slub.c revision 3478973dedee5e957c45dc93c11d12dc3f733ee0
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/swap.h> /* struct reclaim_state */
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
18#include <linux/proc_fs.h>
19#include <linux/seq_file.h>
20#include <linux/kmemcheck.h>
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
25#include <linux/debugobjects.h>
26#include <linux/kallsyms.h>
27#include <linux/memory.h>
28#include <linux/math64.h>
29#include <linux/fault-inject.h>
30
31/*
32 * Lock order:
33 *   1. slab_lock(page)
34 *   2. slab->list_lock
35 *
36 *   The slab_lock protects operations on the object of a particular
37 *   slab and its metadata in the page struct. If the slab lock
38 *   has been taken then no allocations nor frees can be performed
39 *   on the objects in the slab nor can the slab be added or removed
40 *   from the partial or full lists since this would mean modifying
41 *   the page_struct of the slab.
42 *
43 *   The list_lock protects the partial and full list on each node and
44 *   the partial slab counter. If taken then no new slabs may be added or
45 *   removed from the lists nor make the number of partial slabs be modified.
46 *   (Note that the total number of slabs is an atomic value that may be
47 *   modified without taking the list lock).
48 *
49 *   The list_lock is a centralized lock and thus we avoid taking it as
50 *   much as possible. As long as SLUB does not have to handle partial
51 *   slabs, operations can continue without any centralized lock. F.e.
52 *   allocating a long series of objects that fill up slabs does not require
53 *   the list lock.
54 *
55 *   The lock order is sometimes inverted when we are trying to get a slab
56 *   off a list. We take the list_lock and then look for a page on the list
57 *   to use. While we do that objects in the slabs may be freed. We can
58 *   only operate on the slab if we have also taken the slab_lock. So we use
59 *   a slab_trylock() on the slab. If trylock was successful then no frees
60 *   can occur anymore and we can use the slab for allocations etc. If the
61 *   slab_trylock() does not succeed then frees are in progress in the slab and
62 *   we must stay away from it for a while since we may cause a bouncing
63 *   cacheline if we try to acquire the lock. So go onto the next slab.
64 *   If all pages are busy then we may allocate a new slab instead of reusing
65 *   a partial slab. A new slab has noone operating on it and thus there is
66 *   no danger of cacheline contention.
67 *
68 *   Interrupts are disabled during allocation and deallocation in order to
69 *   make the slab allocator safe to use in the context of an irq. In addition
70 *   interrupts are disabled to ensure that the processor does not change
71 *   while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
88 * PageActive 		The slab is frozen and exempt from list processing.
89 * 			This means that the slab is dedicated to a purpose
90 * 			such as satisfying allocations for a specific
91 * 			processor. Objects may be freed in the slab while
92 * 			it is frozen but slab_free will then skip the usual
93 * 			list operations. It is up to the processor holding
94 * 			the slab to integrate the slab into the slab lists
95 * 			when the slab is no longer needed.
96 *
97 * 			One use of this flag is to mark slabs that are
98 * 			used for allocations. Then such a slab becomes a cpu
99 * 			slab. The cpu slab may be equipped with an additional
100 * 			freelist that allows lockless access to
101 * 			free objects in addition to the regular freelist
102 * 			that requires the slab lock.
103 *
104 * PageError		Slab requires special handling due to debug
105 * 			options set. This moves	slab handling out of
106 * 			the fast path and disables lockless freelists.
107 */
108
109#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110		SLAB_TRACE | SLAB_DEBUG_FREE)
111
112static inline int kmem_cache_debug(struct kmem_cache *s)
113{
114#ifdef CONFIG_SLUB_DEBUG
115	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
116#else
117	return 0;
118#endif
119}
120
121/*
122 * Issues still to be resolved:
123 *
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
125 *
126 * - Variable sizing of the per node arrays
127 */
128
129/* Enable to test recovery from slab corruption on boot */
130#undef SLUB_RESILIENCY_TEST
131
132/*
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
135 */
136#define MIN_PARTIAL 5
137
138/*
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
142 */
143#define MAX_PARTIAL 10
144
145#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146				SLAB_POISON | SLAB_STORE_USER)
147
148/*
149 * Debugging flags that require metadata to be stored in the slab.  These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
152 */
153#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
154
155/*
156 * Set of flags that will prevent slab merging
157 */
158#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
159		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160		SLAB_FAILSLAB)
161
162#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
163		SLAB_CACHE_DMA | SLAB_NOTRACK)
164
165#define OO_SHIFT	16
166#define OO_MASK		((1 << OO_SHIFT) - 1)
167#define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
168
169/* Internal SLUB flags */
170#define __OBJECT_POISON		0x80000000UL /* Poison object */
171
172static int kmem_size = sizeof(struct kmem_cache);
173
174#ifdef CONFIG_SMP
175static struct notifier_block slab_notifier;
176#endif
177
178static enum {
179	DOWN,		/* No slab functionality available */
180	PARTIAL,	/* Kmem_cache_node works */
181	UP,		/* Everything works but does not show up in sysfs */
182	SYSFS		/* Sysfs up */
183} slab_state = DOWN;
184
185/* A list of all slab caches on the system */
186static DECLARE_RWSEM(slub_lock);
187static LIST_HEAD(slab_caches);
188
189/*
190 * Tracking user of a slab.
191 */
192struct track {
193	unsigned long addr;	/* Called from address */
194	int cpu;		/* Was running on cpu */
195	int pid;		/* Pid context */
196	unsigned long when;	/* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
201#ifdef CONFIG_SLUB_DEBUG
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
204static void sysfs_slab_remove(struct kmem_cache *);
205
206#else
207static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209							{ return 0; }
210static inline void sysfs_slab_remove(struct kmem_cache *s)
211{
212	kfree(s->name);
213	kfree(s);
214}
215
216#endif
217
218static inline void stat(struct kmem_cache *s, enum stat_item si)
219{
220#ifdef CONFIG_SLUB_STATS
221	__this_cpu_inc(s->cpu_slab->stat[si]);
222#endif
223}
224
225/********************************************************************
226 * 			Core slab cache functions
227 *******************************************************************/
228
229int slab_is_available(void)
230{
231	return slab_state >= UP;
232}
233
234static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
235{
236	return s->node[node];
237}
238
239/* Verify that a pointer has an address that is valid within a slab page */
240static inline int check_valid_pointer(struct kmem_cache *s,
241				struct page *page, const void *object)
242{
243	void *base;
244
245	if (!object)
246		return 1;
247
248	base = page_address(page);
249	if (object < base || object >= base + page->objects * s->size ||
250		(object - base) % s->size) {
251		return 0;
252	}
253
254	return 1;
255}
256
257static inline void *get_freepointer(struct kmem_cache *s, void *object)
258{
259	return *(void **)(object + s->offset);
260}
261
262static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263{
264	*(void **)(object + s->offset) = fp;
265}
266
267/* Loop over all objects in a slab */
268#define for_each_object(__p, __s, __addr, __objects) \
269	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
270			__p += (__s)->size)
271
272/* Scan freelist */
273#define for_each_free_object(__p, __s, __free) \
274	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
275
276/* Determine object index from a given position */
277static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
278{
279	return (p - addr) / s->size;
280}
281
282static inline struct kmem_cache_order_objects oo_make(int order,
283						unsigned long size)
284{
285	struct kmem_cache_order_objects x = {
286		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
287	};
288
289	return x;
290}
291
292static inline int oo_order(struct kmem_cache_order_objects x)
293{
294	return x.x >> OO_SHIFT;
295}
296
297static inline int oo_objects(struct kmem_cache_order_objects x)
298{
299	return x.x & OO_MASK;
300}
301
302#ifdef CONFIG_SLUB_DEBUG
303/*
304 * Debug settings:
305 */
306#ifdef CONFIG_SLUB_DEBUG_ON
307static int slub_debug = DEBUG_DEFAULT_FLAGS;
308#else
309static int slub_debug;
310#endif
311
312static char *slub_debug_slabs;
313static int disable_higher_order_debug;
314
315/*
316 * Object debugging
317 */
318static void print_section(char *text, u8 *addr, unsigned int length)
319{
320	int i, offset;
321	int newline = 1;
322	char ascii[17];
323
324	ascii[16] = 0;
325
326	for (i = 0; i < length; i++) {
327		if (newline) {
328			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
329			newline = 0;
330		}
331		printk(KERN_CONT " %02x", addr[i]);
332		offset = i % 16;
333		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
334		if (offset == 15) {
335			printk(KERN_CONT " %s\n", ascii);
336			newline = 1;
337		}
338	}
339	if (!newline) {
340		i %= 16;
341		while (i < 16) {
342			printk(KERN_CONT "   ");
343			ascii[i] = ' ';
344			i++;
345		}
346		printk(KERN_CONT " %s\n", ascii);
347	}
348}
349
350static struct track *get_track(struct kmem_cache *s, void *object,
351	enum track_item alloc)
352{
353	struct track *p;
354
355	if (s->offset)
356		p = object + s->offset + sizeof(void *);
357	else
358		p = object + s->inuse;
359
360	return p + alloc;
361}
362
363static void set_track(struct kmem_cache *s, void *object,
364			enum track_item alloc, unsigned long addr)
365{
366	struct track *p = get_track(s, object, alloc);
367
368	if (addr) {
369		p->addr = addr;
370		p->cpu = smp_processor_id();
371		p->pid = current->pid;
372		p->when = jiffies;
373	} else
374		memset(p, 0, sizeof(struct track));
375}
376
377static void init_tracking(struct kmem_cache *s, void *object)
378{
379	if (!(s->flags & SLAB_STORE_USER))
380		return;
381
382	set_track(s, object, TRACK_FREE, 0UL);
383	set_track(s, object, TRACK_ALLOC, 0UL);
384}
385
386static void print_track(const char *s, struct track *t)
387{
388	if (!t->addr)
389		return;
390
391	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
392		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
393}
394
395static void print_tracking(struct kmem_cache *s, void *object)
396{
397	if (!(s->flags & SLAB_STORE_USER))
398		return;
399
400	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
401	print_track("Freed", get_track(s, object, TRACK_FREE));
402}
403
404static void print_page_info(struct page *page)
405{
406	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
407		page, page->objects, page->inuse, page->freelist, page->flags);
408
409}
410
411static void slab_bug(struct kmem_cache *s, char *fmt, ...)
412{
413	va_list args;
414	char buf[100];
415
416	va_start(args, fmt);
417	vsnprintf(buf, sizeof(buf), fmt, args);
418	va_end(args);
419	printk(KERN_ERR "========================================"
420			"=====================================\n");
421	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
422	printk(KERN_ERR "----------------------------------------"
423			"-------------------------------------\n\n");
424}
425
426static void slab_fix(struct kmem_cache *s, char *fmt, ...)
427{
428	va_list args;
429	char buf[100];
430
431	va_start(args, fmt);
432	vsnprintf(buf, sizeof(buf), fmt, args);
433	va_end(args);
434	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
435}
436
437static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
438{
439	unsigned int off;	/* Offset of last byte */
440	u8 *addr = page_address(page);
441
442	print_tracking(s, p);
443
444	print_page_info(page);
445
446	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
447			p, p - addr, get_freepointer(s, p));
448
449	if (p > addr + 16)
450		print_section("Bytes b4", p - 16, 16);
451
452	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
453
454	if (s->flags & SLAB_RED_ZONE)
455		print_section("Redzone", p + s->objsize,
456			s->inuse - s->objsize);
457
458	if (s->offset)
459		off = s->offset + sizeof(void *);
460	else
461		off = s->inuse;
462
463	if (s->flags & SLAB_STORE_USER)
464		off += 2 * sizeof(struct track);
465
466	if (off != s->size)
467		/* Beginning of the filler is the free pointer */
468		print_section("Padding", p + off, s->size - off);
469
470	dump_stack();
471}
472
473static void object_err(struct kmem_cache *s, struct page *page,
474			u8 *object, char *reason)
475{
476	slab_bug(s, "%s", reason);
477	print_trailer(s, page, object);
478}
479
480static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
481{
482	va_list args;
483	char buf[100];
484
485	va_start(args, fmt);
486	vsnprintf(buf, sizeof(buf), fmt, args);
487	va_end(args);
488	slab_bug(s, "%s", buf);
489	print_page_info(page);
490	dump_stack();
491}
492
493static void init_object(struct kmem_cache *s, void *object, u8 val)
494{
495	u8 *p = object;
496
497	if (s->flags & __OBJECT_POISON) {
498		memset(p, POISON_FREE, s->objsize - 1);
499		p[s->objsize - 1] = POISON_END;
500	}
501
502	if (s->flags & SLAB_RED_ZONE)
503		memset(p + s->objsize, val, s->inuse - s->objsize);
504}
505
506static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
507{
508	while (bytes) {
509		if (*start != (u8)value)
510			return start;
511		start++;
512		bytes--;
513	}
514	return NULL;
515}
516
517static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
518						void *from, void *to)
519{
520	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
521	memset(from, data, to - from);
522}
523
524static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
525			u8 *object, char *what,
526			u8 *start, unsigned int value, unsigned int bytes)
527{
528	u8 *fault;
529	u8 *end;
530
531	fault = check_bytes(start, value, bytes);
532	if (!fault)
533		return 1;
534
535	end = start + bytes;
536	while (end > fault && end[-1] == value)
537		end--;
538
539	slab_bug(s, "%s overwritten", what);
540	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
541					fault, end - 1, fault[0], value);
542	print_trailer(s, page, object);
543
544	restore_bytes(s, what, value, fault, end);
545	return 0;
546}
547
548/*
549 * Object layout:
550 *
551 * object address
552 * 	Bytes of the object to be managed.
553 * 	If the freepointer may overlay the object then the free
554 * 	pointer is the first word of the object.
555 *
556 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
557 * 	0xa5 (POISON_END)
558 *
559 * object + s->objsize
560 * 	Padding to reach word boundary. This is also used for Redzoning.
561 * 	Padding is extended by another word if Redzoning is enabled and
562 * 	objsize == inuse.
563 *
564 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
565 * 	0xcc (RED_ACTIVE) for objects in use.
566 *
567 * object + s->inuse
568 * 	Meta data starts here.
569 *
570 * 	A. Free pointer (if we cannot overwrite object on free)
571 * 	B. Tracking data for SLAB_STORE_USER
572 * 	C. Padding to reach required alignment boundary or at mininum
573 * 		one word if debugging is on to be able to detect writes
574 * 		before the word boundary.
575 *
576 *	Padding is done using 0x5a (POISON_INUSE)
577 *
578 * object + s->size
579 * 	Nothing is used beyond s->size.
580 *
581 * If slabcaches are merged then the objsize and inuse boundaries are mostly
582 * ignored. And therefore no slab options that rely on these boundaries
583 * may be used with merged slabcaches.
584 */
585
586static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
587{
588	unsigned long off = s->inuse;	/* The end of info */
589
590	if (s->offset)
591		/* Freepointer is placed after the object. */
592		off += sizeof(void *);
593
594	if (s->flags & SLAB_STORE_USER)
595		/* We also have user information there */
596		off += 2 * sizeof(struct track);
597
598	if (s->size == off)
599		return 1;
600
601	return check_bytes_and_report(s, page, p, "Object padding",
602				p + off, POISON_INUSE, s->size - off);
603}
604
605/* Check the pad bytes at the end of a slab page */
606static int slab_pad_check(struct kmem_cache *s, struct page *page)
607{
608	u8 *start;
609	u8 *fault;
610	u8 *end;
611	int length;
612	int remainder;
613
614	if (!(s->flags & SLAB_POISON))
615		return 1;
616
617	start = page_address(page);
618	length = (PAGE_SIZE << compound_order(page));
619	end = start + length;
620	remainder = length % s->size;
621	if (!remainder)
622		return 1;
623
624	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
625	if (!fault)
626		return 1;
627	while (end > fault && end[-1] == POISON_INUSE)
628		end--;
629
630	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
631	print_section("Padding", end - remainder, remainder);
632
633	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
634	return 0;
635}
636
637static int check_object(struct kmem_cache *s, struct page *page,
638					void *object, u8 val)
639{
640	u8 *p = object;
641	u8 *endobject = object + s->objsize;
642
643	if (s->flags & SLAB_RED_ZONE) {
644		if (!check_bytes_and_report(s, page, object, "Redzone",
645			endobject, val, s->inuse - s->objsize))
646			return 0;
647	} else {
648		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
649			check_bytes_and_report(s, page, p, "Alignment padding",
650				endobject, POISON_INUSE, s->inuse - s->objsize);
651		}
652	}
653
654	if (s->flags & SLAB_POISON) {
655		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
656			(!check_bytes_and_report(s, page, p, "Poison", p,
657					POISON_FREE, s->objsize - 1) ||
658			 !check_bytes_and_report(s, page, p, "Poison",
659				p + s->objsize - 1, POISON_END, 1)))
660			return 0;
661		/*
662		 * check_pad_bytes cleans up on its own.
663		 */
664		check_pad_bytes(s, page, p);
665	}
666
667	if (!s->offset && val == SLUB_RED_ACTIVE)
668		/*
669		 * Object and freepointer overlap. Cannot check
670		 * freepointer while object is allocated.
671		 */
672		return 1;
673
674	/* Check free pointer validity */
675	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
676		object_err(s, page, p, "Freepointer corrupt");
677		/*
678		 * No choice but to zap it and thus lose the remainder
679		 * of the free objects in this slab. May cause
680		 * another error because the object count is now wrong.
681		 */
682		set_freepointer(s, p, NULL);
683		return 0;
684	}
685	return 1;
686}
687
688static int check_slab(struct kmem_cache *s, struct page *page)
689{
690	int maxobj;
691
692	VM_BUG_ON(!irqs_disabled());
693
694	if (!PageSlab(page)) {
695		slab_err(s, page, "Not a valid slab page");
696		return 0;
697	}
698
699	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
700	if (page->objects > maxobj) {
701		slab_err(s, page, "objects %u > max %u",
702			s->name, page->objects, maxobj);
703		return 0;
704	}
705	if (page->inuse > page->objects) {
706		slab_err(s, page, "inuse %u > max %u",
707			s->name, page->inuse, page->objects);
708		return 0;
709	}
710	/* Slab_pad_check fixes things up after itself */
711	slab_pad_check(s, page);
712	return 1;
713}
714
715/*
716 * Determine if a certain object on a page is on the freelist. Must hold the
717 * slab lock to guarantee that the chains are in a consistent state.
718 */
719static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
720{
721	int nr = 0;
722	void *fp = page->freelist;
723	void *object = NULL;
724	unsigned long max_objects;
725
726	while (fp && nr <= page->objects) {
727		if (fp == search)
728			return 1;
729		if (!check_valid_pointer(s, page, fp)) {
730			if (object) {
731				object_err(s, page, object,
732					"Freechain corrupt");
733				set_freepointer(s, object, NULL);
734				break;
735			} else {
736				slab_err(s, page, "Freepointer corrupt");
737				page->freelist = NULL;
738				page->inuse = page->objects;
739				slab_fix(s, "Freelist cleared");
740				return 0;
741			}
742			break;
743		}
744		object = fp;
745		fp = get_freepointer(s, object);
746		nr++;
747	}
748
749	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
750	if (max_objects > MAX_OBJS_PER_PAGE)
751		max_objects = MAX_OBJS_PER_PAGE;
752
753	if (page->objects != max_objects) {
754		slab_err(s, page, "Wrong number of objects. Found %d but "
755			"should be %d", page->objects, max_objects);
756		page->objects = max_objects;
757		slab_fix(s, "Number of objects adjusted.");
758	}
759	if (page->inuse != page->objects - nr) {
760		slab_err(s, page, "Wrong object count. Counter is %d but "
761			"counted were %d", page->inuse, page->objects - nr);
762		page->inuse = page->objects - nr;
763		slab_fix(s, "Object count adjusted.");
764	}
765	return search == NULL;
766}
767
768static void trace(struct kmem_cache *s, struct page *page, void *object,
769								int alloc)
770{
771	if (s->flags & SLAB_TRACE) {
772		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
773			s->name,
774			alloc ? "alloc" : "free",
775			object, page->inuse,
776			page->freelist);
777
778		if (!alloc)
779			print_section("Object", (void *)object, s->objsize);
780
781		dump_stack();
782	}
783}
784
785/*
786 * Hooks for other subsystems that check memory allocations. In a typical
787 * production configuration these hooks all should produce no code at all.
788 */
789static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
790{
791	flags &= gfp_allowed_mask;
792	lockdep_trace_alloc(flags);
793	might_sleep_if(flags & __GFP_WAIT);
794
795	return should_failslab(s->objsize, flags, s->flags);
796}
797
798static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
799{
800	flags &= gfp_allowed_mask;
801	kmemcheck_slab_alloc(s, flags, object, s->objsize);
802	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
803}
804
805static inline void slab_free_hook(struct kmem_cache *s, void *x)
806{
807	kmemleak_free_recursive(x, s->flags);
808}
809
810static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
811{
812	kmemcheck_slab_free(s, object, s->objsize);
813	debug_check_no_locks_freed(object, s->objsize);
814	if (!(s->flags & SLAB_DEBUG_OBJECTS))
815		debug_check_no_obj_freed(object, s->objsize);
816}
817
818/*
819 * Tracking of fully allocated slabs for debugging purposes.
820 */
821static void add_full(struct kmem_cache_node *n, struct page *page)
822{
823	spin_lock(&n->list_lock);
824	list_add(&page->lru, &n->full);
825	spin_unlock(&n->list_lock);
826}
827
828static void remove_full(struct kmem_cache *s, struct page *page)
829{
830	struct kmem_cache_node *n;
831
832	if (!(s->flags & SLAB_STORE_USER))
833		return;
834
835	n = get_node(s, page_to_nid(page));
836
837	spin_lock(&n->list_lock);
838	list_del(&page->lru);
839	spin_unlock(&n->list_lock);
840}
841
842/* Tracking of the number of slabs for debugging purposes */
843static inline unsigned long slabs_node(struct kmem_cache *s, int node)
844{
845	struct kmem_cache_node *n = get_node(s, node);
846
847	return atomic_long_read(&n->nr_slabs);
848}
849
850static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
851{
852	return atomic_long_read(&n->nr_slabs);
853}
854
855static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
856{
857	struct kmem_cache_node *n = get_node(s, node);
858
859	/*
860	 * May be called early in order to allocate a slab for the
861	 * kmem_cache_node structure. Solve the chicken-egg
862	 * dilemma by deferring the increment of the count during
863	 * bootstrap (see early_kmem_cache_node_alloc).
864	 */
865	if (n) {
866		atomic_long_inc(&n->nr_slabs);
867		atomic_long_add(objects, &n->total_objects);
868	}
869}
870static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
871{
872	struct kmem_cache_node *n = get_node(s, node);
873
874	atomic_long_dec(&n->nr_slabs);
875	atomic_long_sub(objects, &n->total_objects);
876}
877
878/* Object debug checks for alloc/free paths */
879static void setup_object_debug(struct kmem_cache *s, struct page *page,
880								void *object)
881{
882	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
883		return;
884
885	init_object(s, object, SLUB_RED_INACTIVE);
886	init_tracking(s, object);
887}
888
889static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
890					void *object, unsigned long addr)
891{
892	if (!check_slab(s, page))
893		goto bad;
894
895	if (!on_freelist(s, page, object)) {
896		object_err(s, page, object, "Object already allocated");
897		goto bad;
898	}
899
900	if (!check_valid_pointer(s, page, object)) {
901		object_err(s, page, object, "Freelist Pointer check fails");
902		goto bad;
903	}
904
905	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
906		goto bad;
907
908	/* Success perform special debug activities for allocs */
909	if (s->flags & SLAB_STORE_USER)
910		set_track(s, object, TRACK_ALLOC, addr);
911	trace(s, page, object, 1);
912	init_object(s, object, SLUB_RED_ACTIVE);
913	return 1;
914
915bad:
916	if (PageSlab(page)) {
917		/*
918		 * If this is a slab page then lets do the best we can
919		 * to avoid issues in the future. Marking all objects
920		 * as used avoids touching the remaining objects.
921		 */
922		slab_fix(s, "Marking all objects used");
923		page->inuse = page->objects;
924		page->freelist = NULL;
925	}
926	return 0;
927}
928
929static noinline int free_debug_processing(struct kmem_cache *s,
930		 struct page *page, void *object, unsigned long addr)
931{
932	if (!check_slab(s, page))
933		goto fail;
934
935	if (!check_valid_pointer(s, page, object)) {
936		slab_err(s, page, "Invalid object pointer 0x%p", object);
937		goto fail;
938	}
939
940	if (on_freelist(s, page, object)) {
941		object_err(s, page, object, "Object already free");
942		goto fail;
943	}
944
945	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
946		return 0;
947
948	if (unlikely(s != page->slab)) {
949		if (!PageSlab(page)) {
950			slab_err(s, page, "Attempt to free object(0x%p) "
951				"outside of slab", object);
952		} else if (!page->slab) {
953			printk(KERN_ERR
954				"SLUB <none>: no slab for object 0x%p.\n",
955						object);
956			dump_stack();
957		} else
958			object_err(s, page, object,
959					"page slab pointer corrupt.");
960		goto fail;
961	}
962
963	/* Special debug activities for freeing objects */
964	if (!PageSlubFrozen(page) && !page->freelist)
965		remove_full(s, page);
966	if (s->flags & SLAB_STORE_USER)
967		set_track(s, object, TRACK_FREE, addr);
968	trace(s, page, object, 0);
969	init_object(s, object, SLUB_RED_INACTIVE);
970	return 1;
971
972fail:
973	slab_fix(s, "Object at 0x%p not freed", object);
974	return 0;
975}
976
977static int __init setup_slub_debug(char *str)
978{
979	slub_debug = DEBUG_DEFAULT_FLAGS;
980	if (*str++ != '=' || !*str)
981		/*
982		 * No options specified. Switch on full debugging.
983		 */
984		goto out;
985
986	if (*str == ',')
987		/*
988		 * No options but restriction on slabs. This means full
989		 * debugging for slabs matching a pattern.
990		 */
991		goto check_slabs;
992
993	if (tolower(*str) == 'o') {
994		/*
995		 * Avoid enabling debugging on caches if its minimum order
996		 * would increase as a result.
997		 */
998		disable_higher_order_debug = 1;
999		goto out;
1000	}
1001
1002	slub_debug = 0;
1003	if (*str == '-')
1004		/*
1005		 * Switch off all debugging measures.
1006		 */
1007		goto out;
1008
1009	/*
1010	 * Determine which debug features should be switched on
1011	 */
1012	for (; *str && *str != ','; str++) {
1013		switch (tolower(*str)) {
1014		case 'f':
1015			slub_debug |= SLAB_DEBUG_FREE;
1016			break;
1017		case 'z':
1018			slub_debug |= SLAB_RED_ZONE;
1019			break;
1020		case 'p':
1021			slub_debug |= SLAB_POISON;
1022			break;
1023		case 'u':
1024			slub_debug |= SLAB_STORE_USER;
1025			break;
1026		case 't':
1027			slub_debug |= SLAB_TRACE;
1028			break;
1029		case 'a':
1030			slub_debug |= SLAB_FAILSLAB;
1031			break;
1032		default:
1033			printk(KERN_ERR "slub_debug option '%c' "
1034				"unknown. skipped\n", *str);
1035		}
1036	}
1037
1038check_slabs:
1039	if (*str == ',')
1040		slub_debug_slabs = str + 1;
1041out:
1042	return 1;
1043}
1044
1045__setup("slub_debug", setup_slub_debug);
1046
1047static unsigned long kmem_cache_flags(unsigned long objsize,
1048	unsigned long flags, const char *name,
1049	void (*ctor)(void *))
1050{
1051	/*
1052	 * Enable debugging if selected on the kernel commandline.
1053	 */
1054	if (slub_debug && (!slub_debug_slabs ||
1055		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1056		flags |= slub_debug;
1057
1058	return flags;
1059}
1060#else
1061static inline void setup_object_debug(struct kmem_cache *s,
1062			struct page *page, void *object) {}
1063
1064static inline int alloc_debug_processing(struct kmem_cache *s,
1065	struct page *page, void *object, unsigned long addr) { return 0; }
1066
1067static inline int free_debug_processing(struct kmem_cache *s,
1068	struct page *page, void *object, unsigned long addr) { return 0; }
1069
1070static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1071			{ return 1; }
1072static inline int check_object(struct kmem_cache *s, struct page *page,
1073			void *object, u8 val) { return 1; }
1074static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1075static inline unsigned long kmem_cache_flags(unsigned long objsize,
1076	unsigned long flags, const char *name,
1077	void (*ctor)(void *))
1078{
1079	return flags;
1080}
1081#define slub_debug 0
1082
1083#define disable_higher_order_debug 0
1084
1085static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1086							{ return 0; }
1087static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1088							{ return 0; }
1089static inline void inc_slabs_node(struct kmem_cache *s, int node,
1090							int objects) {}
1091static inline void dec_slabs_node(struct kmem_cache *s, int node,
1092							int objects) {}
1093
1094static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1095							{ return 0; }
1096
1097static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1098		void *object) {}
1099
1100static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1101
1102static inline void slab_free_hook_irq(struct kmem_cache *s,
1103		void *object) {}
1104
1105#endif
1106
1107/*
1108 * Slab allocation and freeing
1109 */
1110static inline struct page *alloc_slab_page(gfp_t flags, int node,
1111					struct kmem_cache_order_objects oo)
1112{
1113	int order = oo_order(oo);
1114
1115	flags |= __GFP_NOTRACK;
1116
1117	if (node == NUMA_NO_NODE)
1118		return alloc_pages(flags, order);
1119	else
1120		return alloc_pages_exact_node(node, flags, order);
1121}
1122
1123static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1124{
1125	struct page *page;
1126	struct kmem_cache_order_objects oo = s->oo;
1127	gfp_t alloc_gfp;
1128
1129	flags |= s->allocflags;
1130
1131	/*
1132	 * Let the initial higher-order allocation fail under memory pressure
1133	 * so we fall-back to the minimum order allocation.
1134	 */
1135	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1136
1137	page = alloc_slab_page(alloc_gfp, node, oo);
1138	if (unlikely(!page)) {
1139		oo = s->min;
1140		/*
1141		 * Allocation may have failed due to fragmentation.
1142		 * Try a lower order alloc if possible
1143		 */
1144		page = alloc_slab_page(flags, node, oo);
1145		if (!page)
1146			return NULL;
1147
1148		stat(s, ORDER_FALLBACK);
1149	}
1150
1151	if (kmemcheck_enabled
1152		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1153		int pages = 1 << oo_order(oo);
1154
1155		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1156
1157		/*
1158		 * Objects from caches that have a constructor don't get
1159		 * cleared when they're allocated, so we need to do it here.
1160		 */
1161		if (s->ctor)
1162			kmemcheck_mark_uninitialized_pages(page, pages);
1163		else
1164			kmemcheck_mark_unallocated_pages(page, pages);
1165	}
1166
1167	page->objects = oo_objects(oo);
1168	mod_zone_page_state(page_zone(page),
1169		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1170		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1171		1 << oo_order(oo));
1172
1173	return page;
1174}
1175
1176static void setup_object(struct kmem_cache *s, struct page *page,
1177				void *object)
1178{
1179	setup_object_debug(s, page, object);
1180	if (unlikely(s->ctor))
1181		s->ctor(object);
1182}
1183
1184static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1185{
1186	struct page *page;
1187	void *start;
1188	void *last;
1189	void *p;
1190
1191	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1192
1193	page = allocate_slab(s,
1194		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1195	if (!page)
1196		goto out;
1197
1198	inc_slabs_node(s, page_to_nid(page), page->objects);
1199	page->slab = s;
1200	page->flags |= 1 << PG_slab;
1201
1202	start = page_address(page);
1203
1204	if (unlikely(s->flags & SLAB_POISON))
1205		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1206
1207	last = start;
1208	for_each_object(p, s, start, page->objects) {
1209		setup_object(s, page, last);
1210		set_freepointer(s, last, p);
1211		last = p;
1212	}
1213	setup_object(s, page, last);
1214	set_freepointer(s, last, NULL);
1215
1216	page->freelist = start;
1217	page->inuse = 0;
1218out:
1219	return page;
1220}
1221
1222static void __free_slab(struct kmem_cache *s, struct page *page)
1223{
1224	int order = compound_order(page);
1225	int pages = 1 << order;
1226
1227	if (kmem_cache_debug(s)) {
1228		void *p;
1229
1230		slab_pad_check(s, page);
1231		for_each_object(p, s, page_address(page),
1232						page->objects)
1233			check_object(s, page, p, SLUB_RED_INACTIVE);
1234	}
1235
1236	kmemcheck_free_shadow(page, compound_order(page));
1237
1238	mod_zone_page_state(page_zone(page),
1239		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1240		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1241		-pages);
1242
1243	__ClearPageSlab(page);
1244	reset_page_mapcount(page);
1245	if (current->reclaim_state)
1246		current->reclaim_state->reclaimed_slab += pages;
1247	__free_pages(page, order);
1248}
1249
1250static void rcu_free_slab(struct rcu_head *h)
1251{
1252	struct page *page;
1253
1254	page = container_of((struct list_head *)h, struct page, lru);
1255	__free_slab(page->slab, page);
1256}
1257
1258static void free_slab(struct kmem_cache *s, struct page *page)
1259{
1260	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1261		/*
1262		 * RCU free overloads the RCU head over the LRU
1263		 */
1264		struct rcu_head *head = (void *)&page->lru;
1265
1266		call_rcu(head, rcu_free_slab);
1267	} else
1268		__free_slab(s, page);
1269}
1270
1271static void discard_slab(struct kmem_cache *s, struct page *page)
1272{
1273	dec_slabs_node(s, page_to_nid(page), page->objects);
1274	free_slab(s, page);
1275}
1276
1277/*
1278 * Per slab locking using the pagelock
1279 */
1280static __always_inline void slab_lock(struct page *page)
1281{
1282	bit_spin_lock(PG_locked, &page->flags);
1283}
1284
1285static __always_inline void slab_unlock(struct page *page)
1286{
1287	__bit_spin_unlock(PG_locked, &page->flags);
1288}
1289
1290static __always_inline int slab_trylock(struct page *page)
1291{
1292	int rc = 1;
1293
1294	rc = bit_spin_trylock(PG_locked, &page->flags);
1295	return rc;
1296}
1297
1298/*
1299 * Management of partially allocated slabs
1300 */
1301static void add_partial(struct kmem_cache_node *n,
1302				struct page *page, int tail)
1303{
1304	spin_lock(&n->list_lock);
1305	n->nr_partial++;
1306	if (tail)
1307		list_add_tail(&page->lru, &n->partial);
1308	else
1309		list_add(&page->lru, &n->partial);
1310	spin_unlock(&n->list_lock);
1311}
1312
1313static inline void __remove_partial(struct kmem_cache_node *n,
1314					struct page *page)
1315{
1316	list_del(&page->lru);
1317	n->nr_partial--;
1318}
1319
1320static void remove_partial(struct kmem_cache *s, struct page *page)
1321{
1322	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1323
1324	spin_lock(&n->list_lock);
1325	__remove_partial(n, page);
1326	spin_unlock(&n->list_lock);
1327}
1328
1329/*
1330 * Lock slab and remove from the partial list.
1331 *
1332 * Must hold list_lock.
1333 */
1334static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1335							struct page *page)
1336{
1337	if (slab_trylock(page)) {
1338		__remove_partial(n, page);
1339		__SetPageSlubFrozen(page);
1340		return 1;
1341	}
1342	return 0;
1343}
1344
1345/*
1346 * Try to allocate a partial slab from a specific node.
1347 */
1348static struct page *get_partial_node(struct kmem_cache_node *n)
1349{
1350	struct page *page;
1351
1352	/*
1353	 * Racy check. If we mistakenly see no partial slabs then we
1354	 * just allocate an empty slab. If we mistakenly try to get a
1355	 * partial slab and there is none available then get_partials()
1356	 * will return NULL.
1357	 */
1358	if (!n || !n->nr_partial)
1359		return NULL;
1360
1361	spin_lock(&n->list_lock);
1362	list_for_each_entry(page, &n->partial, lru)
1363		if (lock_and_freeze_slab(n, page))
1364			goto out;
1365	page = NULL;
1366out:
1367	spin_unlock(&n->list_lock);
1368	return page;
1369}
1370
1371/*
1372 * Get a page from somewhere. Search in increasing NUMA distances.
1373 */
1374static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1375{
1376#ifdef CONFIG_NUMA
1377	struct zonelist *zonelist;
1378	struct zoneref *z;
1379	struct zone *zone;
1380	enum zone_type high_zoneidx = gfp_zone(flags);
1381	struct page *page;
1382
1383	/*
1384	 * The defrag ratio allows a configuration of the tradeoffs between
1385	 * inter node defragmentation and node local allocations. A lower
1386	 * defrag_ratio increases the tendency to do local allocations
1387	 * instead of attempting to obtain partial slabs from other nodes.
1388	 *
1389	 * If the defrag_ratio is set to 0 then kmalloc() always
1390	 * returns node local objects. If the ratio is higher then kmalloc()
1391	 * may return off node objects because partial slabs are obtained
1392	 * from other nodes and filled up.
1393	 *
1394	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1395	 * defrag_ratio = 1000) then every (well almost) allocation will
1396	 * first attempt to defrag slab caches on other nodes. This means
1397	 * scanning over all nodes to look for partial slabs which may be
1398	 * expensive if we do it every time we are trying to find a slab
1399	 * with available objects.
1400	 */
1401	if (!s->remote_node_defrag_ratio ||
1402			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1403		return NULL;
1404
1405	get_mems_allowed();
1406	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1407	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1408		struct kmem_cache_node *n;
1409
1410		n = get_node(s, zone_to_nid(zone));
1411
1412		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1413				n->nr_partial > s->min_partial) {
1414			page = get_partial_node(n);
1415			if (page) {
1416				put_mems_allowed();
1417				return page;
1418			}
1419		}
1420	}
1421	put_mems_allowed();
1422#endif
1423	return NULL;
1424}
1425
1426/*
1427 * Get a partial page, lock it and return it.
1428 */
1429static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1430{
1431	struct page *page;
1432	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1433
1434	page = get_partial_node(get_node(s, searchnode));
1435	if (page || node != -1)
1436		return page;
1437
1438	return get_any_partial(s, flags);
1439}
1440
1441/*
1442 * Move a page back to the lists.
1443 *
1444 * Must be called with the slab lock held.
1445 *
1446 * On exit the slab lock will have been dropped.
1447 */
1448static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1449	__releases(bitlock)
1450{
1451	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1452
1453	__ClearPageSlubFrozen(page);
1454	if (page->inuse) {
1455
1456		if (page->freelist) {
1457			add_partial(n, page, tail);
1458			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1459		} else {
1460			stat(s, DEACTIVATE_FULL);
1461			if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1462				add_full(n, page);
1463		}
1464		slab_unlock(page);
1465	} else {
1466		stat(s, DEACTIVATE_EMPTY);
1467		if (n->nr_partial < s->min_partial) {
1468			/*
1469			 * Adding an empty slab to the partial slabs in order
1470			 * to avoid page allocator overhead. This slab needs
1471			 * to come after the other slabs with objects in
1472			 * so that the others get filled first. That way the
1473			 * size of the partial list stays small.
1474			 *
1475			 * kmem_cache_shrink can reclaim any empty slabs from
1476			 * the partial list.
1477			 */
1478			add_partial(n, page, 1);
1479			slab_unlock(page);
1480		} else {
1481			slab_unlock(page);
1482			stat(s, FREE_SLAB);
1483			discard_slab(s, page);
1484		}
1485	}
1486}
1487
1488/*
1489 * Remove the cpu slab
1490 */
1491static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1492	__releases(bitlock)
1493{
1494	struct page *page = c->page;
1495	int tail = 1;
1496
1497	if (page->freelist)
1498		stat(s, DEACTIVATE_REMOTE_FREES);
1499	/*
1500	 * Merge cpu freelist into slab freelist. Typically we get here
1501	 * because both freelists are empty. So this is unlikely
1502	 * to occur.
1503	 */
1504	while (unlikely(c->freelist)) {
1505		void **object;
1506
1507		tail = 0;	/* Hot objects. Put the slab first */
1508
1509		/* Retrieve object from cpu_freelist */
1510		object = c->freelist;
1511		c->freelist = get_freepointer(s, c->freelist);
1512
1513		/* And put onto the regular freelist */
1514		set_freepointer(s, object, page->freelist);
1515		page->freelist = object;
1516		page->inuse--;
1517	}
1518	c->page = NULL;
1519	unfreeze_slab(s, page, tail);
1520}
1521
1522static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1523{
1524	stat(s, CPUSLAB_FLUSH);
1525	slab_lock(c->page);
1526	deactivate_slab(s, c);
1527}
1528
1529/*
1530 * Flush cpu slab.
1531 *
1532 * Called from IPI handler with interrupts disabled.
1533 */
1534static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1535{
1536	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1537
1538	if (likely(c && c->page))
1539		flush_slab(s, c);
1540}
1541
1542static void flush_cpu_slab(void *d)
1543{
1544	struct kmem_cache *s = d;
1545
1546	__flush_cpu_slab(s, smp_processor_id());
1547}
1548
1549static void flush_all(struct kmem_cache *s)
1550{
1551	on_each_cpu(flush_cpu_slab, s, 1);
1552}
1553
1554/*
1555 * Check if the objects in a per cpu structure fit numa
1556 * locality expectations.
1557 */
1558static inline int node_match(struct kmem_cache_cpu *c, int node)
1559{
1560#ifdef CONFIG_NUMA
1561	if (node != NUMA_NO_NODE && c->node != node)
1562		return 0;
1563#endif
1564	return 1;
1565}
1566
1567static int count_free(struct page *page)
1568{
1569	return page->objects - page->inuse;
1570}
1571
1572static unsigned long count_partial(struct kmem_cache_node *n,
1573					int (*get_count)(struct page *))
1574{
1575	unsigned long flags;
1576	unsigned long x = 0;
1577	struct page *page;
1578
1579	spin_lock_irqsave(&n->list_lock, flags);
1580	list_for_each_entry(page, &n->partial, lru)
1581		x += get_count(page);
1582	spin_unlock_irqrestore(&n->list_lock, flags);
1583	return x;
1584}
1585
1586static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1587{
1588#ifdef CONFIG_SLUB_DEBUG
1589	return atomic_long_read(&n->total_objects);
1590#else
1591	return 0;
1592#endif
1593}
1594
1595static noinline void
1596slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1597{
1598	int node;
1599
1600	printk(KERN_WARNING
1601		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1602		nid, gfpflags);
1603	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1604		"default order: %d, min order: %d\n", s->name, s->objsize,
1605		s->size, oo_order(s->oo), oo_order(s->min));
1606
1607	if (oo_order(s->min) > get_order(s->objsize))
1608		printk(KERN_WARNING "  %s debugging increased min order, use "
1609		       "slub_debug=O to disable.\n", s->name);
1610
1611	for_each_online_node(node) {
1612		struct kmem_cache_node *n = get_node(s, node);
1613		unsigned long nr_slabs;
1614		unsigned long nr_objs;
1615		unsigned long nr_free;
1616
1617		if (!n)
1618			continue;
1619
1620		nr_free  = count_partial(n, count_free);
1621		nr_slabs = node_nr_slabs(n);
1622		nr_objs  = node_nr_objs(n);
1623
1624		printk(KERN_WARNING
1625			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1626			node, nr_slabs, nr_objs, nr_free);
1627	}
1628}
1629
1630/*
1631 * Slow path. The lockless freelist is empty or we need to perform
1632 * debugging duties.
1633 *
1634 * Interrupts are disabled.
1635 *
1636 * Processing is still very fast if new objects have been freed to the
1637 * regular freelist. In that case we simply take over the regular freelist
1638 * as the lockless freelist and zap the regular freelist.
1639 *
1640 * If that is not working then we fall back to the partial lists. We take the
1641 * first element of the freelist as the object to allocate now and move the
1642 * rest of the freelist to the lockless freelist.
1643 *
1644 * And if we were unable to get a new slab from the partial slab lists then
1645 * we need to allocate a new slab. This is the slowest path since it involves
1646 * a call to the page allocator and the setup of a new slab.
1647 */
1648static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1649			  unsigned long addr, struct kmem_cache_cpu *c)
1650{
1651	void **object;
1652	struct page *new;
1653
1654	/* We handle __GFP_ZERO in the caller */
1655	gfpflags &= ~__GFP_ZERO;
1656
1657	if (!c->page)
1658		goto new_slab;
1659
1660	slab_lock(c->page);
1661	if (unlikely(!node_match(c, node)))
1662		goto another_slab;
1663
1664	stat(s, ALLOC_REFILL);
1665
1666load_freelist:
1667	object = c->page->freelist;
1668	if (unlikely(!object))
1669		goto another_slab;
1670	if (kmem_cache_debug(s))
1671		goto debug;
1672
1673	c->freelist = get_freepointer(s, object);
1674	c->page->inuse = c->page->objects;
1675	c->page->freelist = NULL;
1676	c->node = page_to_nid(c->page);
1677unlock_out:
1678	slab_unlock(c->page);
1679	stat(s, ALLOC_SLOWPATH);
1680	return object;
1681
1682another_slab:
1683	deactivate_slab(s, c);
1684
1685new_slab:
1686	new = get_partial(s, gfpflags, node);
1687	if (new) {
1688		c->page = new;
1689		stat(s, ALLOC_FROM_PARTIAL);
1690		goto load_freelist;
1691	}
1692
1693	gfpflags &= gfp_allowed_mask;
1694	if (gfpflags & __GFP_WAIT)
1695		local_irq_enable();
1696
1697	new = new_slab(s, gfpflags, node);
1698
1699	if (gfpflags & __GFP_WAIT)
1700		local_irq_disable();
1701
1702	if (new) {
1703		c = __this_cpu_ptr(s->cpu_slab);
1704		stat(s, ALLOC_SLAB);
1705		if (c->page)
1706			flush_slab(s, c);
1707		slab_lock(new);
1708		__SetPageSlubFrozen(new);
1709		c->page = new;
1710		goto load_freelist;
1711	}
1712	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1713		slab_out_of_memory(s, gfpflags, node);
1714	return NULL;
1715debug:
1716	if (!alloc_debug_processing(s, c->page, object, addr))
1717		goto another_slab;
1718
1719	c->page->inuse++;
1720	c->page->freelist = get_freepointer(s, object);
1721	c->node = -1;
1722	goto unlock_out;
1723}
1724
1725/*
1726 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1727 * have the fastpath folded into their functions. So no function call
1728 * overhead for requests that can be satisfied on the fastpath.
1729 *
1730 * The fastpath works by first checking if the lockless freelist can be used.
1731 * If not then __slab_alloc is called for slow processing.
1732 *
1733 * Otherwise we can simply pick the next object from the lockless free list.
1734 */
1735static __always_inline void *slab_alloc(struct kmem_cache *s,
1736		gfp_t gfpflags, int node, unsigned long addr)
1737{
1738	void **object;
1739	struct kmem_cache_cpu *c;
1740	unsigned long flags;
1741
1742	if (slab_pre_alloc_hook(s, gfpflags))
1743		return NULL;
1744
1745	local_irq_save(flags);
1746	c = __this_cpu_ptr(s->cpu_slab);
1747	object = c->freelist;
1748	if (unlikely(!object || !node_match(c, node)))
1749
1750		object = __slab_alloc(s, gfpflags, node, addr, c);
1751
1752	else {
1753		c->freelist = get_freepointer(s, object);
1754		stat(s, ALLOC_FASTPATH);
1755	}
1756	local_irq_restore(flags);
1757
1758	if (unlikely(gfpflags & __GFP_ZERO) && object)
1759		memset(object, 0, s->objsize);
1760
1761	slab_post_alloc_hook(s, gfpflags, object);
1762
1763	return object;
1764}
1765
1766void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1767{
1768	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1769
1770	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1771
1772	return ret;
1773}
1774EXPORT_SYMBOL(kmem_cache_alloc);
1775
1776#ifdef CONFIG_TRACING
1777void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1778{
1779	return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1780}
1781EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1782#endif
1783
1784#ifdef CONFIG_NUMA
1785void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1786{
1787	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1788
1789	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1790				    s->objsize, s->size, gfpflags, node);
1791
1792	return ret;
1793}
1794EXPORT_SYMBOL(kmem_cache_alloc_node);
1795#endif
1796
1797#ifdef CONFIG_TRACING
1798void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1799				    gfp_t gfpflags,
1800				    int node)
1801{
1802	return slab_alloc(s, gfpflags, node, _RET_IP_);
1803}
1804EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1805#endif
1806
1807/*
1808 * Slow patch handling. This may still be called frequently since objects
1809 * have a longer lifetime than the cpu slabs in most processing loads.
1810 *
1811 * So we still attempt to reduce cache line usage. Just take the slab
1812 * lock and free the item. If there is no additional partial page
1813 * handling required then we can return immediately.
1814 */
1815static void __slab_free(struct kmem_cache *s, struct page *page,
1816			void *x, unsigned long addr)
1817{
1818	void *prior;
1819	void **object = (void *)x;
1820
1821	stat(s, FREE_SLOWPATH);
1822	slab_lock(page);
1823
1824	if (kmem_cache_debug(s))
1825		goto debug;
1826
1827checks_ok:
1828	prior = page->freelist;
1829	set_freepointer(s, object, prior);
1830	page->freelist = object;
1831	page->inuse--;
1832
1833	if (unlikely(PageSlubFrozen(page))) {
1834		stat(s, FREE_FROZEN);
1835		goto out_unlock;
1836	}
1837
1838	if (unlikely(!page->inuse))
1839		goto slab_empty;
1840
1841	/*
1842	 * Objects left in the slab. If it was not on the partial list before
1843	 * then add it.
1844	 */
1845	if (unlikely(!prior)) {
1846		add_partial(get_node(s, page_to_nid(page)), page, 1);
1847		stat(s, FREE_ADD_PARTIAL);
1848	}
1849
1850out_unlock:
1851	slab_unlock(page);
1852	return;
1853
1854slab_empty:
1855	if (prior) {
1856		/*
1857		 * Slab still on the partial list.
1858		 */
1859		remove_partial(s, page);
1860		stat(s, FREE_REMOVE_PARTIAL);
1861	}
1862	slab_unlock(page);
1863	stat(s, FREE_SLAB);
1864	discard_slab(s, page);
1865	return;
1866
1867debug:
1868	if (!free_debug_processing(s, page, x, addr))
1869		goto out_unlock;
1870	goto checks_ok;
1871}
1872
1873/*
1874 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1875 * can perform fastpath freeing without additional function calls.
1876 *
1877 * The fastpath is only possible if we are freeing to the current cpu slab
1878 * of this processor. This typically the case if we have just allocated
1879 * the item before.
1880 *
1881 * If fastpath is not possible then fall back to __slab_free where we deal
1882 * with all sorts of special processing.
1883 */
1884static __always_inline void slab_free(struct kmem_cache *s,
1885			struct page *page, void *x, unsigned long addr)
1886{
1887	void **object = (void *)x;
1888	struct kmem_cache_cpu *c;
1889	unsigned long flags;
1890
1891	slab_free_hook(s, x);
1892
1893	local_irq_save(flags);
1894	c = __this_cpu_ptr(s->cpu_slab);
1895
1896	slab_free_hook_irq(s, x);
1897
1898	if (likely(page == c->page && c->node >= 0)) {
1899		set_freepointer(s, object, c->freelist);
1900		c->freelist = object;
1901		stat(s, FREE_FASTPATH);
1902	} else
1903		__slab_free(s, page, x, addr);
1904
1905	local_irq_restore(flags);
1906}
1907
1908void kmem_cache_free(struct kmem_cache *s, void *x)
1909{
1910	struct page *page;
1911
1912	page = virt_to_head_page(x);
1913
1914	slab_free(s, page, x, _RET_IP_);
1915
1916	trace_kmem_cache_free(_RET_IP_, x);
1917}
1918EXPORT_SYMBOL(kmem_cache_free);
1919
1920/* Figure out on which slab page the object resides */
1921static struct page *get_object_page(const void *x)
1922{
1923	struct page *page = virt_to_head_page(x);
1924
1925	if (!PageSlab(page))
1926		return NULL;
1927
1928	return page;
1929}
1930
1931/*
1932 * Object placement in a slab is made very easy because we always start at
1933 * offset 0. If we tune the size of the object to the alignment then we can
1934 * get the required alignment by putting one properly sized object after
1935 * another.
1936 *
1937 * Notice that the allocation order determines the sizes of the per cpu
1938 * caches. Each processor has always one slab available for allocations.
1939 * Increasing the allocation order reduces the number of times that slabs
1940 * must be moved on and off the partial lists and is therefore a factor in
1941 * locking overhead.
1942 */
1943
1944/*
1945 * Mininum / Maximum order of slab pages. This influences locking overhead
1946 * and slab fragmentation. A higher order reduces the number of partial slabs
1947 * and increases the number of allocations possible without having to
1948 * take the list_lock.
1949 */
1950static int slub_min_order;
1951static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1952static int slub_min_objects;
1953
1954/*
1955 * Merge control. If this is set then no merging of slab caches will occur.
1956 * (Could be removed. This was introduced to pacify the merge skeptics.)
1957 */
1958static int slub_nomerge;
1959
1960/*
1961 * Calculate the order of allocation given an slab object size.
1962 *
1963 * The order of allocation has significant impact on performance and other
1964 * system components. Generally order 0 allocations should be preferred since
1965 * order 0 does not cause fragmentation in the page allocator. Larger objects
1966 * be problematic to put into order 0 slabs because there may be too much
1967 * unused space left. We go to a higher order if more than 1/16th of the slab
1968 * would be wasted.
1969 *
1970 * In order to reach satisfactory performance we must ensure that a minimum
1971 * number of objects is in one slab. Otherwise we may generate too much
1972 * activity on the partial lists which requires taking the list_lock. This is
1973 * less a concern for large slabs though which are rarely used.
1974 *
1975 * slub_max_order specifies the order where we begin to stop considering the
1976 * number of objects in a slab as critical. If we reach slub_max_order then
1977 * we try to keep the page order as low as possible. So we accept more waste
1978 * of space in favor of a small page order.
1979 *
1980 * Higher order allocations also allow the placement of more objects in a
1981 * slab and thereby reduce object handling overhead. If the user has
1982 * requested a higher mininum order then we start with that one instead of
1983 * the smallest order which will fit the object.
1984 */
1985static inline int slab_order(int size, int min_objects,
1986				int max_order, int fract_leftover)
1987{
1988	int order;
1989	int rem;
1990	int min_order = slub_min_order;
1991
1992	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1993		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1994
1995	for (order = max(min_order,
1996				fls(min_objects * size - 1) - PAGE_SHIFT);
1997			order <= max_order; order++) {
1998
1999		unsigned long slab_size = PAGE_SIZE << order;
2000
2001		if (slab_size < min_objects * size)
2002			continue;
2003
2004		rem = slab_size % size;
2005
2006		if (rem <= slab_size / fract_leftover)
2007			break;
2008
2009	}
2010
2011	return order;
2012}
2013
2014static inline int calculate_order(int size)
2015{
2016	int order;
2017	int min_objects;
2018	int fraction;
2019	int max_objects;
2020
2021	/*
2022	 * Attempt to find best configuration for a slab. This
2023	 * works by first attempting to generate a layout with
2024	 * the best configuration and backing off gradually.
2025	 *
2026	 * First we reduce the acceptable waste in a slab. Then
2027	 * we reduce the minimum objects required in a slab.
2028	 */
2029	min_objects = slub_min_objects;
2030	if (!min_objects)
2031		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2032	max_objects = (PAGE_SIZE << slub_max_order)/size;
2033	min_objects = min(min_objects, max_objects);
2034
2035	while (min_objects > 1) {
2036		fraction = 16;
2037		while (fraction >= 4) {
2038			order = slab_order(size, min_objects,
2039						slub_max_order, fraction);
2040			if (order <= slub_max_order)
2041				return order;
2042			fraction /= 2;
2043		}
2044		min_objects--;
2045	}
2046
2047	/*
2048	 * We were unable to place multiple objects in a slab. Now
2049	 * lets see if we can place a single object there.
2050	 */
2051	order = slab_order(size, 1, slub_max_order, 1);
2052	if (order <= slub_max_order)
2053		return order;
2054
2055	/*
2056	 * Doh this slab cannot be placed using slub_max_order.
2057	 */
2058	order = slab_order(size, 1, MAX_ORDER, 1);
2059	if (order < MAX_ORDER)
2060		return order;
2061	return -ENOSYS;
2062}
2063
2064/*
2065 * Figure out what the alignment of the objects will be.
2066 */
2067static unsigned long calculate_alignment(unsigned long flags,
2068		unsigned long align, unsigned long size)
2069{
2070	/*
2071	 * If the user wants hardware cache aligned objects then follow that
2072	 * suggestion if the object is sufficiently large.
2073	 *
2074	 * The hardware cache alignment cannot override the specified
2075	 * alignment though. If that is greater then use it.
2076	 */
2077	if (flags & SLAB_HWCACHE_ALIGN) {
2078		unsigned long ralign = cache_line_size();
2079		while (size <= ralign / 2)
2080			ralign /= 2;
2081		align = max(align, ralign);
2082	}
2083
2084	if (align < ARCH_SLAB_MINALIGN)
2085		align = ARCH_SLAB_MINALIGN;
2086
2087	return ALIGN(align, sizeof(void *));
2088}
2089
2090static void
2091init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2092{
2093	n->nr_partial = 0;
2094	spin_lock_init(&n->list_lock);
2095	INIT_LIST_HEAD(&n->partial);
2096#ifdef CONFIG_SLUB_DEBUG
2097	atomic_long_set(&n->nr_slabs, 0);
2098	atomic_long_set(&n->total_objects, 0);
2099	INIT_LIST_HEAD(&n->full);
2100#endif
2101}
2102
2103static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2104{
2105	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2106			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2107
2108	s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2109
2110	return s->cpu_slab != NULL;
2111}
2112
2113static struct kmem_cache *kmem_cache_node;
2114
2115/*
2116 * No kmalloc_node yet so do it by hand. We know that this is the first
2117 * slab on the node for this slabcache. There are no concurrent accesses
2118 * possible.
2119 *
2120 * Note that this function only works on the kmalloc_node_cache
2121 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2122 * memory on a fresh node that has no slab structures yet.
2123 */
2124static void early_kmem_cache_node_alloc(int node)
2125{
2126	struct page *page;
2127	struct kmem_cache_node *n;
2128	unsigned long flags;
2129
2130	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2131
2132	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2133
2134	BUG_ON(!page);
2135	if (page_to_nid(page) != node) {
2136		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2137				"node %d\n", node);
2138		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2139				"in order to be able to continue\n");
2140	}
2141
2142	n = page->freelist;
2143	BUG_ON(!n);
2144	page->freelist = get_freepointer(kmem_cache_node, n);
2145	page->inuse++;
2146	kmem_cache_node->node[node] = n;
2147#ifdef CONFIG_SLUB_DEBUG
2148	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2149	init_tracking(kmem_cache_node, n);
2150#endif
2151	init_kmem_cache_node(n, kmem_cache_node);
2152	inc_slabs_node(kmem_cache_node, node, page->objects);
2153
2154	/*
2155	 * lockdep requires consistent irq usage for each lock
2156	 * so even though there cannot be a race this early in
2157	 * the boot sequence, we still disable irqs.
2158	 */
2159	local_irq_save(flags);
2160	add_partial(n, page, 0);
2161	local_irq_restore(flags);
2162}
2163
2164static void free_kmem_cache_nodes(struct kmem_cache *s)
2165{
2166	int node;
2167
2168	for_each_node_state(node, N_NORMAL_MEMORY) {
2169		struct kmem_cache_node *n = s->node[node];
2170
2171		if (n)
2172			kmem_cache_free(kmem_cache_node, n);
2173
2174		s->node[node] = NULL;
2175	}
2176}
2177
2178static int init_kmem_cache_nodes(struct kmem_cache *s)
2179{
2180	int node;
2181
2182	for_each_node_state(node, N_NORMAL_MEMORY) {
2183		struct kmem_cache_node *n;
2184
2185		if (slab_state == DOWN) {
2186			early_kmem_cache_node_alloc(node);
2187			continue;
2188		}
2189		n = kmem_cache_alloc_node(kmem_cache_node,
2190						GFP_KERNEL, node);
2191
2192		if (!n) {
2193			free_kmem_cache_nodes(s);
2194			return 0;
2195		}
2196
2197		s->node[node] = n;
2198		init_kmem_cache_node(n, s);
2199	}
2200	return 1;
2201}
2202
2203static void set_min_partial(struct kmem_cache *s, unsigned long min)
2204{
2205	if (min < MIN_PARTIAL)
2206		min = MIN_PARTIAL;
2207	else if (min > MAX_PARTIAL)
2208		min = MAX_PARTIAL;
2209	s->min_partial = min;
2210}
2211
2212/*
2213 * calculate_sizes() determines the order and the distribution of data within
2214 * a slab object.
2215 */
2216static int calculate_sizes(struct kmem_cache *s, int forced_order)
2217{
2218	unsigned long flags = s->flags;
2219	unsigned long size = s->objsize;
2220	unsigned long align = s->align;
2221	int order;
2222
2223	/*
2224	 * Round up object size to the next word boundary. We can only
2225	 * place the free pointer at word boundaries and this determines
2226	 * the possible location of the free pointer.
2227	 */
2228	size = ALIGN(size, sizeof(void *));
2229
2230#ifdef CONFIG_SLUB_DEBUG
2231	/*
2232	 * Determine if we can poison the object itself. If the user of
2233	 * the slab may touch the object after free or before allocation
2234	 * then we should never poison the object itself.
2235	 */
2236	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2237			!s->ctor)
2238		s->flags |= __OBJECT_POISON;
2239	else
2240		s->flags &= ~__OBJECT_POISON;
2241
2242
2243	/*
2244	 * If we are Redzoning then check if there is some space between the
2245	 * end of the object and the free pointer. If not then add an
2246	 * additional word to have some bytes to store Redzone information.
2247	 */
2248	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2249		size += sizeof(void *);
2250#endif
2251
2252	/*
2253	 * With that we have determined the number of bytes in actual use
2254	 * by the object. This is the potential offset to the free pointer.
2255	 */
2256	s->inuse = size;
2257
2258	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2259		s->ctor)) {
2260		/*
2261		 * Relocate free pointer after the object if it is not
2262		 * permitted to overwrite the first word of the object on
2263		 * kmem_cache_free.
2264		 *
2265		 * This is the case if we do RCU, have a constructor or
2266		 * destructor or are poisoning the objects.
2267		 */
2268		s->offset = size;
2269		size += sizeof(void *);
2270	}
2271
2272#ifdef CONFIG_SLUB_DEBUG
2273	if (flags & SLAB_STORE_USER)
2274		/*
2275		 * Need to store information about allocs and frees after
2276		 * the object.
2277		 */
2278		size += 2 * sizeof(struct track);
2279
2280	if (flags & SLAB_RED_ZONE)
2281		/*
2282		 * Add some empty padding so that we can catch
2283		 * overwrites from earlier objects rather than let
2284		 * tracking information or the free pointer be
2285		 * corrupted if a user writes before the start
2286		 * of the object.
2287		 */
2288		size += sizeof(void *);
2289#endif
2290
2291	/*
2292	 * Determine the alignment based on various parameters that the
2293	 * user specified and the dynamic determination of cache line size
2294	 * on bootup.
2295	 */
2296	align = calculate_alignment(flags, align, s->objsize);
2297	s->align = align;
2298
2299	/*
2300	 * SLUB stores one object immediately after another beginning from
2301	 * offset 0. In order to align the objects we have to simply size
2302	 * each object to conform to the alignment.
2303	 */
2304	size = ALIGN(size, align);
2305	s->size = size;
2306	if (forced_order >= 0)
2307		order = forced_order;
2308	else
2309		order = calculate_order(size);
2310
2311	if (order < 0)
2312		return 0;
2313
2314	s->allocflags = 0;
2315	if (order)
2316		s->allocflags |= __GFP_COMP;
2317
2318	if (s->flags & SLAB_CACHE_DMA)
2319		s->allocflags |= SLUB_DMA;
2320
2321	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2322		s->allocflags |= __GFP_RECLAIMABLE;
2323
2324	/*
2325	 * Determine the number of objects per slab
2326	 */
2327	s->oo = oo_make(order, size);
2328	s->min = oo_make(get_order(size), size);
2329	if (oo_objects(s->oo) > oo_objects(s->max))
2330		s->max = s->oo;
2331
2332	return !!oo_objects(s->oo);
2333
2334}
2335
2336static int kmem_cache_open(struct kmem_cache *s,
2337		const char *name, size_t size,
2338		size_t align, unsigned long flags,
2339		void (*ctor)(void *))
2340{
2341	memset(s, 0, kmem_size);
2342	s->name = name;
2343	s->ctor = ctor;
2344	s->objsize = size;
2345	s->align = align;
2346	s->flags = kmem_cache_flags(size, flags, name, ctor);
2347
2348	if (!calculate_sizes(s, -1))
2349		goto error;
2350	if (disable_higher_order_debug) {
2351		/*
2352		 * Disable debugging flags that store metadata if the min slab
2353		 * order increased.
2354		 */
2355		if (get_order(s->size) > get_order(s->objsize)) {
2356			s->flags &= ~DEBUG_METADATA_FLAGS;
2357			s->offset = 0;
2358			if (!calculate_sizes(s, -1))
2359				goto error;
2360		}
2361	}
2362
2363	/*
2364	 * The larger the object size is, the more pages we want on the partial
2365	 * list to avoid pounding the page allocator excessively.
2366	 */
2367	set_min_partial(s, ilog2(s->size));
2368	s->refcount = 1;
2369#ifdef CONFIG_NUMA
2370	s->remote_node_defrag_ratio = 1000;
2371#endif
2372	if (!init_kmem_cache_nodes(s))
2373		goto error;
2374
2375	if (alloc_kmem_cache_cpus(s))
2376		return 1;
2377
2378	free_kmem_cache_nodes(s);
2379error:
2380	if (flags & SLAB_PANIC)
2381		panic("Cannot create slab %s size=%lu realsize=%u "
2382			"order=%u offset=%u flags=%lx\n",
2383			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2384			s->offset, flags);
2385	return 0;
2386}
2387
2388/*
2389 * Check if a given pointer is valid
2390 */
2391int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2392{
2393	struct page *page;
2394
2395	if (!kern_ptr_validate(object, s->size))
2396		return 0;
2397
2398	page = get_object_page(object);
2399
2400	if (!page || s != page->slab)
2401		/* No slab or wrong slab */
2402		return 0;
2403
2404	if (!check_valid_pointer(s, page, object))
2405		return 0;
2406
2407	/*
2408	 * We could also check if the object is on the slabs freelist.
2409	 * But this would be too expensive and it seems that the main
2410	 * purpose of kmem_ptr_valid() is to check if the object belongs
2411	 * to a certain slab.
2412	 */
2413	return 1;
2414}
2415EXPORT_SYMBOL(kmem_ptr_validate);
2416
2417/*
2418 * Determine the size of a slab object
2419 */
2420unsigned int kmem_cache_size(struct kmem_cache *s)
2421{
2422	return s->objsize;
2423}
2424EXPORT_SYMBOL(kmem_cache_size);
2425
2426const char *kmem_cache_name(struct kmem_cache *s)
2427{
2428	return s->name;
2429}
2430EXPORT_SYMBOL(kmem_cache_name);
2431
2432static void list_slab_objects(struct kmem_cache *s, struct page *page,
2433							const char *text)
2434{
2435#ifdef CONFIG_SLUB_DEBUG
2436	void *addr = page_address(page);
2437	void *p;
2438	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2439				     sizeof(long), GFP_ATOMIC);
2440	if (!map)
2441		return;
2442	slab_err(s, page, "%s", text);
2443	slab_lock(page);
2444	for_each_free_object(p, s, page->freelist)
2445		set_bit(slab_index(p, s, addr), map);
2446
2447	for_each_object(p, s, addr, page->objects) {
2448
2449		if (!test_bit(slab_index(p, s, addr), map)) {
2450			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2451							p, p - addr);
2452			print_tracking(s, p);
2453		}
2454	}
2455	slab_unlock(page);
2456	kfree(map);
2457#endif
2458}
2459
2460/*
2461 * Attempt to free all partial slabs on a node.
2462 */
2463static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2464{
2465	unsigned long flags;
2466	struct page *page, *h;
2467
2468	spin_lock_irqsave(&n->list_lock, flags);
2469	list_for_each_entry_safe(page, h, &n->partial, lru) {
2470		if (!page->inuse) {
2471			__remove_partial(n, page);
2472			discard_slab(s, page);
2473		} else {
2474			list_slab_objects(s, page,
2475				"Objects remaining on kmem_cache_close()");
2476		}
2477	}
2478	spin_unlock_irqrestore(&n->list_lock, flags);
2479}
2480
2481/*
2482 * Release all resources used by a slab cache.
2483 */
2484static inline int kmem_cache_close(struct kmem_cache *s)
2485{
2486	int node;
2487
2488	flush_all(s);
2489	free_percpu(s->cpu_slab);
2490	/* Attempt to free all objects */
2491	for_each_node_state(node, N_NORMAL_MEMORY) {
2492		struct kmem_cache_node *n = get_node(s, node);
2493
2494		free_partial(s, n);
2495		if (n->nr_partial || slabs_node(s, node))
2496			return 1;
2497	}
2498	free_kmem_cache_nodes(s);
2499	return 0;
2500}
2501
2502/*
2503 * Close a cache and release the kmem_cache structure
2504 * (must be used for caches created using kmem_cache_create)
2505 */
2506void kmem_cache_destroy(struct kmem_cache *s)
2507{
2508	down_write(&slub_lock);
2509	s->refcount--;
2510	if (!s->refcount) {
2511		list_del(&s->list);
2512		if (kmem_cache_close(s)) {
2513			printk(KERN_ERR "SLUB %s: %s called for cache that "
2514				"still has objects.\n", s->name, __func__);
2515			dump_stack();
2516		}
2517		if (s->flags & SLAB_DESTROY_BY_RCU)
2518			rcu_barrier();
2519		sysfs_slab_remove(s);
2520	}
2521	up_write(&slub_lock);
2522}
2523EXPORT_SYMBOL(kmem_cache_destroy);
2524
2525/********************************************************************
2526 *		Kmalloc subsystem
2527 *******************************************************************/
2528
2529struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2530EXPORT_SYMBOL(kmalloc_caches);
2531
2532static struct kmem_cache *kmem_cache;
2533
2534#ifdef CONFIG_ZONE_DMA
2535static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2536#endif
2537
2538static int __init setup_slub_min_order(char *str)
2539{
2540	get_option(&str, &slub_min_order);
2541
2542	return 1;
2543}
2544
2545__setup("slub_min_order=", setup_slub_min_order);
2546
2547static int __init setup_slub_max_order(char *str)
2548{
2549	get_option(&str, &slub_max_order);
2550	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2551
2552	return 1;
2553}
2554
2555__setup("slub_max_order=", setup_slub_max_order);
2556
2557static int __init setup_slub_min_objects(char *str)
2558{
2559	get_option(&str, &slub_min_objects);
2560
2561	return 1;
2562}
2563
2564__setup("slub_min_objects=", setup_slub_min_objects);
2565
2566static int __init setup_slub_nomerge(char *str)
2567{
2568	slub_nomerge = 1;
2569	return 1;
2570}
2571
2572__setup("slub_nomerge", setup_slub_nomerge);
2573
2574static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2575						int size, unsigned int flags)
2576{
2577	struct kmem_cache *s;
2578
2579	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2580
2581	/*
2582	 * This function is called with IRQs disabled during early-boot on
2583	 * single CPU so there's no need to take slub_lock here.
2584	 */
2585	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2586								flags, NULL))
2587		goto panic;
2588
2589	list_add(&s->list, &slab_caches);
2590	return s;
2591
2592panic:
2593	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2594	return NULL;
2595}
2596
2597/*
2598 * Conversion table for small slabs sizes / 8 to the index in the
2599 * kmalloc array. This is necessary for slabs < 192 since we have non power
2600 * of two cache sizes there. The size of larger slabs can be determined using
2601 * fls.
2602 */
2603static s8 size_index[24] = {
2604	3,	/* 8 */
2605	4,	/* 16 */
2606	5,	/* 24 */
2607	5,	/* 32 */
2608	6,	/* 40 */
2609	6,	/* 48 */
2610	6,	/* 56 */
2611	6,	/* 64 */
2612	1,	/* 72 */
2613	1,	/* 80 */
2614	1,	/* 88 */
2615	1,	/* 96 */
2616	7,	/* 104 */
2617	7,	/* 112 */
2618	7,	/* 120 */
2619	7,	/* 128 */
2620	2,	/* 136 */
2621	2,	/* 144 */
2622	2,	/* 152 */
2623	2,	/* 160 */
2624	2,	/* 168 */
2625	2,	/* 176 */
2626	2,	/* 184 */
2627	2	/* 192 */
2628};
2629
2630static inline int size_index_elem(size_t bytes)
2631{
2632	return (bytes - 1) / 8;
2633}
2634
2635static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2636{
2637	int index;
2638
2639	if (size <= 192) {
2640		if (!size)
2641			return ZERO_SIZE_PTR;
2642
2643		index = size_index[size_index_elem(size)];
2644	} else
2645		index = fls(size - 1);
2646
2647#ifdef CONFIG_ZONE_DMA
2648	if (unlikely((flags & SLUB_DMA)))
2649		return kmalloc_dma_caches[index];
2650
2651#endif
2652	return kmalloc_caches[index];
2653}
2654
2655void *__kmalloc(size_t size, gfp_t flags)
2656{
2657	struct kmem_cache *s;
2658	void *ret;
2659
2660	if (unlikely(size > SLUB_MAX_SIZE))
2661		return kmalloc_large(size, flags);
2662
2663	s = get_slab(size, flags);
2664
2665	if (unlikely(ZERO_OR_NULL_PTR(s)))
2666		return s;
2667
2668	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2669
2670	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2671
2672	return ret;
2673}
2674EXPORT_SYMBOL(__kmalloc);
2675
2676static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2677{
2678	struct page *page;
2679	void *ptr = NULL;
2680
2681	flags |= __GFP_COMP | __GFP_NOTRACK;
2682	page = alloc_pages_node(node, flags, get_order(size));
2683	if (page)
2684		ptr = page_address(page);
2685
2686	kmemleak_alloc(ptr, size, 1, flags);
2687	return ptr;
2688}
2689
2690#ifdef CONFIG_NUMA
2691void *__kmalloc_node(size_t size, gfp_t flags, int node)
2692{
2693	struct kmem_cache *s;
2694	void *ret;
2695
2696	if (unlikely(size > SLUB_MAX_SIZE)) {
2697		ret = kmalloc_large_node(size, flags, node);
2698
2699		trace_kmalloc_node(_RET_IP_, ret,
2700				   size, PAGE_SIZE << get_order(size),
2701				   flags, node);
2702
2703		return ret;
2704	}
2705
2706	s = get_slab(size, flags);
2707
2708	if (unlikely(ZERO_OR_NULL_PTR(s)))
2709		return s;
2710
2711	ret = slab_alloc(s, flags, node, _RET_IP_);
2712
2713	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2714
2715	return ret;
2716}
2717EXPORT_SYMBOL(__kmalloc_node);
2718#endif
2719
2720size_t ksize(const void *object)
2721{
2722	struct page *page;
2723	struct kmem_cache *s;
2724
2725	if (unlikely(object == ZERO_SIZE_PTR))
2726		return 0;
2727
2728	page = virt_to_head_page(object);
2729
2730	if (unlikely(!PageSlab(page))) {
2731		WARN_ON(!PageCompound(page));
2732		return PAGE_SIZE << compound_order(page);
2733	}
2734	s = page->slab;
2735
2736#ifdef CONFIG_SLUB_DEBUG
2737	/*
2738	 * Debugging requires use of the padding between object
2739	 * and whatever may come after it.
2740	 */
2741	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2742		return s->objsize;
2743
2744#endif
2745	/*
2746	 * If we have the need to store the freelist pointer
2747	 * back there or track user information then we can
2748	 * only use the space before that information.
2749	 */
2750	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2751		return s->inuse;
2752	/*
2753	 * Else we can use all the padding etc for the allocation
2754	 */
2755	return s->size;
2756}
2757EXPORT_SYMBOL(ksize);
2758
2759void kfree(const void *x)
2760{
2761	struct page *page;
2762	void *object = (void *)x;
2763
2764	trace_kfree(_RET_IP_, x);
2765
2766	if (unlikely(ZERO_OR_NULL_PTR(x)))
2767		return;
2768
2769	page = virt_to_head_page(x);
2770	if (unlikely(!PageSlab(page))) {
2771		BUG_ON(!PageCompound(page));
2772		kmemleak_free(x);
2773		put_page(page);
2774		return;
2775	}
2776	slab_free(page->slab, page, object, _RET_IP_);
2777}
2778EXPORT_SYMBOL(kfree);
2779
2780/*
2781 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2782 * the remaining slabs by the number of items in use. The slabs with the
2783 * most items in use come first. New allocations will then fill those up
2784 * and thus they can be removed from the partial lists.
2785 *
2786 * The slabs with the least items are placed last. This results in them
2787 * being allocated from last increasing the chance that the last objects
2788 * are freed in them.
2789 */
2790int kmem_cache_shrink(struct kmem_cache *s)
2791{
2792	int node;
2793	int i;
2794	struct kmem_cache_node *n;
2795	struct page *page;
2796	struct page *t;
2797	int objects = oo_objects(s->max);
2798	struct list_head *slabs_by_inuse =
2799		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2800	unsigned long flags;
2801
2802	if (!slabs_by_inuse)
2803		return -ENOMEM;
2804
2805	flush_all(s);
2806	for_each_node_state(node, N_NORMAL_MEMORY) {
2807		n = get_node(s, node);
2808
2809		if (!n->nr_partial)
2810			continue;
2811
2812		for (i = 0; i < objects; i++)
2813			INIT_LIST_HEAD(slabs_by_inuse + i);
2814
2815		spin_lock_irqsave(&n->list_lock, flags);
2816
2817		/*
2818		 * Build lists indexed by the items in use in each slab.
2819		 *
2820		 * Note that concurrent frees may occur while we hold the
2821		 * list_lock. page->inuse here is the upper limit.
2822		 */
2823		list_for_each_entry_safe(page, t, &n->partial, lru) {
2824			if (!page->inuse && slab_trylock(page)) {
2825				/*
2826				 * Must hold slab lock here because slab_free
2827				 * may have freed the last object and be
2828				 * waiting to release the slab.
2829				 */
2830				__remove_partial(n, page);
2831				slab_unlock(page);
2832				discard_slab(s, page);
2833			} else {
2834				list_move(&page->lru,
2835				slabs_by_inuse + page->inuse);
2836			}
2837		}
2838
2839		/*
2840		 * Rebuild the partial list with the slabs filled up most
2841		 * first and the least used slabs at the end.
2842		 */
2843		for (i = objects - 1; i >= 0; i--)
2844			list_splice(slabs_by_inuse + i, n->partial.prev);
2845
2846		spin_unlock_irqrestore(&n->list_lock, flags);
2847	}
2848
2849	kfree(slabs_by_inuse);
2850	return 0;
2851}
2852EXPORT_SYMBOL(kmem_cache_shrink);
2853
2854#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2855static int slab_mem_going_offline_callback(void *arg)
2856{
2857	struct kmem_cache *s;
2858
2859	down_read(&slub_lock);
2860	list_for_each_entry(s, &slab_caches, list)
2861		kmem_cache_shrink(s);
2862	up_read(&slub_lock);
2863
2864	return 0;
2865}
2866
2867static void slab_mem_offline_callback(void *arg)
2868{
2869	struct kmem_cache_node *n;
2870	struct kmem_cache *s;
2871	struct memory_notify *marg = arg;
2872	int offline_node;
2873
2874	offline_node = marg->status_change_nid;
2875
2876	/*
2877	 * If the node still has available memory. we need kmem_cache_node
2878	 * for it yet.
2879	 */
2880	if (offline_node < 0)
2881		return;
2882
2883	down_read(&slub_lock);
2884	list_for_each_entry(s, &slab_caches, list) {
2885		n = get_node(s, offline_node);
2886		if (n) {
2887			/*
2888			 * if n->nr_slabs > 0, slabs still exist on the node
2889			 * that is going down. We were unable to free them,
2890			 * and offline_pages() function shouldn't call this
2891			 * callback. So, we must fail.
2892			 */
2893			BUG_ON(slabs_node(s, offline_node));
2894
2895			s->node[offline_node] = NULL;
2896			kmem_cache_free(kmem_cache_node, n);
2897		}
2898	}
2899	up_read(&slub_lock);
2900}
2901
2902static int slab_mem_going_online_callback(void *arg)
2903{
2904	struct kmem_cache_node *n;
2905	struct kmem_cache *s;
2906	struct memory_notify *marg = arg;
2907	int nid = marg->status_change_nid;
2908	int ret = 0;
2909
2910	/*
2911	 * If the node's memory is already available, then kmem_cache_node is
2912	 * already created. Nothing to do.
2913	 */
2914	if (nid < 0)
2915		return 0;
2916
2917	/*
2918	 * We are bringing a node online. No memory is available yet. We must
2919	 * allocate a kmem_cache_node structure in order to bring the node
2920	 * online.
2921	 */
2922	down_read(&slub_lock);
2923	list_for_each_entry(s, &slab_caches, list) {
2924		/*
2925		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2926		 *      since memory is not yet available from the node that
2927		 *      is brought up.
2928		 */
2929		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
2930		if (!n) {
2931			ret = -ENOMEM;
2932			goto out;
2933		}
2934		init_kmem_cache_node(n, s);
2935		s->node[nid] = n;
2936	}
2937out:
2938	up_read(&slub_lock);
2939	return ret;
2940}
2941
2942static int slab_memory_callback(struct notifier_block *self,
2943				unsigned long action, void *arg)
2944{
2945	int ret = 0;
2946
2947	switch (action) {
2948	case MEM_GOING_ONLINE:
2949		ret = slab_mem_going_online_callback(arg);
2950		break;
2951	case MEM_GOING_OFFLINE:
2952		ret = slab_mem_going_offline_callback(arg);
2953		break;
2954	case MEM_OFFLINE:
2955	case MEM_CANCEL_ONLINE:
2956		slab_mem_offline_callback(arg);
2957		break;
2958	case MEM_ONLINE:
2959	case MEM_CANCEL_OFFLINE:
2960		break;
2961	}
2962	if (ret)
2963		ret = notifier_from_errno(ret);
2964	else
2965		ret = NOTIFY_OK;
2966	return ret;
2967}
2968
2969#endif /* CONFIG_MEMORY_HOTPLUG */
2970
2971/********************************************************************
2972 *			Basic setup of slabs
2973 *******************************************************************/
2974
2975/*
2976 * Used for early kmem_cache structures that were allocated using
2977 * the page allocator
2978 */
2979
2980static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2981{
2982	int node;
2983
2984	list_add(&s->list, &slab_caches);
2985	s->refcount = -1;
2986
2987	for_each_node_state(node, N_NORMAL_MEMORY) {
2988		struct kmem_cache_node *n = get_node(s, node);
2989		struct page *p;
2990
2991		if (n) {
2992			list_for_each_entry(p, &n->partial, lru)
2993				p->slab = s;
2994
2995#ifdef CONFIG_SLAB_DEBUG
2996			list_for_each_entry(p, &n->full, lru)
2997				p->slab = s;
2998#endif
2999		}
3000	}
3001}
3002
3003void __init kmem_cache_init(void)
3004{
3005	int i;
3006	int caches = 0;
3007	struct kmem_cache *temp_kmem_cache;
3008	int order;
3009	struct kmem_cache *temp_kmem_cache_node;
3010	unsigned long kmalloc_size;
3011
3012	kmem_size = offsetof(struct kmem_cache, node) +
3013				nr_node_ids * sizeof(struct kmem_cache_node *);
3014
3015	/* Allocate two kmem_caches from the page allocator */
3016	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3017	order = get_order(2 * kmalloc_size);
3018	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3019
3020	/*
3021	 * Must first have the slab cache available for the allocations of the
3022	 * struct kmem_cache_node's. There is special bootstrap code in
3023	 * kmem_cache_open for slab_state == DOWN.
3024	 */
3025	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3026
3027	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3028		sizeof(struct kmem_cache_node),
3029		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3030
3031	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3032
3033	/* Able to allocate the per node structures */
3034	slab_state = PARTIAL;
3035
3036	temp_kmem_cache = kmem_cache;
3037	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3038		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3039	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3040	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3041
3042	/*
3043	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3044	 * kmem_cache_node is separately allocated so no need to
3045	 * update any list pointers.
3046	 */
3047	temp_kmem_cache_node = kmem_cache_node;
3048
3049	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3050	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3051
3052	kmem_cache_bootstrap_fixup(kmem_cache_node);
3053
3054	caches++;
3055	kmem_cache_bootstrap_fixup(kmem_cache);
3056	caches++;
3057	/* Free temporary boot structure */
3058	free_pages((unsigned long)temp_kmem_cache, order);
3059
3060	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3061
3062	/*
3063	 * Patch up the size_index table if we have strange large alignment
3064	 * requirements for the kmalloc array. This is only the case for
3065	 * MIPS it seems. The standard arches will not generate any code here.
3066	 *
3067	 * Largest permitted alignment is 256 bytes due to the way we
3068	 * handle the index determination for the smaller caches.
3069	 *
3070	 * Make sure that nothing crazy happens if someone starts tinkering
3071	 * around with ARCH_KMALLOC_MINALIGN
3072	 */
3073	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3074		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3075
3076	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3077		int elem = size_index_elem(i);
3078		if (elem >= ARRAY_SIZE(size_index))
3079			break;
3080		size_index[elem] = KMALLOC_SHIFT_LOW;
3081	}
3082
3083	if (KMALLOC_MIN_SIZE == 64) {
3084		/*
3085		 * The 96 byte size cache is not used if the alignment
3086		 * is 64 byte.
3087		 */
3088		for (i = 64 + 8; i <= 96; i += 8)
3089			size_index[size_index_elem(i)] = 7;
3090	} else if (KMALLOC_MIN_SIZE == 128) {
3091		/*
3092		 * The 192 byte sized cache is not used if the alignment
3093		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3094		 * instead.
3095		 */
3096		for (i = 128 + 8; i <= 192; i += 8)
3097			size_index[size_index_elem(i)] = 8;
3098	}
3099
3100	/* Caches that are not of the two-to-the-power-of size */
3101	if (KMALLOC_MIN_SIZE <= 32) {
3102		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3103		caches++;
3104	}
3105
3106	if (KMALLOC_MIN_SIZE <= 64) {
3107		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3108		caches++;
3109	}
3110
3111	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3112		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3113		caches++;
3114	}
3115
3116	slab_state = UP;
3117
3118	/* Provide the correct kmalloc names now that the caches are up */
3119	if (KMALLOC_MIN_SIZE <= 32) {
3120		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3121		BUG_ON(!kmalloc_caches[1]->name);
3122	}
3123
3124	if (KMALLOC_MIN_SIZE <= 64) {
3125		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3126		BUG_ON(!kmalloc_caches[2]->name);
3127	}
3128
3129	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3130		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3131
3132		BUG_ON(!s);
3133		kmalloc_caches[i]->name = s;
3134	}
3135
3136#ifdef CONFIG_SMP
3137	register_cpu_notifier(&slab_notifier);
3138#endif
3139
3140#ifdef CONFIG_ZONE_DMA
3141	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3142		struct kmem_cache *s = kmalloc_caches[i];
3143
3144		if (s && s->size) {
3145			char *name = kasprintf(GFP_NOWAIT,
3146				 "dma-kmalloc-%d", s->objsize);
3147
3148			BUG_ON(!name);
3149			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3150				s->objsize, SLAB_CACHE_DMA);
3151		}
3152	}
3153#endif
3154	printk(KERN_INFO
3155		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3156		" CPUs=%d, Nodes=%d\n",
3157		caches, cache_line_size(),
3158		slub_min_order, slub_max_order, slub_min_objects,
3159		nr_cpu_ids, nr_node_ids);
3160}
3161
3162void __init kmem_cache_init_late(void)
3163{
3164}
3165
3166/*
3167 * Find a mergeable slab cache
3168 */
3169static int slab_unmergeable(struct kmem_cache *s)
3170{
3171	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3172		return 1;
3173
3174	if (s->ctor)
3175		return 1;
3176
3177	/*
3178	 * We may have set a slab to be unmergeable during bootstrap.
3179	 */
3180	if (s->refcount < 0)
3181		return 1;
3182
3183	return 0;
3184}
3185
3186static struct kmem_cache *find_mergeable(size_t size,
3187		size_t align, unsigned long flags, const char *name,
3188		void (*ctor)(void *))
3189{
3190	struct kmem_cache *s;
3191
3192	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3193		return NULL;
3194
3195	if (ctor)
3196		return NULL;
3197
3198	size = ALIGN(size, sizeof(void *));
3199	align = calculate_alignment(flags, align, size);
3200	size = ALIGN(size, align);
3201	flags = kmem_cache_flags(size, flags, name, NULL);
3202
3203	list_for_each_entry(s, &slab_caches, list) {
3204		if (slab_unmergeable(s))
3205			continue;
3206
3207		if (size > s->size)
3208			continue;
3209
3210		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3211				continue;
3212		/*
3213		 * Check if alignment is compatible.
3214		 * Courtesy of Adrian Drzewiecki
3215		 */
3216		if ((s->size & ~(align - 1)) != s->size)
3217			continue;
3218
3219		if (s->size - size >= sizeof(void *))
3220			continue;
3221
3222		return s;
3223	}
3224	return NULL;
3225}
3226
3227struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3228		size_t align, unsigned long flags, void (*ctor)(void *))
3229{
3230	struct kmem_cache *s;
3231	char *n;
3232
3233	if (WARN_ON(!name))
3234		return NULL;
3235
3236	down_write(&slub_lock);
3237	s = find_mergeable(size, align, flags, name, ctor);
3238	if (s) {
3239		s->refcount++;
3240		/*
3241		 * Adjust the object sizes so that we clear
3242		 * the complete object on kzalloc.
3243		 */
3244		s->objsize = max(s->objsize, (int)size);
3245		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3246
3247		if (sysfs_slab_alias(s, name)) {
3248			s->refcount--;
3249			goto err;
3250		}
3251		up_write(&slub_lock);
3252		return s;
3253	}
3254
3255	n = kstrdup(name, GFP_KERNEL);
3256	if (!n)
3257		goto err;
3258
3259	s = kmalloc(kmem_size, GFP_KERNEL);
3260	if (s) {
3261		if (kmem_cache_open(s, n,
3262				size, align, flags, ctor)) {
3263			list_add(&s->list, &slab_caches);
3264			if (sysfs_slab_add(s)) {
3265				list_del(&s->list);
3266				kfree(n);
3267				kfree(s);
3268				goto err;
3269			}
3270			up_write(&slub_lock);
3271			return s;
3272		}
3273		kfree(n);
3274		kfree(s);
3275	}
3276	up_write(&slub_lock);
3277
3278err:
3279	if (flags & SLAB_PANIC)
3280		panic("Cannot create slabcache %s\n", name);
3281	else
3282		s = NULL;
3283	return s;
3284}
3285EXPORT_SYMBOL(kmem_cache_create);
3286
3287#ifdef CONFIG_SMP
3288/*
3289 * Use the cpu notifier to insure that the cpu slabs are flushed when
3290 * necessary.
3291 */
3292static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3293		unsigned long action, void *hcpu)
3294{
3295	long cpu = (long)hcpu;
3296	struct kmem_cache *s;
3297	unsigned long flags;
3298
3299	switch (action) {
3300	case CPU_UP_CANCELED:
3301	case CPU_UP_CANCELED_FROZEN:
3302	case CPU_DEAD:
3303	case CPU_DEAD_FROZEN:
3304		down_read(&slub_lock);
3305		list_for_each_entry(s, &slab_caches, list) {
3306			local_irq_save(flags);
3307			__flush_cpu_slab(s, cpu);
3308			local_irq_restore(flags);
3309		}
3310		up_read(&slub_lock);
3311		break;
3312	default:
3313		break;
3314	}
3315	return NOTIFY_OK;
3316}
3317
3318static struct notifier_block __cpuinitdata slab_notifier = {
3319	.notifier_call = slab_cpuup_callback
3320};
3321
3322#endif
3323
3324void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3325{
3326	struct kmem_cache *s;
3327	void *ret;
3328
3329	if (unlikely(size > SLUB_MAX_SIZE))
3330		return kmalloc_large(size, gfpflags);
3331
3332	s = get_slab(size, gfpflags);
3333
3334	if (unlikely(ZERO_OR_NULL_PTR(s)))
3335		return s;
3336
3337	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3338
3339	/* Honor the call site pointer we recieved. */
3340	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3341
3342	return ret;
3343}
3344
3345void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3346					int node, unsigned long caller)
3347{
3348	struct kmem_cache *s;
3349	void *ret;
3350
3351	if (unlikely(size > SLUB_MAX_SIZE)) {
3352		ret = kmalloc_large_node(size, gfpflags, node);
3353
3354		trace_kmalloc_node(caller, ret,
3355				   size, PAGE_SIZE << get_order(size),
3356				   gfpflags, node);
3357
3358		return ret;
3359	}
3360
3361	s = get_slab(size, gfpflags);
3362
3363	if (unlikely(ZERO_OR_NULL_PTR(s)))
3364		return s;
3365
3366	ret = slab_alloc(s, gfpflags, node, caller);
3367
3368	/* Honor the call site pointer we recieved. */
3369	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3370
3371	return ret;
3372}
3373
3374#ifdef CONFIG_SLUB_DEBUG
3375static int count_inuse(struct page *page)
3376{
3377	return page->inuse;
3378}
3379
3380static int count_total(struct page *page)
3381{
3382	return page->objects;
3383}
3384
3385static int validate_slab(struct kmem_cache *s, struct page *page,
3386						unsigned long *map)
3387{
3388	void *p;
3389	void *addr = page_address(page);
3390
3391	if (!check_slab(s, page) ||
3392			!on_freelist(s, page, NULL))
3393		return 0;
3394
3395	/* Now we know that a valid freelist exists */
3396	bitmap_zero(map, page->objects);
3397
3398	for_each_free_object(p, s, page->freelist) {
3399		set_bit(slab_index(p, s, addr), map);
3400		if (!check_object(s, page, p, 0))
3401			return 0;
3402	}
3403
3404	for_each_object(p, s, addr, page->objects)
3405		if (!test_bit(slab_index(p, s, addr), map))
3406			if (!check_object(s, page, p, 1))
3407				return 0;
3408	return 1;
3409}
3410
3411static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3412						unsigned long *map)
3413{
3414	if (slab_trylock(page)) {
3415		validate_slab(s, page, map);
3416		slab_unlock(page);
3417	} else
3418		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3419			s->name, page);
3420}
3421
3422static int validate_slab_node(struct kmem_cache *s,
3423		struct kmem_cache_node *n, unsigned long *map)
3424{
3425	unsigned long count = 0;
3426	struct page *page;
3427	unsigned long flags;
3428
3429	spin_lock_irqsave(&n->list_lock, flags);
3430
3431	list_for_each_entry(page, &n->partial, lru) {
3432		validate_slab_slab(s, page, map);
3433		count++;
3434	}
3435	if (count != n->nr_partial)
3436		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3437			"counter=%ld\n", s->name, count, n->nr_partial);
3438
3439	if (!(s->flags & SLAB_STORE_USER))
3440		goto out;
3441
3442	list_for_each_entry(page, &n->full, lru) {
3443		validate_slab_slab(s, page, map);
3444		count++;
3445	}
3446	if (count != atomic_long_read(&n->nr_slabs))
3447		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3448			"counter=%ld\n", s->name, count,
3449			atomic_long_read(&n->nr_slabs));
3450
3451out:
3452	spin_unlock_irqrestore(&n->list_lock, flags);
3453	return count;
3454}
3455
3456static long validate_slab_cache(struct kmem_cache *s)
3457{
3458	int node;
3459	unsigned long count = 0;
3460	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3461				sizeof(unsigned long), GFP_KERNEL);
3462
3463	if (!map)
3464		return -ENOMEM;
3465
3466	flush_all(s);
3467	for_each_node_state(node, N_NORMAL_MEMORY) {
3468		struct kmem_cache_node *n = get_node(s, node);
3469
3470		count += validate_slab_node(s, n, map);
3471	}
3472	kfree(map);
3473	return count;
3474}
3475
3476#ifdef SLUB_RESILIENCY_TEST
3477static void resiliency_test(void)
3478{
3479	u8 *p;
3480
3481	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3482
3483	printk(KERN_ERR "SLUB resiliency testing\n");
3484	printk(KERN_ERR "-----------------------\n");
3485	printk(KERN_ERR "A. Corruption after allocation\n");
3486
3487	p = kzalloc(16, GFP_KERNEL);
3488	p[16] = 0x12;
3489	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3490			" 0x12->0x%p\n\n", p + 16);
3491
3492	validate_slab_cache(kmalloc_caches[4]);
3493
3494	/* Hmmm... The next two are dangerous */
3495	p = kzalloc(32, GFP_KERNEL);
3496	p[32 + sizeof(void *)] = 0x34;
3497	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3498			" 0x34 -> -0x%p\n", p);
3499	printk(KERN_ERR
3500		"If allocated object is overwritten then not detectable\n\n");
3501
3502	validate_slab_cache(kmalloc_caches[5]);
3503	p = kzalloc(64, GFP_KERNEL);
3504	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3505	*p = 0x56;
3506	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3507									p);
3508	printk(KERN_ERR
3509		"If allocated object is overwritten then not detectable\n\n");
3510	validate_slab_cache(kmalloc_caches[6]);
3511
3512	printk(KERN_ERR "\nB. Corruption after free\n");
3513	p = kzalloc(128, GFP_KERNEL);
3514	kfree(p);
3515	*p = 0x78;
3516	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3517	validate_slab_cache(kmalloc_caches[7]);
3518
3519	p = kzalloc(256, GFP_KERNEL);
3520	kfree(p);
3521	p[50] = 0x9a;
3522	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3523			p);
3524	validate_slab_cache(kmalloc_caches[8]);
3525
3526	p = kzalloc(512, GFP_KERNEL);
3527	kfree(p);
3528	p[512] = 0xab;
3529	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3530	validate_slab_cache(kmalloc_caches[9]);
3531}
3532#else
3533static void resiliency_test(void) {};
3534#endif
3535
3536/*
3537 * Generate lists of code addresses where slabcache objects are allocated
3538 * and freed.
3539 */
3540
3541struct location {
3542	unsigned long count;
3543	unsigned long addr;
3544	long long sum_time;
3545	long min_time;
3546	long max_time;
3547	long min_pid;
3548	long max_pid;
3549	DECLARE_BITMAP(cpus, NR_CPUS);
3550	nodemask_t nodes;
3551};
3552
3553struct loc_track {
3554	unsigned long max;
3555	unsigned long count;
3556	struct location *loc;
3557};
3558
3559static void free_loc_track(struct loc_track *t)
3560{
3561	if (t->max)
3562		free_pages((unsigned long)t->loc,
3563			get_order(sizeof(struct location) * t->max));
3564}
3565
3566static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3567{
3568	struct location *l;
3569	int order;
3570
3571	order = get_order(sizeof(struct location) * max);
3572
3573	l = (void *)__get_free_pages(flags, order);
3574	if (!l)
3575		return 0;
3576
3577	if (t->count) {
3578		memcpy(l, t->loc, sizeof(struct location) * t->count);
3579		free_loc_track(t);
3580	}
3581	t->max = max;
3582	t->loc = l;
3583	return 1;
3584}
3585
3586static int add_location(struct loc_track *t, struct kmem_cache *s,
3587				const struct track *track)
3588{
3589	long start, end, pos;
3590	struct location *l;
3591	unsigned long caddr;
3592	unsigned long age = jiffies - track->when;
3593
3594	start = -1;
3595	end = t->count;
3596
3597	for ( ; ; ) {
3598		pos = start + (end - start + 1) / 2;
3599
3600		/*
3601		 * There is nothing at "end". If we end up there
3602		 * we need to add something to before end.
3603		 */
3604		if (pos == end)
3605			break;
3606
3607		caddr = t->loc[pos].addr;
3608		if (track->addr == caddr) {
3609
3610			l = &t->loc[pos];
3611			l->count++;
3612			if (track->when) {
3613				l->sum_time += age;
3614				if (age < l->min_time)
3615					l->min_time = age;
3616				if (age > l->max_time)
3617					l->max_time = age;
3618
3619				if (track->pid < l->min_pid)
3620					l->min_pid = track->pid;
3621				if (track->pid > l->max_pid)
3622					l->max_pid = track->pid;
3623
3624				cpumask_set_cpu(track->cpu,
3625						to_cpumask(l->cpus));
3626			}
3627			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3628			return 1;
3629		}
3630
3631		if (track->addr < caddr)
3632			end = pos;
3633		else
3634			start = pos;
3635	}
3636
3637	/*
3638	 * Not found. Insert new tracking element.
3639	 */
3640	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3641		return 0;
3642
3643	l = t->loc + pos;
3644	if (pos < t->count)
3645		memmove(l + 1, l,
3646			(t->count - pos) * sizeof(struct location));
3647	t->count++;
3648	l->count = 1;
3649	l->addr = track->addr;
3650	l->sum_time = age;
3651	l->min_time = age;
3652	l->max_time = age;
3653	l->min_pid = track->pid;
3654	l->max_pid = track->pid;
3655	cpumask_clear(to_cpumask(l->cpus));
3656	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3657	nodes_clear(l->nodes);
3658	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3659	return 1;
3660}
3661
3662static void process_slab(struct loc_track *t, struct kmem_cache *s,
3663		struct page *page, enum track_item alloc,
3664		unsigned long *map)
3665{
3666	void *addr = page_address(page);
3667	void *p;
3668
3669	bitmap_zero(map, page->objects);
3670	for_each_free_object(p, s, page->freelist)
3671		set_bit(slab_index(p, s, addr), map);
3672
3673	for_each_object(p, s, addr, page->objects)
3674		if (!test_bit(slab_index(p, s, addr), map))
3675			add_location(t, s, get_track(s, p, alloc));
3676}
3677
3678static int list_locations(struct kmem_cache *s, char *buf,
3679					enum track_item alloc)
3680{
3681	int len = 0;
3682	unsigned long i;
3683	struct loc_track t = { 0, 0, NULL };
3684	int node;
3685	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3686				     sizeof(unsigned long), GFP_KERNEL);
3687
3688	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3689				     GFP_TEMPORARY)) {
3690		kfree(map);
3691		return sprintf(buf, "Out of memory\n");
3692	}
3693	/* Push back cpu slabs */
3694	flush_all(s);
3695
3696	for_each_node_state(node, N_NORMAL_MEMORY) {
3697		struct kmem_cache_node *n = get_node(s, node);
3698		unsigned long flags;
3699		struct page *page;
3700
3701		if (!atomic_long_read(&n->nr_slabs))
3702			continue;
3703
3704		spin_lock_irqsave(&n->list_lock, flags);
3705		list_for_each_entry(page, &n->partial, lru)
3706			process_slab(&t, s, page, alloc, map);
3707		list_for_each_entry(page, &n->full, lru)
3708			process_slab(&t, s, page, alloc, map);
3709		spin_unlock_irqrestore(&n->list_lock, flags);
3710	}
3711
3712	for (i = 0; i < t.count; i++) {
3713		struct location *l = &t.loc[i];
3714
3715		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3716			break;
3717		len += sprintf(buf + len, "%7ld ", l->count);
3718
3719		if (l->addr)
3720			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3721		else
3722			len += sprintf(buf + len, "<not-available>");
3723
3724		if (l->sum_time != l->min_time) {
3725			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3726				l->min_time,
3727				(long)div_u64(l->sum_time, l->count),
3728				l->max_time);
3729		} else
3730			len += sprintf(buf + len, " age=%ld",
3731				l->min_time);
3732
3733		if (l->min_pid != l->max_pid)
3734			len += sprintf(buf + len, " pid=%ld-%ld",
3735				l->min_pid, l->max_pid);
3736		else
3737			len += sprintf(buf + len, " pid=%ld",
3738				l->min_pid);
3739
3740		if (num_online_cpus() > 1 &&
3741				!cpumask_empty(to_cpumask(l->cpus)) &&
3742				len < PAGE_SIZE - 60) {
3743			len += sprintf(buf + len, " cpus=");
3744			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3745						 to_cpumask(l->cpus));
3746		}
3747
3748		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3749				len < PAGE_SIZE - 60) {
3750			len += sprintf(buf + len, " nodes=");
3751			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3752					l->nodes);
3753		}
3754
3755		len += sprintf(buf + len, "\n");
3756	}
3757
3758	free_loc_track(&t);
3759	kfree(map);
3760	if (!t.count)
3761		len += sprintf(buf, "No data\n");
3762	return len;
3763}
3764
3765enum slab_stat_type {
3766	SL_ALL,			/* All slabs */
3767	SL_PARTIAL,		/* Only partially allocated slabs */
3768	SL_CPU,			/* Only slabs used for cpu caches */
3769	SL_OBJECTS,		/* Determine allocated objects not slabs */
3770	SL_TOTAL		/* Determine object capacity not slabs */
3771};
3772
3773#define SO_ALL		(1 << SL_ALL)
3774#define SO_PARTIAL	(1 << SL_PARTIAL)
3775#define SO_CPU		(1 << SL_CPU)
3776#define SO_OBJECTS	(1 << SL_OBJECTS)
3777#define SO_TOTAL	(1 << SL_TOTAL)
3778
3779static ssize_t show_slab_objects(struct kmem_cache *s,
3780			    char *buf, unsigned long flags)
3781{
3782	unsigned long total = 0;
3783	int node;
3784	int x;
3785	unsigned long *nodes;
3786	unsigned long *per_cpu;
3787
3788	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3789	if (!nodes)
3790		return -ENOMEM;
3791	per_cpu = nodes + nr_node_ids;
3792
3793	if (flags & SO_CPU) {
3794		int cpu;
3795
3796		for_each_possible_cpu(cpu) {
3797			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3798
3799			if (!c || c->node < 0)
3800				continue;
3801
3802			if (c->page) {
3803					if (flags & SO_TOTAL)
3804						x = c->page->objects;
3805				else if (flags & SO_OBJECTS)
3806					x = c->page->inuse;
3807				else
3808					x = 1;
3809
3810				total += x;
3811				nodes[c->node] += x;
3812			}
3813			per_cpu[c->node]++;
3814		}
3815	}
3816
3817	if (flags & SO_ALL) {
3818		for_each_node_state(node, N_NORMAL_MEMORY) {
3819			struct kmem_cache_node *n = get_node(s, node);
3820
3821		if (flags & SO_TOTAL)
3822			x = atomic_long_read(&n->total_objects);
3823		else if (flags & SO_OBJECTS)
3824			x = atomic_long_read(&n->total_objects) -
3825				count_partial(n, count_free);
3826
3827			else
3828				x = atomic_long_read(&n->nr_slabs);
3829			total += x;
3830			nodes[node] += x;
3831		}
3832
3833	} else if (flags & SO_PARTIAL) {
3834		for_each_node_state(node, N_NORMAL_MEMORY) {
3835			struct kmem_cache_node *n = get_node(s, node);
3836
3837			if (flags & SO_TOTAL)
3838				x = count_partial(n, count_total);
3839			else if (flags & SO_OBJECTS)
3840				x = count_partial(n, count_inuse);
3841			else
3842				x = n->nr_partial;
3843			total += x;
3844			nodes[node] += x;
3845		}
3846	}
3847	x = sprintf(buf, "%lu", total);
3848#ifdef CONFIG_NUMA
3849	for_each_node_state(node, N_NORMAL_MEMORY)
3850		if (nodes[node])
3851			x += sprintf(buf + x, " N%d=%lu",
3852					node, nodes[node]);
3853#endif
3854	kfree(nodes);
3855	return x + sprintf(buf + x, "\n");
3856}
3857
3858static int any_slab_objects(struct kmem_cache *s)
3859{
3860	int node;
3861
3862	for_each_online_node(node) {
3863		struct kmem_cache_node *n = get_node(s, node);
3864
3865		if (!n)
3866			continue;
3867
3868		if (atomic_long_read(&n->total_objects))
3869			return 1;
3870	}
3871	return 0;
3872}
3873
3874#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3875#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3876
3877struct slab_attribute {
3878	struct attribute attr;
3879	ssize_t (*show)(struct kmem_cache *s, char *buf);
3880	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3881};
3882
3883#define SLAB_ATTR_RO(_name) \
3884	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3885
3886#define SLAB_ATTR(_name) \
3887	static struct slab_attribute _name##_attr =  \
3888	__ATTR(_name, 0644, _name##_show, _name##_store)
3889
3890static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3891{
3892	return sprintf(buf, "%d\n", s->size);
3893}
3894SLAB_ATTR_RO(slab_size);
3895
3896static ssize_t align_show(struct kmem_cache *s, char *buf)
3897{
3898	return sprintf(buf, "%d\n", s->align);
3899}
3900SLAB_ATTR_RO(align);
3901
3902static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3903{
3904	return sprintf(buf, "%d\n", s->objsize);
3905}
3906SLAB_ATTR_RO(object_size);
3907
3908static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3909{
3910	return sprintf(buf, "%d\n", oo_objects(s->oo));
3911}
3912SLAB_ATTR_RO(objs_per_slab);
3913
3914static ssize_t order_store(struct kmem_cache *s,
3915				const char *buf, size_t length)
3916{
3917	unsigned long order;
3918	int err;
3919
3920	err = strict_strtoul(buf, 10, &order);
3921	if (err)
3922		return err;
3923
3924	if (order > slub_max_order || order < slub_min_order)
3925		return -EINVAL;
3926
3927	calculate_sizes(s, order);
3928	return length;
3929}
3930
3931static ssize_t order_show(struct kmem_cache *s, char *buf)
3932{
3933	return sprintf(buf, "%d\n", oo_order(s->oo));
3934}
3935SLAB_ATTR(order);
3936
3937static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3938{
3939	return sprintf(buf, "%lu\n", s->min_partial);
3940}
3941
3942static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3943				 size_t length)
3944{
3945	unsigned long min;
3946	int err;
3947
3948	err = strict_strtoul(buf, 10, &min);
3949	if (err)
3950		return err;
3951
3952	set_min_partial(s, min);
3953	return length;
3954}
3955SLAB_ATTR(min_partial);
3956
3957static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3958{
3959	if (s->ctor) {
3960		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3961
3962		return n + sprintf(buf + n, "\n");
3963	}
3964	return 0;
3965}
3966SLAB_ATTR_RO(ctor);
3967
3968static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3969{
3970	return sprintf(buf, "%d\n", s->refcount - 1);
3971}
3972SLAB_ATTR_RO(aliases);
3973
3974static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3975{
3976	return show_slab_objects(s, buf, SO_ALL);
3977}
3978SLAB_ATTR_RO(slabs);
3979
3980static ssize_t partial_show(struct kmem_cache *s, char *buf)
3981{
3982	return show_slab_objects(s, buf, SO_PARTIAL);
3983}
3984SLAB_ATTR_RO(partial);
3985
3986static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3987{
3988	return show_slab_objects(s, buf, SO_CPU);
3989}
3990SLAB_ATTR_RO(cpu_slabs);
3991
3992static ssize_t objects_show(struct kmem_cache *s, char *buf)
3993{
3994	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3995}
3996SLAB_ATTR_RO(objects);
3997
3998static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3999{
4000	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4001}
4002SLAB_ATTR_RO(objects_partial);
4003
4004static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4005{
4006	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4007}
4008SLAB_ATTR_RO(total_objects);
4009
4010static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4011{
4012	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4013}
4014
4015static ssize_t sanity_checks_store(struct kmem_cache *s,
4016				const char *buf, size_t length)
4017{
4018	s->flags &= ~SLAB_DEBUG_FREE;
4019	if (buf[0] == '1')
4020		s->flags |= SLAB_DEBUG_FREE;
4021	return length;
4022}
4023SLAB_ATTR(sanity_checks);
4024
4025static ssize_t trace_show(struct kmem_cache *s, char *buf)
4026{
4027	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4028}
4029
4030static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4031							size_t length)
4032{
4033	s->flags &= ~SLAB_TRACE;
4034	if (buf[0] == '1')
4035		s->flags |= SLAB_TRACE;
4036	return length;
4037}
4038SLAB_ATTR(trace);
4039
4040#ifdef CONFIG_FAILSLAB
4041static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4042{
4043	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4044}
4045
4046static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4047							size_t length)
4048{
4049	s->flags &= ~SLAB_FAILSLAB;
4050	if (buf[0] == '1')
4051		s->flags |= SLAB_FAILSLAB;
4052	return length;
4053}
4054SLAB_ATTR(failslab);
4055#endif
4056
4057static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4058{
4059	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4060}
4061
4062static ssize_t reclaim_account_store(struct kmem_cache *s,
4063				const char *buf, size_t length)
4064{
4065	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4066	if (buf[0] == '1')
4067		s->flags |= SLAB_RECLAIM_ACCOUNT;
4068	return length;
4069}
4070SLAB_ATTR(reclaim_account);
4071
4072static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4073{
4074	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4075}
4076SLAB_ATTR_RO(hwcache_align);
4077
4078#ifdef CONFIG_ZONE_DMA
4079static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4080{
4081	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4082}
4083SLAB_ATTR_RO(cache_dma);
4084#endif
4085
4086static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4087{
4088	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4089}
4090SLAB_ATTR_RO(destroy_by_rcu);
4091
4092static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4093{
4094	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4095}
4096
4097static ssize_t red_zone_store(struct kmem_cache *s,
4098				const char *buf, size_t length)
4099{
4100	if (any_slab_objects(s))
4101		return -EBUSY;
4102
4103	s->flags &= ~SLAB_RED_ZONE;
4104	if (buf[0] == '1')
4105		s->flags |= SLAB_RED_ZONE;
4106	calculate_sizes(s, -1);
4107	return length;
4108}
4109SLAB_ATTR(red_zone);
4110
4111static ssize_t poison_show(struct kmem_cache *s, char *buf)
4112{
4113	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4114}
4115
4116static ssize_t poison_store(struct kmem_cache *s,
4117				const char *buf, size_t length)
4118{
4119	if (any_slab_objects(s))
4120		return -EBUSY;
4121
4122	s->flags &= ~SLAB_POISON;
4123	if (buf[0] == '1')
4124		s->flags |= SLAB_POISON;
4125	calculate_sizes(s, -1);
4126	return length;
4127}
4128SLAB_ATTR(poison);
4129
4130static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4131{
4132	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4133}
4134
4135static ssize_t store_user_store(struct kmem_cache *s,
4136				const char *buf, size_t length)
4137{
4138	if (any_slab_objects(s))
4139		return -EBUSY;
4140
4141	s->flags &= ~SLAB_STORE_USER;
4142	if (buf[0] == '1')
4143		s->flags |= SLAB_STORE_USER;
4144	calculate_sizes(s, -1);
4145	return length;
4146}
4147SLAB_ATTR(store_user);
4148
4149static ssize_t validate_show(struct kmem_cache *s, char *buf)
4150{
4151	return 0;
4152}
4153
4154static ssize_t validate_store(struct kmem_cache *s,
4155			const char *buf, size_t length)
4156{
4157	int ret = -EINVAL;
4158
4159	if (buf[0] == '1') {
4160		ret = validate_slab_cache(s);
4161		if (ret >= 0)
4162			ret = length;
4163	}
4164	return ret;
4165}
4166SLAB_ATTR(validate);
4167
4168static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4169{
4170	return 0;
4171}
4172
4173static ssize_t shrink_store(struct kmem_cache *s,
4174			const char *buf, size_t length)
4175{
4176	if (buf[0] == '1') {
4177		int rc = kmem_cache_shrink(s);
4178
4179		if (rc)
4180			return rc;
4181	} else
4182		return -EINVAL;
4183	return length;
4184}
4185SLAB_ATTR(shrink);
4186
4187static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4188{
4189	if (!(s->flags & SLAB_STORE_USER))
4190		return -ENOSYS;
4191	return list_locations(s, buf, TRACK_ALLOC);
4192}
4193SLAB_ATTR_RO(alloc_calls);
4194
4195static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4196{
4197	if (!(s->flags & SLAB_STORE_USER))
4198		return -ENOSYS;
4199	return list_locations(s, buf, TRACK_FREE);
4200}
4201SLAB_ATTR_RO(free_calls);
4202
4203#ifdef CONFIG_NUMA
4204static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4205{
4206	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4207}
4208
4209static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4210				const char *buf, size_t length)
4211{
4212	unsigned long ratio;
4213	int err;
4214
4215	err = strict_strtoul(buf, 10, &ratio);
4216	if (err)
4217		return err;
4218
4219	if (ratio <= 100)
4220		s->remote_node_defrag_ratio = ratio * 10;
4221
4222	return length;
4223}
4224SLAB_ATTR(remote_node_defrag_ratio);
4225#endif
4226
4227#ifdef CONFIG_SLUB_STATS
4228static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4229{
4230	unsigned long sum  = 0;
4231	int cpu;
4232	int len;
4233	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4234
4235	if (!data)
4236		return -ENOMEM;
4237
4238	for_each_online_cpu(cpu) {
4239		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4240
4241		data[cpu] = x;
4242		sum += x;
4243	}
4244
4245	len = sprintf(buf, "%lu", sum);
4246
4247#ifdef CONFIG_SMP
4248	for_each_online_cpu(cpu) {
4249		if (data[cpu] && len < PAGE_SIZE - 20)
4250			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4251	}
4252#endif
4253	kfree(data);
4254	return len + sprintf(buf + len, "\n");
4255}
4256
4257static void clear_stat(struct kmem_cache *s, enum stat_item si)
4258{
4259	int cpu;
4260
4261	for_each_online_cpu(cpu)
4262		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4263}
4264
4265#define STAT_ATTR(si, text) 					\
4266static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4267{								\
4268	return show_stat(s, buf, si);				\
4269}								\
4270static ssize_t text##_store(struct kmem_cache *s,		\
4271				const char *buf, size_t length)	\
4272{								\
4273	if (buf[0] != '0')					\
4274		return -EINVAL;					\
4275	clear_stat(s, si);					\
4276	return length;						\
4277}								\
4278SLAB_ATTR(text);						\
4279
4280STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4281STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4282STAT_ATTR(FREE_FASTPATH, free_fastpath);
4283STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4284STAT_ATTR(FREE_FROZEN, free_frozen);
4285STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4286STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4287STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4288STAT_ATTR(ALLOC_SLAB, alloc_slab);
4289STAT_ATTR(ALLOC_REFILL, alloc_refill);
4290STAT_ATTR(FREE_SLAB, free_slab);
4291STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4292STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4293STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4294STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4295STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4296STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4297STAT_ATTR(ORDER_FALLBACK, order_fallback);
4298#endif
4299
4300static struct attribute *slab_attrs[] = {
4301	&slab_size_attr.attr,
4302	&object_size_attr.attr,
4303	&objs_per_slab_attr.attr,
4304	&order_attr.attr,
4305	&min_partial_attr.attr,
4306	&objects_attr.attr,
4307	&objects_partial_attr.attr,
4308	&total_objects_attr.attr,
4309	&slabs_attr.attr,
4310	&partial_attr.attr,
4311	&cpu_slabs_attr.attr,
4312	&ctor_attr.attr,
4313	&aliases_attr.attr,
4314	&align_attr.attr,
4315	&sanity_checks_attr.attr,
4316	&trace_attr.attr,
4317	&hwcache_align_attr.attr,
4318	&reclaim_account_attr.attr,
4319	&destroy_by_rcu_attr.attr,
4320	&red_zone_attr.attr,
4321	&poison_attr.attr,
4322	&store_user_attr.attr,
4323	&validate_attr.attr,
4324	&shrink_attr.attr,
4325	&alloc_calls_attr.attr,
4326	&free_calls_attr.attr,
4327#ifdef CONFIG_ZONE_DMA
4328	&cache_dma_attr.attr,
4329#endif
4330#ifdef CONFIG_NUMA
4331	&remote_node_defrag_ratio_attr.attr,
4332#endif
4333#ifdef CONFIG_SLUB_STATS
4334	&alloc_fastpath_attr.attr,
4335	&alloc_slowpath_attr.attr,
4336	&free_fastpath_attr.attr,
4337	&free_slowpath_attr.attr,
4338	&free_frozen_attr.attr,
4339	&free_add_partial_attr.attr,
4340	&free_remove_partial_attr.attr,
4341	&alloc_from_partial_attr.attr,
4342	&alloc_slab_attr.attr,
4343	&alloc_refill_attr.attr,
4344	&free_slab_attr.attr,
4345	&cpuslab_flush_attr.attr,
4346	&deactivate_full_attr.attr,
4347	&deactivate_empty_attr.attr,
4348	&deactivate_to_head_attr.attr,
4349	&deactivate_to_tail_attr.attr,
4350	&deactivate_remote_frees_attr.attr,
4351	&order_fallback_attr.attr,
4352#endif
4353#ifdef CONFIG_FAILSLAB
4354	&failslab_attr.attr,
4355#endif
4356
4357	NULL
4358};
4359
4360static struct attribute_group slab_attr_group = {
4361	.attrs = slab_attrs,
4362};
4363
4364static ssize_t slab_attr_show(struct kobject *kobj,
4365				struct attribute *attr,
4366				char *buf)
4367{
4368	struct slab_attribute *attribute;
4369	struct kmem_cache *s;
4370	int err;
4371
4372	attribute = to_slab_attr(attr);
4373	s = to_slab(kobj);
4374
4375	if (!attribute->show)
4376		return -EIO;
4377
4378	err = attribute->show(s, buf);
4379
4380	return err;
4381}
4382
4383static ssize_t slab_attr_store(struct kobject *kobj,
4384				struct attribute *attr,
4385				const char *buf, size_t len)
4386{
4387	struct slab_attribute *attribute;
4388	struct kmem_cache *s;
4389	int err;
4390
4391	attribute = to_slab_attr(attr);
4392	s = to_slab(kobj);
4393
4394	if (!attribute->store)
4395		return -EIO;
4396
4397	err = attribute->store(s, buf, len);
4398
4399	return err;
4400}
4401
4402static void kmem_cache_release(struct kobject *kobj)
4403{
4404	struct kmem_cache *s = to_slab(kobj);
4405
4406	kfree(s->name);
4407	kfree(s);
4408}
4409
4410static const struct sysfs_ops slab_sysfs_ops = {
4411	.show = slab_attr_show,
4412	.store = slab_attr_store,
4413};
4414
4415static struct kobj_type slab_ktype = {
4416	.sysfs_ops = &slab_sysfs_ops,
4417	.release = kmem_cache_release
4418};
4419
4420static int uevent_filter(struct kset *kset, struct kobject *kobj)
4421{
4422	struct kobj_type *ktype = get_ktype(kobj);
4423
4424	if (ktype == &slab_ktype)
4425		return 1;
4426	return 0;
4427}
4428
4429static const struct kset_uevent_ops slab_uevent_ops = {
4430	.filter = uevent_filter,
4431};
4432
4433static struct kset *slab_kset;
4434
4435#define ID_STR_LENGTH 64
4436
4437/* Create a unique string id for a slab cache:
4438 *
4439 * Format	:[flags-]size
4440 */
4441static char *create_unique_id(struct kmem_cache *s)
4442{
4443	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4444	char *p = name;
4445
4446	BUG_ON(!name);
4447
4448	*p++ = ':';
4449	/*
4450	 * First flags affecting slabcache operations. We will only
4451	 * get here for aliasable slabs so we do not need to support
4452	 * too many flags. The flags here must cover all flags that
4453	 * are matched during merging to guarantee that the id is
4454	 * unique.
4455	 */
4456	if (s->flags & SLAB_CACHE_DMA)
4457		*p++ = 'd';
4458	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4459		*p++ = 'a';
4460	if (s->flags & SLAB_DEBUG_FREE)
4461		*p++ = 'F';
4462	if (!(s->flags & SLAB_NOTRACK))
4463		*p++ = 't';
4464	if (p != name + 1)
4465		*p++ = '-';
4466	p += sprintf(p, "%07d", s->size);
4467	BUG_ON(p > name + ID_STR_LENGTH - 1);
4468	return name;
4469}
4470
4471static int sysfs_slab_add(struct kmem_cache *s)
4472{
4473	int err;
4474	const char *name;
4475	int unmergeable;
4476
4477	if (slab_state < SYSFS)
4478		/* Defer until later */
4479		return 0;
4480
4481	unmergeable = slab_unmergeable(s);
4482	if (unmergeable) {
4483		/*
4484		 * Slabcache can never be merged so we can use the name proper.
4485		 * This is typically the case for debug situations. In that
4486		 * case we can catch duplicate names easily.
4487		 */
4488		sysfs_remove_link(&slab_kset->kobj, s->name);
4489		name = s->name;
4490	} else {
4491		/*
4492		 * Create a unique name for the slab as a target
4493		 * for the symlinks.
4494		 */
4495		name = create_unique_id(s);
4496	}
4497
4498	s->kobj.kset = slab_kset;
4499	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4500	if (err) {
4501		kobject_put(&s->kobj);
4502		return err;
4503	}
4504
4505	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4506	if (err) {
4507		kobject_del(&s->kobj);
4508		kobject_put(&s->kobj);
4509		return err;
4510	}
4511	kobject_uevent(&s->kobj, KOBJ_ADD);
4512	if (!unmergeable) {
4513		/* Setup first alias */
4514		sysfs_slab_alias(s, s->name);
4515		kfree(name);
4516	}
4517	return 0;
4518}
4519
4520static void sysfs_slab_remove(struct kmem_cache *s)
4521{
4522	if (slab_state < SYSFS)
4523		/*
4524		 * Sysfs has not been setup yet so no need to remove the
4525		 * cache from sysfs.
4526		 */
4527		return;
4528
4529	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4530	kobject_del(&s->kobj);
4531	kobject_put(&s->kobj);
4532}
4533
4534/*
4535 * Need to buffer aliases during bootup until sysfs becomes
4536 * available lest we lose that information.
4537 */
4538struct saved_alias {
4539	struct kmem_cache *s;
4540	const char *name;
4541	struct saved_alias *next;
4542};
4543
4544static struct saved_alias *alias_list;
4545
4546static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4547{
4548	struct saved_alias *al;
4549
4550	if (slab_state == SYSFS) {
4551		/*
4552		 * If we have a leftover link then remove it.
4553		 */
4554		sysfs_remove_link(&slab_kset->kobj, name);
4555		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4556	}
4557
4558	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4559	if (!al)
4560		return -ENOMEM;
4561
4562	al->s = s;
4563	al->name = name;
4564	al->next = alias_list;
4565	alias_list = al;
4566	return 0;
4567}
4568
4569static int __init slab_sysfs_init(void)
4570{
4571	struct kmem_cache *s;
4572	int err;
4573
4574	down_write(&slub_lock);
4575
4576	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4577	if (!slab_kset) {
4578		up_write(&slub_lock);
4579		printk(KERN_ERR "Cannot register slab subsystem.\n");
4580		return -ENOSYS;
4581	}
4582
4583	slab_state = SYSFS;
4584
4585	list_for_each_entry(s, &slab_caches, list) {
4586		err = sysfs_slab_add(s);
4587		if (err)
4588			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4589						" to sysfs\n", s->name);
4590	}
4591
4592	while (alias_list) {
4593		struct saved_alias *al = alias_list;
4594
4595		alias_list = alias_list->next;
4596		err = sysfs_slab_alias(al->s, al->name);
4597		if (err)
4598			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4599					" %s to sysfs\n", s->name);
4600		kfree(al);
4601	}
4602
4603	up_write(&slub_lock);
4604	resiliency_test();
4605	return 0;
4606}
4607
4608__initcall(slab_sysfs_init);
4609#endif
4610
4611/*
4612 * The /proc/slabinfo ABI
4613 */
4614#ifdef CONFIG_SLABINFO
4615static void print_slabinfo_header(struct seq_file *m)
4616{
4617	seq_puts(m, "slabinfo - version: 2.1\n");
4618	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4619		 "<objperslab> <pagesperslab>");
4620	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4621	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4622	seq_putc(m, '\n');
4623}
4624
4625static void *s_start(struct seq_file *m, loff_t *pos)
4626{
4627	loff_t n = *pos;
4628
4629	down_read(&slub_lock);
4630	if (!n)
4631		print_slabinfo_header(m);
4632
4633	return seq_list_start(&slab_caches, *pos);
4634}
4635
4636static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4637{
4638	return seq_list_next(p, &slab_caches, pos);
4639}
4640
4641static void s_stop(struct seq_file *m, void *p)
4642{
4643	up_read(&slub_lock);
4644}
4645
4646static int s_show(struct seq_file *m, void *p)
4647{
4648	unsigned long nr_partials = 0;
4649	unsigned long nr_slabs = 0;
4650	unsigned long nr_inuse = 0;
4651	unsigned long nr_objs = 0;
4652	unsigned long nr_free = 0;
4653	struct kmem_cache *s;
4654	int node;
4655
4656	s = list_entry(p, struct kmem_cache, list);
4657
4658	for_each_online_node(node) {
4659		struct kmem_cache_node *n = get_node(s, node);
4660
4661		if (!n)
4662			continue;
4663
4664		nr_partials += n->nr_partial;
4665		nr_slabs += atomic_long_read(&n->nr_slabs);
4666		nr_objs += atomic_long_read(&n->total_objects);
4667		nr_free += count_partial(n, count_free);
4668	}
4669
4670	nr_inuse = nr_objs - nr_free;
4671
4672	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4673		   nr_objs, s->size, oo_objects(s->oo),
4674		   (1 << oo_order(s->oo)));
4675	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4676	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4677		   0UL);
4678	seq_putc(m, '\n');
4679	return 0;
4680}
4681
4682static const struct seq_operations slabinfo_op = {
4683	.start = s_start,
4684	.next = s_next,
4685	.stop = s_stop,
4686	.show = s_show,
4687};
4688
4689static int slabinfo_open(struct inode *inode, struct file *file)
4690{
4691	return seq_open(file, &slabinfo_op);
4692}
4693
4694static const struct file_operations proc_slabinfo_operations = {
4695	.open		= slabinfo_open,
4696	.read		= seq_read,
4697	.llseek		= seq_lseek,
4698	.release	= seq_release,
4699};
4700
4701static int __init slab_proc_init(void)
4702{
4703	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4704	return 0;
4705}
4706module_init(slab_proc_init);
4707#endif /* CONFIG_SLABINFO */
4708