <linux/math64.h>
29#include <linux/fault-inject.h>
30
31#include <trace/events/kmem.h>
32
33/*
34 * Lock order:
35 *   1. slab_lock(page)
36 *   2. slab->list_lock
37 *
38 *   The slab_lock protects operations on the object of a particular
39 *   slab and its metadata in the page struct. If the slab lock
40 *   has been taken then no allocations nor frees can be performed
41 *   on the objects in the slab nor can the slab be added or removed
42 *   from the partial or full lists since this would mean modifying
43 *   the page_struct of the slab.
44 *
45 *   The list_lock protects the partial and full list on each node and
46 *   the partial slab counter. If taken then no new slabs may be added or
47 *   removed from the lists nor make the number of partial slabs be modified.
48 *   (Note that the total number of slabs is an atomic value that may be
49 *   modified without taking the list lock).
50 *
51 *   The list_lock is a centralized lock and thus we avoid taking it as
52 *   much as possible. As long as SLUB does not have to handle partial
53 *   slabs, operations can continue without any centralized lock. F.e.
54 *   allocating a long series of objects that fill up slabs does not require
55 *   the list lock.
56 *
57 *   The lock order is sometimes inverted when we are trying to get a slab
58 *   off a list. We take the list_lock and then look for a page on the list
59 *   to use. While we do that objects in the slabs may be freed. We can
60 *   only operate on the slab if we have also taken the slab_lock. So we use
61 *   a slab_trylock() on the slab. If trylock was successful then no frees
62 *   can occur anymore and we can use the slab for allocations etc. If the
63 *   slab_trylock() does not succeed then frees are in progress in the slab and
64 *   we must stay away from it for a while since we may cause a bouncing
65 *   cacheline if we try to acquire the lock. So go onto the next slab.
66 *   If all pages are busy then we may allocate a new slab instead of reusing
67 *   a partial slab. A new slab has noone operating on it and thus there is
68 *   no danger of cacheline contention.
69 *
70 *   Interrupts are disabled during allocation and deallocation in order to
71 *   make the slab allocator safe to use in the context of an irq. In addition
72 *   interrupts are disabled to ensure that the processor does not change
73 *   while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive 		The slab is frozen and exempt from list processing.
91 * 			This means that the slab is dedicated to a purpose
92 * 			such as satisfying allocations for a specific
93 * 			processor. Objects may be freed in the slab while
94 * 			it is frozen but slab_free will then skip the usual
95 * 			list operations. It is up to the processor holding
96 * 			the slab to integrate the slab into the slab lists
97 * 			when the slab is no longer needed.
98 *
99 * 			One use of this flag is to mark slabs that are
100 * 			used for allocations. Then such a slab becomes a cpu
101 * 			slab. The cpu slab may be equipped with an additional
102 * 			freelist that allows lockless access to
103 * 			free objects in addition to the regular freelist
104 * 			that requires the slab lock.
105 *
106 * PageError		Slab requires special handling due to debug
107 * 			options set. This moves	slab handling out of
108 * 			the fast path and disables lockless freelists.
109 */
110
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112		SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
116#ifdef CONFIG_SLUB_DEBUG
117	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118#else
119	return 0;
120#endif
121}
122
123/*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
138#define MIN_PARTIAL 5
139
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148				SLAB_POISON | SLAB_STORE_USER)
149
150/*
151 * Debugging flags that require metadata to be stored in the slab.  These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
154 */
155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
156
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162		SLAB_FAILSLAB)
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165		SLAB_CACHE_DMA | SLAB_NOTRACK)
166
167#define OO_SHIFT	16
168#define OO_MASK		((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
170
171/* Internal SLUB flags */
172#define __OBJECT_POISON		0x80000000UL /* Poison object */
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181	DOWN,		/* No slab functionality available */
182	PARTIAL,	/* Kmem_cache_node works */
183	UP,		/* Everything works but does not show up in sysfs */
184	SYSFS		/* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
189static LIST_HEAD(slab_caches);
190
191/*
192 * Tracking user of a slab.
193 */
194struct track {
195	unsigned long addr;	/* Called from address */
196	int cpu;		/* Was running on cpu */
197	int pid;		/* Pid context */
198	unsigned long when;	/* When did the operation occur */
199};
200
201enum track_item { TRACK_ALLOC, TRACK_FREE };
202
203#ifdef CONFIG_SYSFS
204static int sysfs_slab_add(struct kmem_cache *);
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
207
208#else
209static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211							{ return 0; }
212static inline void sysfs_slab_remove(struct kmem_cache *s)
213{
214	kfree(s->name);
215	kfree(s);
216}
217
218#endif
219
220static inline void stat(const struct kmem_cache *s, enum stat_item si)
221{
222#ifdef CONFIG_SLUB_STATS
223	__this_cpu_inc(s->cpu_slab->stat[si]);
224#endif
225}
226
227/********************************************************************
228 * 			Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233	return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
238	return s->node[node];
239}
240
241/* Verify that a pointer has an address that is valid within a slab page */
242static inline int check_valid_pointer(struct kmem_cache *s,
243				struct page *page, const void *object)
244{
245	void *base;
246
247	if (!object)
248		return 1;
249
250	base = page_address(page);
251	if (object < base || object >= base + page->objects * s->size ||
252		(object - base) % s->size) {
253		return 0;
254	}
255
256	return 1;
257}
258
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261	return *(void **)(object + s->offset);
262}
263
264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265{
266	*(void **)(object + s->offset) = fp;
267}
268
269/* Loop over all objects in a slab */
270#define for_each_object(__p, __s, __addr, __objects) \
271	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
272			__p += (__s)->size)
273
274/* Scan freelist */
275#define for_each_free_object(__p, __s, __free) \
276	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
277
278/* Determine object index from a given position */
279static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280{
281	return (p - addr) / s->size;
282}
283
284static inline size_t slab_ksize(const struct kmem_cache *s)
285{
286#ifdef CONFIG_SLUB_DEBUG
287	/*
288	 * Debugging requires use of the padding between object
289	 * and whatever may come after it.
290	 */
291	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
292		return s->objsize;
293
294#endif
295	/*
296	 * If we have the need to store the freelist pointer
297	 * back there or track user information then we can
298	 * only use the space before that information.
299	 */
300	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
301		return s->inuse;
302	/*
303	 * Else we can use all the padding etc for the allocation
304	 */
305	return s->size;
306}
307
308static inline int order_objects(int order, unsigned long size, int reserved)
309{
310	return ((PAGE_SIZE << order) - reserved) / size;
311}
312
313static inline struct kmem_cache_order_objects oo_make(int order,
314		unsigned long size, int reserved)
315{
316	struct kmem_cache_order_objects x = {
317		(order << OO_SHIFT) + order_objects(order, size, reserved)
318	};
319
320	return x;
321}
322
323static inline int oo_order(struct kmem_cache_order_objects x)
324{
325	return x.x >> OO_SHIFT;
326}
327
328static inline int oo_objects(struct kmem_cache_order_objects x)
329{
330	return x.x & OO_MASK;
331}
332
333#ifdef CONFIG_SLUB_DEBUG
334/*
335 * Debug settings:
336 */
337#ifdef CONFIG_SLUB_DEBUG_ON
338static int slub_debug = DEBUG_DEFAULT_FLAGS;
339#else
340static int slub_debug;
341#endif
342
343static char *slub_debug_slabs;
344static int disable_higher_order_debug;
345
346/*
347 * Object debugging
348 */
349static void print_section(char *text, u8 *addr, unsigned int length)
350{
351	int i, offset;
352	int newline = 1;
353	char ascii[17];
354
355	ascii[16] = 0;
356
357	for (i = 0; i < length; i++) {
358		if (newline) {
359			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
360			newline = 0;
361		}
362		printk(KERN_CONT " %02x", addr[i]);
363		offset = i % 16;
364		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
365		if (offset == 15) {
366			printk(KERN_CONT " %s\n", ascii);
367			newline = 1;
368		}
369	}
370	if (!newline) {
371		i %= 16;
372		while (i < 16) {
373			printk(KERN_CONT "   ");
374			ascii[i] = ' ';
375			i++;
376		}
377		printk(KERN_CONT " %s\n", ascii);
378	}
379}
380
381static struct track *get_track(struct kmem_cache *s, void *object,
382	enum track_item alloc)
383{
384	struct track *p;
385
386	if (s->offset)
387		p = object + s->offset + sizeof(void *);
388	else
389		p = object + s->inuse;
390
391	return p + alloc;
392}
393
394static void set_track(struct kmem_cache *s, void *object,
395			enum track_item alloc, unsigned long addr)
396{
397	struct track *p = get_track(s, object, alloc);
398
399	if (addr) {
400		p->addr = addr;
401		p->cpu = smp_processor_id();
402		p->pid = current->pid;
403		p->when = jiffies;
404	} else
405		memset(p, 0, sizeof(struct track));
406}
407
408static void init_tracking(struct kmem_cache *s, void *object)
409{
410	if (!(s->flags & SLAB_STORE_USER))
411		return;
412
413	set_track(s, object, TRACK_FREE, 0UL);
414	set_track(s, object, TRACK_ALLOC, 0UL);
415}
416
417static void print_track(const char *s, struct track *t)
418{
419	if (!t->addr)
420		return;
421
422	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
423		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
424}
425
426static void print_tracking(struct kmem_cache *s, void *object)
427{
428	if (!(s->flags & SLAB_STORE_USER))
429		return;
430
431	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
432	print_track("Freed", get_track(s, object, TRACK_FREE));
433}
434
435static void print_page_info(struct page *page)
436{
437	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
438		page, page->objects, page->inuse, page->freelist, page->flags);
439
440}
441
442static void slab_bug(struct kmem_cache *s, char *fmt, ...)
443{
444	va_list args;
445	char buf[100];
446
447	va_start(args, fmt);
448	vsnprintf(buf, sizeof(buf), fmt, args);
449	va_end(args);
450	printk(KERN_ERR "========================================"
451			"=====================================\n");
452	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
453	printk(KERN_ERR "----------------------------------------"
454			"-------------------------------------\n\n");
455}
456
457static void slab_fix(struct kmem_cache *s, char *fmt, ...)
458{
459	va_list args;
460	char buf[100];
461
462	va_start(args, fmt);
463	vsnprintf(buf, sizeof(buf), fmt, args);
464	va_end(args);
465	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
466}
467
468static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
469{
470	unsigned int off;	/* Offset of last byte */
471	u8 *addr = page_address(page);
472
473	print_tracking(s, p);
474
475	print_page_info(page);
476
477	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
478			p, p - addr, get_freepointer(s, p));
479
480	if (p > addr + 16)
481		print_section("Bytes b4", p - 16, 16);
482
483	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
484
485	if (s->flags & SLAB_RED_ZONE)
486		print_section("Redzone", p + s->objsize,
487			s->inuse - s->objsize);
488
489	if (s->offset)
490		off = s->offset + sizeof(void *);
491	else
492		off = s->inuse;
493
494	if (s->flags & SLAB_STORE_USER)
495		off += 2 * sizeof(struct track);
496
497	if (off != s->size)
498		/* Beginning of the filler is the free pointer */
499		print_section("Padding", p + off, s->size - off);
500
501	dump_stack();
502}
503
504static void object_err(struct kmem_cache *s, struct page *page,
505			u8 *object, char *reason)
506{
507	slab_bug(s, "%s", reason);
508	print_trailer(s, page, object);
509}
510
511static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
512{
513	va_list args;
514	char buf[100];
515
516	va_start(args, fmt);
517	vsnprintf(buf, sizeof(buf), fmt, args);
518	va_end(args);
519	slab_bug(s, "%s", buf);
520	print_page_info(page);
521	dump_stack();
522}
523
524static void init_object(struct kmem_cache *s, void *object, u8 val)
525{
526	u8 *p = object;
527
528	if (s->flags & __OBJECT_POISON) {
529		memset(p, POISON_FREE, s->objsize - 1);
530		p[s->objsize - 1] = POISON_END;
531	}
532
533	if (s->flags & SLAB_RED_ZONE)
534		memset(p + s->objsize, val, s->inuse - s->objsize);
535}
536
537static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
538{
539	while (bytes) {
540		if (*start != (u8)value)
541			return start;
542		start++;
543		bytes--;
544	}
545	return NULL;
546}
547
548static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
549						void *from, void *to)
550{
551	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
552	memset(from, data, to - from);
553}
554
555static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
556			u8 *object, char *what,
557			u8 *start, unsigned int value, unsigned int bytes)
558{
559	u8 *fault;
560	u8 *end;
561
562	fault = check_bytes(start, value, bytes);
563	if (!fault)
564		return 1;
565
566	end = start + bytes;
567	while (end > fault && end[-1] == value)
568		end--;
569
570	slab_bug(s, "%s overwritten", what);
571	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
572					fault, end - 1, fault[0], value);
573	print_trailer(s, page, object);
574
575	restore_bytes(s, what, value, fault, end);
576	return 0;
577}
578
579/*
580 * Object layout:
581 *
582 * object address
583 * 	Bytes of the object to be managed.
584 * 	If the freepointer may overlay the object then the free
585 * 	pointer is the first word of the object.
586 *
587 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
588 * 	0xa5 (POISON_END)
589 *
590 * object + s->objsize
591 * 	Padding to reach word boundary. This is also used for Redzoning.
592 * 	Padding is extended by another word if Redzoning is enabled and
593 * 	objsize == inuse.
594 *
595 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
596 * 	0xcc (RED_ACTIVE) for objects in use.
597 *
598 * object + s->inuse
599 * 	Meta data starts here.
600 *
601 * 	A. Free pointer (if we cannot overwrite object on free)
602 * 	B. Tracking data for SLAB_STORE_USER
603 * 	C. Padding to reach required alignment boundary or at mininum
604 * 		one word if debugging is on to be able to detect writes
605 * 		before the word boundary.
606 *
607 *	Padding is done using 0x5a (POISON_INUSE)
608 *
609 * object + s->size
610 * 	Nothing is used beyond s->size.
611 *
612 * If slabcaches are merged then the objsize and inuse boundaries are mostly
613 * ignored. And therefore no slab options that rely on these boundaries
614 * may be used with merged slabcaches.
615 */
616
617static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
618{
619	unsigned long off = s->inuse;	/* The end of info */
620
621	if (s->offset)
622		/* Freepointer is placed after the object. */
623		off += sizeof(void *);
624
625	if (s->flags & SLAB_STORE_USER)
626		/* We also have user information there */
627		off += 2 * sizeof(struct track);
628
629	if (s->size == off)
630		return 1;
631
632	return check_bytes_and_report(s, page, p, "Object padding",
633				p + off, POISON_INUSE, s->size - off);
634}
635
636/* Check the pad bytes at the end of a slab page */
637static int slab_pad_check(struct kmem_cache *s, struct page *page)
638{
639	u8 *start;
640	u8 *fault;
641	u8 *end;
642	int length;
643	int remainder;
644
645	if (!(s->flags & SLAB_POISON))
646		return 1;
647
648	start = page_address(page);
649	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
650	end = start + length;
651	remainder = length % s->size;
652	if (!remainder)
653		return 1;
654
655	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
656	if (!fault)
657		return 1;
658	while (end > fault && end[-1] == POISON_INUSE)
659		end--;
660
661	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
662	print_section("Padding", end - remainder, remainder);
663
664	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
665	return 0;
666}
667
668static int check_object(struct kmem_cache *s, struct page *page,
669					void *object, u8 val)
670{
671	u8 *p = object;
672	u8 *endobject = object + s->objsize;
673
674	if (s->flags & SLAB_RED_ZONE) {
675		if (!check_bytes_and_report(s, page, object, "Redzone",
676			endobject, val, s->inuse - s->objsize))
677			return 0;
678	} else {
679		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
680			check_bytes_and_report(s, page, p, "Alignment padding",
681				endobject, POISON_INUSE, s->inuse - s->objsize);
682		}
683	}
684
685	if (s->flags & SLAB_POISON) {
686		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
687			(!check_bytes_and_report(s, page, p, "Poison", p,
688					POISON_FREE, s->objsize - 1) ||
689			 !check_bytes_and_report(s, page, p, "Poison",
690				p + s->objsize - 1, POISON_END, 1)))
691			return 0;
692		/*
693		 * check_pad_bytes cleans up on its own.
694		 */
695		check_pad_bytes(s, page, p);
696	}
697
698	if (!s->offset && val == SLUB_RED_ACTIVE)
699		/*
700		 * Object and freepointer overlap. Cannot check
701		 * freepointer while object is allocated.
702		 */
703		return 1;
704
705	/* Check free pointer validity */
706	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
707		object_err(s, page, p, "Freepointer corrupt");
708		/*
709		 * No choice but to zap it and thus lose the remainder
710		 * of the free objects in this slab. May cause
711		 * another error because the object count is now wrong.
712		 */
713		set_freepointer(s, p, NULL);
714		return 0;
715	}
716	return 1;
717}
718
719static int check_slab(struct kmem_cache *s, struct page *page)
720{
721	int maxobj;
722
723	VM_BUG_ON(!irqs_disabled());
724
725	if (!PageSlab(page)) {
726		slab_err(s, page, "Not a valid slab page");
727		return 0;
728	}
729
730	maxobj = order_objects(compound_order(page), s->size, s->reserved);
731	if (page->objects > maxobj) {
732		slab_err(s, page, "objects %u > max %u",
733			s->name, page->objects, maxobj);
734		return 0;
735	}
736	if (page->inuse > page->objects) {
737		slab_err(s, page, "inuse %u > max %u",
738			s->name, page->inuse, page->objects);
739		return 0;
740	}
741	/* Slab_pad_check fixes things up after itself */
742	slab_pad_check(s, page);
743	return 1;
744}
745
746/*
747 * Determine if a certain object on a page is on the freelist. Must hold the
748 * slab lock to guarantee that the chains are in a consistent state.
749 */
750static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
751{
752	int nr = 0;
753	void *fp = page->freelist;
754	void *object = NULL;
755	unsigned long max_objects;
756
757	while (fp && nr <= page->objects) {
758		if (fp == search)
759			return 1;
760		if (!check_valid_pointer(s, page, fp)) {
761			if (object) {
762				object_err(s, page, object,
763					"Freechain corrupt");
764				set_freepointer(s, object, NULL);
765				break;
766			} else {
767				slab_err(s, page, "Freepointer corrupt");
768				page->freelist = NULL;
769				page->inuse = page->objects;
770				slab_fix(s, "Freelist cleared");
771				return 0;
772			}
773			break;
774		}
775		object = fp;
776		fp = get_freepointer(s, object);
777		nr++;
778	}
779
780	max_objects = order_objects(compound_order(page), s->size, s->reserved);
781	if (max_objects > MAX_OBJS_PER_PAGE)
782		max_objects = MAX_OBJS_PER_PAGE;
783
784	if (page->objects != max_objects) {
785		slab_err(s, page, "Wrong number of objects. Found %d but "
786			"should be %d", page->objects, max_objects);
787		page->objects = max_objects;
788		slab_fix(s, "Number of objects adjusted.");
789	}
790	if (page->inuse != page->objects - nr) {
791		slab_err(s, page, "Wrong object count. Counter is %d but "
792			"counted were %d", page->inuse, page->objects - nr);
793		page->inuse = page->objects - nr;
794		slab_fix(s, "Object count adjusted.");
795	}
796	return search == NULL;
797}
798
799static void trace(struct kmem_cache *s, struct page *page, void *object,
800								int alloc)
801{
802	if (s->flags & SLAB_TRACE) {
803		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
804			s->name,
805			alloc ? "alloc" : "free",
806			object, page->inuse,
807			page->freelist);
808
809		if (!alloc)
810			print_section("Object", (void *)object, s->objsize);
811
812		dump_stack();
813	}
814}
815
816/*
817 * Hooks for other subsystems that check memory allocations. In a typical
818 * production configuration these hooks all should produce no code at all.
819 */
820static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
821{
822	flags &= gfp_allowed_mask;
823	lockdep_trace_alloc(flags);
824	might_sleep_if(flags & __GFP_WAIT);
825
826	return should_failslab(s->objsize, flags, s->flags);
827}
828
829static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
830{
831	flags &= gfp_allowed_mask;
832	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
833	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
834}
835
836static inline void slab_free_hook(struct kmem_cache *s, void *x)
837{
838	kmemleak_free_recursive(x, s->flags);
839
840	/*
841	 * Trouble is that we may no longer disable interupts in the fast path
842	 * So in order to make the debug calls that expect irqs to be
843	 * disabled we need to disable interrupts temporarily.
844	 */
845#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
846	{
847		unsigned long flags;
848
849		local_irq_save(flags);
850		kmemcheck_slab_free(s, x, s->objsize);
851		debug_check_no_locks_freed(x, s->objsize);
852		local_irq_restore(flags);
853	}
854#endif
855	if (!(s->flags & SLAB_DEBUG_OBJECTS))
856		debug_check_no_obj_freed(x, s->objsize);
857}
858
859/*
860 * Tracking of fully allocated slabs for debugging purposes.
861 */
862static void add_full(struct kmem_cache_node *n, struct page *page)
863{
864	spin_lock(&n->list_lock);
865	list_add(&page->lru, &n->full);
866	spin_unlock(&n->list_lock);
867}
868
869static void remove_full(struct kmem_cache *s, struct page *page)
870{
871	struct kmem_cache_node *n;
872
873	if (!(s->flags & SLAB_STORE_USER))
874		return;
875
876	n = get_node(s, page_to_nid(page));
877
878	spin_lock(&n->list_lock);
879	list_del(&page->lru);
880	spin_unlock(&n->list_lock);
881}
882
883/* Tracking of the number of slabs for debugging purposes */
884static inline unsigned long slabs_node(struct kmem_cache *s, int node)
885{
886	struct kmem_cache_node *n = get_node(s, node);
887
888	return atomic_long_read(&n->nr_slabs);
889}
890
891static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
892{
893	return atomic_long_read(&n->nr_slabs);
894}
895
896static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
897{
898	struct kmem_cache_node *n = get_node(s, node);
899
900	/*
901	 * May be called early in order to allocate a slab for the
902	 * kmem_cache_node structure. Solve the chicken-egg
903	 * dilemma by deferring the increment of the count during
904	 * bootstrap (see early_kmem_cache_node_alloc).
905	 */
906	if (n) {
907		atomic_long_inc(&n->nr_slabs);
908		atomic_long_add(objects, &n->total_objects);
909	}
910}
911static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
912{
913	struct kmem_cache_node *n = get_node(s, node);
914
915	atomic_long_dec(&n->nr_slabs);
916	atomic_long_sub(objects, &n->total_objects);
917}
918
919/* Object debug checks for alloc/free paths */
920static void setup_object_debug(struct kmem_cache *s, struct page *page,
921								void *object)
922{
923	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
924		return;
925
926	init_object(s, object, SLUB_RED_INACTIVE);
927	init_tracking(s, object);
928}
929
930static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
931					void *object, unsigned long addr)
932{
933	if (!check_slab(s, page))
934		goto bad;
935
936	if (!on_freelist(s, page, object)) {
937		object_err(s, page, object, "Object already allocated");
938		goto bad;
939	}
940
941	if (!check_valid_pointer(s, page, object)) {
942		object_err(s, page, object, "Freelist Pointer check fails");
943		goto bad;
944	}
945
946	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
947		goto bad;
948
949	/* Success perform special debug activities for allocs */
950	if (s->flags & SLAB_STORE_USER)
951		set_track(s, object, TRACK_ALLOC, addr);
952	trace(s, page, object, 1);
953	init_object(s, object, SLUB_RED_ACTIVE);
954	return 1;
955
956bad:
957	if (PageSlab(page)) {
958		/*
959		 * If this is a slab page then lets do the best we can
960		 * to avoid issues in the future. Marking all objects
961		 * as used avoids touching the remaining objects.
962		 */
963		slab_fix(s, "Marking all objects used");
964		page->inuse = page->objects;
965		page->freelist = NULL;
966	}
967	return 0;
968}
969
970static noinline int free_debug_processing(struct kmem_cache *s,
971		 struct page *page, void *object, unsigned long addr)
972{
973	if (!check_slab(s, page))
974		goto fail;
975
976	if (!check_valid_pointer(s, page, object)) {
977		slab_err(s, page, "Invalid object pointer 0x%p", object);
978		goto fail;
979	}
980
981	if (on_freelist(s, page, object)) {
982		object_err(s, page, object, "Object already free");
983		goto fail;
984	}
985
986	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
987		return 0;
988
989	if (unlikely(s != page->slab)) {
990		if (!PageSlab(page)) {
991			slab_err(s, page, "Attempt to free object(0x%p) "
992				"outside of slab", object);
993		} else if (!page->slab) {
994			printk(KERN_ERR
995				"SLUB <none>: no slab for object 0x%p.\n",
996						object);
997			dump_stack();
998		} else
999			object_err(s, page, object,
1000					"page slab pointer corrupt.");
1001		goto fail;
1002	}
1003
1004	/* Special debug activities for freeing objects */
1005	if (!PageSlubFrozen(page) && !page->freelist)
1006		remove_full(s, page);
1007	if (s->flags & SLAB_STORE_USER)
1008		set_track(s, object, TRACK_FREE, addr);
1009	trace(s, page, object, 0);
1010	init_object(s, object, SLUB_RED_INACTIVE);
1011	return 1;
1012
1013fail:
1014	slab_fix(s, "Object at 0x%p not freed", object);
1015	return 0;
1016}
1017
1018static int __init setup_slub_debug(char *str)
1019{
1020	slub_debug = DEBUG_DEFAULT_FLAGS;
1021	if (*str++ != '=' || !*str)
1022		/*
1023		 * No options specified. Switch on full debugging.
1024		 */
1025		goto out;
1026
1027	if (*str == ',')
1028		/*
1029		 * No options but restriction on slabs. This means full
1030		 * debugging for slabs matching a pattern.
1031		 */
1032		goto check_slabs;
1033
1034	if (tolower(*str) == 'o') {
1035		/*
1036		 * Avoid enabling debugging on caches if its minimum order
1037		 * would increase as a result.
1038		 */
1039		disable_higher_order_debug = 1;
1040		goto out;
1041	}
1042
1043	slub_debug = 0;
1044	if (*str == '-')
1045		/*
1046		 * Switch off all debugging measures.
1047		 */
1048		goto out;
1049
1050	/*
1051	 * Determine which debug features should be switched on
1052	 */
1053	for (; *str && *str != ','; str++) {
1054		switch (tolower(*str)) {
1055		case 'f':
1056			slub_debug |= SLAB_DEBUG_FREE;
1057			break;
1058		case 'z':
1059			slub_debug |= SLAB_RED_ZONE;
1060			break;
1061		case 'p':
1062			slub_debug |= SLAB_POISON;
1063			break;
1064		case 'u':
1065			slub_debug |= SLAB_STORE_USER;
1066			break;
1067		case 't':
1068			slub_debug |= SLAB_TRACE;
1069			break;
1070		case 'a':
1071			slub_debug |= SLAB_FAILSLAB;
1072			break;
1073		default:
1074			printk(KERN_ERR "slub_debug option '%c' "
1075				"unknown. skipped\n", *str);
1076		}
1077	}
1078
1079check_slabs:
1080	if (*str == ',')
1081		slub_debug_slabs = str + 1;
1082out:
1083	return 1;
1084}
1085
1086__setup("slub_debug", setup_slub_debug);
1087
1088static unsigned long kmem_cache_flags(unsigned long objsize,
1089	unsigned long flags, const char *name,
1090	void (*ctor)(void *))
1091{
1092	/*
1093	 * Enable debugging if selected on the kernel commandline.
1094	 */
1095	if (slub_debug && (!slub_debug_slabs ||
1096		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1097		flags |= slub_debug;
1098
1099	return flags;
1100}
1101#else
1102static inline void setup_object_debug(struct kmem_cache *s,
1103			struct page *page, void *object) {}
1104
1105static inline int alloc_debug_processing(struct kmem_cache *s,
1106	struct page *page, void *object, unsigned long addr) { return 0; }
1107
1108static inline int free_debug_processing(struct kmem_cache *s,
1109	struct page *page, void *object, unsigned long addr) { return 0; }
1110
1111static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1112			{ return 1; }
1113static inline int check_object(struct kmem_cache *s, struct page *page,
1114			void *object, u8 val) { return 1; }
1115static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1116static inline unsigned long kmem_cache_flags(unsigned long objsize,
1117	unsigned long flags, const char *name,
1118	void (*ctor)(void *))
1119{
1120	return flags;
1121}
1122#define slub_debug 0
1123
1124#define disable_higher_order_debug 0
1125
1126static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1127							{ return 0; }
1128static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1129							{ return 0; }
1130static inline void inc_slabs_node(struct kmem_cache *s, int node,
1131							int objects) {}
1132static inline void dec_slabs_node(struct kmem_cache *s, int node,
1133							int objects) {}
1134
1135static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1136							{ return 0; }
1137
1138static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1139		void *object) {}
1140
1141static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1142
1143#endif /* CONFIG_SLUB_DEBUG */
1144
1145/*
1146 * Slab allocation and freeing
1147 */
1148static inline struct page *alloc_slab_page(gfp_t flags, int node,
1149					struct kmem_cache_order_objects oo)
1150{
1151	int order = oo_order(oo);
1152
1153	flags |= __GFP_NOTRACK;
1154
1155	if (node == NUMA_NO_NODE)
1156		return alloc_pages(flags, order);
1157	else
1158		return alloc_pages_exact_node(node, flags, order);
1159}
1160
1161static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1162{
1163	struct page *page;
1164	struct kmem_cache_order_objects oo = s->oo;
1165	gfp_t alloc_gfp;
1166
1167	flags |= s->allocflags;
1168
1169	/*
1170	 * Let the initial higher-order allocation fail under memory pressure
1171	 * so we fall-back to the minimum order allocation.
1172	 */
1173	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1174
1175	page = alloc_slab_page(alloc_gfp, node, oo);
1176	if (unlikely(!page)) {
1177		oo = s->min;
1178		/*
1179		 * Allocation may have failed due to fragmentation.
1180		 * Try a lower order alloc if possible
1181		 */
1182		page = alloc_slab_page(flags, node, oo);
1183		if (!page)
1184			return NULL;
1185
1186		stat(s, ORDER_FALLBACK);
1187	}
1188
1189	if (kmemcheck_enabled
1190		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1191		int pages = 1 << oo_order(oo);
1192
1193		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1194
1195		/*
1196		 * Objects from caches that have a constructor don't get
1197		 * cleared when they're allocated, so we need to do it here.
1198		 */
1199		if (s->ctor)
1200			kmemcheck_mark_uninitialized_pages(page, pages);
1201		else
1202			kmemcheck_mark_unallocated_pages(page, pages);
1203	}
1204
1205	page->objects = oo_objects(oo);
1206	mod_zone_page_state(page_zone(page),
1207		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1208		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1209		1 << oo_order(oo));
1210
1211	return page;
1212}
1213
1214static void setup_object(struct kmem_cache *s, struct page *page,
1215				void *object)
1216{
1217	setup_object_debug(s, page, object);
1218	if (unlikely(s->ctor))
1219		s->ctor(object);
1220}
1221
1222static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1223{
1224	struct page *page;
1225	void *start;
1226	void *last;
1227	void *p;
1228
1229	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1230
1231	page = allocate_slab(s,
1232		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1233	if (!page)
1234		goto out;
1235
1236	inc_slabs_node(s, page_to_nid(page), page->objects);
1237	page->slab = s;
1238	page->flags |= 1 << PG_slab;
1239
1240	start = page_address(page);
1241
1242	if (unlikely(s->flags & SLAB_POISON))
1243		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1244
1245	last = start;
1246	for_each_object(p, s, start, page->objects) {
1247		setup_object(s, page, last);
1248		set_freepointer(s, last, p);
1249		last = p;
1250	}
1251	setup_object(s, page, last);
1252	set_freepointer(s, last, NULL);
1253
1254	page->freelist = start;
1255	page->inuse = 0;
1256out:
1257	return page;
1258}
1259
1260static void __free_slab(struct kmem_cache *s, struct page *page)
1261{
1262	int order = compound_order(page);
1263	int pages = 1 << order;
1264
1265	if (kmem_cache_debug(s)) {
1266		void *p;
1267
1268		slab_pad_check(s, page);
1269		for_each_object(p, s, page_address(page),
1270						page->objects)
1271			check_object(s, page, p, SLUB_RED_INACTIVE);
1272	}
1273
1274	kmemcheck_free_shadow(page, compound_order(page));
1275
1276	mod_zone_page_state(page_zone(page),
1277		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1278		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1279		-pages);
1280
1281	__ClearPageSlab(page);
1282	reset_page_mapcount(page);
1283	if (current->reclaim_state)
1284		current->reclaim_state->reclaimed_slab += pages;
1285	__free_pages(page, order);
1286}
1287
1288#define need_reserve_slab_rcu						\
1289	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1290
1291static void rcu_free_slab(struct rcu_head *h)
1292{
1293	struct page *page;
1294
1295	if (need_reserve_slab_rcu)
1296		page = virt_to_head_page(h);
1297	else
1298		page = container_of((struct list_head *)h, struct page, lru);
1299
1300	__free_slab(page->slab, page);
1301}
1302
1303static void free_slab(struct kmem_cache *s, struct page *page)
1304{
1305	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1306		struct rcu_head *head;
1307
1308		if (need_reserve_slab_rcu) {
1309			int order = compound_order(page);
1310			int offset = (PAGE_SIZE << order) - s->reserved;
1311
1312			VM_BUG_ON(s->reserved != sizeof(*head));
1313			head = page_address(page) + offset;
1314		} else {
1315			/*
1316			 * RCU free overloads the RCU head over the LRU
1317			 */
1318			head = (void *)&page->lru;
1319		}
1320
1321		call_rcu(head, rcu_free_slab);
1322	} else
1323		__free_slab(s, page);
1324}
1325
1326static void discard_slab(struct kmem_cache *s, struct page *page)
1327{
1328	dec_slabs_node(s, page_to_nid(page), page->objects);
1329	free_slab(s, page);
1330}
1331
1332/*
1333 * Per slab locking using the pagelock
1334 */
1335static __always_inline void slab_lock(struct page *page)
1336{
1337	bit_spin_lock(PG_locked, &page->flags);
1338}
1339
1340static __always_inline void slab_unlock(struct page *page)
1341{
1342	__bit_spin_unlock(PG_locked, &page->flags);
1343}
1344
1345static __always_inline int slab_trylock(struct page *page)
1346{
1347	int rc = 1;
1348
1349	rc = bit_spin_trylock(PG_locked, &page->flags);
1350	return rc;
1351}
1352
1353/*
1354 * Management of partially allocated slabs
1355 */
1356static void add_partial(struct kmem_cache_node *n,
1357				struct page *page, int tail)
1358{
1359	spin_lock(&n->list_lock);
1360	n->nr_partial++;
1361	if (tail)
1362		list_add_tail(&page->lru, &n->partial);
1363	else
1364		list_add(&page->lru, &n->partial);
1365	spin_unlock(&n->list_lock);
1366}
1367
1368static inline void __remove_partial(struct kmem_cache_node *n,
1369					struct page *page)
1370{
1371	list_del(&page->lru);
1372	n->nr_partial--;
1373}
1374
1375static void remove_partial(struct kmem_cache *s, struct page *page)
1376{
1377	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1378
1379	spin_lock(&n->list_lock);
1380	__remove_partial(n, page);
1381	spin_unlock(&n->list_lock);
1382}
1383
1384/*
1385 * Lock slab and remove from the partial list.
1386 *
1387 * Must hold list_lock.
1388 */
1389static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1390							struct page *page)
1391{
1392	if (slab_trylock(page)) {
1393		__remove_partial(n, page);
1394		__SetPageSlubFrozen(page);
1395		return 1;
1396	}
1397	return 0;
1398}
1399
1400/*
1401 * Try to allocate a partial slab from a specific node.
1402 */
1403static struct page *get_partial_node(struct kmem_cache_node *n)
1404{
1405	struct page *page;
1406
1407	/*
1408	 * Racy check. If we mistakenly see no partial slabs then we
1409	 * just allocate an empty slab. If we mistakenly try to get a
1410	 * partial slab and there is none available then get_partials()
1411	 * will return NULL.
1412	 */
1413	if (!n || !n->nr_partial)
1414		return NULL;
1415
1416	spin_lock(&n->list_lock);
1417	list_for_each_entry(page, &n->partial, lru)
1418		if (lock_and_freeze_slab(n, page))
1419			goto out;
1420	page = NULL;
1421out:
1422	spin_unlock(&n->list_lock);
1423	return page;
1424}
1425
1426/*
1427 * Get a page from somewhere. Search in increasing NUMA distances.
1428 */
1429static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1430{
1431#ifdef CONFIG_NUMA
1432	struct zonelist *zonelist;
1433	struct zoneref *z;
1434	struct zone *zone;
1435	enum zone_type high_zoneidx = gfp_zone(flags);
1436	struct page *page;
1437
1438	/*
1439	 * The defrag ratio allows a configuration of the tradeoffs between
1440	 * inter node defragmentation and node local allocations. A lower
1441	 * defrag_ratio increases the tendency to do local allocations
1442	 * instead of attempting to obtain partial slabs from other nodes.
1443	 *
1444	 * If the defrag_ratio is set to 0 then kmalloc() always
1445	 * returns node local objects. If the ratio is higher then kmalloc()
1446	 * may return off node objects because partial slabs are obtained
1447	 * from other nodes and filled up.
1448	 *
1449	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1450	 * defrag_ratio = 1000) then every (well almost) allocation will
1451	 * first attempt to defrag slab caches on other nodes. This means
1452	 * scanning over all nodes to look for partial slabs which may be
1453	 * expensive if we do it every time we are trying to find a slab
1454	 * with available objects.
1455	 */
1456	if (!s->remote_node_defrag_ratio ||
1457			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1458		return NULL;
1459
1460	get_mems_allowed();
1461	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1462	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1463		struct kmem_cache_node *n;
1464
1465		n = get_node(s, zone_to_nid(zone));
1466
1467		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1468				n->nr_partial > s->min_partial) {
1469			page = get_partial_node(n);
1470			if (page) {
1471				put_mems_allowed();
1472				return page;
1473			}
1474		}
1475	}
1476	put_mems_allowed();
1477#endif
1478	return NULL;
1479}
1480
1481/*
1482 * Get a partial page, lock it and return it.
1483 */
1484static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1485{
1486	struct page *page;
1487	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1488
1489	page = get_partial_node(get_node(s, searchnode));
1490	if (page || node != NUMA_NO_NODE)
1491		return page;
1492
1493	return get_any_partial(s, flags);
1494}
1495
1496/*
1497 * Move a page back to the lists.
1498 *
1499 * Must be called with the slab lock held.
1500 *
1501 * On exit the slab lock will have been dropped.
1502 */
1503static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1504	__releases(bitlock)
1505{
1506	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1507
1508	__ClearPageSlubFrozen(page);
1509	if (page->inuse) {
1510
1511		if (page->freelist) {
1512			add_partial(n, page, tail);
1513			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1514		} else {
1515			stat(s, DEACTIVATE_FULL);
1516			if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1517				add_full(n, page);
1518		}
1519		slab_unlock(page);
1520	} else {
1521		stat(s, DEACTIVATE_EMPTY);
1522		if (n->nr_partial < s->min_partial) {
1523			/*
1524			 * Adding an empty slab to the partial slabs in order
1525			 * to avoid page allocator overhead. This slab needs
1526			 * to come after the other slabs with objects in
1527			 * so that the others get filled first. That way the
1528			 * size of the partial list stays small.
1529			 *
1530			 * kmem_cache_shrink can reclaim any empty slabs from
1531			 * the partial list.
1532			 */
1533			add_partial(n, page, 1);
1534			slab_unlock(page);
1535		} else {
1536			slab_unlock(page);
1537			stat(s, FREE_SLAB);
1538			discard_slab(s, page);
1539		}
1540	}
1541}
1542
1543#ifdef CONFIG_CMPXCHG_LOCAL
1544#ifdef CONFIG_PREEMPT
1545/*
1546 * Calculate the next globally unique transaction for disambiguiation
1547 * during cmpxchg. The transactions start with the cpu number and are then
1548 * incremented by CONFIG_NR_CPUS.
1549 */
1550#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1551#else
1552/*
1553 * No preemption supported therefore also no need to check for
1554 * different cpus.
1555 */
1556#define TID_STEP 1
1557#endif
1558
1559static inline unsigned long next_tid(unsigned long tid)
1560{
1561	return tid + TID_STEP;
1562}
1563
1564static inline unsigned int tid_to_cpu(unsigned long tid)
1565{
1566	return tid % TID_STEP;
1567}
1568
1569static inline unsigned long tid_to_event(unsigned long tid)
1570{
1571	return tid / TID_STEP;
1572}
1573
1574static inline unsigned int init_tid(int cpu)
1575{
1576	return cpu;
1577}
1578
1579static inline void note_cmpxchg_failure(const char *n,
1580		const struct kmem_cache *s, unsigned long tid)
1581{
1582#ifdef SLUB_DEBUG_CMPXCHG
1583	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1584
1585	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1586
1587#ifdef CONFIG_PREEMPT
1588	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1589		printk("due to cpu change %d -> %d\n",
1590			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1591	else
1592#endif
1593	if (tid_to_event(tid) != tid_to_event(actual_tid))
1594		printk("due to cpu running other code. Event %ld->%ld\n",
1595			tid_to_event(tid), tid_to_event(actual_tid));
1596	else
1597		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1598			actual_tid, tid, next_tid(tid));
1599#endif
1600	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1601}
1602
1603#endif
1604
1605void init_kmem_cache_cpus(struct kmem_cache *s)
1606{
1607#ifdef CONFIG_CMPXCHG_LOCAL
1608	int cpu;
1609
1610	for_each_possible_cpu(cpu)
1611		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1612#endif
1613
1614}
1615/*
1616 * Remove the cpu slab
1617 */
1618static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1619	__releases(bitlock)
1620{
1621	struct page *page = c->page;
1622	int tail = 1;
1623
1624	if (page->freelist)
1625		stat(s, DEACTIVATE_REMOTE_FREES);
1626	/*
1627	 * Merge cpu freelist into slab freelist. Typically we get here
1628	 * because both freelists are empty. So this is unlikely
1629	 * to occur.
1630	 */
1631	while (unlikely(c->freelist)) {
1632		void **object;
1633
1634		tail = 0;	/* Hot objects. Put the slab first */
1635
1636		/* Retrieve object from cpu_freelist */
1637		object = c->freelist;
1638		c->freelist = get_freepointer(s, c->freelist);
1639
1640		/* And put onto the regular freelist */
1641		set_freepointer(s, object, page->freelist);
1642		page->freelist = object;
1643		page->inuse--;
1644	}
1645	c->page = NULL;
1646#ifdef CONFIG_CMPXCHG_LOCAL
1647	c->tid = next_tid(c->tid);
1648#endif
1649	unfreeze_slab(s, page, tail);
1650}
1651
1652static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1653{
1654	stat(s, CPUSLAB_FLUSH);
1655	slab_lock(c->page);
1656	deactivate_slab(s, c);
1657}
1658
1659/*
1660 * Flush cpu slab.
1661 *
1662 * Called from IPI handler with interrupts disabled.
1663 */
1664static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1665{
1666	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1667
1668	if (likely(c && c->page))
1669		flush_slab(s, c);
1670}
1671
1672static void flush_cpu_slab(void *d)
1673{
1674	struct kmem_cache *s = d;
1675
1676	__flush_cpu_slab(s, smp_processor_id());
1677}
1678
1679static void flush_all(struct kmem_cache *s)
1680{
1681	on_each_cpu(flush_cpu_slab, s, 1);
1682}
1683
1684/*
1685 * Check if the objects in a per cpu structure fit numa
1686 * locality expectations.
1687 */
1688static inline int node_match(struct kmem_cache_cpu *c, int node)
1689{
1690#ifdef CONFIG_NUMA
1691	if (node != NUMA_NO_NODE && c->node != node)
1692		return 0;
1693#endif
1694	return 1;
1695}
1696
1697static int count_free(struct page *page)
1698{
1699	return page->objects - page->inuse;
1700}
1701
1702static unsigned long count_partial(struct kmem_cache_node *n,
1703					int (*get_count)(struct page *))
1704{
1705	unsigned long flags;
1706	unsigned long x = 0;
1707	struct page *page;
1708
1709	spin_lock_irqsave(&n->list_lock, flags);
1710	list_for_each_entry(page, &n->partial, lru)
1711		x += get_count(page);
1712	spin_unlock_irqrestore(&n->list_lock, flags);
1713	return x;
1714}
1715
1716static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1717{
1718#ifdef CONFIG_SLUB_DEBUG
1719	return atomic_long_read(&n->total_objects);
1720#else
1721	return 0;
1722#endif
1723}
1724
1725static noinline void
1726slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1727{
1728	int node;
1729
1730	printk(KERN_WARNING
1731		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1732		nid, gfpflags);
1733	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1734		"default order: %d, min order: %d\n", s->name, s->objsize,
1735		s->size, oo_order(s->oo), oo_order(s->min));
1736
1737	if (oo_order(s->min) > get_order(s->objsize))
1738		printk(KERN_WARNING "  %s debugging increased min order, use "
1739		       "slub_debug=O to disable.\n", s->name);
1740
1741	for_each_online_node(node) {
1742		struct kmem_cache_node *n = get_node(s, node);
1743		unsigned long nr_slabs;
1744		unsigned long nr_objs;
1745		unsigned long nr_free;
1746
1747		if (!n)
1748			continue;
1749
1750		nr_free  = count_partial(n, count_free);
1751		nr_slabs = node_nr_slabs(n);
1752		nr_objs  = node_nr_objs(n);
1753
1754		printk(KERN_WARNING
1755			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1756			node, nr_slabs, nr_objs, nr_free);
1757	}
1758}
1759
1760/*
1761 * Slow path. The lockless freelist is empty or we need to perform
1762 * debugging duties.
1763 *
1764 * Interrupts are disabled.
1765 *
1766 * Processing is still very fast if new objects have been freed to the
1767 * regular freelist. In that case we simply take over the regular freelist
1768 * as the lockless freelist and zap the regular freelist.
1769 *
1770 * If that is not working then we fall back to the partial lists. We take the
1771 * first element of the freelist as the object to allocate now and move the
1772 * rest of the freelist to the lockless freelist.
1773 *
1774 * And if we were unable to get a new slab from the partial slab lists then
1775 * we need to allocate a new slab. This is the slowest path since it involves
1776 * a call to the page allocator and the setup of a new slab.
1777 */
1778static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1779			  unsigned long addr, struct kmem_cache_cpu *c)
1780{
1781	void **object;
1782	struct page *new;
1783#ifdef CONFIG_CMPXCHG_LOCAL
1784	unsigned long flags;
1785
1786	local_irq_save(flags);
1787#ifdef CONFIG_PREEMPT
1788	/*
1789	 * We may have been preempted and rescheduled on a different
1790	 * cpu before disabling interrupts. Need to reload cpu area
1791	 * pointer.
1792	 */
1793	c = this_cpu_ptr(s->cpu_slab);
1794#endif
1795#endif
1796
1797	/* We handle __GFP_ZERO in the caller */
1798	gfpflags &= ~__GFP_ZERO;
1799
1800	if (!c->page)
1801		goto new_slab;
1802
1803	slab_lock(c->page);
1804	if (unlikely(!node_match(c, node)))
1805		goto another_slab;
1806
1807	stat(s, ALLOC_REFILL);
1808
1809load_freelist:
1810	object = c->page->freelist;
1811	if (unlikely(!object))
1812		goto another_slab;
1813	if (kmem_cache_debug(s))
1814		goto debug;
1815
1816	c->freelist = get_freepointer(s, object);
1817	c->page->inuse = c->page->objects;
1818	c->page->freelist = NULL;
1819	c->node = page_to_nid(c->page);
1820unlock_out:
1821	slab_unlock(c->page);
1822#ifdef CONFIG_CMPXCHG_LOCAL
1823	c->tid = next_tid(c->tid);
1824	local_irq_restore(flags);
1825#endif
1826	stat(s, ALLOC_SLOWPATH);
1827	return object;
1828
1829another_slab:
1830	deactivate_slab(s, c);
1831
1832new_slab:
1833	new = get_partial(s, gfpflags, node);
1834	if (new) {
1835		c->page = new;
1836		stat(s, ALLOC_FROM_PARTIAL);
1837		goto load_freelist;
1838	}
1839
1840	gfpflags &= gfp_allowed_mask;
1841	if (gfpflags & __GFP_WAIT)
1842		local_irq_enable();
1843
1844	new = new_slab(s, gfpflags, node);
1845
1846	if (gfpflags & __GFP_WAIT)
1847		local_irq_disable();
1848
1849	if (new) {
1850		c = __this_cpu_ptr(s->cpu_slab);
1851		stat(s, ALLOC_SLAB);
1852		if (c->page)
1853			flush_slab(s, c);
1854		slab_lock(new);
1855		__SetPageSlubFrozen(new);
1856		c->page = new;
1857		goto load_freelist;
1858	}
1859	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1860		slab_out_of_memory(s, gfpflags, node);
1861#ifdef CONFIG_CMPXCHG_LOCAL
1862	local_irq_restore(flags);
1863#endif
1864	return NULL;
1865debug:
1866	if (!alloc_debug_processing(s, c->page, object, addr))
1867		goto another_slab;
1868
1869	c->page->inuse++;
1870	c->page->freelist = get_freepointer(s, object);
1871	c->node = NUMA_NO_NODE;
1872	goto unlock_out;
1873}
1874
1875/*
1876 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1877 * have the fastpath folded into their functions. So no function call
1878 * overhead for requests that can be satisfied on the fastpath.
1879 *
1880 * The fastpath works by first checking if the lockless freelist can be used.
1881 * If not then __slab_alloc is called for slow processing.
1882 *
1883 * Otherwise we can simply pick the next object from the lockless free list.
1884 */
1885static __always_inline void *slab_alloc(struct kmem_cache *s,
1886		gfp_t gfpflags, int node, unsigned long addr)
1887{
1888	void **object;
1889	struct kmem_cache_cpu *c;
1890#ifdef CONFIG_CMPXCHG_LOCAL
1891	unsigned long tid;
1892#else
1893	unsigned long flags;
1894#endif
1895
1896	if (slab_pre_alloc_hook(s, gfpflags))
1897		return NULL;
1898
1899#ifndef CONFIG_CMPXCHG_LOCAL
1900	local_irq_save(flags);
1901#else
1902redo:
1903#endif
1904
1905	/*
1906	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1907	 * enabled. We may switch back and forth between cpus while
1908	 * reading from one cpu area. That does not matter as long
1909	 * as we end up on the original cpu again when doing the cmpxchg.
1910	 */
1911	c = __this_cpu_ptr(s->cpu_slab);
1912
1913#ifdef CONFIG_CMPXCHG_LOCAL
1914	/*
1915	 * The transaction ids are globally unique per cpu and per operation on
1916	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1917	 * occurs on the right processor and that there was no operation on the
1918	 * linked list in between.
1919	 */
1920	tid = c->tid;
1921	barrier();
1922#endif
1923
1924	object = c->freelist;
1925	if (unlikely(!object || !node_match(c, node)))
1926
1927		object = __slab_alloc(s, gfpflags, node, addr, c);
1928
1929	else {
1930#ifdef CONFIG_CMPXCHG_LOCAL
1931		/*
1932		 * The cmpxchg will only match if there was no additonal
1933		 * operation and if we are on the right processor.
1934		 *
1935		 * The cmpxchg does the following atomically (without lock semantics!)
1936		 * 1. Relocate first pointer to the current per cpu area.
1937		 * 2. Verify that tid and freelist have not been changed
1938		 * 3. If they were not changed replace tid and freelist
1939		 *
1940		 * Since this is without lock semantics the protection is only against
1941		 * code executing on this cpu *not* from access by other cpus.
1942		 */
1943		if (unlikely(!this_cpu_cmpxchg_double(
1944				s->cpu_slab->freelist, s->cpu_slab->tid,
1945				object, tid,
1946				get_freepointer(s, object), next_tid(tid)))) {
1947
1948			note_cmpxchg_failure("slab_alloc", s, tid);
1949			goto redo;
1950		}
1951#else
1952		c->freelist = get_freepointer(s, object);
1953#endif
1954		stat(s, ALLOC_FASTPATH);
1955	}
1956
1957#ifndef CONFIG_CMPXCHG_LOCAL
1958	local_irq_restore(flags);
1959#endif
1960
1961	if (unlikely(gfpflags & __GFP_ZERO) && object)
1962		memset(object, 0, s->objsize);
1963
1964	slab_post_alloc_hook(s, gfpflags, object);
1965
1966	return object;
1967}
1968
1969void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1970{
1971	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1972
1973	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1974
1975	return ret;
1976}
1977EXPORT_SYMBOL(kmem_cache_alloc);
1978
1979#ifdef CONFIG_TRACING
1980void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1981{
1982	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1983	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1984	return ret;
1985}
1986EXPORT_SYMBOL(kmem_cache_alloc_trace);
1987
1988void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1989{
1990	void *ret = kmalloc_order(size, flags, order);
1991	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1992	return ret;
1993}
1994EXPORT_SYMBOL(kmalloc_order_trace);
1995#endif
1996
1997#ifdef CONFIG_NUMA
1998void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1999{
2000	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2001
2002	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2003				    s->objsize, s->size, gfpflags, node);
2004
2005	return ret;
2006}
2007EXPORT_SYMBOL(kmem_cache_alloc_node);
2008
2009#ifdef CONFIG_TRACING
2010void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2011				    gfp_t gfpflags,
2012				    int node, size_t size)
2013{
2014	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2015
2016	trace_kmalloc_node(_RET_IP_, ret,
2017			   size, s->size, gfpflags, node);
2018	return ret;
2019}
2020EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2021#endif
2022#endif
2023
2024/*
2025 * Slow patch handling. This may still be called frequently since objects
2026 * have a longer lifetime than the cpu slabs in most processing loads.
2027 *
2028 * So we still attempt to reduce cache line usage. Just take the slab
2029 * lock and free the item. If there is no additional partial page
2030 * handling required then we can return immediately.
2031 */
2032static void __slab_free(struct kmem_cache *s, struct page *page,
2033			void *x, unsigned long addr)
2034{
2035	void *prior;
2036	void **object = (void *)x;
2037#ifdef CONFIG_CMPXCHG_LOCAL
2038	unsigned long flags;
2039
2040	local_irq_save(flags);
2041#endif
2042	slab_lock(page);
2043	stat(s, FREE_SLOWPATH);
2044
2045	if (kmem_cache_debug(s))
2046		goto debug;
2047
2048checks_ok:
2049	prior = page->freelist;
2050	set_freepointer(s, object, prior);
2051	page->freelist = object;
2052	page->inuse--;
2053
2054	if (unlikely(PageSlubFrozen(page))) {
2055		stat(s, FREE_FROZEN);
2056		goto out_unlock;
2057	}
2058
2059	if (unlikely(!page->inuse))
2060		goto slab_empty;
2061
2062	/*
2063	 * Objects left in the slab. If it was not on the partial list before
2064	 * then add it.
2065	 */
2066	if (unlikely(!prior)) {
2067		add_partial(get_node(s, page_to_nid(page)), page, 1);
2068		stat(s, FREE_ADD_PARTIAL);
2069	}
2070
2071out_unlock:
2072	slab_unlock(page);
2073#ifdef CONFIG_CMPXCHG_LOCAL
2074	local_irq_restore(flags);
2075#endif
2076	return;
2077
2078slab_empty:
2079	if (prior) {
2080		/*
2081		 * Slab still on the partial list.
2082		 */
2083		remove_partial(s, page);
2084		stat(s, FREE_REMOVE_PARTIAL);
2085	}
2086	slab_unlock(page);
2087#ifdef CONFIG_CMPXCHG_LOCAL
2088	local_irq_restore(flags);
2089#endif
2090	stat(s, FREE_SLAB);
2091	discard_slab(s, page);
2092	return;
2093
2094debug:
2095	if (!free_debug_processing(s, page, x, addr))
2096		goto out_unlock;
2097	goto checks_ok;
2098}
2099
2100/*
2101 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2102 * can perform fastpath freeing without additional function calls.
2103 *
2104 * The fastpath is only possible if we are freeing to the current cpu slab
2105 * of this processor. This typically the case if we have just allocated
2106 * the item before.
2107 *
2108 * If fastpath is not possible then fall back to __slab_free where we deal
2109 * with all sorts of special processing.
2110 */
2111static __always_inline void slab_free(struct kmem_cache *s,
2112			struct page *page, void *x, unsigned long addr)
2113{
2114	void **object = (void *)x;
2115	struct kmem_cache_cpu *c;
2116#ifdef CONFIG_CMPXCHG_LOCAL
2117	unsigned long tid;
2118#else
2119	unsigned long flags;
2120#endif
2121
2122	slab_free_hook(s, x);
2123
2124#ifndef CONFIG_CMPXCHG_LOCAL
2125	local_irq_save(flags);
2126
2127#else
2128redo:
2129#endif
2130
2131	/*
2132	 * Determine the currently cpus per cpu slab.
2133	 * The cpu may change afterward. However that does not matter since
2134	 * data is retrieved via this pointer. If we are on the same cpu
2135	 * during the cmpxchg then the free will succedd.
2136	 */
2137	c = __this_cpu_ptr(s->cpu_slab);
2138
2139#ifdef CONFIG_CMPXCHG_LOCAL
2140	tid = c->tid;
2141	barrier();
2142#endif
2143
2144	if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
2145		set_freepointer(s, object, c->freelist);
2146
2147#ifdef CONFIG_CMPXCHG_LOCAL
2148		if (unlikely(!this_cpu_cmpxchg_double(
2149				s->cpu_slab->freelist, s->cpu_slab->tid,
2150				c->freelist, tid,
2151				object, next_tid(tid)))) {
2152
2153			note_cmpxchg_failure("slab_free", s, tid);
2154			goto redo;
2155		}
2156#else
2157		c->freelist = object;
2158#endif
2159		stat(s, FREE_FASTPATH);
2160	} else
2161		__slab_free(s, page, x, addr);
2162
2163#ifndef CONFIG_CMPXCHG_LOCAL
2164	local_irq_restore(flags);
2165#endif
2166}
2167
2168void kmem_cache_free(struct kmem_cache *s, void *x)
2169{
2170	struct page *page;
2171
2172	page = virt_to_head_page(x);
2173
2174	slab_free(s, page, x, _RET_IP_);
2175
2176	trace_kmem_cache_free(_RET_IP_, x);
2177}
2178EXPORT_SYMBOL(kmem_cache_free);
2179
2180/*
2181 * Object placement in a slab is made very easy because we always start at
2182 * offset 0. If we tune the size of the object to the alignment then we can
2183 * get the required alignment by putting one properly sized object after
2184 * another.
2185 *
2186 * Notice that the allocation order determines the sizes of the per cpu
2187 * caches. Each processor has always one slab available for allocations.
2188 * Increasing the allocation order reduces the number of times that slabs
2189 * must be moved on and off the partial lists and is therefore a factor in
2190 * locking overhead.
2191 */
2192
2193/*
2194 * Mininum / Maximum order of slab pages. This influences locking overhead
2195 * and slab fragmentation. A higher order reduces the number of partial slabs
2196 * and increases the number of allocations possible without having to
2197 * take the list_lock.
2198 */
2199static int slub_min_order;
2200static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2201static int slub_min_objects;
2202
2203/*
2204 * Merge control. If this is set then no merging of slab caches will occur.
2205 * (Could be removed. This was introduced to pacify the merge skeptics.)
2206 */
2207static int slub_nomerge;
2208
2209/*
2210 * Calculate the order of allocation given an slab object size.
2211 *
2212 * The order of allocation has significant impact on performance and other
2213 * system components. Generally order 0 allocations should be preferred since
2214 * order 0 does not cause fragmentation in the page allocator. Larger objects
2215 * be problematic to put into order 0 slabs because there may be too much
2216 * unused space left. We go to a higher order if more than 1/16th of the slab
2217 * would be wasted.
2218 *
2219 * In order to reach satisfactory performance we must ensure that a minimum
2220 * number of objects is in one slab. Otherwise we may generate too much
2221 * activity on the partial lists which requires taking the list_lock. This is
2222 * less a concern for large slabs though which are rarely used.
2223 *
2224 * slub_max_order specifies the order where we begin to stop considering the
2225 * number of objects in a slab as critical. If we reach slub_max_order then
2226 * we try to keep the page order as low as possible. So we accept more waste
2227 * of space in favor of a small page order.
2228 *
2229 * Higher order allocations also allow the placement of more objects in a
2230 * slab and thereby reduce object handling overhead. If the user has
2231 * requested a higher mininum order then we start with that one instead of
2232 * the smallest order which will fit the object.
2233 */
2234static inline int slab_order(int size, int min_objects,
2235				int max_order, int fract_leftover, int reserved)
2236{
2237	int order;
2238	int rem;
2239	int min_order = slub_min_order;
2240
2241	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2242		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2243
2244	for (order = max(min_order,
2245				fls(min_objects * size - 1) - PAGE_SHIFT);
2246			order <= max_order; order++) {
2247
2248		unsigned long slab_size = PAGE_SIZE << order;
2249
2250		if (slab_size < min_objects * size + reserved)
2251			continue;
2252
2253		rem = (slab_size - reserved) % size;
2254
2255		if (rem <= slab_size / fract_leftover)
2256			break;
2257
2258	}
2259
2260	return order;
2261}
2262
2263static inline int calculate_order(int size, int reserved)
2264{
2265	int order;
2266	int min_objects;
2267	int fraction;
2268	int max_objects;
2269
2270	/*
2271	 * Attempt to find best configuration for a slab. This
2272	 * works by first attempting to generate a layout with
2273	 * the best configuration and backing off gradually.
2274	 *
2275	 * First we reduce the acceptable waste in a slab. Then
2276	 * we reduce the minimum objects required in a slab.
2277	 */
2278	min_objects = slub_min_objects;
2279	if (!min_objects)
2280		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2281	max_objects = order_objects(slub_max_order, size, reserved);
2282	min_objects = min(min_objects, max_objects);
2283
2284	while (min_objects > 1) {
2285		fraction = 16;
2286		while (fraction >= 4) {
2287			order = slab_order(size, min_objects,
2288					slub_max_order, fraction, reserved);
2289			if (order <= slub_max_order)
2290				return order;
2291			fraction /= 2;
2292		}
2293		min_objects--;
2294	}
2295
2296	/*
2297	 * We were unable to place multiple objects in a slab. Now
2298	 * lets see if we can place a single object there.
2299	 */
2300	order = slab_order(size, 1, slub_max_order, 1, reserved);
2301	if (order <= slub_max_order)
2302		return order;
2303
2304	/*
2305	 * Doh this slab cannot be placed using slub_max_order.
2306	 */
2307	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2308	if (order < MAX_ORDER)
2309		return order;
2310	return -ENOSYS;
2311}
2312
2313/*
2314 * Figure out what the alignment of the objects will be.
2315 */
2316static unsigned long calculate_alignment(unsigned long flags,
2317		unsigned long align, unsigned long size)
2318{
2319	/*
2320	 * If the user wants hardware cache aligned objects then follow that
2321	 * suggestion if the object is sufficiently large.
2322	 *
2323	 * The hardware cache alignment cannot override the specified
2324	 * alignment though. If that is greater then use it.
2325	 */
2326	if (flags & SLAB_HWCACHE_ALIGN) {
2327		unsigned long ralign = cache_line_size();
2328		while (size <= ralign / 2)
2329			ralign /= 2;
2330		align = max(align, ralign);
2331	}
2332
2333	if (align < ARCH_SLAB_MINALIGN)
2334		align = ARCH_SLAB_MINALIGN;
2335
2336	return ALIGN(align, sizeof(void *));
2337}
2338
2339static void
2340init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2341{
2342	n->nr_partial = 0;
2343	spin_lock_init(&n->list_lock);
2344	INIT_LIST_HEAD(&n->partial);
2345#ifdef CONFIG_SLUB_DEBUG
2346	atomic_long_set(&n->nr_slabs, 0);
2347	atomic_long_set(&n->total_objects, 0);
2348	INIT_LIST_HEAD(&n->full);
2349#endif
2350}
2351
2352static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2353{
2354	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2355			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2356
2357#ifdef CONFIG_CMPXCHG_LOCAL
2358	/*
2359	 * Must align to double word boundary for the double cmpxchg instructions
2360	 * to work.
2361	 */
2362	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
2363#else
2364	/* Regular alignment is sufficient */
2365	s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2366#endif
2367
2368	if (!s->cpu_slab)
2369		return 0;
2370
2371	init_kmem_cache_cpus(s);
2372
2373	return 1;
2374}
2375
2376static struct kmem_cache *kmem_cache_node;
2377
2378/*
2379 * No kmalloc_node yet so do it by hand. We know that this is the first
2380 * slab on the node for this slabcache. There are no concurrent accesses
2381 * possible.
2382 *
2383 * Note that this function only works on the kmalloc_node_cache
2384 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2385 * memory on a fresh node that has no slab structures yet.
2386 */
2387static void early_kmem_cache_node_alloc(int node)
2388{
2389	struct page *page;
2390	struct kmem_cache_node *n;
2391	unsigned long flags;
2392
2393	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2394
2395	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2396
2397	BUG_ON(!page);
2398	if (page_to_nid(page) != node) {
2399		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2400				"node %d\n", node);
2401		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2402				"in order to be able to continue\n");
2403	}
2404
2405	n = page->freelist;
2406	BUG_ON(!n);
2407	page->freelist = get_freepointer(kmem_cache_node, n);
2408	page->inuse++;
2409	kmem_cache_node->node[node] = n;
2410#ifdef CONFIG_SLUB_DEBUG
2411	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2412	init_tracking(kmem_cache_node, n);
2413#endif
2414	init_kmem_cache_node(n, kmem_cache_node);
2415	inc_slabs_node(kmem_cache_node, node, page->objects);
2416
2417	/*
2418	 * lockdep requires consistent irq usage for each lock
2419	 * so even though there cannot be a race this early in
2420	 * the boot sequence, we still disable irqs.
2421	 */
2422	local_irq_save(flags);
2423	add_partial(n, page, 0);
2424	local_irq_restore(flags);
2425}
2426
2427static void free_kmem_cache_nodes(struct kmem_cache *s)
2428{
2429	int node;
2430
2431	for_each_node_state(node, N_NORMAL_MEMORY) {
2432		struct kmem_cache_node *n = s->node[node];
2433
2434		if (n)
2435			kmem_cache_free(kmem_cache_node, n);
2436
2437		s->node[node] = NULL;
2438	}
2439}
2440
2441static int init_kmem_cache_nodes(struct kmem_cache *s)
2442{
2443	int node;
2444
2445	for_each_node_state(node, N_NORMAL_MEMORY) {
2446		struct kmem_cache_node *n;
2447
2448		if (slab_state == DOWN) {
2449			early_kmem_cache_node_alloc(node);
2450			continue;
2451		}
2452		n = kmem_cache_alloc_node(kmem_cache_node,
2453						GFP_KERNEL, node);
2454
2455		if (!n) {
2456			free_kmem_cache_nodes(s);
2457			return 0;
2458		}
2459
2460		s->node[node] = n;
2461		init_kmem_cache_node(n, s);
2462	}
2463	return 1;
2464}
2465
2466static void set_min_partial(struct kmem_cache *s, unsigned long min)
2467{
2468	if (min < MIN_PARTIAL)
2469		min = MIN_PARTIAL;
2470	else if (min > MAX_PARTIAL)
2471		min = MAX_PARTIAL;
2472	s->min_partial = min;
2473}
2474
2475/*
2476 * calculate_sizes() determines the order and the distribution of data within
2477 * a slab object.
2478 */
2479static int calculate_sizes(struct kmem_cache *s, int forced_order)
2480{
2481	unsigned long flags = s->flags;
2482	unsigned long size = s->objsize;
2483	unsigned long align = s->align;
2484	int order;
2485
2486	/*
2487	 * Round up object size to the next word boundary. We can only
2488	 * place the free pointer at word boundaries and this determines
2489	 * the possible location of the free pointer.
2490	 */
2491	size = ALIGN(size, sizeof(void *));
2492
2493#ifdef CONFIG_SLUB_DEBUG
2494	/*
2495	 * Determine if we can poison the object itself. If the user of
2496	 * the slab may touch the object after free or before allocation
2497	 * then we should never poison the object itself.
2498	 */
2499	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2500			!s->ctor)
2501		s->flags |= __OBJECT_POISON;
2502	else
2503		s->flags &= ~__OBJECT_POISON;
2504
2505
2506	/*
2507	 * If we are Redzoning then check if there is some space between the
2508	 * end of the object and the free pointer. If not then add an
2509	 * additional word to have some bytes to store Redzone information.
2510	 */
2511	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2512		size += sizeof(void *);
2513#endif
2514
2515	/*
2516	 * With that we have determined the number of bytes in actual use
2517	 * by the object. This is the potential offset to the free pointer.
2518	 */
2519	s->inuse = size;
2520
2521	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2522		s->ctor)) {
2523		/*
2524		 * Relocate free pointer after the object if it is not
2525		 * permitted to overwrite the first word of the object on
2526		 * kmem_cache_free.
2527		 *
2528		 * This is the case if we do RCU, have a constructor or
2529		 * destructor or are poisoning the objects.
2530		 */
2531		s->offset = size;
2532		size += sizeof(void *);
2533	}
2534
2535#ifdef CONFIG_SLUB_DEBUG
2536	if (flags & SLAB_STORE_USER)
2537		/*
2538		 * Need to store information about allocs and frees after
2539		 * the object.
2540		 */
2541		size += 2 * sizeof(struct track);
2542
2543	if (flags & SLAB_RED_ZONE)
2544		/*
2545		 * Add some empty padding so that we can catch
2546		 * overwrites from earlier objects rather than let
2547		 * tracking information or the free pointer be
2548		 * corrupted if a user writes before the start
2549		 * of the object.
2550		 */
2551		size += sizeof(void *);
2552#endif
2553
2554	/*
2555	 * Determine the alignment based on various parameters that the
2556	 * user specified and the dynamic determination of cache line size
2557	 * on bootup.
2558	 */
2559	align = calculate_alignment(flags, align, s->objsize);
2560	s->align = align;
2561
2562	/*
2563	 * SLUB stores one object immediately after another beginning from
2564	 * offset 0. In order to align the objects we have to simply size
2565	 * each object to conform to the alignment.
2566	 */
2567	size = ALIGN(size, align);
2568	s->size = size;
2569	if (forced_order >= 0)
2570		order = forced_order;
2571	else
2572		order = calculate_order(size, s->reserved);
2573
2574	if (order < 0)
2575		return 0;
2576
2577	s->allocflags = 0;
2578	if (order)
2579		s->allocflags |= __GFP_COMP;
2580
2581	if (s->flags & SLAB_CACHE_DMA)
2582		s->allocflags |= SLUB_DMA;
2583
2584	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2585		s->allocflags |= __GFP_RECLAIMABLE;
2586
2587	/*
2588	 * Determine the number of objects per slab
2589	 */
2590	s->oo = oo_make(order, size, s->reserved);
2591	s->min = oo_make(get_order(size), size, s->reserved);
2592	if (oo_objects(s->oo) > oo_objects(s->max))
2593		s->max = s->oo;
2594
2595	return !!oo_objects(s->oo);
2596
2597}
2598
2599static int kmem_cache_open(struct kmem_cache *s,
2600		const char *name, size_t size,
2601		size_t align, unsigned long flags,
2602		void (*ctor)(void *))
2603{
2604	memset(s, 0, kmem_size);
2605	s->name = name;
2606	s->ctor = ctor;
2607	s->objsize = size;
2608	s->align = align;
2609	s->flags = kmem_cache_flags(size, flags, name, ctor);
2610	s->reserved = 0;
2611
2612	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2613		s->reserved = sizeof(struct rcu_head);
2614
2615	if (!calculate_sizes(s, -1))
2616		goto error;
2617	if (disable_higher_order_debug) {
2618		/*
2619		 * Disable debugging flags that store metadata if the min slab
2620		 * order increased.
2621		 */
2622		if (get_order(s->size) > get_order(s->objsize)) {
2623			s->flags &= ~DEBUG_METADATA_FLAGS;
2624			s->offset = 0;
2625			if (!calculate_sizes(s, -1))
2626				goto error;
2627		}
2628	}
2629
2630	/*
2631	 * The larger the object size is, the more pages we want on the partial
2632	 * list to avoid pounding the page allocator excessively.
2633	 */
2634	set_min_partial(s, ilog2(s->size));
2635	s->refcount = 1;
2636#ifdef CONFIG_NUMA
2637	s->remote_node_defrag_ratio = 1000;
2638#endif
2639	if (!init_kmem_cache_nodes(s))
2640		goto error;
2641
2642	if (alloc_kmem_cache_cpus(s))
2643		return 1;
2644
2645	free_kmem_cache_nodes(s);
2646error:
2647	if (flags & SLAB_PANIC)
2648		panic("Cannot create slab %s size=%lu realsize=%u "
2649			"order=%u offset=%u flags=%lx\n",
2650			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2651			s->offset, flags);
2652	return 0;
2653}
2654
2655/*
2656 * Determine the size of a slab object
2657 */
2658unsigned int kmem_cache_size(struct kmem_cache *s)
2659{
2660	return s->objsize;
2661}
2662EXPORT_SYMBOL(kmem_cache_size);
2663
2664static void list_slab_objects(struct kmem_cache *s, struct page *page,
2665							const char *text)
2666{
2667#ifdef CONFIG_SLUB_DEBUG
2668	void *addr = page_address(page);
2669	void *p;
2670	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2671				     sizeof(long), GFP_ATOMIC);
2672	if (!map)
2673		return;
2674	slab_err(s, page, "%s", text);
2675	slab_lock(page);
2676	for_each_free_object(p, s, page->freelist)
2677		set_bit(slab_index(p, s, addr), map);
2678
2679	for_each_object(p, s, addr, page->objects) {
2680
2681		if (!test_bit(slab_index(p, s, addr), map)) {
2682			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2683							p, p - addr);
2684			print_tracking(s, p);
2685		}
2686	}
2687	slab_unlock(page);
2688	kfree(map);
2689#endif
2690}
2691
2692/*
2693 * Attempt to free all partial slabs on a node.
2694 */
2695static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2696{
2697	unsigned long flags;
2698	struct page *page, *h;
2699
2700	spin_lock_irqsave(&n->list_lock, flags);
2701	list_for_each_entry_safe(page, h, &n->partial, lru) {
2702		if (!page->inuse) {
2703			__remove_partial(n, page);
2704			discard_slab(s, page);
2705		} else {
2706			list_slab_objects(s, page,
2707				"Objects remaining on kmem_cache_close()");
2708		}
2709	}
2710	spin_unlock_irqrestore(&n->list_lock, flags);
2711}
2712
2713/*
2714 * Release all resources used by a slab cache.
2715 */
2716static inline int kmem_cache_close(struct kmem_cache *s)
2717{
2718	int node;
2719
2720	flush_all(s);
2721	free_percpu(s->cpu_slab);
2722	/* Attempt to free all objects */
2723	for_each_node_state(node, N_NORMAL_MEMORY) {
2724		struct kmem_cache_node *n = get_node(s, node);
2725
2726		free_partial(s, n);
2727		if (n->nr_partial || slabs_node(s, node))
2728			return 1;
2729	}
2730	free_kmem_cache_nodes(s);
2731	return 0;
2732}
2733
2734/*
2735 * Close a cache and release the kmem_cache structure
2736 * (must be used for caches created using kmem_cache_create)
2737 */
2738void kmem_cache_destroy(struct kmem_cache *s)
2739{
2740	down_write(&slub_lock);
2741	s->refcount--;
2742	if (!s->refcount) {
2743		list_del(&s->list);
2744		if (kmem_cache_close(s)) {
2745			printk(KERN_ERR "SLUB %s: %s called for cache that "
2746				"still has objects.\n", s->name, __func__);
2747			dump_stack();
2748		}
2749		if (s->flags & SLAB_DESTROY_BY_RCU)
2750			rcu_barrier();
2751		sysfs_slab_remove(s);
2752	}
2753	up_write(&slub_lock);
2754}
2755EXPORT_SYMBOL(kmem_cache_destroy);
2756
2757/********************************************************************
2758 *		Kmalloc subsystem
2759 *******************************************************************/
2760
2761struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2762EXPORT_SYMBOL(kmalloc_caches);
2763
2764static struct kmem_cache *kmem_cache;
2765
2766#ifdef CONFIG_ZONE_DMA
2767static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2768#endif
2769
2770static int __init setup_slub_min_order(char *str)
2771{
2772	get_option(&str, &slub_min_order);
2773
2774	return 1;
2775}
2776
2777__setup("slub_min_order=", setup_slub_min_order);
2778
2779static int __init setup_slub_max_order(char *str)
2780{
2781	get_option(&str, &slub_max_order);
2782	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2783
2784	return 1;
2785}
2786
2787__setup("slub_max_order=", setup_slub_max_order);
2788
2789static int __init setup_slub_min_objects(char *str)
2790{
2791	get_option(&str, &slub_min_objects);
2792
2793	return 1;
2794}
2795
2796__setup("slub_min_objects=", setup_slub_min_objects);
2797
2798static int __init setup_slub_nomerge(char *str)
2799{
2800	slub_nomerge = 1;
2801	return 1;
2802}
2803
2804__setup("slub_nomerge", setup_slub_nomerge);
2805
2806static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2807						int size, unsigned int flags)
2808{
2809	struct kmem_cache *s;
2810
2811	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2812
2813	/*
2814	 * This function is called with IRQs disabled during early-boot on
2815	 * single CPU so there's no need to take slub_lock here.
2816	 */
2817	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2818								flags, NULL))
2819		goto panic;
2820
2821	list_add(&s->list, &slab_caches);
2822	return s;
2823
2824panic:
2825	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2826	return NULL;
2827}
2828
2829/*
2830 * Conversion table for small slabs sizes / 8 to the index in the
2831 * kmalloc array. This is necessary for slabs < 192 since we have non power
2832 * of two cache sizes there. The size of larger slabs can be determined using
2833 * fls.
2834 */
2835static s8 size_index[24] = {
2836	3,	/* 8 */
2837	4,	/* 16 */
2838	5,	/* 24 */
2839	5,	/* 32 */
2840	6,	/* 40 */
2841	6,	/* 48 */
2842	6,	/* 56 */
2843	6,	/* 64 */
2844	1,	/* 72 */
2845	1,	/* 80 */
2846	1,	/* 88 */
2847	1,	/* 96 */
2848	7,	/* 104 */
2849	7,	/* 112 */
2850	7,	/* 120 */
2851	7,	/* 128 */
2852	2,	/* 136 */
2853	2,	/* 144 */
2854	2,	/* 152 */
2855	2,	/* 160 */
2856	2,	/* 168 */
2857	2,	/* 176 */
2858	2,	/* 184 */
2859	2	/* 192 */
2860};
2861
2862static inline int size_index_elem(size_t bytes)
2863{
2864	return (bytes - 1) / 8;
2865}
2866
2867static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2868{
2869	int index;
2870
2871	if (size <= 192) {
2872		if (!size)
2873			return ZERO_SIZE_PTR;
2874
2875		index = size_index[size_index_elem(size)];
2876	} else
2877		index = fls(size - 1);
2878
2879#ifdef CONFIG_ZONE_DMA
2880	if (unlikely((flags & SLUB_DMA)))
2881		return kmalloc_dma_caches[index];
2882
2883#endif
2884	return kmalloc_caches[index];
2885}
2886
2887void *__kmalloc(size_t size, gfp_t flags)
2888{
2889	struct kmem_cache *s;
2890	void *ret;
2891
2892	if (unlikely(size > SLUB_MAX_SIZE))
2893		return kmalloc_large(size, flags);
2894
2895	s = get_slab(size, flags);
2896
2897	if (unlikely(ZERO_OR_NULL_PTR(s)))
2898		return s;
2899
2900	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2901
2902	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2903
2904	return ret;
2905}
2906EXPORT_SYMBOL(__kmalloc);
2907
2908#ifdef CONFIG_NUMA
2909static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2910{
2911	struct page *page;
2912	void *ptr = NULL;
2913
2914	flags |= __GFP_COMP | __GFP_NOTRACK;
2915	page = alloc_pages_node(node, flags, get_order(size));
2916	if (page)
2917		ptr = page_address(page);
2918
2919	kmemleak_alloc(ptr, size, 1, flags);
2920	return ptr;
2921}
2922
2923void *__kmalloc_node(size_t size, gfp_t flags, int node)
2924{
2925	struct kmem_cache *s;
2926	void *ret;
2927
2928	if (unlikely(size > SLUB_MAX_SIZE)) {
2929		ret = kmalloc_large_node(size, flags, node);
2930
2931		trace_kmalloc_node(_RET_IP_, ret,
2932				   size, PAGE_SIZE << get_order(size),
2933				   flags, node);
2934
2935		return ret;
2936	}
2937
2938	s = get_slab(size, flags);
2939
2940	if (unlikely(ZERO_OR_NULL_PTR(s)))
2941		return s;
2942
2943	ret = slab_alloc(s, flags, node, _RET_IP_);
2944
2945	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2946
2947	return ret;
2948}
2949EXPORT_SYMBOL(__kmalloc_node);
2950#endif
2951
2952size_t ksize(const void *object)
2953{
2954	struct page *page;
2955
2956	if (unlikely(object == ZERO_SIZE_PTR))
2957		return 0;
2958
2959	page = virt_to_head_page(object);
2960
2961	if (unlikely(!PageSlab(page))) {
2962		WARN_ON(!PageCompound(page));
2963		return PAGE_SIZE << compound_order(page);
2964	}
2965
2966	return slab_ksize(page->slab);
2967}
2968EXPORT_SYMBOL(ksize);
2969
2970void kfree(const void *x)
2971{
2972	struct page *page;
2973	void *object = (void *)x;
2974
2975	trace_kfree(_RET_IP_, x);
2976
2977	if (unlikely(ZERO_OR_NULL_PTR(x)))
2978		return;
2979
2980	page = virt_to_head_page(x);
2981	if (unlikely(!PageSlab(page))) {
2982		BUG_ON(!PageCompound(page));
2983		kmemleak_free(x);
2984		put_page(page);
2985		return;
2986	}
2987	slab_free(page->slab, page, object, _RET_IP_);
2988}
2989EXPORT_SYMBOL(kfree);
2990
2991/*
2992 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2993 * the remaining slabs by the number of items in use. The slabs with the
2994 * most items in use come first. New allocations will then fill those up
2995 * and thus they can be removed from the partial lists.
2996 *
2997 * The slabs with the least items are placed last. This results in them
2998 * being allocated from last increasing the chance that the last objects
2999 * are freed in them.
3000 */
3001int kmem_cache_shrink(struct kmem_cache *s)
3002{
3003	int node;
3004	int i;
3005	struct kmem_cache_node *n;
3006	struct page *page;
3007	struct page *t;
3008	int objects = oo_objects(s->max);
3009	struct list_head *slabs_by_inuse =
3010		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3011	unsigned long flags;
3012
3013	if (!slabs_by_inuse)
3014		return -ENOMEM;
3015
3016	flush_all(s);
3017	for_each_node_state(node, N_NORMAL_MEMORY) {
3018		n = get_node(s, node);
3019
3020		if (!n->nr_partial)
3021			continue;
3022
3023		for (i = 0; i < objects; i++)
3024			INIT_LIST_HEAD(slabs_by_inuse + i);
3025
3026		spin_lock_irqsave(&n->list_lock, flags);
3027
3028		/*
3029		 * Build lists indexed by the items in use in each slab.
3030		 *
3031		 * Note that concurrent frees may occur while we hold the
3032		 * list_lock. page->inuse here is the upper limit.
3033		 */
3034		list_for_each_entry_safe(page, t, &n->partial, lru) {
3035			if (!page->inuse && slab_trylock(page)) {
3036				/*
3037				 * Must hold slab lock here because slab_free
3038				 * may have freed the last object and be
3039				 * waiting to release the slab.
3040				 */
3041				__remove_partial(n, page);
3042				slab_unlock(page);
3043				discard_slab(s, page);
3044			} else {
3045				list_move(&page->lru,
3046				slabs_by_inuse + page->inuse);
3047			}
3048		}
3049
3050		/*
3051		 * Rebuild the partial list with the slabs filled up most
3052		 * first and the least used slabs at the end.
3053		 */
3054		for (i = objects - 1; i >= 0; i--)
3055			list_splice(slabs_by_inuse + i, n->partial.prev);
3056
3057		spin_unlock_irqrestore(&n->list_lock, flags);
3058	}
3059
3060	kfree(slabs_by_inuse);
3061	return 0;
3062}
3063EXPORT_SYMBOL(kmem_cache_shrink);
3064
3065#if defined(CONFIG_MEMORY_HOTPLUG)
3066static int slab_mem_going_offline_callback(void *arg)
3067{
3068	struct kmem_cache *s;
3069
3070	down_read(&slub_lock);
3071	list_for_each_entry(s, &slab_caches, list)
3072		kmem_cache_shrink(s);
3073	up_read(&slub_lock);
3074
3075	return 0;
3076}
3077
3078static void slab_mem_offline_callback(void *arg)
3079{
3080	struct kmem_cache_node *n;
3081	struct kmem_cache *s;
3082	struct memory_notify *marg = arg;
3083	int offline_node;
3084
3085	offline_node = marg->status_change_nid;
3086
3087	/*
3088	 * If the node still has available memory. we need kmem_cache_node
3089	 * for it yet.
3090	 */
3091	if (offline_node < 0)
3092		return;
3093
3094	down_read(&slub_lock);
3095	list_for_each_entry(s, &slab_caches, list) {
3096		n = get_node(s, offline_node);
3097		if (n) {
3098			/*
3099			 * if n->nr_slabs > 0, slabs still exist on the node
3100			 * that is going down. We were unable to free them,
3101			 * and offline_pages() function shouldn't call this
3102			 * callback. So, we must fail.
3103			 */
3104			BUG_ON(slabs_node(s, offline_node));
3105
3106			s->node[offline_node] = NULL;
3107			kmem_cache_free(kmem_cache_node, n);
3108		}
3109	}
3110	up_read(&slub_lock);
3111}
3112
3113static int slab_mem_going_online_callback(void *arg)
3114{
3115	struct kmem_cache_node *n;
3116	struct kmem_cache *s;
3117	struct memory_notify *marg = arg;
3118	int nid = marg->status_change_nid;
3119	int ret = 0;
3120
3121	/*
3122	 * If the node's memory is already available, then kmem_cache_node is
3123	 * already created. Nothing to do.
3124	 */
3125	if (nid < 0)
3126		return 0;
3127
3128	/*
3129	 * We are bringing a node online. No memory is available yet. We must
3130	 * allocate a kmem_cache_node structure in order to bring the node
3131	 * online.
3132	 */
3133	down_read(&slub_lock);
3134	list_for_each_entry(s, &slab_caches, list) {
3135		/*
3136		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3137		 *      since memory is not yet available from the node that
3138		 *      is brought up.
3139		 */
3140		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3141		if (!n) {
3142			ret = -ENOMEM;
3143			goto out;
3144		}
3145		init_kmem_cache_node(n, s);
3146		s->node[nid] = n;
3147	}
3148out:
3149	up_read(&slub_lock);
3150	return ret;
3151}
3152
3153static int slab_memory_callback(struct notifier_block *self,
3154				unsigned long action, void *arg)
3155{
3156	int ret = 0;
3157
3158	switch (action) {
3159	case MEM_GOING_ONLINE:
3160		ret = slab_mem_going_online_callback(arg);
3161		break;
3162	case MEM_GOING_OFFLINE:
3163		ret = slab_mem_going_offline_callback(arg);
3164		break;
3165	case MEM_OFFLINE:
3166	case MEM_CANCEL_ONLINE:
3167		slab_mem_offline_callback(arg);
3168		break;
3169	case MEM_ONLINE:
3170	case MEM_CANCEL_OFFLINE:
3171		break;
3172	}
3173	if (ret)
3174		ret = notifier_from_errno(ret);
3175	else
3176		ret = NOTIFY_OK;
3177	return ret;
3178}
3179
3180#endif /* CONFIG_MEMORY_HOTPLUG */
3181
3182/********************************************************************
3183 *			Basic setup of slabs
3184 *******************************************************************/
3185
3186/*
3187 * Used for early kmem_cache structures that were allocated using
3188 * the page allocator
3189 */
3190
3191static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3192{
3193	int node;
3194
3195	list_add(&s->list, &slab_caches);
3196	s->refcount = -1;
3197
3198	for_each_node_state(node, N_NORMAL_MEMORY) {
3199		struct kmem_cache_node *n = get_node(s, node);
3200		struct page *p;
3201
3202		if (n) {
3203			list_for_each_entry(p, &n->partial, lru)
3204				p->slab = s;
3205
3206#ifdef CONFIG_SLUB_DEBUG
3207			list_for_each_entry(p, &n->full, lru)
3208				p->slab = s;
3209#endif
3210		}
3211	}
3212}
3213
3214void __init kmem_cache_init(void)
3215{
3216	int i;
3217	int caches = 0;
3218	struct kmem_cache *temp_kmem_cache;
3219	int order;
3220	struct kmem_cache *temp_kmem_cache_node;
3221	unsigned long kmalloc_size;
3222
3223	kmem_size = offsetof(struct kmem_cache, node) +
3224				nr_node_ids * sizeof(struct kmem_cache_node *);
3225
3226	/* Allocate two kmem_caches from the page allocator */
3227	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3228	order = get_order(2 * kmalloc_size);
3229	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3230
3231	/*
3232	 * Must first have the slab cache available for the allocations of the
3233	 * struct kmem_cache_node's. There is special bootstrap code in
3234	 * kmem_cache_open for slab_state == DOWN.
3235	 */
3236	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3237
3238	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3239		sizeof(struct kmem_cache_node),
3240		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3241
3242	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3243
3244	/* Able to allocate the per node structures */
3245	slab_state = PARTIAL;
3246
3247	temp_kmem_cache = kmem_cache;
3248	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3249		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3250	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3251	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3252
3253	/*
3254	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3255	 * kmem_cache_node is separately allocated so no need to
3256	 * update any list pointers.
3257	 */
3258	temp_kmem_cache_node = kmem_cache_node;
3259
3260	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3261	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3262
3263	kmem_cache_bootstrap_fixup(kmem_cache_node);
3264
3265	caches++;
3266	kmem_cache_bootstrap_fixup(kmem_cache);
3267	caches++;
3268	/* Free temporary boot structure */
3269	free_pages((unsigned long)temp_kmem_cache, order);
3270
3271	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3272
3273	/*
3274	 * Patch up the size_index table if we have strange large alignment
3275	 * requirements for the kmalloc array. This is only the case for
3276	 * MIPS it seems. The standard arches will not generate any code here.
3277	 *
3278	 * Largest permitted alignment is 256 bytes due to the way we
3279	 * handle the index determination for the smaller caches.
3280	 *
3281	 * Make sure that nothing crazy happens if someone starts tinkering
3282	 * around with ARCH_KMALLOC_MINALIGN
3283	 */
3284	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3285		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3286
3287	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3288		int elem = size_index_elem(i);
3289		if (elem >= ARRAY_SIZE(size_index))
3290			break;
3291		size_index[elem] = KMALLOC_SHIFT_LOW;
3292	}
3293
3294	if (KMALLOC_MIN_SIZE == 64) {
3295		/*
3296		 * The 96 byte size cache is not used if the alignment
3297		 * is 64 byte.
3298		 */
3299		for (i = 64 + 8; i <= 96; i += 8)
3300			size_index[size_index_elem(i)] = 7;
3301	} else if (KMALLOC_MIN_SIZE == 128) {
3302		/*
3303		 * The 192 byte sized cache is not used if the alignment
3304		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3305		 * instead.
3306		 */
3307		for (i = 128 + 8; i <= 192; i += 8)
3308			size_index[size_index_elem(i)] = 8;
3309	}
3310
3311	/* Caches that are not of the two-to-the-power-of size */
3312	if (KMALLOC_MIN_SIZE <= 32) {
3313		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3314		caches++;
3315	}
3316
3317	if (KMALLOC_MIN_SIZE <= 64) {
3318		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3319		caches++;
3320	}
3321
3322	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3323		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3324		caches++;
3325	}
3326
3327	slab_state = UP;
3328
3329	/* Provide the correct kmalloc names now that the caches are up */
3330	if (KMALLOC_MIN_SIZE <= 32) {
3331		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3332		BUG_ON(!kmalloc_caches[1]->name);
3333	}
3334
3335	if (KMALLOC_MIN_SIZE <= 64) {
3336		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3337		BUG_ON(!kmalloc_caches[2]->name);
3338	}
3339
3340	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3341		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3342
3343		BUG_ON(!s);
3344		kmalloc_caches[i]->name = s;
3345	}
3346
3347#ifdef CONFIG_SMP
3348	register_cpu_notifier(&slab_notifier);
3349#endif
3350
3351#ifdef CONFIG_ZONE_DMA
3352	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3353		struct kmem_cache *s = kmalloc_caches[i];
3354
3355		if (s && s->size) {
3356			char *name = kasprintf(GFP_NOWAIT,
3357				 "dma-kmalloc-%d", s->objsize);
3358
3359			BUG_ON(!name);
3360			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3361				s->objsize, SLAB_CACHE_DMA);
3362		}
3363	}
3364#endif
3365	printk(KERN_INFO
3366		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3367		" CPUs=%d, Nodes=%d\n",
3368		caches, cache_line_size(),
3369		slub_min_order, slub_max_order, slub_min_objects,
3370		nr_cpu_ids, nr_node_ids);
3371}
3372
3373void __init kmem_cache_init_late(void)
3374{
3375}
3376
3377/*
3378 * Find a mergeable slab cache
3379 */
3380static int slab_unmergeable(struct kmem_cache *s)
3381{
3382	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3383		return 1;
3384
3385	if (s->ctor)
3386		return 1;
3387
3388	/*
3389	 * We may have set a slab to be unmergeable during bootstrap.
3390	 */
3391	if (s->refcount < 0)
3392		return 1;
3393
3394	return 0;
3395}
3396
3397static struct kmem_cache *find_mergeable(size_t size,
3398		size_t align, unsigned long flags, const char *name,
3399		void (*ctor)(void *))
3400{
3401	struct kmem_cache *s;
3402
3403	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3404		return NULL;
3405
3406	if (ctor)
3407		return NULL;
3408
3409	size = ALIGN(size, sizeof(void *));
3410	align = calculate_alignment(flags, align, size);
3411	size = ALIGN(size, align);
3412	flags = kmem_cache_flags(size, flags, name, NULL);
3413
3414	list_for_each_entry(s, &slab_caches, list) {
3415		if (slab_unmergeable(s))
3416			continue;
3417
3418		if (size > s->size)
3419			continue;
3420
3421		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3422				continue;
3423		/*
3424		 * Check if alignment is compatible.
3425		 * Courtesy of Adrian Drzewiecki
3426		 */
3427		if ((s->size & ~(align - 1)) != s->size)
3428			continue;
3429
3430		if (s->size - size >= sizeof(void *))
3431			continue;
3432
3433		return s;
3434	}
3435	return NULL;
3436}
3437
3438struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3439		size_t align, unsigned long flags, void (*ctor)(void *))
3440{
3441	struct kmem_cache *s;
3442	char *n;
3443
3444	if (WARN_ON(!name))
3445		return NULL;
3446
3447	down_write(&slub_lock);
3448	s = find_mergeable(size, align, flags, name, ctor);
3449	if (s) {
3450		s->refcount++;
3451		/*
3452		 * Adjust the object sizes so that we clear
3453		 * the complete object on kzalloc.
3454		 */
3455		s->objsize = max(s->objsize, (int)size);
3456		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3457
3458		if (sysfs_slab_alias(s, name)) {
3459			s->refcount--;
3460			goto err;
3461		}
3462		up_write(&slub_lock);
3463		return s;
3464	}
3465
3466	n = kstrdup(name, GFP_KERNEL);
3467	if (!n)
3468		goto err;
3469
3470	s = kmalloc(kmem_size, GFP_KERNEL);
3471	if (s) {
3472		if (kmem_cache_open(s, n,
3473				size, align, flags, ctor)) {
3474			list_add(&s->list, &slab_caches);
3475			if (sysfs_slab_add(s)) {
3476				list_del(&s->list);
3477				kfree(n);
3478				kfree(s);
3479				goto err;
3480			}
3481			up_write(&slub_lock);
3482			return s;
3483		}
3484		kfree(n);
3485		kfree(s);
3486	}
3487err:
3488	up_write(&slub_lock);
3489
3490	if (flags & SLAB_PANIC)
3491		panic("Cannot create slabcache %s\n", name);
3492	else
3493		s = NULL;
3494	return s;
3495}
3496EXPORT_SYMBOL(kmem_cache_create);
3497
3498#ifdef CONFIG_SMP
3499/*
3500 * Use the cpu notifier to insure that the cpu slabs are flushed when
3501 * necessary.
3502 */
3503static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3504		unsigned long action, void *hcpu)
3505{
3506	long cpu = (long)hcpu;
3507	struct kmem_cache *s;
3508	unsigned long flags;
3509
3510	switch (action) {
3511	case CPU_UP_CANCELED:
3512	case CPU_UP_CANCELED_FROZEN:
3513	case CPU_DEAD:
3514	case CPU_DEAD_FROZEN:
3515		down_read(&slub_lock);
3516		list_for_each_entry(s, &slab_caches, list) {
3517			local_irq_save(flags);
3518			__flush_cpu_slab(s, cpu);
3519			local_irq_restore(flags);
3520		}
3521		up_read(&slub_lock);
3522		break;
3523	default:
3524		break;
3525	}
3526	return NOTIFY_OK;
3527}
3528
3529static struct notifier_block __cpuinitdata slab_notifier = {
3530	.notifier_call = slab_cpuup_callback
3531};
3532
3533#endif
3534
3535void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3536{
3537	struct kmem_cache *s;
3538	void *ret;
3539
3540	if (unlikely(size > SLUB_MAX_SIZE))
3541		return kmalloc_large(size, gfpflags);
3542
3543	s = get_slab(size, gfpflags);
3544
3545	if (unlikely(ZERO_OR_NULL_PTR(s)))
3546		return s;
3547
3548	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3549
3550	/* Honor the call site pointer we recieved. */
3551	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3552
3553	return ret;
3554}
3555
3556#ifdef CONFIG_NUMA
3557void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3558					int node, unsigned long caller)
3559{
3560	struct kmem_cache *s;
3561	void *ret;
3562
3563	if (unlikely(size > SLUB_MAX_SIZE)) {
3564		ret = kmalloc_large_node(size, gfpflags, node);
3565
3566		trace_kmalloc_node(caller, ret,
3567				   size, PAGE_SIZE << get_order(size),
3568				   gfpflags, node);
3569
3570		return ret;
3571	}
3572
3573	s = get_slab(size, gfpflags);
3574
3575	if (unlikely(ZERO_OR_NULL_PTR(s)))
3576		return s;
3577
3578	ret = slab_alloc(s, gfpflags, node, caller);
3579
3580	/* Honor the call site pointer we recieved. */
3581	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3582
3583	return ret;
3584}
3585#endif
3586
3587#ifdef CONFIG_SYSFS
3588static int count_inuse(struct page *page)
3589{
3590	return page->inuse;
3591}
3592
3593static int count_total(struct page *page)
3594{
3595	return page->objects;
3596}
3597#endif
3598
3599#ifdef CONFIG_SLUB_DEBUG
3600static int validate_slab(struct kmem_cache *s, struct page *page,
3601						unsigned long *map)
3602{
3603	void *p;
3604	void *addr = page_address(page);
3605
3606	if (!check_slab(s, page) ||
3607			!on_freelist(s, page, NULL))
3608		return 0;
3609
3610	/* Now we know that a valid freelist exists */
3611	bitmap_zero(map, page->objects);
3612
3613	for_each_free_object(p, s, page->freelist) {
3614		set_bit(slab_index(p, s, addr), map);
3615		if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3616			return 0;
3617	}
3618
3619	for_each_object(p, s, addr, page->objects)
3620		if (!test_bit(slab_index(p, s, addr), map))
3621			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3622				return 0;
3623	return 1;
3624}
3625
3626static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3627						unsigned long *map)
3628{
3629	if (slab_trylock(page)) {
3630		validate_slab(s, page, map);
3631		slab_unlock(page);
3632	} else
3633		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3634			s->name, page);
3635}
3636
3637static int validate_slab_node(struct kmem_cache *s,
3638		struct kmem_cache_node *n, unsigned long *map)
3639{
3640	unsigned long count = 0;
3641	struct page *page;
3642	unsigned long flags;
3643
3644	spin_lock_irqsave(&n->list_lock, flags);
3645
3646	list_for_each_entry(page, &n->partial, lru) {
3647		validate_slab_slab(s, page, map);
3648		count++;
3649	}
3650	if (count != n->nr_partial)
3651		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3652			"counter=%ld\n", s->name, count, n->nr_partial);
3653
3654	if (!(s->flags & SLAB_STORE_USER))
3655		goto out;
3656
3657	list_for_each_entry(page, &n->full, lru) {
3658		validate_slab_slab(s, page, map);
3659		count++;
3660	}
3661	if (count != atomic_long_read(&n->nr_slabs))
3662		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3663			"counter=%ld\n", s->name, count,
3664			atomic_long_read(&n->nr_slabs));
3665
3666out:
3667	spin_unlock_irqrestore(&n->list_lock, flags);
3668	return count;
3669}
3670
3671static long validate_slab_cache(struct kmem_cache *s)
3672{
3673	int node;
3674	unsigned long count = 0;
3675	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3676				sizeof(unsigned long), GFP_KERNEL);
3677
3678	if (!map)
3679		return -ENOMEM;
3680
3681	flush_all(s);
3682	for_each_node_state(node, N_NORMAL_MEMORY) {
3683		struct kmem_cache_node *n = get_node(s, node);
3684
3685		count += validate_slab_node(s, n, map);
3686	}
3687	kfree(map);
3688	return count;
3689}
3690/*
3691 * Generate lists of code addresses where slabcache objects are allocated
3692 * and freed.
3693 */
3694
3695struct location {
3696	unsigned long count;
3697	unsigned long addr;
3698	long long sum_time;
3699	long min_time;
3700	long max_time;
3701	long min_pid;
3702	long max_pid;
3703	DECLARE_BITMAP(cpus, NR_CPUS);
3704	nodemask_t nodes;
3705};
3706
3707struct loc_track {
3708	unsigned long max;
3709	unsigned long count;
3710	struct location *loc;
3711};
3712
3713static void free_loc_track(struct loc_track *t)
3714{
3715	if (t->max)
3716		free_pages((unsigned long)t->loc,
3717			get_order(sizeof(struct location) * t->max));
3718}
3719
3720static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3721{
3722	struct location *l;
3723	int order;
3724
3725	order = get_order(sizeof(struct location) * max);
3726
3727	l = (void *)__get_free_pages(flags, order);
3728	if (!l)
3729		return 0;
3730
3731	if (t->count) {
3732		memcpy(l, t->loc, sizeof(struct location) * t->count);
3733		free_loc_track(t);
3734	}
3735	t->max = max;
3736	t->loc = l;
3737	return 1;
3738}
3739
3740static int add_location(struct loc_track *t, struct kmem_cache *s,
3741				const struct track *track)
3742{
3743	long start, end, pos;
3744	struct location *l;
3745	unsigned long caddr;
3746	unsigned long age = jiffies - track->when;
3747
3748	start = -1;
3749	end = t->count;
3750
3751	for ( ; ; ) {
3752		pos = start + (end - start + 1) / 2;
3753
3754		/*
3755		 * There is nothing at "end". If we end up there
3756		 * we need to add something to before end.
3757		 */
3758		if (pos == end)
3759			break;
3760
3761		caddr = t->loc[pos].addr;
3762		if (track->addr == caddr) {
3763
3764			l = &t->loc[pos];
3765			l->count++;
3766			if (track->when) {
3767				l->sum_time += age;
3768				if (age < l->min_time)
3769					l->min_time = age;
3770				if (age > l->max_time)
3771					l->max_time = age;
3772
3773				if (track->pid < l->min_pid)
3774					l->min_pid = track->pid;
3775				if (track->pid > l->max_pid)
3776					l->max_pid = track->pid;
3777
3778				cpumask_set_cpu(track->cpu,
3779						to_cpumask(l->cpus));
3780			}
3781			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3782			return 1;
3783		}
3784
3785		if (track->addr < caddr)
3786			end = pos;
3787		else
3788			start = pos;
3789	}
3790
3791	/*
3792	 * Not found. Insert new tracking element.
3793	 */
3794	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3795		return 0;
3796
3797	l = t->loc + pos;
3798	if (pos < t->count)
3799		memmove(l + 1, l,
3800			(t->count - pos) * sizeof(struct location));
3801	t->count++;
3802	l->count = 1;
3803	l->addr = track->addr;
3804	l->sum_time = age;
3805	l->min_time = age;
3806	l->max_time = age;
3807	l->min_pid = track->pid;
3808	l->max_pid = track->pid;
3809	cpumask_clear(to_cpumask(l->cpus));
3810	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3811	nodes_clear(l->nodes);
3812	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3813	return 1;
3814}
3815
3816static void process_slab(struct loc_track *t, struct kmem_cache *s,
3817		struct page *page, enum track_item alloc,
3818		unsigned long *map)
3819{
3820	void *addr = page_address(page);
3821	void *p;
3822
3823	bitmap_zero(map, page->objects);
3824	for_each_free_object(p, s, page->freelist)
3825		set_bit(slab_index(p, s, addr), map);
3826
3827	for_each_object(p, s, addr, page->objects)
3828		if (!test_bit(slab_index(p, s, addr), map))
3829			add_location(t, s, get_track(s, p, alloc));
3830}
3831
3832static int list_locations(struct kmem_cache *s, char *buf,
3833					enum track_item alloc)
3834{
3835	int len = 0;
3836	unsigned long i;
3837	struct loc_track t = { 0, 0, NULL };
3838	int node;
3839	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3840				     sizeof(unsigned long), GFP_KERNEL);
3841
3842	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3843				     GFP_TEMPORARY)) {
3844		kfree(map);
3845		return sprintf(buf, "Out of memory\n");
3846	}
3847	/* Push back cpu slabs */
3848	flush_all(s);
3849
3850	for_each_node_state(node, N_NORMAL_MEMORY) {
3851		struct kmem_cache_node *n = get_node(s, node);
3852		unsigned long flags;
3853		struct page *page;
3854
3855		if (!atomic_long_read(&n->nr_slabs))
3856			continue;
3857
3858		spin_lock_irqsave(&n->list_lock, flags);
3859		list_for_each_entry(page, &n->partial, lru)
3860			process_slab(&t, s, page, alloc, map);
3861		list_for_each_entry(page, &n->full, lru)
3862			process_slab(&t, s, page, alloc, map);
3863		spin_unlock_irqrestore(&n->list_lock, flags);
3864	}
3865
3866	for (i = 0; i < t.count; i++) {
3867		struct location *l = &t.loc[i];
3868
3869		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3870			break;
3871		len += sprintf(buf + len, "%7ld ", l->count);
3872
3873		if (l->addr)
3874			len += sprintf(buf + len, "%pS", (void *)l->addr);
3875		else
3876			len += sprintf(buf + len, "<not-available>");
3877
3878		if (l->sum_time != l->min_time) {
3879			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3880				l->min_time,
3881				(long)div_u64(l->sum_time, l->count),
3882				l->max_time);
3883		} else
3884			len += sprintf(buf + len, " age=%ld",
3885				l->min_time);
3886
3887		if (l->min_pid != l->max_pid)
3888			len += sprintf(buf + len, " pid=%ld-%ld",
3889				l->min_pid, l->max_pid);
3890		else
3891			len += sprintf(buf + len, " pid=%ld",
3892				l->min_pid);
3893
3894		if (num_online_cpus() > 1 &&
3895				!cpumask_empty(to_cpumask(l->cpus)) &&
3896				len < PAGE_SIZE - 60) {
3897			len += sprintf(buf + len, " cpus=");
3898			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3899						 to_cpumask(l->cpus));
3900		}
3901
3902		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3903				len < PAGE_SIZE - 60) {
3904			len += sprintf(buf + len, " nodes=");
3905			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3906					l->nodes);
3907		}
3908
3909		len += sprintf(buf + len, "\n");
3910	}
3911
3912	free_loc_track(&t);
3913	kfree(map);
3914	if (!t.count)
3915		len += sprintf(buf, "No data\n");
3916	return len;
3917}
3918#endif
3919
3920#ifdef SLUB_RESILIENCY_TEST
3921static void resiliency_test(void)
3922{
3923	u8 *p;
3924
3925	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3926
3927	printk(KERN_ERR "SLUB resiliency testing\n");
3928	printk(KERN_ERR "-----------------------\n");
3929	printk(KERN_ERR "A. Corruption after allocation\n");
3930
3931	p = kzalloc(16, GFP_KERNEL);
3932	p[16] = 0x12;
3933	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3934			" 0x12->0x%p\n\n", p + 16);
3935
3936	validate_slab_cache(kmalloc_caches[4]);
3937
3938	/* Hmmm... The next two are dangerous */
3939	p = kzalloc(32, GFP_KERNEL);
3940	p[32 + sizeof(void *)] = 0x34;
3941	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3942			" 0x34 -> -0x%p\n", p);
3943	printk(KERN_ERR
3944		"If allocated object is overwritten then not detectable\n\n");
3945
3946	validate_slab_cache(kmalloc_caches[5]);
3947	p = kzalloc(64, GFP_KERNEL);
3948	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3949	*p = 0x56;
3950	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3951									p);
3952	printk(KERN_ERR
3953		"If allocated object is overwritten then not detectable\n\n");
3954	validate_slab_cache(kmalloc_caches[6]);
3955
3956	printk(KERN_ERR "\nB. Corruption after free\n");
3957	p = kzalloc(128, GFP_KERNEL);
3958	kfree(p);
3959	*p = 0x78;
3960	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3961	validate_slab_cache(kmalloc_caches[7]);
3962
3963	p = kzalloc(256, GFP_KERNEL);
3964	kfree(p);
3965	p[50] = 0x9a;
3966	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3967			p);
3968	validate_slab_cache(kmalloc_caches[8]);
3969
3970	p = kzalloc(512, GFP_KERNEL);
3971	kfree(p);
3972	p[512] = 0xab;
3973	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3974	validate_slab_cache(kmalloc_caches[9]);
3975}
3976#else
3977#ifdef CONFIG_SYSFS
3978static void resiliency_test(void) {};
3979#endif
3980#endif
3981
3982#ifdef CONFIG_SYSFS
3983enum slab_stat_type {
3984	SL_ALL,			/* All slabs */
3985	SL_PARTIAL,		/* Only partially allocated slabs */
3986	SL_CPU,			/* Only slabs used for cpu caches */
3987	SL_OBJECTS,		/* Determine allocated objects not slabs */
3988	SL_TOTAL		/* Determine object capacity not slabs */
3989};
3990
3991#define SO_ALL		(1 << SL_ALL)
3992#define SO_PARTIAL	(1 << SL_PARTIAL)
3993#define SO_CPU		(1 << SL_CPU)
3994#define SO_OBJECTS	(1 << SL_OBJECTS)
3995#define SO_TOTAL	(1 << SL_TOTAL)
3996
3997static ssize_t show_slab_objects(struct kmem_cache *s,
3998			    char *buf, unsigned long flags)
3999{
4000	unsigned long total = 0;
4001	int node;
4002	int x;
4003	unsigned long *nodes;
4004	unsigned long *per_cpu;
4005
4006	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4007	if (!nodes)
4008		return -ENOMEM;
4009	per_cpu = nodes + nr_node_ids;
4010
4011	if (flags & SO_CPU) {
4012		int cpu;
4013
4014		for_each_possible_cpu(cpu) {
4015			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4016
4017			if (!c || c->node < 0)
4018				continue;
4019
4020			if (c->page) {
4021					if (flags & SO_TOTAL)
4022						x = c->page->objects;
4023				else if (flags & SO_OBJECTS)
4024					x = c->page->inuse;
4025				else
4026					x = 1;
4027
4028				total += x;
4029				nodes[c->node] += x;
4030			}
4031			per_cpu[c->node]++;
4032		}
4033	}
4034
4035	lock_memory_hotplug();
4036#ifdef CONFIG_SLUB_DEBUG
4037	if (flags & SO_ALL) {
4038		for_each_node_state(node, N_NORMAL_MEMORY) {
4039			struct kmem_cache_node *n = get_node(s, node);
4040
4041		if (flags & SO_TOTAL)
4042			x = atomic_long_read(&n->total_objects);
4043		else if (flags & SO_OBJECTS)
4044			x = atomic_long_read(&n->total_objects) -
4045				count_partial(n, count_free);
4046
4047			else
4048				x = atomic_long_read(&n->nr_slabs);
4049			total += x;
4050			nodes[node] += x;
4051		}
4052
4053	} else
4054#endif
4055	if (flags & SO_PARTIAL) {
4056		for_each_node_state(node, N_NORMAL_MEMORY) {
4057			struct kmem_cache_node *n = get_node(s, node);
4058
4059			if (flags & SO_TOTAL)
4060				x = count_partial(n, count_total);
4061			else if (flags & SO_OBJECTS)
4062				x = count_partial(n, count_inuse);
4063			else
4064				x = n->nr_partial;
4065			total += x;
4066			nodes[node] += x;
4067		}
4068	}
4069	x = sprintf(buf, "%lu", total);
4070#ifdef CONFIG_NUMA
4071	for_each_node_state(node, N_NORMAL_MEMORY)
4072		if (nodes[node])
4073			x += sprintf(buf + x, " N%d=%lu",
4074					node, nodes[node]);
4075#endif
4076	unlock_memory_hotplug();
4077	kfree(nodes);
4078	return x + sprintf(buf + x, "\n");
4079}
4080
4081#ifdef CONFIG_SLUB_DEBUG
4082static int any_slab_objects(struct kmem_cache *s)
4083{
4084	int node;
4085
4086	for_each_online_node(node) {
4087		struct kmem_cache_node *n = get_node(s, node);
4088
4089		if (!n)
4090			continue;
4091
4092		if (atomic_long_read(&n->total_objects))
4093			return 1;
4094	}
4095	return 0;
4096}
4097#endif
4098
4099#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4100#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4101
4102struct slab_attribute {
4103	struct attribute attr;
4104	ssize_t (*show)(struct kmem_cache *s, char *buf);
4105	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4106};
4107
4108#define SLAB_ATTR_RO(_name) \
4109	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4110
4111#define SLAB_ATTR(_name) \
4112	static struct slab_attribute _name##_attr =  \
4113	__ATTR(_name, 0644, _name##_show, _name##_store)
4114
4115static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4116{
4117	return sprintf(buf, "%d\n", s->size);
4118}
4119SLAB_ATTR_RO(slab_size);
4120
4121static ssize_t align_show(struct kmem_cache *s, char *buf)
4122{
4123	return sprintf(buf, "%d\n", s->align);
4124}
4125SLAB_ATTR_RO(align);
4126
4127static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4128{
4129	return sprintf(buf, "%d\n", s->objsize);
4130}
4131SLAB_ATTR_RO(object_size);
4132
4133static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4134{
4135	return sprintf(buf, "%d\n", oo_objects(s->oo));
4136}
4137SLAB_ATTR_RO(objs_per_slab);
4138
4139static ssize_t order_store(struct kmem_cache *s,
4140				const char *buf, size_t length)
4141{
4142	unsigned long order;
4143	int err;
4144
4145	err = strict_strtoul(buf, 10, &order);
4146	if (err)
4147		return err;
4148
4149	if (order > slub_max_order || order < slub_min_order)
4150		return -EINVAL;
4151
4152	calculate_sizes(s, order);
4153	return length;
4154}
4155
4156static ssize_t order_show(struct kmem_cache *s, char *buf)
4157{
4158	return sprintf(buf, "%d\n", oo_order(s->oo));
4159}
4160SLAB_ATTR(order);
4161
4162static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4163{
4164	return sprintf(buf, "%lu\n", s->min_partial);
4165}
4166
4167static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4168				 size_t length)
4169{
4170	unsigned long min;
4171	int err;
4172
4173	err = strict_strtoul(buf, 10, &min);
4174	if (err)
4175		return err;
4176
4177	set_min_partial(s, min);
4178	return length;
4179}
4180SLAB_ATTR(min_partial);
4181
4182static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4183{
4184	if (!s->ctor)
4185		return 0;
4186	return sprintf(buf, "%pS\n", s->ctor);
4187}
4188SLAB_ATTR_RO(ctor);
4189
4190static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4191{
4192	return sprintf(buf, "%d\n", s->refcount - 1);
4193}
4194SLAB_ATTR_RO(aliases);
4195
4196static ssize_t partial_show(struct kmem_cache *s, char *buf)
4197{
4198	return show_slab_objects(s, buf, SO_PARTIAL);
4199}
4200SLAB_ATTR_RO(partial);
4201
4202static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4203{
4204	return show_slab_objects(s, buf, SO_CPU);
4205}
4206SLAB_ATTR_RO(cpu_slabs);
4207
4208static ssize_t objects_show(struct kmem_cache *s, char *buf)
4209{
4210	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4211}
4212SLAB_ATTR_RO(objects);
4213
4214static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4215{
4216	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4217}
4218SLAB_ATTR_RO(objects_partial);
4219
4220static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4221{
4222	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4223}
4224
4225static ssize_t reclaim_account_store(struct kmem_cache *s,
4226				const char *buf, size_t length)
4227{
4228	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4229	if (buf[0] == '1')
4230		s->flags |= SLAB_RECLAIM_ACCOUNT;
4231	return length;
4232}
4233SLAB_ATTR(reclaim_account);
4234
4235static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4236{
4237	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4238}
4239SLAB_ATTR_RO(hwcache_align);
4240
4241#ifdef CONFIG_ZONE_DMA
4242static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4243{
4244	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4245}
4246SLAB_ATTR_RO(cache_dma);
4247#endif
4248
4249static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4250{
4251	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4252}
4253SLAB_ATTR_RO(destroy_by_rcu);
4254
4255static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4256{
4257	return sprintf(buf, "%d\n", s->reserved);
4258}
4259SLAB_ATTR_RO(reserved);
4260
4261#ifdef CONFIG_SLUB_DEBUG
4262static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4263{
4264	return show_slab_objects(s, buf, SO_ALL);
4265}
4266SLAB_ATTR_RO(slabs);
4267
4268static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4269{
4270	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4271}
4272SLAB_ATTR_RO(total_objects);
4273
4274static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4275{
4276	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4277}
4278
4279static ssize_t sanity_checks_store(struct kmem_cache *s,
4280				const char *buf, size_t length)
4281{
4282	s->flags &= ~SLAB_DEBUG_FREE;
4283	if (buf[0] == '1')
4284		s->flags |= SLAB_DEBUG_FREE;
4285	return length;
4286}
4287SLAB_ATTR(sanity_checks);
4288
4289static ssize_t trace_show(struct kmem_cache *s, char *buf)
4290{
4291	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4292}
4293
4294static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4295							size_t length)
4296{
4297	s->flags &= ~SLAB_TRACE;
4298	if (buf[0] == '1')
4299		s->flags |= SLAB_TRACE;
4300	return length;
4301}
4302SLAB_ATTR(trace);
4303
4304static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4305{
4306	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4307}
4308
4309static ssize_t red_zone_store(struct kmem_cache *s,
4310				const char *buf, size_t length)
4311{
4312	if (any_slab_objects(s))
4313		return -EBUSY;
4314
4315	s->flags &= ~SLAB_RED_ZONE;
4316	if (buf[0] == '1')
4317		s->flags |= SLAB_RED_ZONE;
4318	calculate_sizes(s, -1);
4319	return length;
4320}
4321SLAB_ATTR(red_zone);
4322
4323static ssize_t poison_show(struct kmem_cache *s, char *buf)
4324{
4325	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4326}
4327
4328static ssize_t poison_store(struct kmem_cache *s,
4329				const char *buf, size_t length)
4330{
4331	if (any_slab_objects(s))
4332		return -EBUSY;
4333
4334	s->flags &= ~SLAB_POISON;
4335	if (buf[0] == '1')
4336		s->flags |= SLAB_POISON;
4337	calculate_sizes(s, -1);
4338	return length;
4339}
4340SLAB_ATTR(poison);
4341
4342static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4343{
4344	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4345}
4346
4347static ssize_t store_user_store(struct kmem_cache *s,
4348				const char *buf, size_t length)
4349{
4350	if (any_slab_objects(s))
4351		return -EBUSY;
4352
4353	s->flags &= ~SLAB_STORE_USER;
4354	if (buf[0] == '1')
4355		s->flags |= SLAB_STORE_USER;
4356	calculate_sizes(s, -1);
4357	return length;
4358}
4359SLAB_ATTR(store_user);
4360
4361static ssize_t validate_show(struct kmem_cache *s, char *buf)
4362{
4363	return 0;
4364}
4365
4366static ssize_t validate_store(struct kmem_cache *s,
4367			const char *buf, size_t length)
4368{
4369	int ret = -EINVAL;
4370
4371	if (buf[0] == '1') {
4372		ret = validate_slab_cache(s);
4373		if (ret >= 0)
4374			ret = length;
4375	}
4376	return ret;
4377}
4378SLAB_ATTR(validate);
4379
4380static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4381{
4382	if (!(s->flags & SLAB_STORE_USER))
4383		return -ENOSYS;
4384	return list_locations(s, buf, TRACK_ALLOC);
4385}
4386SLAB_ATTR_RO(alloc_calls);
4387
4388static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4389{
4390	if (!(s->flags & SLAB_STORE_USER))
4391		return -ENOSYS;
4392	return list_locations(s, buf, TRACK_FREE);
4393}
4394SLAB_ATTR_RO(free_calls);
4395#endif /* CONFIG_SLUB_DEBUG */
4396
4397#ifdef CONFIG_FAILSLAB
4398static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4399{
4400	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4401}
4402
4403static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4404							size_t length)
4405{
4406	s->flags &= ~SLAB_FAILSLAB;
4407	if (buf[0] == '1')
4408		s->flags |= SLAB_FAILSLAB;
4409	return length;
4410}
4411SLAB_ATTR(failslab);
4412#endif
4413
4414static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4415{
4416	return 0;
4417}
4418
4419static ssize_t shrink_store(struct kmem_cache *s,
4420			const char *buf, size_t length)
4421{
4422	if (buf[0] == '1') {
4423		int rc = kmem_cache_shrink(s);
4424
4425		if (rc)
4426			return rc;
4427	} else
4428		return -EINVAL;
4429	return length;
4430}
4431SLAB_ATTR(shrink);
4432
4433#ifdef CONFIG_NUMA
4434static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4435{
4436	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4437}
4438
4439static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4440				const char *buf, size_t length)
4441{
4442	unsigned long ratio;
4443	int err;
4444
4445	err = strict_strtoul(buf, 10, &ratio);
4446	if (err)
4447		return err;
4448
4449	if (ratio <= 100)
4450		s->remote_node_defrag_ratio = ratio * 10;
4451
4452	return length;
4453}
4454SLAB_ATTR(remote_node_defrag_ratio);
4455#endif
4456
4457#ifdef CONFIG_SLUB_STATS
4458static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4459{
4460	unsigned long sum  = 0;
4461	int cpu;
4462	int len;
4463	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4464
4465	if (!data)
4466		return -ENOMEM;
4467
4468	for_each_online_cpu(cpu) {
4469		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4470
4471		data[cpu] = x;
4472		sum += x;
4473	}
4474
4475	len = sprintf(buf, "%lu", sum);
4476
4477#ifdef CONFIG_SMP
4478	for_each_online_cpu(cpu) {
4479		if (data[cpu] && len < PAGE_SIZE - 20)
4480			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4481	}
4482#endif
4483	kfree(data);
4484	return len + sprintf(buf + len, "\n");
4485}
4486
4487static void clear_stat(struct kmem_cache *s, enum stat_item si)
4488{
4489	int cpu;
4490
4491	for_each_online_cpu(cpu)
4492		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4493}
4494
4495#define STAT_ATTR(si, text) 					\
4496static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4497{								\
4498	return show_stat(s, buf, si);				\
4499}								\
4500static ssize_t text##_store(struct kmem_cache *s,		\
4501				const char *buf, size_t length)	\
4502{								\
4503	if (buf[0] != '0')					\
4504		return -EINVAL;					\
4505	clear_stat(s, si);					\
4506	return length;						\
4507}								\
4508SLAB_ATTR(text);						\
4509
4510STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4511STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4512STAT_ATTR(FREE_FASTPATH, free_fastpath);
4513STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4514STAT_ATTR(FREE_FROZEN, free_frozen);
4515STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4516STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4517STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4518STAT_ATTR(ALLOC_SLAB, alloc_slab);
4519STAT_ATTR(ALLOC_REFILL, alloc_refill);
4520STAT_ATTR(FREE_SLAB, free_slab);
4521STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4522STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4523STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4524STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4525STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4526STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4527STAT_ATTR(ORDER_FALLBACK, order_fallback);
4528#endif
4529
4530static struct attribute *slab_attrs[] = {
4531	&slab_size_attr.attr,
4532	&object_size_attr.attr,
4533	&objs_per_slab_attr.attr,
4534	&order_attr.attr,
4535	&min_partial_attr.attr,
4536	&objects_attr.attr,
4537	&objects_partial_attr.attr,
4538	&partial_attr.attr,
4539	&cpu_slabs_attr.attr,
4540	&ctor_attr.attr,
4541	&aliases_attr.attr,
4542	&align_attr.attr,
4543	&hwcache_align_attr.attr,
4544	&reclaim_account_attr.attr,
4545	&destroy_by_rcu_attr.attr,
4546	&shrink_attr.attr,
4547	&reserved_attr.attr,
4548#ifdef CONFIG_SLUB_DEBUG
4549	&total_objects_attr.attr,
4550	&slabs_attr.attr,
4551	&sanity_checks_attr.attr,
4552	&trace_attr.attr,
4553	&red_zone_attr.attr,
4554	&poison_attr.attr,
4555	&store_user_attr.attr,
4556	&validate_attr.attr,
4557	&alloc_calls_attr.attr,
4558	&free_calls_attr.attr,
4559#endif
4560#ifdef CONFIG_ZONE_DMA
4561	&cache_dma_attr.attr,
4562#endif
4563#ifdef CONFIG_NUMA
4564	&remote_node_defrag_ratio_attr.attr,
4565#endif
4566#ifdef CONFIG_SLUB_STATS
4567	&alloc_fastpath_attr.attr,
4568	&alloc_slowpath_attr.attr,
4569	&free_fastpath_attr.attr,
4570	&free_slowpath_attr.attr,
4571	&free_frozen_attr.attr,
4572	&free_add_partial_attr.attr,
4573	&free_remove_partial_attr.attr,
4574	&alloc_from_partial_attr.attr,
4575	&alloc_slab_attr.attr,
4576	&alloc_refill_attr.attr,
4577	&free_slab_attr.attr,
4578	&cpuslab_flush_attr.attr,
4579	&deactivate_full_attr.attr,
4580	&deactivate_empty_attr.attr,
4581	&deactivate_to_head_attr.attr,
4582	&deactivate_to_tail_attr.attr,
4583	&deactivate_remote_frees_attr.attr,
4584	&order_fallback_attr.attr,
4585#endif
4586#ifdef CONFIG_FAILSLAB
4587	&failslab_attr.attr,
4588#endif
4589
4590	NULL
4591};
4592
4593static struct attribute_group slab_attr_group = {
4594	.attrs = slab_attrs,
4595};
4596
4597static ssize_t slab_attr_show(struct kobject *kobj,
4598				struct attribute *attr,
4599				char *buf)
4600{
4601	struct slab_attribute *attribute;
4602	struct kmem_cache *s;
4603	int err;
4604
4605	attribute = to_slab_attr(attr);
4606	s = to_slab(kobj);
4607
4608	if (!attribute->show)
4609		return -EIO;
4610
4611	err = attribute->show(s, buf);
4612
4613	return err;
4614}
4615
4616static ssize_t slab_attr_store(struct kobject *kobj,
4617				struct attribute *attr,
4618				const char *buf, size_t len)
4619{
4620	struct slab_attribute *attribute;
4621	struct kmem_cache *s;
4622	int err;
4623
4624	attribute = to_slab_attr(attr);
4625	s = to_slab(kobj);
4626
4627	if (!attribute->store)
4628		return -EIO;
4629
4630	err = attribute->store(s, buf, len);
4631
4632	return err;
4633}
4634
4635static void kmem_cache_release(struct kobject *kobj)
4636{
4637	struct kmem_cache *s = to_slab(kobj);
4638
4639	kfree(s->name);
4640	kfree(s);
4641}
4642
4643static const struct sysfs_ops slab_sysfs_ops = {
4644	.show = slab_attr_show,
4645	.store = slab_attr_store,
4646};
4647
4648static struct kobj_type slab_ktype = {
4649	.sysfs_ops = &slab_sysfs_ops,
4650	.release = kmem_cache_release
4651};
4652
4653static int uevent_filter(struct kset *kset, struct kobject *kobj)
4654{
4655	struct kobj_type *ktype = get_ktype(kobj);
4656
4657	if (ktype == &slab_ktype)
4658		return 1;
4659	return 0;
4660}
4661
4662static const struct kset_uevent_ops slab_uevent_ops = {
4663	.filter = uevent_filter,
4664};
4665
4666static struct kset *slab_kset;
4667
4668#define ID_STR_LENGTH 64
4669
4670/* Create a unique string id for a slab cache:
4671 *
4672 * Format	:[flags-]size
4673 */
4674static char *create_unique_id(struct kmem_cache *s)
4675{
4676	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4677	char *p = name;
4678
4679	BUG_ON(!name);
4680
4681	*p++ = ':';
4682	/*
4683	 * First flags affecting slabcache operations. We will only
4684	 * get here for aliasable slabs so we do not need to support
4685	 * too many flags. The flags here must cover all flags that
4686	 * are matched during merging to guarantee that the id is
4687	 * unique.
4688	 */
4689	if (s->flags & SLAB_CACHE_DMA)
4690		*p++ = 'd';
4691	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4692		*p++ = 'a';
4693	if (s->flags & SLAB_DEBUG_FREE)
4694		*p++ = 'F';
4695	if (!(s->flags & SLAB_NOTRACK))
4696		*p++ = 't';
4697	if (p != name + 1)
4698		*p++ = '-';
4699	p += sprintf(p, "%07d", s->size);
4700	BUG_ON(p > name + ID_STR_LENGTH - 1);
4701	return name;
4702}
4703
4704static int sysfs_slab_add(struct kmem_cache *s)
4705{
4706	int err;
4707	const char *name;
4708	int unmergeable;
4709
4710	if (slab_state < SYSFS)
4711		/* Defer until later */
4712		return 0;
4713
4714	unmergeable = slab_unmergeable(s);
4715	if (unmergeable) {
4716		/*
4717		 * Slabcache can never be merged so we can use the name proper.
4718		 * This is typically the case for debug situations. In that
4719		 * case we can catch duplicate names easily.
4720		 */
4721		sysfs_remove_link(&slab_kset->kobj, s->name);
4722		name = s->name;
4723	} else {
4724		/*
4725		 * Create a unique name for the slab as a target
4726		 * for the symlinks.
4727		 */
4728		name = create_unique_id(s);
4729	}
4730
4731	s->kobj.kset = slab_kset;
4732	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4733	if (err) {
4734		kobject_put(&s->kobj);
4735		return err;
4736	}
4737
4738	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4739	if (err) {
4740		kobject_del(&s->kobj);
4741		kobject_put(&s->kobj);
4742		return err;
4743	}
4744	kobject_uevent(&s->kobj, KOBJ_ADD);
4745	if (!unmergeable) {
4746		/* Setup first alias */
4747		sysfs_slab_alias(s, s->name);
4748		kfree(name);
4749	}
4750	return 0;
4751}
4752
4753static void sysfs_slab_remove(struct kmem_cache *s)
4754{
4755	if (slab_state < SYSFS)
4756		/*
4757		 * Sysfs has not been setup yet so no need to remove the
4758		 * cache from sysfs.
4759		 */
4760		return;
4761
4762	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4763	kobject_del(&s->kobj);
4764	kobject_put(&s->kobj);
4765}
4766
4767/*
4768 * Need to buffer aliases during bootup until sysfs becomes
4769 * available lest we lose that information.
4770 */
4771struct saved_alias {
4772	struct kmem_cache *s;
4773	const char *name;
4774	struct saved_alias *next;
4775};
4776
4777static struct saved_alias *alias_list;
4778
4779static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4780{
4781	struct saved_alias *al;
4782
4783	if (slab_state == SYSFS) {
4784		/*
4785		 * If we have a leftover link then remove it.
4786		 */
4787		sysfs_remove_link(&slab_kset->kobj, name);
4788		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4789	}
4790
4791	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4792	if (!al)
4793		return -ENOMEM;
4794
4795	al->s = s;
4796	al->name = name;
4797	al->next = alias_list;
4798	alias_list = al;
4799	return 0;
4800}
4801
4802static int __init slab_sysfs_init(void)
4803{
4804	struct kmem_cache *s;
4805	int err;
4806
4807	down_write(&slub_lock);
4808
4809	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4810	if (!slab_kset) {
4811		up_write(&slub_lock);
4812		printk(KERN_ERR "Cannot register slab subsystem.\n");
4813		return -ENOSYS;
4814	}
4815
4816	slab_state = SYSFS;
4817
4818	list_for_each_entry(s, &slab_caches, list) {
4819		err = sysfs_slab_add(s);
4820		if (err)
4821			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4822						" to sysfs\n", s->name);
4823	}
4824
4825	while (alias_list) {
4826		struct saved_alias *al = alias_list;
4827
4828		alias_list = alias_list->next;
4829		err = sysfs_slab_alias(al->s, al->name);
4830		if (err)
4831			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4832					" %s to sysfs\n", s->name);
4833		kfree(al);
4834	}
4835
4836	up_write(&slub_lock);
4837	resiliency_test();
4838	return 0;
4839}
4840
4841__initcall(slab_sysfs_init);
4842#endif /* CONFIG_SYSFS */
4843
4844/*
4845 * The /proc/slabinfo ABI
4846 */
4847#ifdef CONFIG_SLABINFO
4848static void print_slabinfo_header(struct seq_file *m)
4849{
4850	seq_puts(m, "slabinfo - version: 2.1\n");
4851	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4852		 "<objperslab> <pagesperslab>");
4853	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4854	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4855	seq_putc(m, '\n');
4856}
4857
4858static void *s_start(struct seq_file *m, loff_t *pos)
4859{
4860	loff_t n = *pos;
4861
4862	down_read(&slub_lock);
4863	if (!n)
4864		print_slabinfo_header(m);
4865
4866	return seq_list_start(&slab_caches, *pos);
4867}
4868
4869static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4870{
4871	return seq_list_next(p, &slab_caches, pos);
4872}
4873
4874static void s_stop(struct seq_file *m, void *p)
4875{
4876	up_read(&slub_lock);
4877}
4878
4879static int s_show(struct seq_file *m, void *p)
4880{
4881	unsigned long nr_partials = 0;
4882	unsigned long nr_slabs = 0;
4883	unsigned long nr_inuse = 0;
4884	unsigned long nr_objs = 0;
4885	unsigned long nr_free = 0;
4886	struct kmem_cache *s;
4887	int node;
4888
4889	s = list_entry(p, struct kmem_cache, list);
4890
4891	for_each_online_node(node) {
4892		struct kmem_cache_node *n = get_node(s, node);
4893
4894		if (!n)
4895			continue;
4896
4897		nr_partials += n->nr_partial;
4898		nr_slabs += atomic_long_read(&n->nr_slabs);
4899		nr_objs += atomic_long_read(&n->total_objects);
4900		nr_free += count_partial(n, count_free);
4901	}
4902
4903	nr_inuse = nr_objs - nr_free;
4904
4905	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4906		   nr_objs, s->size, oo_objects(s->oo),
4907		   (1 << oo_order(s->oo)));
4908	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4909	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4910		   0UL);
4911	seq_putc(m, '\n');
4912	return 0;
4913}
4914
4915static const struct seq_operations slabinfo_op = {
4916	.start = s_start,
4917	.next = s_next,
4918	.stop = s_stop,
4919	.show = s_show,
4920};
4921
4922static int slabinfo_open(struct inode *inode, struct file *file)
4923{
4924	return seq_open(file, &slabinfo_op);
4925}
4926
4927static const struct file_operations proc_slabinfo_operations = {
4928	.open		= slabinfo_open,
4929	.read		= seq_read,
4930	.llseek		= seq_lseek,
4931	.release	= seq_release,
4932};
4933
4934static int __init slab_proc_init(void)
4935{
4936	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4937	return 0;
4938}
4939module_init(slab_proc_init);
4940#endif /* CONFIG_SLABINFO */
4941