slub.c revision 41ab8592ca35a20580665cae18c172816236b21e
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/debugobjects.h>
23#include <linux/kallsyms.h>
24#include <linux/memory.h>
25#include <linux/math64.h>
26
27/*
28 * Lock order:
29 *   1. slab_lock(page)
30 *   2. slab->list_lock
31 *
32 *   The slab_lock protects operations on the object of a particular
33 *   slab and its metadata in the page struct. If the slab lock
34 *   has been taken then no allocations nor frees can be performed
35 *   on the objects in the slab nor can the slab be added or removed
36 *   from the partial or full lists since this would mean modifying
37 *   the page_struct of the slab.
38 *
39 *   The list_lock protects the partial and full list on each node and
40 *   the partial slab counter. If taken then no new slabs may be added or
41 *   removed from the lists nor make the number of partial slabs be modified.
42 *   (Note that the total number of slabs is an atomic value that may be
43 *   modified without taking the list lock).
44 *
45 *   The list_lock is a centralized lock and thus we avoid taking it as
46 *   much as possible. As long as SLUB does not have to handle partial
47 *   slabs, operations can continue without any centralized lock. F.e.
48 *   allocating a long series of objects that fill up slabs does not require
49 *   the list lock.
50 *
51 *   The lock order is sometimes inverted when we are trying to get a slab
52 *   off a list. We take the list_lock and then look for a page on the list
53 *   to use. While we do that objects in the slabs may be freed. We can
54 *   only operate on the slab if we have also taken the slab_lock. So we use
55 *   a slab_trylock() on the slab. If trylock was successful then no frees
56 *   can occur anymore and we can use the slab for allocations etc. If the
57 *   slab_trylock() does not succeed then frees are in progress in the slab and
58 *   we must stay away from it for a while since we may cause a bouncing
59 *   cacheline if we try to acquire the lock. So go onto the next slab.
60 *   If all pages are busy then we may allocate a new slab instead of reusing
61 *   a partial slab. A new slab has noone operating on it and thus there is
62 *   no danger of cacheline contention.
63 *
64 *   Interrupts are disabled during allocation and deallocation in order to
65 *   make the slab allocator safe to use in the context of an irq. In addition
66 *   interrupts are disabled to ensure that the processor does not change
67 *   while handling per_cpu slabs, due to kernel preemption.
68 *
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
71 *
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
77 *
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
81 *
82 * Overloading of page flags that are otherwise used for LRU management.
83 *
84 * PageActive 		The slab is frozen and exempt from list processing.
85 * 			This means that the slab is dedicated to a purpose
86 * 			such as satisfying allocations for a specific
87 * 			processor. Objects may be freed in the slab while
88 * 			it is frozen but slab_free will then skip the usual
89 * 			list operations. It is up to the processor holding
90 * 			the slab to integrate the slab into the slab lists
91 * 			when the slab is no longer needed.
92 *
93 * 			One use of this flag is to mark slabs that are
94 * 			used for allocations. Then such a slab becomes a cpu
95 * 			slab. The cpu slab may be equipped with an additional
96 * 			freelist that allows lockless access to
97 * 			free objects in addition to the regular freelist
98 * 			that requires the slab lock.
99 *
100 * PageError		Slab requires special handling due to debug
101 * 			options set. This moves	slab handling out of
102 * 			the fast path and disables lockless freelists.
103 */
104
105#define FROZEN (1 << PG_active)
106
107#ifdef CONFIG_SLUB_DEBUG
108#define SLABDEBUG (1 << PG_error)
109#else
110#define SLABDEBUG 0
111#endif
112
113static inline int SlabFrozen(struct page *page)
114{
115	return page->flags & FROZEN;
116}
117
118static inline void SetSlabFrozen(struct page *page)
119{
120	page->flags |= FROZEN;
121}
122
123static inline void ClearSlabFrozen(struct page *page)
124{
125	page->flags &= ~FROZEN;
126}
127
128static inline int SlabDebug(struct page *page)
129{
130	return page->flags & SLABDEBUG;
131}
132
133static inline void SetSlabDebug(struct page *page)
134{
135	page->flags |= SLABDEBUG;
136}
137
138static inline void ClearSlabDebug(struct page *page)
139{
140	page->flags &= ~SLABDEBUG;
141}
142
143/*
144 * Issues still to be resolved:
145 *
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
148 * - Variable sizing of the per node arrays
149 */
150
151/* Enable to test recovery from slab corruption on boot */
152#undef SLUB_RESILIENCY_TEST
153
154/*
155 * Mininum number of partial slabs. These will be left on the partial
156 * lists even if they are empty. kmem_cache_shrink may reclaim them.
157 */
158#define MIN_PARTIAL 5
159
160/*
161 * Maximum number of desirable partial slabs.
162 * The existence of more partial slabs makes kmem_cache_shrink
163 * sort the partial list by the number of objects in the.
164 */
165#define MAX_PARTIAL 10
166
167#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
168				SLAB_POISON | SLAB_STORE_USER)
169
170/*
171 * Set of flags that will prevent slab merging
172 */
173#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
174		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
175
176#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
177		SLAB_CACHE_DMA)
178
179#ifndef ARCH_KMALLOC_MINALIGN
180#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
181#endif
182
183#ifndef ARCH_SLAB_MINALIGN
184#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
185#endif
186
187/* Internal SLUB flags */
188#define __OBJECT_POISON		0x80000000 /* Poison object */
189#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
190
191static int kmem_size = sizeof(struct kmem_cache);
192
193#ifdef CONFIG_SMP
194static struct notifier_block slab_notifier;
195#endif
196
197static enum {
198	DOWN,		/* No slab functionality available */
199	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
200	UP,		/* Everything works but does not show up in sysfs */
201	SYSFS		/* Sysfs up */
202} slab_state = DOWN;
203
204/* A list of all slab caches on the system */
205static DECLARE_RWSEM(slub_lock);
206static LIST_HEAD(slab_caches);
207
208/*
209 * Tracking user of a slab.
210 */
211struct track {
212	void *addr;		/* Called from address */
213	int cpu;		/* Was running on cpu */
214	int pid;		/* Pid context */
215	unsigned long when;	/* When did the operation occur */
216};
217
218enum track_item { TRACK_ALLOC, TRACK_FREE };
219
220#ifdef CONFIG_SLUB_DEBUG
221static int sysfs_slab_add(struct kmem_cache *);
222static int sysfs_slab_alias(struct kmem_cache *, const char *);
223static void sysfs_slab_remove(struct kmem_cache *);
224
225#else
226static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
227static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
228							{ return 0; }
229static inline void sysfs_slab_remove(struct kmem_cache *s)
230{
231	kfree(s);
232}
233
234#endif
235
236static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
237{
238#ifdef CONFIG_SLUB_STATS
239	c->stat[si]++;
240#endif
241}
242
243/********************************************************************
244 * 			Core slab cache functions
245 *******************************************************************/
246
247int slab_is_available(void)
248{
249	return slab_state >= UP;
250}
251
252static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
253{
254#ifdef CONFIG_NUMA
255	return s->node[node];
256#else
257	return &s->local_node;
258#endif
259}
260
261static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
262{
263#ifdef CONFIG_SMP
264	return s->cpu_slab[cpu];
265#else
266	return &s->cpu_slab;
267#endif
268}
269
270/* Verify that a pointer has an address that is valid within a slab page */
271static inline int check_valid_pointer(struct kmem_cache *s,
272				struct page *page, const void *object)
273{
274	void *base;
275
276	if (!object)
277		return 1;
278
279	base = page_address(page);
280	if (object < base || object >= base + page->objects * s->size ||
281		(object - base) % s->size) {
282		return 0;
283	}
284
285	return 1;
286}
287
288/*
289 * Slow version of get and set free pointer.
290 *
291 * This version requires touching the cache lines of kmem_cache which
292 * we avoid to do in the fast alloc free paths. There we obtain the offset
293 * from the page struct.
294 */
295static inline void *get_freepointer(struct kmem_cache *s, void *object)
296{
297	return *(void **)(object + s->offset);
298}
299
300static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301{
302	*(void **)(object + s->offset) = fp;
303}
304
305/* Loop over all objects in a slab */
306#define for_each_object(__p, __s, __addr, __objects) \
307	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
308			__p += (__s)->size)
309
310/* Scan freelist */
311#define for_each_free_object(__p, __s, __free) \
312	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
313
314/* Determine object index from a given position */
315static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
316{
317	return (p - addr) / s->size;
318}
319
320static inline struct kmem_cache_order_objects oo_make(int order,
321						unsigned long size)
322{
323	struct kmem_cache_order_objects x = {
324		(order << 16) + (PAGE_SIZE << order) / size
325	};
326
327	return x;
328}
329
330static inline int oo_order(struct kmem_cache_order_objects x)
331{
332	return x.x >> 16;
333}
334
335static inline int oo_objects(struct kmem_cache_order_objects x)
336{
337	return x.x & ((1 << 16) - 1);
338}
339
340#ifdef CONFIG_SLUB_DEBUG
341/*
342 * Debug settings:
343 */
344#ifdef CONFIG_SLUB_DEBUG_ON
345static int slub_debug = DEBUG_DEFAULT_FLAGS;
346#else
347static int slub_debug;
348#endif
349
350static char *slub_debug_slabs;
351
352/*
353 * Object debugging
354 */
355static void print_section(char *text, u8 *addr, unsigned int length)
356{
357	int i, offset;
358	int newline = 1;
359	char ascii[17];
360
361	ascii[16] = 0;
362
363	for (i = 0; i < length; i++) {
364		if (newline) {
365			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
366			newline = 0;
367		}
368		printk(KERN_CONT " %02x", addr[i]);
369		offset = i % 16;
370		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
371		if (offset == 15) {
372			printk(KERN_CONT " %s\n", ascii);
373			newline = 1;
374		}
375	}
376	if (!newline) {
377		i %= 16;
378		while (i < 16) {
379			printk(KERN_CONT "   ");
380			ascii[i] = ' ';
381			i++;
382		}
383		printk(KERN_CONT " %s\n", ascii);
384	}
385}
386
387static struct track *get_track(struct kmem_cache *s, void *object,
388	enum track_item alloc)
389{
390	struct track *p;
391
392	if (s->offset)
393		p = object + s->offset + sizeof(void *);
394	else
395		p = object + s->inuse;
396
397	return p + alloc;
398}
399
400static void set_track(struct kmem_cache *s, void *object,
401				enum track_item alloc, void *addr)
402{
403	struct track *p;
404
405	if (s->offset)
406		p = object + s->offset + sizeof(void *);
407	else
408		p = object + s->inuse;
409
410	p += alloc;
411	if (addr) {
412		p->addr = addr;
413		p->cpu = smp_processor_id();
414		p->pid = current->pid;
415		p->when = jiffies;
416	} else
417		memset(p, 0, sizeof(struct track));
418}
419
420static void init_tracking(struct kmem_cache *s, void *object)
421{
422	if (!(s->flags & SLAB_STORE_USER))
423		return;
424
425	set_track(s, object, TRACK_FREE, NULL);
426	set_track(s, object, TRACK_ALLOC, NULL);
427}
428
429static void print_track(const char *s, struct track *t)
430{
431	if (!t->addr)
432		return;
433
434	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
435		s, t->addr, jiffies - t->when, t->cpu, t->pid);
436}
437
438static void print_tracking(struct kmem_cache *s, void *object)
439{
440	if (!(s->flags & SLAB_STORE_USER))
441		return;
442
443	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
444	print_track("Freed", get_track(s, object, TRACK_FREE));
445}
446
447static void print_page_info(struct page *page)
448{
449	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
450		page, page->objects, page->inuse, page->freelist, page->flags);
451
452}
453
454static void slab_bug(struct kmem_cache *s, char *fmt, ...)
455{
456	va_list args;
457	char buf[100];
458
459	va_start(args, fmt);
460	vsnprintf(buf, sizeof(buf), fmt, args);
461	va_end(args);
462	printk(KERN_ERR "========================================"
463			"=====================================\n");
464	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
465	printk(KERN_ERR "----------------------------------------"
466			"-------------------------------------\n\n");
467}
468
469static void slab_fix(struct kmem_cache *s, char *fmt, ...)
470{
471	va_list args;
472	char buf[100];
473
474	va_start(args, fmt);
475	vsnprintf(buf, sizeof(buf), fmt, args);
476	va_end(args);
477	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
478}
479
480static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
481{
482	unsigned int off;	/* Offset of last byte */
483	u8 *addr = page_address(page);
484
485	print_tracking(s, p);
486
487	print_page_info(page);
488
489	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
490			p, p - addr, get_freepointer(s, p));
491
492	if (p > addr + 16)
493		print_section("Bytes b4", p - 16, 16);
494
495	print_section("Object", p, min(s->objsize, 128));
496
497	if (s->flags & SLAB_RED_ZONE)
498		print_section("Redzone", p + s->objsize,
499			s->inuse - s->objsize);
500
501	if (s->offset)
502		off = s->offset + sizeof(void *);
503	else
504		off = s->inuse;
505
506	if (s->flags & SLAB_STORE_USER)
507		off += 2 * sizeof(struct track);
508
509	if (off != s->size)
510		/* Beginning of the filler is the free pointer */
511		print_section("Padding", p + off, s->size - off);
512
513	dump_stack();
514}
515
516static void object_err(struct kmem_cache *s, struct page *page,
517			u8 *object, char *reason)
518{
519	slab_bug(s, "%s", reason);
520	print_trailer(s, page, object);
521}
522
523static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
524{
525	va_list args;
526	char buf[100];
527
528	va_start(args, fmt);
529	vsnprintf(buf, sizeof(buf), fmt, args);
530	va_end(args);
531	slab_bug(s, "%s", buf);
532	print_page_info(page);
533	dump_stack();
534}
535
536static void init_object(struct kmem_cache *s, void *object, int active)
537{
538	u8 *p = object;
539
540	if (s->flags & __OBJECT_POISON) {
541		memset(p, POISON_FREE, s->objsize - 1);
542		p[s->objsize - 1] = POISON_END;
543	}
544
545	if (s->flags & SLAB_RED_ZONE)
546		memset(p + s->objsize,
547			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
548			s->inuse - s->objsize);
549}
550
551static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
552{
553	while (bytes) {
554		if (*start != (u8)value)
555			return start;
556		start++;
557		bytes--;
558	}
559	return NULL;
560}
561
562static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
563						void *from, void *to)
564{
565	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
566	memset(from, data, to - from);
567}
568
569static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
570			u8 *object, char *what,
571			u8 *start, unsigned int value, unsigned int bytes)
572{
573	u8 *fault;
574	u8 *end;
575
576	fault = check_bytes(start, value, bytes);
577	if (!fault)
578		return 1;
579
580	end = start + bytes;
581	while (end > fault && end[-1] == value)
582		end--;
583
584	slab_bug(s, "%s overwritten", what);
585	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
586					fault, end - 1, fault[0], value);
587	print_trailer(s, page, object);
588
589	restore_bytes(s, what, value, fault, end);
590	return 0;
591}
592
593/*
594 * Object layout:
595 *
596 * object address
597 * 	Bytes of the object to be managed.
598 * 	If the freepointer may overlay the object then the free
599 * 	pointer is the first word of the object.
600 *
601 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
602 * 	0xa5 (POISON_END)
603 *
604 * object + s->objsize
605 * 	Padding to reach word boundary. This is also used for Redzoning.
606 * 	Padding is extended by another word if Redzoning is enabled and
607 * 	objsize == inuse.
608 *
609 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
610 * 	0xcc (RED_ACTIVE) for objects in use.
611 *
612 * object + s->inuse
613 * 	Meta data starts here.
614 *
615 * 	A. Free pointer (if we cannot overwrite object on free)
616 * 	B. Tracking data for SLAB_STORE_USER
617 * 	C. Padding to reach required alignment boundary or at mininum
618 * 		one word if debugging is on to be able to detect writes
619 * 		before the word boundary.
620 *
621 *	Padding is done using 0x5a (POISON_INUSE)
622 *
623 * object + s->size
624 * 	Nothing is used beyond s->size.
625 *
626 * If slabcaches are merged then the objsize and inuse boundaries are mostly
627 * ignored. And therefore no slab options that rely on these boundaries
628 * may be used with merged slabcaches.
629 */
630
631static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
632{
633	unsigned long off = s->inuse;	/* The end of info */
634
635	if (s->offset)
636		/* Freepointer is placed after the object. */
637		off += sizeof(void *);
638
639	if (s->flags & SLAB_STORE_USER)
640		/* We also have user information there */
641		off += 2 * sizeof(struct track);
642
643	if (s->size == off)
644		return 1;
645
646	return check_bytes_and_report(s, page, p, "Object padding",
647				p + off, POISON_INUSE, s->size - off);
648}
649
650/* Check the pad bytes at the end of a slab page */
651static int slab_pad_check(struct kmem_cache *s, struct page *page)
652{
653	u8 *start;
654	u8 *fault;
655	u8 *end;
656	int length;
657	int remainder;
658
659	if (!(s->flags & SLAB_POISON))
660		return 1;
661
662	start = page_address(page);
663	length = (PAGE_SIZE << compound_order(page));
664	end = start + length;
665	remainder = length % s->size;
666	if (!remainder)
667		return 1;
668
669	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
670	if (!fault)
671		return 1;
672	while (end > fault && end[-1] == POISON_INUSE)
673		end--;
674
675	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
676	print_section("Padding", end - remainder, remainder);
677
678	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
679	return 0;
680}
681
682static int check_object(struct kmem_cache *s, struct page *page,
683					void *object, int active)
684{
685	u8 *p = object;
686	u8 *endobject = object + s->objsize;
687
688	if (s->flags & SLAB_RED_ZONE) {
689		unsigned int red =
690			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
691
692		if (!check_bytes_and_report(s, page, object, "Redzone",
693			endobject, red, s->inuse - s->objsize))
694			return 0;
695	} else {
696		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
697			check_bytes_and_report(s, page, p, "Alignment padding",
698				endobject, POISON_INUSE, s->inuse - s->objsize);
699		}
700	}
701
702	if (s->flags & SLAB_POISON) {
703		if (!active && (s->flags & __OBJECT_POISON) &&
704			(!check_bytes_and_report(s, page, p, "Poison", p,
705					POISON_FREE, s->objsize - 1) ||
706			 !check_bytes_and_report(s, page, p, "Poison",
707				p + s->objsize - 1, POISON_END, 1)))
708			return 0;
709		/*
710		 * check_pad_bytes cleans up on its own.
711		 */
712		check_pad_bytes(s, page, p);
713	}
714
715	if (!s->offset && active)
716		/*
717		 * Object and freepointer overlap. Cannot check
718		 * freepointer while object is allocated.
719		 */
720		return 1;
721
722	/* Check free pointer validity */
723	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
724		object_err(s, page, p, "Freepointer corrupt");
725		/*
726		 * No choice but to zap it and thus loose the remainder
727		 * of the free objects in this slab. May cause
728		 * another error because the object count is now wrong.
729		 */
730		set_freepointer(s, p, NULL);
731		return 0;
732	}
733	return 1;
734}
735
736static int check_slab(struct kmem_cache *s, struct page *page)
737{
738	int maxobj;
739
740	VM_BUG_ON(!irqs_disabled());
741
742	if (!PageSlab(page)) {
743		slab_err(s, page, "Not a valid slab page");
744		return 0;
745	}
746
747	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
748	if (page->objects > maxobj) {
749		slab_err(s, page, "objects %u > max %u",
750			s->name, page->objects, maxobj);
751		return 0;
752	}
753	if (page->inuse > page->objects) {
754		slab_err(s, page, "inuse %u > max %u",
755			s->name, page->inuse, page->objects);
756		return 0;
757	}
758	/* Slab_pad_check fixes things up after itself */
759	slab_pad_check(s, page);
760	return 1;
761}
762
763/*
764 * Determine if a certain object on a page is on the freelist. Must hold the
765 * slab lock to guarantee that the chains are in a consistent state.
766 */
767static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
768{
769	int nr = 0;
770	void *fp = page->freelist;
771	void *object = NULL;
772	unsigned long max_objects;
773
774	while (fp && nr <= page->objects) {
775		if (fp == search)
776			return 1;
777		if (!check_valid_pointer(s, page, fp)) {
778			if (object) {
779				object_err(s, page, object,
780					"Freechain corrupt");
781				set_freepointer(s, object, NULL);
782				break;
783			} else {
784				slab_err(s, page, "Freepointer corrupt");
785				page->freelist = NULL;
786				page->inuse = page->objects;
787				slab_fix(s, "Freelist cleared");
788				return 0;
789			}
790			break;
791		}
792		object = fp;
793		fp = get_freepointer(s, object);
794		nr++;
795	}
796
797	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
798	if (max_objects > 65535)
799		max_objects = 65535;
800
801	if (page->objects != max_objects) {
802		slab_err(s, page, "Wrong number of objects. Found %d but "
803			"should be %d", page->objects, max_objects);
804		page->objects = max_objects;
805		slab_fix(s, "Number of objects adjusted.");
806	}
807	if (page->inuse != page->objects - nr) {
808		slab_err(s, page, "Wrong object count. Counter is %d but "
809			"counted were %d", page->inuse, page->objects - nr);
810		page->inuse = page->objects - nr;
811		slab_fix(s, "Object count adjusted.");
812	}
813	return search == NULL;
814}
815
816static void trace(struct kmem_cache *s, struct page *page, void *object,
817								int alloc)
818{
819	if (s->flags & SLAB_TRACE) {
820		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
821			s->name,
822			alloc ? "alloc" : "free",
823			object, page->inuse,
824			page->freelist);
825
826		if (!alloc)
827			print_section("Object", (void *)object, s->objsize);
828
829		dump_stack();
830	}
831}
832
833/*
834 * Tracking of fully allocated slabs for debugging purposes.
835 */
836static void add_full(struct kmem_cache_node *n, struct page *page)
837{
838	spin_lock(&n->list_lock);
839	list_add(&page->lru, &n->full);
840	spin_unlock(&n->list_lock);
841}
842
843static void remove_full(struct kmem_cache *s, struct page *page)
844{
845	struct kmem_cache_node *n;
846
847	if (!(s->flags & SLAB_STORE_USER))
848		return;
849
850	n = get_node(s, page_to_nid(page));
851
852	spin_lock(&n->list_lock);
853	list_del(&page->lru);
854	spin_unlock(&n->list_lock);
855}
856
857/* Tracking of the number of slabs for debugging purposes */
858static inline unsigned long slabs_node(struct kmem_cache *s, int node)
859{
860	struct kmem_cache_node *n = get_node(s, node);
861
862	return atomic_long_read(&n->nr_slabs);
863}
864
865static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
866{
867	struct kmem_cache_node *n = get_node(s, node);
868
869	/*
870	 * May be called early in order to allocate a slab for the
871	 * kmem_cache_node structure. Solve the chicken-egg
872	 * dilemma by deferring the increment of the count during
873	 * bootstrap (see early_kmem_cache_node_alloc).
874	 */
875	if (!NUMA_BUILD || n) {
876		atomic_long_inc(&n->nr_slabs);
877		atomic_long_add(objects, &n->total_objects);
878	}
879}
880static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
881{
882	struct kmem_cache_node *n = get_node(s, node);
883
884	atomic_long_dec(&n->nr_slabs);
885	atomic_long_sub(objects, &n->total_objects);
886}
887
888/* Object debug checks for alloc/free paths */
889static void setup_object_debug(struct kmem_cache *s, struct page *page,
890								void *object)
891{
892	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
893		return;
894
895	init_object(s, object, 0);
896	init_tracking(s, object);
897}
898
899static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
900						void *object, void *addr)
901{
902	if (!check_slab(s, page))
903		goto bad;
904
905	if (!on_freelist(s, page, object)) {
906		object_err(s, page, object, "Object already allocated");
907		goto bad;
908	}
909
910	if (!check_valid_pointer(s, page, object)) {
911		object_err(s, page, object, "Freelist Pointer check fails");
912		goto bad;
913	}
914
915	if (!check_object(s, page, object, 0))
916		goto bad;
917
918	/* Success perform special debug activities for allocs */
919	if (s->flags & SLAB_STORE_USER)
920		set_track(s, object, TRACK_ALLOC, addr);
921	trace(s, page, object, 1);
922	init_object(s, object, 1);
923	return 1;
924
925bad:
926	if (PageSlab(page)) {
927		/*
928		 * If this is a slab page then lets do the best we can
929		 * to avoid issues in the future. Marking all objects
930		 * as used avoids touching the remaining objects.
931		 */
932		slab_fix(s, "Marking all objects used");
933		page->inuse = page->objects;
934		page->freelist = NULL;
935	}
936	return 0;
937}
938
939static int free_debug_processing(struct kmem_cache *s, struct page *page,
940						void *object, void *addr)
941{
942	if (!check_slab(s, page))
943		goto fail;
944
945	if (!check_valid_pointer(s, page, object)) {
946		slab_err(s, page, "Invalid object pointer 0x%p", object);
947		goto fail;
948	}
949
950	if (on_freelist(s, page, object)) {
951		object_err(s, page, object, "Object already free");
952		goto fail;
953	}
954
955	if (!check_object(s, page, object, 1))
956		return 0;
957
958	if (unlikely(s != page->slab)) {
959		if (!PageSlab(page)) {
960			slab_err(s, page, "Attempt to free object(0x%p) "
961				"outside of slab", object);
962		} else if (!page->slab) {
963			printk(KERN_ERR
964				"SLUB <none>: no slab for object 0x%p.\n",
965						object);
966			dump_stack();
967		} else
968			object_err(s, page, object,
969					"page slab pointer corrupt.");
970		goto fail;
971	}
972
973	/* Special debug activities for freeing objects */
974	if (!SlabFrozen(page) && !page->freelist)
975		remove_full(s, page);
976	if (s->flags & SLAB_STORE_USER)
977		set_track(s, object, TRACK_FREE, addr);
978	trace(s, page, object, 0);
979	init_object(s, object, 0);
980	return 1;
981
982fail:
983	slab_fix(s, "Object at 0x%p not freed", object);
984	return 0;
985}
986
987static int __init setup_slub_debug(char *str)
988{
989	slub_debug = DEBUG_DEFAULT_FLAGS;
990	if (*str++ != '=' || !*str)
991		/*
992		 * No options specified. Switch on full debugging.
993		 */
994		goto out;
995
996	if (*str == ',')
997		/*
998		 * No options but restriction on slabs. This means full
999		 * debugging for slabs matching a pattern.
1000		 */
1001		goto check_slabs;
1002
1003	slub_debug = 0;
1004	if (*str == '-')
1005		/*
1006		 * Switch off all debugging measures.
1007		 */
1008		goto out;
1009
1010	/*
1011	 * Determine which debug features should be switched on
1012	 */
1013	for (; *str && *str != ','; str++) {
1014		switch (tolower(*str)) {
1015		case 'f':
1016			slub_debug |= SLAB_DEBUG_FREE;
1017			break;
1018		case 'z':
1019			slub_debug |= SLAB_RED_ZONE;
1020			break;
1021		case 'p':
1022			slub_debug |= SLAB_POISON;
1023			break;
1024		case 'u':
1025			slub_debug |= SLAB_STORE_USER;
1026			break;
1027		case 't':
1028			slub_debug |= SLAB_TRACE;
1029			break;
1030		default:
1031			printk(KERN_ERR "slub_debug option '%c' "
1032				"unknown. skipped\n", *str);
1033		}
1034	}
1035
1036check_slabs:
1037	if (*str == ',')
1038		slub_debug_slabs = str + 1;
1039out:
1040	return 1;
1041}
1042
1043__setup("slub_debug", setup_slub_debug);
1044
1045static unsigned long kmem_cache_flags(unsigned long objsize,
1046	unsigned long flags, const char *name,
1047	void (*ctor)(struct kmem_cache *, void *))
1048{
1049	/*
1050	 * Enable debugging if selected on the kernel commandline.
1051	 */
1052	if (slub_debug && (!slub_debug_slabs ||
1053	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1054			flags |= slub_debug;
1055
1056	return flags;
1057}
1058#else
1059static inline void setup_object_debug(struct kmem_cache *s,
1060			struct page *page, void *object) {}
1061
1062static inline int alloc_debug_processing(struct kmem_cache *s,
1063	struct page *page, void *object, void *addr) { return 0; }
1064
1065static inline int free_debug_processing(struct kmem_cache *s,
1066	struct page *page, void *object, void *addr) { return 0; }
1067
1068static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1069			{ return 1; }
1070static inline int check_object(struct kmem_cache *s, struct page *page,
1071			void *object, int active) { return 1; }
1072static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1073static inline unsigned long kmem_cache_flags(unsigned long objsize,
1074	unsigned long flags, const char *name,
1075	void (*ctor)(struct kmem_cache *, void *))
1076{
1077	return flags;
1078}
1079#define slub_debug 0
1080
1081static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1082							{ return 0; }
1083static inline void inc_slabs_node(struct kmem_cache *s, int node,
1084							int objects) {}
1085static inline void dec_slabs_node(struct kmem_cache *s, int node,
1086							int objects) {}
1087#endif
1088
1089/*
1090 * Slab allocation and freeing
1091 */
1092static inline struct page *alloc_slab_page(gfp_t flags, int node,
1093					struct kmem_cache_order_objects oo)
1094{
1095	int order = oo_order(oo);
1096
1097	if (node == -1)
1098		return alloc_pages(flags, order);
1099	else
1100		return alloc_pages_node(node, flags, order);
1101}
1102
1103static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1104{
1105	struct page *page;
1106	struct kmem_cache_order_objects oo = s->oo;
1107
1108	flags |= s->allocflags;
1109
1110	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1111									oo);
1112	if (unlikely(!page)) {
1113		oo = s->min;
1114		/*
1115		 * Allocation may have failed due to fragmentation.
1116		 * Try a lower order alloc if possible
1117		 */
1118		page = alloc_slab_page(flags, node, oo);
1119		if (!page)
1120			return NULL;
1121
1122		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1123	}
1124	page->objects = oo_objects(oo);
1125	mod_zone_page_state(page_zone(page),
1126		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1127		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1128		1 << oo_order(oo));
1129
1130	return page;
1131}
1132
1133static void setup_object(struct kmem_cache *s, struct page *page,
1134				void *object)
1135{
1136	setup_object_debug(s, page, object);
1137	if (unlikely(s->ctor))
1138		s->ctor(s, object);
1139}
1140
1141static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1142{
1143	struct page *page;
1144	void *start;
1145	void *last;
1146	void *p;
1147
1148	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1149
1150	page = allocate_slab(s,
1151		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1152	if (!page)
1153		goto out;
1154
1155	inc_slabs_node(s, page_to_nid(page), page->objects);
1156	page->slab = s;
1157	page->flags |= 1 << PG_slab;
1158	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1159			SLAB_STORE_USER | SLAB_TRACE))
1160		SetSlabDebug(page);
1161
1162	start = page_address(page);
1163
1164	if (unlikely(s->flags & SLAB_POISON))
1165		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1166
1167	last = start;
1168	for_each_object(p, s, start, page->objects) {
1169		setup_object(s, page, last);
1170		set_freepointer(s, last, p);
1171		last = p;
1172	}
1173	setup_object(s, page, last);
1174	set_freepointer(s, last, NULL);
1175
1176	page->freelist = start;
1177	page->inuse = 0;
1178out:
1179	return page;
1180}
1181
1182static void __free_slab(struct kmem_cache *s, struct page *page)
1183{
1184	int order = compound_order(page);
1185	int pages = 1 << order;
1186
1187	if (unlikely(SlabDebug(page))) {
1188		void *p;
1189
1190		slab_pad_check(s, page);
1191		for_each_object(p, s, page_address(page),
1192						page->objects)
1193			check_object(s, page, p, 0);
1194		ClearSlabDebug(page);
1195	}
1196
1197	mod_zone_page_state(page_zone(page),
1198		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1199		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1200		-pages);
1201
1202	__ClearPageSlab(page);
1203	reset_page_mapcount(page);
1204	__free_pages(page, order);
1205}
1206
1207static void rcu_free_slab(struct rcu_head *h)
1208{
1209	struct page *page;
1210
1211	page = container_of((struct list_head *)h, struct page, lru);
1212	__free_slab(page->slab, page);
1213}
1214
1215static void free_slab(struct kmem_cache *s, struct page *page)
1216{
1217	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1218		/*
1219		 * RCU free overloads the RCU head over the LRU
1220		 */
1221		struct rcu_head *head = (void *)&page->lru;
1222
1223		call_rcu(head, rcu_free_slab);
1224	} else
1225		__free_slab(s, page);
1226}
1227
1228static void discard_slab(struct kmem_cache *s, struct page *page)
1229{
1230	dec_slabs_node(s, page_to_nid(page), page->objects);
1231	free_slab(s, page);
1232}
1233
1234/*
1235 * Per slab locking using the pagelock
1236 */
1237static __always_inline void slab_lock(struct page *page)
1238{
1239	bit_spin_lock(PG_locked, &page->flags);
1240}
1241
1242static __always_inline void slab_unlock(struct page *page)
1243{
1244	__bit_spin_unlock(PG_locked, &page->flags);
1245}
1246
1247static __always_inline int slab_trylock(struct page *page)
1248{
1249	int rc = 1;
1250
1251	rc = bit_spin_trylock(PG_locked, &page->flags);
1252	return rc;
1253}
1254
1255/*
1256 * Management of partially allocated slabs
1257 */
1258static void add_partial(struct kmem_cache_node *n,
1259				struct page *page, int tail)
1260{
1261	spin_lock(&n->list_lock);
1262	n->nr_partial++;
1263	if (tail)
1264		list_add_tail(&page->lru, &n->partial);
1265	else
1266		list_add(&page->lru, &n->partial);
1267	spin_unlock(&n->list_lock);
1268}
1269
1270static void remove_partial(struct kmem_cache *s, struct page *page)
1271{
1272	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1273
1274	spin_lock(&n->list_lock);
1275	list_del(&page->lru);
1276	n->nr_partial--;
1277	spin_unlock(&n->list_lock);
1278}
1279
1280/*
1281 * Lock slab and remove from the partial list.
1282 *
1283 * Must hold list_lock.
1284 */
1285static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1286							struct page *page)
1287{
1288	if (slab_trylock(page)) {
1289		list_del(&page->lru);
1290		n->nr_partial--;
1291		SetSlabFrozen(page);
1292		return 1;
1293	}
1294	return 0;
1295}
1296
1297/*
1298 * Try to allocate a partial slab from a specific node.
1299 */
1300static struct page *get_partial_node(struct kmem_cache_node *n)
1301{
1302	struct page *page;
1303
1304	/*
1305	 * Racy check. If we mistakenly see no partial slabs then we
1306	 * just allocate an empty slab. If we mistakenly try to get a
1307	 * partial slab and there is none available then get_partials()
1308	 * will return NULL.
1309	 */
1310	if (!n || !n->nr_partial)
1311		return NULL;
1312
1313	spin_lock(&n->list_lock);
1314	list_for_each_entry(page, &n->partial, lru)
1315		if (lock_and_freeze_slab(n, page))
1316			goto out;
1317	page = NULL;
1318out:
1319	spin_unlock(&n->list_lock);
1320	return page;
1321}
1322
1323/*
1324 * Get a page from somewhere. Search in increasing NUMA distances.
1325 */
1326static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1327{
1328#ifdef CONFIG_NUMA
1329	struct zonelist *zonelist;
1330	struct zoneref *z;
1331	struct zone *zone;
1332	enum zone_type high_zoneidx = gfp_zone(flags);
1333	struct page *page;
1334
1335	/*
1336	 * The defrag ratio allows a configuration of the tradeoffs between
1337	 * inter node defragmentation and node local allocations. A lower
1338	 * defrag_ratio increases the tendency to do local allocations
1339	 * instead of attempting to obtain partial slabs from other nodes.
1340	 *
1341	 * If the defrag_ratio is set to 0 then kmalloc() always
1342	 * returns node local objects. If the ratio is higher then kmalloc()
1343	 * may return off node objects because partial slabs are obtained
1344	 * from other nodes and filled up.
1345	 *
1346	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1347	 * defrag_ratio = 1000) then every (well almost) allocation will
1348	 * first attempt to defrag slab caches on other nodes. This means
1349	 * scanning over all nodes to look for partial slabs which may be
1350	 * expensive if we do it every time we are trying to find a slab
1351	 * with available objects.
1352	 */
1353	if (!s->remote_node_defrag_ratio ||
1354			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1355		return NULL;
1356
1357	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1358	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1359		struct kmem_cache_node *n;
1360
1361		n = get_node(s, zone_to_nid(zone));
1362
1363		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1364				n->nr_partial > MIN_PARTIAL) {
1365			page = get_partial_node(n);
1366			if (page)
1367				return page;
1368		}
1369	}
1370#endif
1371	return NULL;
1372}
1373
1374/*
1375 * Get a partial page, lock it and return it.
1376 */
1377static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1378{
1379	struct page *page;
1380	int searchnode = (node == -1) ? numa_node_id() : node;
1381
1382	page = get_partial_node(get_node(s, searchnode));
1383	if (page || (flags & __GFP_THISNODE))
1384		return page;
1385
1386	return get_any_partial(s, flags);
1387}
1388
1389/*
1390 * Move a page back to the lists.
1391 *
1392 * Must be called with the slab lock held.
1393 *
1394 * On exit the slab lock will have been dropped.
1395 */
1396static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1397{
1398	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1399	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1400
1401	ClearSlabFrozen(page);
1402	if (page->inuse) {
1403
1404		if (page->freelist) {
1405			add_partial(n, page, tail);
1406			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1407		} else {
1408			stat(c, DEACTIVATE_FULL);
1409			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1410				add_full(n, page);
1411		}
1412		slab_unlock(page);
1413	} else {
1414		stat(c, DEACTIVATE_EMPTY);
1415		if (n->nr_partial < MIN_PARTIAL) {
1416			/*
1417			 * Adding an empty slab to the partial slabs in order
1418			 * to avoid page allocator overhead. This slab needs
1419			 * to come after the other slabs with objects in
1420			 * so that the others get filled first. That way the
1421			 * size of the partial list stays small.
1422			 *
1423			 * kmem_cache_shrink can reclaim any empty slabs from
1424			 * the partial list.
1425			 */
1426			add_partial(n, page, 1);
1427			slab_unlock(page);
1428		} else {
1429			slab_unlock(page);
1430			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1431			discard_slab(s, page);
1432		}
1433	}
1434}
1435
1436/*
1437 * Remove the cpu slab
1438 */
1439static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1440{
1441	struct page *page = c->page;
1442	int tail = 1;
1443
1444	if (page->freelist)
1445		stat(c, DEACTIVATE_REMOTE_FREES);
1446	/*
1447	 * Merge cpu freelist into slab freelist. Typically we get here
1448	 * because both freelists are empty. So this is unlikely
1449	 * to occur.
1450	 */
1451	while (unlikely(c->freelist)) {
1452		void **object;
1453
1454		tail = 0;	/* Hot objects. Put the slab first */
1455
1456		/* Retrieve object from cpu_freelist */
1457		object = c->freelist;
1458		c->freelist = c->freelist[c->offset];
1459
1460		/* And put onto the regular freelist */
1461		object[c->offset] = page->freelist;
1462		page->freelist = object;
1463		page->inuse--;
1464	}
1465	c->page = NULL;
1466	unfreeze_slab(s, page, tail);
1467}
1468
1469static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1470{
1471	stat(c, CPUSLAB_FLUSH);
1472	slab_lock(c->page);
1473	deactivate_slab(s, c);
1474}
1475
1476/*
1477 * Flush cpu slab.
1478 *
1479 * Called from IPI handler with interrupts disabled.
1480 */
1481static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1482{
1483	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1484
1485	if (likely(c && c->page))
1486		flush_slab(s, c);
1487}
1488
1489static void flush_cpu_slab(void *d)
1490{
1491	struct kmem_cache *s = d;
1492
1493	__flush_cpu_slab(s, smp_processor_id());
1494}
1495
1496static void flush_all(struct kmem_cache *s)
1497{
1498	on_each_cpu(flush_cpu_slab, s, 1);
1499}
1500
1501/*
1502 * Check if the objects in a per cpu structure fit numa
1503 * locality expectations.
1504 */
1505static inline int node_match(struct kmem_cache_cpu *c, int node)
1506{
1507#ifdef CONFIG_NUMA
1508	if (node != -1 && c->node != node)
1509		return 0;
1510#endif
1511	return 1;
1512}
1513
1514/*
1515 * Slow path. The lockless freelist is empty or we need to perform
1516 * debugging duties.
1517 *
1518 * Interrupts are disabled.
1519 *
1520 * Processing is still very fast if new objects have been freed to the
1521 * regular freelist. In that case we simply take over the regular freelist
1522 * as the lockless freelist and zap the regular freelist.
1523 *
1524 * If that is not working then we fall back to the partial lists. We take the
1525 * first element of the freelist as the object to allocate now and move the
1526 * rest of the freelist to the lockless freelist.
1527 *
1528 * And if we were unable to get a new slab from the partial slab lists then
1529 * we need to allocate a new slab. This is the slowest path since it involves
1530 * a call to the page allocator and the setup of a new slab.
1531 */
1532static void *__slab_alloc(struct kmem_cache *s,
1533		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1534{
1535	void **object;
1536	struct page *new;
1537
1538	/* We handle __GFP_ZERO in the caller */
1539	gfpflags &= ~__GFP_ZERO;
1540
1541	if (!c->page)
1542		goto new_slab;
1543
1544	slab_lock(c->page);
1545	if (unlikely(!node_match(c, node)))
1546		goto another_slab;
1547
1548	stat(c, ALLOC_REFILL);
1549
1550load_freelist:
1551	object = c->page->freelist;
1552	if (unlikely(!object))
1553		goto another_slab;
1554	if (unlikely(SlabDebug(c->page)))
1555		goto debug;
1556
1557	c->freelist = object[c->offset];
1558	c->page->inuse = c->page->objects;
1559	c->page->freelist = NULL;
1560	c->node = page_to_nid(c->page);
1561unlock_out:
1562	slab_unlock(c->page);
1563	stat(c, ALLOC_SLOWPATH);
1564	return object;
1565
1566another_slab:
1567	deactivate_slab(s, c);
1568
1569new_slab:
1570	new = get_partial(s, gfpflags, node);
1571	if (new) {
1572		c->page = new;
1573		stat(c, ALLOC_FROM_PARTIAL);
1574		goto load_freelist;
1575	}
1576
1577	if (gfpflags & __GFP_WAIT)
1578		local_irq_enable();
1579
1580	new = new_slab(s, gfpflags, node);
1581
1582	if (gfpflags & __GFP_WAIT)
1583		local_irq_disable();
1584
1585	if (new) {
1586		c = get_cpu_slab(s, smp_processor_id());
1587		stat(c, ALLOC_SLAB);
1588		if (c->page)
1589			flush_slab(s, c);
1590		slab_lock(new);
1591		SetSlabFrozen(new);
1592		c->page = new;
1593		goto load_freelist;
1594	}
1595	return NULL;
1596debug:
1597	if (!alloc_debug_processing(s, c->page, object, addr))
1598		goto another_slab;
1599
1600	c->page->inuse++;
1601	c->page->freelist = object[c->offset];
1602	c->node = -1;
1603	goto unlock_out;
1604}
1605
1606/*
1607 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1608 * have the fastpath folded into their functions. So no function call
1609 * overhead for requests that can be satisfied on the fastpath.
1610 *
1611 * The fastpath works by first checking if the lockless freelist can be used.
1612 * If not then __slab_alloc is called for slow processing.
1613 *
1614 * Otherwise we can simply pick the next object from the lockless free list.
1615 */
1616static __always_inline void *slab_alloc(struct kmem_cache *s,
1617		gfp_t gfpflags, int node, void *addr)
1618{
1619	void **object;
1620	struct kmem_cache_cpu *c;
1621	unsigned long flags;
1622	unsigned int objsize;
1623
1624	local_irq_save(flags);
1625	c = get_cpu_slab(s, smp_processor_id());
1626	objsize = c->objsize;
1627	if (unlikely(!c->freelist || !node_match(c, node)))
1628
1629		object = __slab_alloc(s, gfpflags, node, addr, c);
1630
1631	else {
1632		object = c->freelist;
1633		c->freelist = object[c->offset];
1634		stat(c, ALLOC_FASTPATH);
1635	}
1636	local_irq_restore(flags);
1637
1638	if (unlikely((gfpflags & __GFP_ZERO) && object))
1639		memset(object, 0, objsize);
1640
1641	return object;
1642}
1643
1644void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1645{
1646	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1647}
1648EXPORT_SYMBOL(kmem_cache_alloc);
1649
1650#ifdef CONFIG_NUMA
1651void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1652{
1653	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1654}
1655EXPORT_SYMBOL(kmem_cache_alloc_node);
1656#endif
1657
1658/*
1659 * Slow patch handling. This may still be called frequently since objects
1660 * have a longer lifetime than the cpu slabs in most processing loads.
1661 *
1662 * So we still attempt to reduce cache line usage. Just take the slab
1663 * lock and free the item. If there is no additional partial page
1664 * handling required then we can return immediately.
1665 */
1666static void __slab_free(struct kmem_cache *s, struct page *page,
1667				void *x, void *addr, unsigned int offset)
1668{
1669	void *prior;
1670	void **object = (void *)x;
1671	struct kmem_cache_cpu *c;
1672
1673	c = get_cpu_slab(s, raw_smp_processor_id());
1674	stat(c, FREE_SLOWPATH);
1675	slab_lock(page);
1676
1677	if (unlikely(SlabDebug(page)))
1678		goto debug;
1679
1680checks_ok:
1681	prior = object[offset] = page->freelist;
1682	page->freelist = object;
1683	page->inuse--;
1684
1685	if (unlikely(SlabFrozen(page))) {
1686		stat(c, FREE_FROZEN);
1687		goto out_unlock;
1688	}
1689
1690	if (unlikely(!page->inuse))
1691		goto slab_empty;
1692
1693	/*
1694	 * Objects left in the slab. If it was not on the partial list before
1695	 * then add it.
1696	 */
1697	if (unlikely(!prior)) {
1698		add_partial(get_node(s, page_to_nid(page)), page, 1);
1699		stat(c, FREE_ADD_PARTIAL);
1700	}
1701
1702out_unlock:
1703	slab_unlock(page);
1704	return;
1705
1706slab_empty:
1707	if (prior) {
1708		/*
1709		 * Slab still on the partial list.
1710		 */
1711		remove_partial(s, page);
1712		stat(c, FREE_REMOVE_PARTIAL);
1713	}
1714	slab_unlock(page);
1715	stat(c, FREE_SLAB);
1716	discard_slab(s, page);
1717	return;
1718
1719debug:
1720	if (!free_debug_processing(s, page, x, addr))
1721		goto out_unlock;
1722	goto checks_ok;
1723}
1724
1725/*
1726 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1727 * can perform fastpath freeing without additional function calls.
1728 *
1729 * The fastpath is only possible if we are freeing to the current cpu slab
1730 * of this processor. This typically the case if we have just allocated
1731 * the item before.
1732 *
1733 * If fastpath is not possible then fall back to __slab_free where we deal
1734 * with all sorts of special processing.
1735 */
1736static __always_inline void slab_free(struct kmem_cache *s,
1737			struct page *page, void *x, void *addr)
1738{
1739	void **object = (void *)x;
1740	struct kmem_cache_cpu *c;
1741	unsigned long flags;
1742
1743	local_irq_save(flags);
1744	c = get_cpu_slab(s, smp_processor_id());
1745	debug_check_no_locks_freed(object, c->objsize);
1746	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1747		debug_check_no_obj_freed(object, s->objsize);
1748	if (likely(page == c->page && c->node >= 0)) {
1749		object[c->offset] = c->freelist;
1750		c->freelist = object;
1751		stat(c, FREE_FASTPATH);
1752	} else
1753		__slab_free(s, page, x, addr, c->offset);
1754
1755	local_irq_restore(flags);
1756}
1757
1758void kmem_cache_free(struct kmem_cache *s, void *x)
1759{
1760	struct page *page;
1761
1762	page = virt_to_head_page(x);
1763
1764	slab_free(s, page, x, __builtin_return_address(0));
1765}
1766EXPORT_SYMBOL(kmem_cache_free);
1767
1768/* Figure out on which slab object the object resides */
1769static struct page *get_object_page(const void *x)
1770{
1771	struct page *page = virt_to_head_page(x);
1772
1773	if (!PageSlab(page))
1774		return NULL;
1775
1776	return page;
1777}
1778
1779/*
1780 * Object placement in a slab is made very easy because we always start at
1781 * offset 0. If we tune the size of the object to the alignment then we can
1782 * get the required alignment by putting one properly sized object after
1783 * another.
1784 *
1785 * Notice that the allocation order determines the sizes of the per cpu
1786 * caches. Each processor has always one slab available for allocations.
1787 * Increasing the allocation order reduces the number of times that slabs
1788 * must be moved on and off the partial lists and is therefore a factor in
1789 * locking overhead.
1790 */
1791
1792/*
1793 * Mininum / Maximum order of slab pages. This influences locking overhead
1794 * and slab fragmentation. A higher order reduces the number of partial slabs
1795 * and increases the number of allocations possible without having to
1796 * take the list_lock.
1797 */
1798static int slub_min_order;
1799static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1800static int slub_min_objects;
1801
1802/*
1803 * Merge control. If this is set then no merging of slab caches will occur.
1804 * (Could be removed. This was introduced to pacify the merge skeptics.)
1805 */
1806static int slub_nomerge;
1807
1808/*
1809 * Calculate the order of allocation given an slab object size.
1810 *
1811 * The order of allocation has significant impact on performance and other
1812 * system components. Generally order 0 allocations should be preferred since
1813 * order 0 does not cause fragmentation in the page allocator. Larger objects
1814 * be problematic to put into order 0 slabs because there may be too much
1815 * unused space left. We go to a higher order if more than 1/16th of the slab
1816 * would be wasted.
1817 *
1818 * In order to reach satisfactory performance we must ensure that a minimum
1819 * number of objects is in one slab. Otherwise we may generate too much
1820 * activity on the partial lists which requires taking the list_lock. This is
1821 * less a concern for large slabs though which are rarely used.
1822 *
1823 * slub_max_order specifies the order where we begin to stop considering the
1824 * number of objects in a slab as critical. If we reach slub_max_order then
1825 * we try to keep the page order as low as possible. So we accept more waste
1826 * of space in favor of a small page order.
1827 *
1828 * Higher order allocations also allow the placement of more objects in a
1829 * slab and thereby reduce object handling overhead. If the user has
1830 * requested a higher mininum order then we start with that one instead of
1831 * the smallest order which will fit the object.
1832 */
1833static inline int slab_order(int size, int min_objects,
1834				int max_order, int fract_leftover)
1835{
1836	int order;
1837	int rem;
1838	int min_order = slub_min_order;
1839
1840	if ((PAGE_SIZE << min_order) / size > 65535)
1841		return get_order(size * 65535) - 1;
1842
1843	for (order = max(min_order,
1844				fls(min_objects * size - 1) - PAGE_SHIFT);
1845			order <= max_order; order++) {
1846
1847		unsigned long slab_size = PAGE_SIZE << order;
1848
1849		if (slab_size < min_objects * size)
1850			continue;
1851
1852		rem = slab_size % size;
1853
1854		if (rem <= slab_size / fract_leftover)
1855			break;
1856
1857	}
1858
1859	return order;
1860}
1861
1862static inline int calculate_order(int size)
1863{
1864	int order;
1865	int min_objects;
1866	int fraction;
1867
1868	/*
1869	 * Attempt to find best configuration for a slab. This
1870	 * works by first attempting to generate a layout with
1871	 * the best configuration and backing off gradually.
1872	 *
1873	 * First we reduce the acceptable waste in a slab. Then
1874	 * we reduce the minimum objects required in a slab.
1875	 */
1876	min_objects = slub_min_objects;
1877	if (!min_objects)
1878		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1879	while (min_objects > 1) {
1880		fraction = 16;
1881		while (fraction >= 4) {
1882			order = slab_order(size, min_objects,
1883						slub_max_order, fraction);
1884			if (order <= slub_max_order)
1885				return order;
1886			fraction /= 2;
1887		}
1888		min_objects /= 2;
1889	}
1890
1891	/*
1892	 * We were unable to place multiple objects in a slab. Now
1893	 * lets see if we can place a single object there.
1894	 */
1895	order = slab_order(size, 1, slub_max_order, 1);
1896	if (order <= slub_max_order)
1897		return order;
1898
1899	/*
1900	 * Doh this slab cannot be placed using slub_max_order.
1901	 */
1902	order = slab_order(size, 1, MAX_ORDER, 1);
1903	if (order <= MAX_ORDER)
1904		return order;
1905	return -ENOSYS;
1906}
1907
1908/*
1909 * Figure out what the alignment of the objects will be.
1910 */
1911static unsigned long calculate_alignment(unsigned long flags,
1912		unsigned long align, unsigned long size)
1913{
1914	/*
1915	 * If the user wants hardware cache aligned objects then follow that
1916	 * suggestion if the object is sufficiently large.
1917	 *
1918	 * The hardware cache alignment cannot override the specified
1919	 * alignment though. If that is greater then use it.
1920	 */
1921	if (flags & SLAB_HWCACHE_ALIGN) {
1922		unsigned long ralign = cache_line_size();
1923		while (size <= ralign / 2)
1924			ralign /= 2;
1925		align = max(align, ralign);
1926	}
1927
1928	if (align < ARCH_SLAB_MINALIGN)
1929		align = ARCH_SLAB_MINALIGN;
1930
1931	return ALIGN(align, sizeof(void *));
1932}
1933
1934static void init_kmem_cache_cpu(struct kmem_cache *s,
1935			struct kmem_cache_cpu *c)
1936{
1937	c->page = NULL;
1938	c->freelist = NULL;
1939	c->node = 0;
1940	c->offset = s->offset / sizeof(void *);
1941	c->objsize = s->objsize;
1942#ifdef CONFIG_SLUB_STATS
1943	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1944#endif
1945}
1946
1947static void init_kmem_cache_node(struct kmem_cache_node *n)
1948{
1949	n->nr_partial = 0;
1950	spin_lock_init(&n->list_lock);
1951	INIT_LIST_HEAD(&n->partial);
1952#ifdef CONFIG_SLUB_DEBUG
1953	atomic_long_set(&n->nr_slabs, 0);
1954	INIT_LIST_HEAD(&n->full);
1955#endif
1956}
1957
1958#ifdef CONFIG_SMP
1959/*
1960 * Per cpu array for per cpu structures.
1961 *
1962 * The per cpu array places all kmem_cache_cpu structures from one processor
1963 * close together meaning that it becomes possible that multiple per cpu
1964 * structures are contained in one cacheline. This may be particularly
1965 * beneficial for the kmalloc caches.
1966 *
1967 * A desktop system typically has around 60-80 slabs. With 100 here we are
1968 * likely able to get per cpu structures for all caches from the array defined
1969 * here. We must be able to cover all kmalloc caches during bootstrap.
1970 *
1971 * If the per cpu array is exhausted then fall back to kmalloc
1972 * of individual cachelines. No sharing is possible then.
1973 */
1974#define NR_KMEM_CACHE_CPU 100
1975
1976static DEFINE_PER_CPU(struct kmem_cache_cpu,
1977				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1978
1979static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1980static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1981
1982static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1983							int cpu, gfp_t flags)
1984{
1985	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1986
1987	if (c)
1988		per_cpu(kmem_cache_cpu_free, cpu) =
1989				(void *)c->freelist;
1990	else {
1991		/* Table overflow: So allocate ourselves */
1992		c = kmalloc_node(
1993			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1994			flags, cpu_to_node(cpu));
1995		if (!c)
1996			return NULL;
1997	}
1998
1999	init_kmem_cache_cpu(s, c);
2000	return c;
2001}
2002
2003static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2004{
2005	if (c < per_cpu(kmem_cache_cpu, cpu) ||
2006			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2007		kfree(c);
2008		return;
2009	}
2010	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2011	per_cpu(kmem_cache_cpu_free, cpu) = c;
2012}
2013
2014static void free_kmem_cache_cpus(struct kmem_cache *s)
2015{
2016	int cpu;
2017
2018	for_each_online_cpu(cpu) {
2019		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2020
2021		if (c) {
2022			s->cpu_slab[cpu] = NULL;
2023			free_kmem_cache_cpu(c, cpu);
2024		}
2025	}
2026}
2027
2028static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2029{
2030	int cpu;
2031
2032	for_each_online_cpu(cpu) {
2033		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2034
2035		if (c)
2036			continue;
2037
2038		c = alloc_kmem_cache_cpu(s, cpu, flags);
2039		if (!c) {
2040			free_kmem_cache_cpus(s);
2041			return 0;
2042		}
2043		s->cpu_slab[cpu] = c;
2044	}
2045	return 1;
2046}
2047
2048/*
2049 * Initialize the per cpu array.
2050 */
2051static void init_alloc_cpu_cpu(int cpu)
2052{
2053	int i;
2054
2055	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2056		return;
2057
2058	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2059		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2060
2061	cpu_set(cpu, kmem_cach_cpu_free_init_once);
2062}
2063
2064static void __init init_alloc_cpu(void)
2065{
2066	int cpu;
2067
2068	for_each_online_cpu(cpu)
2069		init_alloc_cpu_cpu(cpu);
2070  }
2071
2072#else
2073static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2074static inline void init_alloc_cpu(void) {}
2075
2076static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2077{
2078	init_kmem_cache_cpu(s, &s->cpu_slab);
2079	return 1;
2080}
2081#endif
2082
2083#ifdef CONFIG_NUMA
2084/*
2085 * No kmalloc_node yet so do it by hand. We know that this is the first
2086 * slab on the node for this slabcache. There are no concurrent accesses
2087 * possible.
2088 *
2089 * Note that this function only works on the kmalloc_node_cache
2090 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2091 * memory on a fresh node that has no slab structures yet.
2092 */
2093static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2094							   int node)
2095{
2096	struct page *page;
2097	struct kmem_cache_node *n;
2098	unsigned long flags;
2099
2100	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2101
2102	page = new_slab(kmalloc_caches, gfpflags, node);
2103
2104	BUG_ON(!page);
2105	if (page_to_nid(page) != node) {
2106		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2107				"node %d\n", node);
2108		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2109				"in order to be able to continue\n");
2110	}
2111
2112	n = page->freelist;
2113	BUG_ON(!n);
2114	page->freelist = get_freepointer(kmalloc_caches, n);
2115	page->inuse++;
2116	kmalloc_caches->node[node] = n;
2117#ifdef CONFIG_SLUB_DEBUG
2118	init_object(kmalloc_caches, n, 1);
2119	init_tracking(kmalloc_caches, n);
2120#endif
2121	init_kmem_cache_node(n);
2122	inc_slabs_node(kmalloc_caches, node, page->objects);
2123
2124	/*
2125	 * lockdep requires consistent irq usage for each lock
2126	 * so even though there cannot be a race this early in
2127	 * the boot sequence, we still disable irqs.
2128	 */
2129	local_irq_save(flags);
2130	add_partial(n, page, 0);
2131	local_irq_restore(flags);
2132	return n;
2133}
2134
2135static void free_kmem_cache_nodes(struct kmem_cache *s)
2136{
2137	int node;
2138
2139	for_each_node_state(node, N_NORMAL_MEMORY) {
2140		struct kmem_cache_node *n = s->node[node];
2141		if (n && n != &s->local_node)
2142			kmem_cache_free(kmalloc_caches, n);
2143		s->node[node] = NULL;
2144	}
2145}
2146
2147static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2148{
2149	int node;
2150	int local_node;
2151
2152	if (slab_state >= UP)
2153		local_node = page_to_nid(virt_to_page(s));
2154	else
2155		local_node = 0;
2156
2157	for_each_node_state(node, N_NORMAL_MEMORY) {
2158		struct kmem_cache_node *n;
2159
2160		if (local_node == node)
2161			n = &s->local_node;
2162		else {
2163			if (slab_state == DOWN) {
2164				n = early_kmem_cache_node_alloc(gfpflags,
2165								node);
2166				continue;
2167			}
2168			n = kmem_cache_alloc_node(kmalloc_caches,
2169							gfpflags, node);
2170
2171			if (!n) {
2172				free_kmem_cache_nodes(s);
2173				return 0;
2174			}
2175
2176		}
2177		s->node[node] = n;
2178		init_kmem_cache_node(n);
2179	}
2180	return 1;
2181}
2182#else
2183static void free_kmem_cache_nodes(struct kmem_cache *s)
2184{
2185}
2186
2187static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2188{
2189	init_kmem_cache_node(&s->local_node);
2190	return 1;
2191}
2192#endif
2193
2194/*
2195 * calculate_sizes() determines the order and the distribution of data within
2196 * a slab object.
2197 */
2198static int calculate_sizes(struct kmem_cache *s, int forced_order)
2199{
2200	unsigned long flags = s->flags;
2201	unsigned long size = s->objsize;
2202	unsigned long align = s->align;
2203	int order;
2204
2205	/*
2206	 * Round up object size to the next word boundary. We can only
2207	 * place the free pointer at word boundaries and this determines
2208	 * the possible location of the free pointer.
2209	 */
2210	size = ALIGN(size, sizeof(void *));
2211
2212#ifdef CONFIG_SLUB_DEBUG
2213	/*
2214	 * Determine if we can poison the object itself. If the user of
2215	 * the slab may touch the object after free or before allocation
2216	 * then we should never poison the object itself.
2217	 */
2218	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2219			!s->ctor)
2220		s->flags |= __OBJECT_POISON;
2221	else
2222		s->flags &= ~__OBJECT_POISON;
2223
2224
2225	/*
2226	 * If we are Redzoning then check if there is some space between the
2227	 * end of the object and the free pointer. If not then add an
2228	 * additional word to have some bytes to store Redzone information.
2229	 */
2230	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2231		size += sizeof(void *);
2232#endif
2233
2234	/*
2235	 * With that we have determined the number of bytes in actual use
2236	 * by the object. This is the potential offset to the free pointer.
2237	 */
2238	s->inuse = size;
2239
2240	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2241		s->ctor)) {
2242		/*
2243		 * Relocate free pointer after the object if it is not
2244		 * permitted to overwrite the first word of the object on
2245		 * kmem_cache_free.
2246		 *
2247		 * This is the case if we do RCU, have a constructor or
2248		 * destructor or are poisoning the objects.
2249		 */
2250		s->offset = size;
2251		size += sizeof(void *);
2252	}
2253
2254#ifdef CONFIG_SLUB_DEBUG
2255	if (flags & SLAB_STORE_USER)
2256		/*
2257		 * Need to store information about allocs and frees after
2258		 * the object.
2259		 */
2260		size += 2 * sizeof(struct track);
2261
2262	if (flags & SLAB_RED_ZONE)
2263		/*
2264		 * Add some empty padding so that we can catch
2265		 * overwrites from earlier objects rather than let
2266		 * tracking information or the free pointer be
2267		 * corrupted if an user writes before the start
2268		 * of the object.
2269		 */
2270		size += sizeof(void *);
2271#endif
2272
2273	/*
2274	 * Determine the alignment based on various parameters that the
2275	 * user specified and the dynamic determination of cache line size
2276	 * on bootup.
2277	 */
2278	align = calculate_alignment(flags, align, s->objsize);
2279
2280	/*
2281	 * SLUB stores one object immediately after another beginning from
2282	 * offset 0. In order to align the objects we have to simply size
2283	 * each object to conform to the alignment.
2284	 */
2285	size = ALIGN(size, align);
2286	s->size = size;
2287	if (forced_order >= 0)
2288		order = forced_order;
2289	else
2290		order = calculate_order(size);
2291
2292	if (order < 0)
2293		return 0;
2294
2295	s->allocflags = 0;
2296	if (order)
2297		s->allocflags |= __GFP_COMP;
2298
2299	if (s->flags & SLAB_CACHE_DMA)
2300		s->allocflags |= SLUB_DMA;
2301
2302	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2303		s->allocflags |= __GFP_RECLAIMABLE;
2304
2305	/*
2306	 * Determine the number of objects per slab
2307	 */
2308	s->oo = oo_make(order, size);
2309	s->min = oo_make(get_order(size), size);
2310	if (oo_objects(s->oo) > oo_objects(s->max))
2311		s->max = s->oo;
2312
2313	return !!oo_objects(s->oo);
2314
2315}
2316
2317static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2318		const char *name, size_t size,
2319		size_t align, unsigned long flags,
2320		void (*ctor)(struct kmem_cache *, void *))
2321{
2322	memset(s, 0, kmem_size);
2323	s->name = name;
2324	s->ctor = ctor;
2325	s->objsize = size;
2326	s->align = align;
2327	s->flags = kmem_cache_flags(size, flags, name, ctor);
2328
2329	if (!calculate_sizes(s, -1))
2330		goto error;
2331
2332	s->refcount = 1;
2333#ifdef CONFIG_NUMA
2334	s->remote_node_defrag_ratio = 100;
2335#endif
2336	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2337		goto error;
2338
2339	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2340		return 1;
2341	free_kmem_cache_nodes(s);
2342error:
2343	if (flags & SLAB_PANIC)
2344		panic("Cannot create slab %s size=%lu realsize=%u "
2345			"order=%u offset=%u flags=%lx\n",
2346			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2347			s->offset, flags);
2348	return 0;
2349}
2350
2351/*
2352 * Check if a given pointer is valid
2353 */
2354int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2355{
2356	struct page *page;
2357
2358	page = get_object_page(object);
2359
2360	if (!page || s != page->slab)
2361		/* No slab or wrong slab */
2362		return 0;
2363
2364	if (!check_valid_pointer(s, page, object))
2365		return 0;
2366
2367	/*
2368	 * We could also check if the object is on the slabs freelist.
2369	 * But this would be too expensive and it seems that the main
2370	 * purpose of kmem_ptr_valid() is to check if the object belongs
2371	 * to a certain slab.
2372	 */
2373	return 1;
2374}
2375EXPORT_SYMBOL(kmem_ptr_validate);
2376
2377/*
2378 * Determine the size of a slab object
2379 */
2380unsigned int kmem_cache_size(struct kmem_cache *s)
2381{
2382	return s->objsize;
2383}
2384EXPORT_SYMBOL(kmem_cache_size);
2385
2386const char *kmem_cache_name(struct kmem_cache *s)
2387{
2388	return s->name;
2389}
2390EXPORT_SYMBOL(kmem_cache_name);
2391
2392static void list_slab_objects(struct kmem_cache *s, struct page *page,
2393							const char *text)
2394{
2395#ifdef CONFIG_SLUB_DEBUG
2396	void *addr = page_address(page);
2397	void *p;
2398	DECLARE_BITMAP(map, page->objects);
2399
2400	bitmap_zero(map, page->objects);
2401	slab_err(s, page, "%s", text);
2402	slab_lock(page);
2403	for_each_free_object(p, s, page->freelist)
2404		set_bit(slab_index(p, s, addr), map);
2405
2406	for_each_object(p, s, addr, page->objects) {
2407
2408		if (!test_bit(slab_index(p, s, addr), map)) {
2409			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2410							p, p - addr);
2411			print_tracking(s, p);
2412		}
2413	}
2414	slab_unlock(page);
2415#endif
2416}
2417
2418/*
2419 * Attempt to free all partial slabs on a node.
2420 */
2421static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2422{
2423	unsigned long flags;
2424	struct page *page, *h;
2425
2426	spin_lock_irqsave(&n->list_lock, flags);
2427	list_for_each_entry_safe(page, h, &n->partial, lru) {
2428		if (!page->inuse) {
2429			list_del(&page->lru);
2430			discard_slab(s, page);
2431			n->nr_partial--;
2432		} else {
2433			list_slab_objects(s, page,
2434				"Objects remaining on kmem_cache_close()");
2435		}
2436	}
2437	spin_unlock_irqrestore(&n->list_lock, flags);
2438}
2439
2440/*
2441 * Release all resources used by a slab cache.
2442 */
2443static inline int kmem_cache_close(struct kmem_cache *s)
2444{
2445	int node;
2446
2447	flush_all(s);
2448
2449	/* Attempt to free all objects */
2450	free_kmem_cache_cpus(s);
2451	for_each_node_state(node, N_NORMAL_MEMORY) {
2452		struct kmem_cache_node *n = get_node(s, node);
2453
2454		free_partial(s, n);
2455		if (n->nr_partial || slabs_node(s, node))
2456			return 1;
2457	}
2458	free_kmem_cache_nodes(s);
2459	return 0;
2460}
2461
2462/*
2463 * Close a cache and release the kmem_cache structure
2464 * (must be used for caches created using kmem_cache_create)
2465 */
2466void kmem_cache_destroy(struct kmem_cache *s)
2467{
2468	down_write(&slub_lock);
2469	s->refcount--;
2470	if (!s->refcount) {
2471		list_del(&s->list);
2472		up_write(&slub_lock);
2473		if (kmem_cache_close(s)) {
2474			printk(KERN_ERR "SLUB %s: %s called for cache that "
2475				"still has objects.\n", s->name, __func__);
2476			dump_stack();
2477		}
2478		sysfs_slab_remove(s);
2479	} else
2480		up_write(&slub_lock);
2481}
2482EXPORT_SYMBOL(kmem_cache_destroy);
2483
2484/********************************************************************
2485 *		Kmalloc subsystem
2486 *******************************************************************/
2487
2488struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2489EXPORT_SYMBOL(kmalloc_caches);
2490
2491static int __init setup_slub_min_order(char *str)
2492{
2493	get_option(&str, &slub_min_order);
2494
2495	return 1;
2496}
2497
2498__setup("slub_min_order=", setup_slub_min_order);
2499
2500static int __init setup_slub_max_order(char *str)
2501{
2502	get_option(&str, &slub_max_order);
2503
2504	return 1;
2505}
2506
2507__setup("slub_max_order=", setup_slub_max_order);
2508
2509static int __init setup_slub_min_objects(char *str)
2510{
2511	get_option(&str, &slub_min_objects);
2512
2513	return 1;
2514}
2515
2516__setup("slub_min_objects=", setup_slub_min_objects);
2517
2518static int __init setup_slub_nomerge(char *str)
2519{
2520	slub_nomerge = 1;
2521	return 1;
2522}
2523
2524__setup("slub_nomerge", setup_slub_nomerge);
2525
2526static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2527		const char *name, int size, gfp_t gfp_flags)
2528{
2529	unsigned int flags = 0;
2530
2531	if (gfp_flags & SLUB_DMA)
2532		flags = SLAB_CACHE_DMA;
2533
2534	down_write(&slub_lock);
2535	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2536								flags, NULL))
2537		goto panic;
2538
2539	list_add(&s->list, &slab_caches);
2540	up_write(&slub_lock);
2541	if (sysfs_slab_add(s))
2542		goto panic;
2543	return s;
2544
2545panic:
2546	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2547}
2548
2549#ifdef CONFIG_ZONE_DMA
2550static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2551
2552static void sysfs_add_func(struct work_struct *w)
2553{
2554	struct kmem_cache *s;
2555
2556	down_write(&slub_lock);
2557	list_for_each_entry(s, &slab_caches, list) {
2558		if (s->flags & __SYSFS_ADD_DEFERRED) {
2559			s->flags &= ~__SYSFS_ADD_DEFERRED;
2560			sysfs_slab_add(s);
2561		}
2562	}
2563	up_write(&slub_lock);
2564}
2565
2566static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2567
2568static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2569{
2570	struct kmem_cache *s;
2571	char *text;
2572	size_t realsize;
2573
2574	s = kmalloc_caches_dma[index];
2575	if (s)
2576		return s;
2577
2578	/* Dynamically create dma cache */
2579	if (flags & __GFP_WAIT)
2580		down_write(&slub_lock);
2581	else {
2582		if (!down_write_trylock(&slub_lock))
2583			goto out;
2584	}
2585
2586	if (kmalloc_caches_dma[index])
2587		goto unlock_out;
2588
2589	realsize = kmalloc_caches[index].objsize;
2590	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2591			 (unsigned int)realsize);
2592	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2593
2594	if (!s || !text || !kmem_cache_open(s, flags, text,
2595			realsize, ARCH_KMALLOC_MINALIGN,
2596			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2597		kfree(s);
2598		kfree(text);
2599		goto unlock_out;
2600	}
2601
2602	list_add(&s->list, &slab_caches);
2603	kmalloc_caches_dma[index] = s;
2604
2605	schedule_work(&sysfs_add_work);
2606
2607unlock_out:
2608	up_write(&slub_lock);
2609out:
2610	return kmalloc_caches_dma[index];
2611}
2612#endif
2613
2614/*
2615 * Conversion table for small slabs sizes / 8 to the index in the
2616 * kmalloc array. This is necessary for slabs < 192 since we have non power
2617 * of two cache sizes there. The size of larger slabs can be determined using
2618 * fls.
2619 */
2620static s8 size_index[24] = {
2621	3,	/* 8 */
2622	4,	/* 16 */
2623	5,	/* 24 */
2624	5,	/* 32 */
2625	6,	/* 40 */
2626	6,	/* 48 */
2627	6,	/* 56 */
2628	6,	/* 64 */
2629	1,	/* 72 */
2630	1,	/* 80 */
2631	1,	/* 88 */
2632	1,	/* 96 */
2633	7,	/* 104 */
2634	7,	/* 112 */
2635	7,	/* 120 */
2636	7,	/* 128 */
2637	2,	/* 136 */
2638	2,	/* 144 */
2639	2,	/* 152 */
2640	2,	/* 160 */
2641	2,	/* 168 */
2642	2,	/* 176 */
2643	2,	/* 184 */
2644	2	/* 192 */
2645};
2646
2647static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2648{
2649	int index;
2650
2651	if (size <= 192) {
2652		if (!size)
2653			return ZERO_SIZE_PTR;
2654
2655		index = size_index[(size - 1) / 8];
2656	} else
2657		index = fls(size - 1);
2658
2659#ifdef CONFIG_ZONE_DMA
2660	if (unlikely((flags & SLUB_DMA)))
2661		return dma_kmalloc_cache(index, flags);
2662
2663#endif
2664	return &kmalloc_caches[index];
2665}
2666
2667void *__kmalloc(size_t size, gfp_t flags)
2668{
2669	struct kmem_cache *s;
2670
2671	if (unlikely(size > PAGE_SIZE))
2672		return kmalloc_large(size, flags);
2673
2674	s = get_slab(size, flags);
2675
2676	if (unlikely(ZERO_OR_NULL_PTR(s)))
2677		return s;
2678
2679	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2680}
2681EXPORT_SYMBOL(__kmalloc);
2682
2683static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2684{
2685	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2686						get_order(size));
2687
2688	if (page)
2689		return page_address(page);
2690	else
2691		return NULL;
2692}
2693
2694#ifdef CONFIG_NUMA
2695void *__kmalloc_node(size_t size, gfp_t flags, int node)
2696{
2697	struct kmem_cache *s;
2698
2699	if (unlikely(size > PAGE_SIZE))
2700		return kmalloc_large_node(size, flags, node);
2701
2702	s = get_slab(size, flags);
2703
2704	if (unlikely(ZERO_OR_NULL_PTR(s)))
2705		return s;
2706
2707	return slab_alloc(s, flags, node, __builtin_return_address(0));
2708}
2709EXPORT_SYMBOL(__kmalloc_node);
2710#endif
2711
2712size_t ksize(const void *object)
2713{
2714	struct page *page;
2715	struct kmem_cache *s;
2716
2717	if (unlikely(object == ZERO_SIZE_PTR))
2718		return 0;
2719
2720	page = virt_to_head_page(object);
2721
2722	if (unlikely(!PageSlab(page))) {
2723		WARN_ON(!PageCompound(page));
2724		return PAGE_SIZE << compound_order(page);
2725	}
2726	s = page->slab;
2727
2728#ifdef CONFIG_SLUB_DEBUG
2729	/*
2730	 * Debugging requires use of the padding between object
2731	 * and whatever may come after it.
2732	 */
2733	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2734		return s->objsize;
2735
2736#endif
2737	/*
2738	 * If we have the need to store the freelist pointer
2739	 * back there or track user information then we can
2740	 * only use the space before that information.
2741	 */
2742	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2743		return s->inuse;
2744	/*
2745	 * Else we can use all the padding etc for the allocation
2746	 */
2747	return s->size;
2748}
2749EXPORT_SYMBOL(ksize);
2750
2751void kfree(const void *x)
2752{
2753	struct page *page;
2754	void *object = (void *)x;
2755
2756	if (unlikely(ZERO_OR_NULL_PTR(x)))
2757		return;
2758
2759	page = virt_to_head_page(x);
2760	if (unlikely(!PageSlab(page))) {
2761		BUG_ON(!PageCompound(page));
2762		put_page(page);
2763		return;
2764	}
2765	slab_free(page->slab, page, object, __builtin_return_address(0));
2766}
2767EXPORT_SYMBOL(kfree);
2768
2769/*
2770 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2771 * the remaining slabs by the number of items in use. The slabs with the
2772 * most items in use come first. New allocations will then fill those up
2773 * and thus they can be removed from the partial lists.
2774 *
2775 * The slabs with the least items are placed last. This results in them
2776 * being allocated from last increasing the chance that the last objects
2777 * are freed in them.
2778 */
2779int kmem_cache_shrink(struct kmem_cache *s)
2780{
2781	int node;
2782	int i;
2783	struct kmem_cache_node *n;
2784	struct page *page;
2785	struct page *t;
2786	int objects = oo_objects(s->max);
2787	struct list_head *slabs_by_inuse =
2788		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2789	unsigned long flags;
2790
2791	if (!slabs_by_inuse)
2792		return -ENOMEM;
2793
2794	flush_all(s);
2795	for_each_node_state(node, N_NORMAL_MEMORY) {
2796		n = get_node(s, node);
2797
2798		if (!n->nr_partial)
2799			continue;
2800
2801		for (i = 0; i < objects; i++)
2802			INIT_LIST_HEAD(slabs_by_inuse + i);
2803
2804		spin_lock_irqsave(&n->list_lock, flags);
2805
2806		/*
2807		 * Build lists indexed by the items in use in each slab.
2808		 *
2809		 * Note that concurrent frees may occur while we hold the
2810		 * list_lock. page->inuse here is the upper limit.
2811		 */
2812		list_for_each_entry_safe(page, t, &n->partial, lru) {
2813			if (!page->inuse && slab_trylock(page)) {
2814				/*
2815				 * Must hold slab lock here because slab_free
2816				 * may have freed the last object and be
2817				 * waiting to release the slab.
2818				 */
2819				list_del(&page->lru);
2820				n->nr_partial--;
2821				slab_unlock(page);
2822				discard_slab(s, page);
2823			} else {
2824				list_move(&page->lru,
2825				slabs_by_inuse + page->inuse);
2826			}
2827		}
2828
2829		/*
2830		 * Rebuild the partial list with the slabs filled up most
2831		 * first and the least used slabs at the end.
2832		 */
2833		for (i = objects - 1; i >= 0; i--)
2834			list_splice(slabs_by_inuse + i, n->partial.prev);
2835
2836		spin_unlock_irqrestore(&n->list_lock, flags);
2837	}
2838
2839	kfree(slabs_by_inuse);
2840	return 0;
2841}
2842EXPORT_SYMBOL(kmem_cache_shrink);
2843
2844#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2845static int slab_mem_going_offline_callback(void *arg)
2846{
2847	struct kmem_cache *s;
2848
2849	down_read(&slub_lock);
2850	list_for_each_entry(s, &slab_caches, list)
2851		kmem_cache_shrink(s);
2852	up_read(&slub_lock);
2853
2854	return 0;
2855}
2856
2857static void slab_mem_offline_callback(void *arg)
2858{
2859	struct kmem_cache_node *n;
2860	struct kmem_cache *s;
2861	struct memory_notify *marg = arg;
2862	int offline_node;
2863
2864	offline_node = marg->status_change_nid;
2865
2866	/*
2867	 * If the node still has available memory. we need kmem_cache_node
2868	 * for it yet.
2869	 */
2870	if (offline_node < 0)
2871		return;
2872
2873	down_read(&slub_lock);
2874	list_for_each_entry(s, &slab_caches, list) {
2875		n = get_node(s, offline_node);
2876		if (n) {
2877			/*
2878			 * if n->nr_slabs > 0, slabs still exist on the node
2879			 * that is going down. We were unable to free them,
2880			 * and offline_pages() function shoudn't call this
2881			 * callback. So, we must fail.
2882			 */
2883			BUG_ON(slabs_node(s, offline_node));
2884
2885			s->node[offline_node] = NULL;
2886			kmem_cache_free(kmalloc_caches, n);
2887		}
2888	}
2889	up_read(&slub_lock);
2890}
2891
2892static int slab_mem_going_online_callback(void *arg)
2893{
2894	struct kmem_cache_node *n;
2895	struct kmem_cache *s;
2896	struct memory_notify *marg = arg;
2897	int nid = marg->status_change_nid;
2898	int ret = 0;
2899
2900	/*
2901	 * If the node's memory is already available, then kmem_cache_node is
2902	 * already created. Nothing to do.
2903	 */
2904	if (nid < 0)
2905		return 0;
2906
2907	/*
2908	 * We are bringing a node online. No memory is available yet. We must
2909	 * allocate a kmem_cache_node structure in order to bring the node
2910	 * online.
2911	 */
2912	down_read(&slub_lock);
2913	list_for_each_entry(s, &slab_caches, list) {
2914		/*
2915		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2916		 *      since memory is not yet available from the node that
2917		 *      is brought up.
2918		 */
2919		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2920		if (!n) {
2921			ret = -ENOMEM;
2922			goto out;
2923		}
2924		init_kmem_cache_node(n);
2925		s->node[nid] = n;
2926	}
2927out:
2928	up_read(&slub_lock);
2929	return ret;
2930}
2931
2932static int slab_memory_callback(struct notifier_block *self,
2933				unsigned long action, void *arg)
2934{
2935	int ret = 0;
2936
2937	switch (action) {
2938	case MEM_GOING_ONLINE:
2939		ret = slab_mem_going_online_callback(arg);
2940		break;
2941	case MEM_GOING_OFFLINE:
2942		ret = slab_mem_going_offline_callback(arg);
2943		break;
2944	case MEM_OFFLINE:
2945	case MEM_CANCEL_ONLINE:
2946		slab_mem_offline_callback(arg);
2947		break;
2948	case MEM_ONLINE:
2949	case MEM_CANCEL_OFFLINE:
2950		break;
2951	}
2952
2953	ret = notifier_from_errno(ret);
2954	return ret;
2955}
2956
2957#endif /* CONFIG_MEMORY_HOTPLUG */
2958
2959/********************************************************************
2960 *			Basic setup of slabs
2961 *******************************************************************/
2962
2963void __init kmem_cache_init(void)
2964{
2965	int i;
2966	int caches = 0;
2967
2968	init_alloc_cpu();
2969
2970#ifdef CONFIG_NUMA
2971	/*
2972	 * Must first have the slab cache available for the allocations of the
2973	 * struct kmem_cache_node's. There is special bootstrap code in
2974	 * kmem_cache_open for slab_state == DOWN.
2975	 */
2976	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2977		sizeof(struct kmem_cache_node), GFP_KERNEL);
2978	kmalloc_caches[0].refcount = -1;
2979	caches++;
2980
2981	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2982#endif
2983
2984	/* Able to allocate the per node structures */
2985	slab_state = PARTIAL;
2986
2987	/* Caches that are not of the two-to-the-power-of size */
2988	if (KMALLOC_MIN_SIZE <= 64) {
2989		create_kmalloc_cache(&kmalloc_caches[1],
2990				"kmalloc-96", 96, GFP_KERNEL);
2991		caches++;
2992		create_kmalloc_cache(&kmalloc_caches[2],
2993				"kmalloc-192", 192, GFP_KERNEL);
2994		caches++;
2995	}
2996
2997	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2998		create_kmalloc_cache(&kmalloc_caches[i],
2999			"kmalloc", 1 << i, GFP_KERNEL);
3000		caches++;
3001	}
3002
3003
3004	/*
3005	 * Patch up the size_index table if we have strange large alignment
3006	 * requirements for the kmalloc array. This is only the case for
3007	 * MIPS it seems. The standard arches will not generate any code here.
3008	 *
3009	 * Largest permitted alignment is 256 bytes due to the way we
3010	 * handle the index determination for the smaller caches.
3011	 *
3012	 * Make sure that nothing crazy happens if someone starts tinkering
3013	 * around with ARCH_KMALLOC_MINALIGN
3014	 */
3015	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3016		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3017
3018	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3019		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3020
3021	if (KMALLOC_MIN_SIZE == 128) {
3022		/*
3023		 * The 192 byte sized cache is not used if the alignment
3024		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3025		 * instead.
3026		 */
3027		for (i = 128 + 8; i <= 192; i += 8)
3028			size_index[(i - 1) / 8] = 8;
3029	}
3030
3031	slab_state = UP;
3032
3033	/* Provide the correct kmalloc names now that the caches are up */
3034	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3035		kmalloc_caches[i]. name =
3036			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3037
3038#ifdef CONFIG_SMP
3039	register_cpu_notifier(&slab_notifier);
3040	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3041				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3042#else
3043	kmem_size = sizeof(struct kmem_cache);
3044#endif
3045
3046	printk(KERN_INFO
3047		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3048		" CPUs=%d, Nodes=%d\n",
3049		caches, cache_line_size(),
3050		slub_min_order, slub_max_order, slub_min_objects,
3051		nr_cpu_ids, nr_node_ids);
3052}
3053
3054/*
3055 * Find a mergeable slab cache
3056 */
3057static int slab_unmergeable(struct kmem_cache *s)
3058{
3059	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3060		return 1;
3061
3062	if (s->ctor)
3063		return 1;
3064
3065	/*
3066	 * We may have set a slab to be unmergeable during bootstrap.
3067	 */
3068	if (s->refcount < 0)
3069		return 1;
3070
3071	return 0;
3072}
3073
3074static struct kmem_cache *find_mergeable(size_t size,
3075		size_t align, unsigned long flags, const char *name,
3076		void (*ctor)(struct kmem_cache *, void *))
3077{
3078	struct kmem_cache *s;
3079
3080	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3081		return NULL;
3082
3083	if (ctor)
3084		return NULL;
3085
3086	size = ALIGN(size, sizeof(void *));
3087	align = calculate_alignment(flags, align, size);
3088	size = ALIGN(size, align);
3089	flags = kmem_cache_flags(size, flags, name, NULL);
3090
3091	list_for_each_entry(s, &slab_caches, list) {
3092		if (slab_unmergeable(s))
3093			continue;
3094
3095		if (size > s->size)
3096			continue;
3097
3098		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3099				continue;
3100		/*
3101		 * Check if alignment is compatible.
3102		 * Courtesy of Adrian Drzewiecki
3103		 */
3104		if ((s->size & ~(align - 1)) != s->size)
3105			continue;
3106
3107		if (s->size - size >= sizeof(void *))
3108			continue;
3109
3110		return s;
3111	}
3112	return NULL;
3113}
3114
3115struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3116		size_t align, unsigned long flags,
3117		void (*ctor)(struct kmem_cache *, void *))
3118{
3119	struct kmem_cache *s;
3120
3121	down_write(&slub_lock);
3122	s = find_mergeable(size, align, flags, name, ctor);
3123	if (s) {
3124		int cpu;
3125
3126		s->refcount++;
3127		/*
3128		 * Adjust the object sizes so that we clear
3129		 * the complete object on kzalloc.
3130		 */
3131		s->objsize = max(s->objsize, (int)size);
3132
3133		/*
3134		 * And then we need to update the object size in the
3135		 * per cpu structures
3136		 */
3137		for_each_online_cpu(cpu)
3138			get_cpu_slab(s, cpu)->objsize = s->objsize;
3139
3140		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3141		up_write(&slub_lock);
3142
3143		if (sysfs_slab_alias(s, name))
3144			goto err;
3145		return s;
3146	}
3147
3148	s = kmalloc(kmem_size, GFP_KERNEL);
3149	if (s) {
3150		if (kmem_cache_open(s, GFP_KERNEL, name,
3151				size, align, flags, ctor)) {
3152			list_add(&s->list, &slab_caches);
3153			up_write(&slub_lock);
3154			if (sysfs_slab_add(s))
3155				goto err;
3156			return s;
3157		}
3158		kfree(s);
3159	}
3160	up_write(&slub_lock);
3161
3162err:
3163	if (flags & SLAB_PANIC)
3164		panic("Cannot create slabcache %s\n", name);
3165	else
3166		s = NULL;
3167	return s;
3168}
3169EXPORT_SYMBOL(kmem_cache_create);
3170
3171#ifdef CONFIG_SMP
3172/*
3173 * Use the cpu notifier to insure that the cpu slabs are flushed when
3174 * necessary.
3175 */
3176static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3177		unsigned long action, void *hcpu)
3178{
3179	long cpu = (long)hcpu;
3180	struct kmem_cache *s;
3181	unsigned long flags;
3182
3183	switch (action) {
3184	case CPU_UP_PREPARE:
3185	case CPU_UP_PREPARE_FROZEN:
3186		init_alloc_cpu_cpu(cpu);
3187		down_read(&slub_lock);
3188		list_for_each_entry(s, &slab_caches, list)
3189			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3190							GFP_KERNEL);
3191		up_read(&slub_lock);
3192		break;
3193
3194	case CPU_UP_CANCELED:
3195	case CPU_UP_CANCELED_FROZEN:
3196	case CPU_DEAD:
3197	case CPU_DEAD_FROZEN:
3198		down_read(&slub_lock);
3199		list_for_each_entry(s, &slab_caches, list) {
3200			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3201
3202			local_irq_save(flags);
3203			__flush_cpu_slab(s, cpu);
3204			local_irq_restore(flags);
3205			free_kmem_cache_cpu(c, cpu);
3206			s->cpu_slab[cpu] = NULL;
3207		}
3208		up_read(&slub_lock);
3209		break;
3210	default:
3211		break;
3212	}
3213	return NOTIFY_OK;
3214}
3215
3216static struct notifier_block __cpuinitdata slab_notifier = {
3217	.notifier_call = slab_cpuup_callback
3218};
3219
3220#endif
3221
3222void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3223{
3224	struct kmem_cache *s;
3225
3226	if (unlikely(size > PAGE_SIZE))
3227		return kmalloc_large(size, gfpflags);
3228
3229	s = get_slab(size, gfpflags);
3230
3231	if (unlikely(ZERO_OR_NULL_PTR(s)))
3232		return s;
3233
3234	return slab_alloc(s, gfpflags, -1, caller);
3235}
3236
3237void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3238					int node, void *caller)
3239{
3240	struct kmem_cache *s;
3241
3242	if (unlikely(size > PAGE_SIZE))
3243		return kmalloc_large_node(size, gfpflags, node);
3244
3245	s = get_slab(size, gfpflags);
3246
3247	if (unlikely(ZERO_OR_NULL_PTR(s)))
3248		return s;
3249
3250	return slab_alloc(s, gfpflags, node, caller);
3251}
3252
3253#ifdef CONFIG_SLUB_DEBUG
3254static unsigned long count_partial(struct kmem_cache_node *n,
3255					int (*get_count)(struct page *))
3256{
3257	unsigned long flags;
3258	unsigned long x = 0;
3259	struct page *page;
3260
3261	spin_lock_irqsave(&n->list_lock, flags);
3262	list_for_each_entry(page, &n->partial, lru)
3263		x += get_count(page);
3264	spin_unlock_irqrestore(&n->list_lock, flags);
3265	return x;
3266}
3267
3268static int count_inuse(struct page *page)
3269{
3270	return page->inuse;
3271}
3272
3273static int count_total(struct page *page)
3274{
3275	return page->objects;
3276}
3277
3278static int count_free(struct page *page)
3279{
3280	return page->objects - page->inuse;
3281}
3282
3283static int validate_slab(struct kmem_cache *s, struct page *page,
3284						unsigned long *map)
3285{
3286	void *p;
3287	void *addr = page_address(page);
3288
3289	if (!check_slab(s, page) ||
3290			!on_freelist(s, page, NULL))
3291		return 0;
3292
3293	/* Now we know that a valid freelist exists */
3294	bitmap_zero(map, page->objects);
3295
3296	for_each_free_object(p, s, page->freelist) {
3297		set_bit(slab_index(p, s, addr), map);
3298		if (!check_object(s, page, p, 0))
3299			return 0;
3300	}
3301
3302	for_each_object(p, s, addr, page->objects)
3303		if (!test_bit(slab_index(p, s, addr), map))
3304			if (!check_object(s, page, p, 1))
3305				return 0;
3306	return 1;
3307}
3308
3309static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3310						unsigned long *map)
3311{
3312	if (slab_trylock(page)) {
3313		validate_slab(s, page, map);
3314		slab_unlock(page);
3315	} else
3316		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3317			s->name, page);
3318
3319	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3320		if (!SlabDebug(page))
3321			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3322				"on slab 0x%p\n", s->name, page);
3323	} else {
3324		if (SlabDebug(page))
3325			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3326				"slab 0x%p\n", s->name, page);
3327	}
3328}
3329
3330static int validate_slab_node(struct kmem_cache *s,
3331		struct kmem_cache_node *n, unsigned long *map)
3332{
3333	unsigned long count = 0;
3334	struct page *page;
3335	unsigned long flags;
3336
3337	spin_lock_irqsave(&n->list_lock, flags);
3338
3339	list_for_each_entry(page, &n->partial, lru) {
3340		validate_slab_slab(s, page, map);
3341		count++;
3342	}
3343	if (count != n->nr_partial)
3344		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3345			"counter=%ld\n", s->name, count, n->nr_partial);
3346
3347	if (!(s->flags & SLAB_STORE_USER))
3348		goto out;
3349
3350	list_for_each_entry(page, &n->full, lru) {
3351		validate_slab_slab(s, page, map);
3352		count++;
3353	}
3354	if (count != atomic_long_read(&n->nr_slabs))
3355		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3356			"counter=%ld\n", s->name, count,
3357			atomic_long_read(&n->nr_slabs));
3358
3359out:
3360	spin_unlock_irqrestore(&n->list_lock, flags);
3361	return count;
3362}
3363
3364static long validate_slab_cache(struct kmem_cache *s)
3365{
3366	int node;
3367	unsigned long count = 0;
3368	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3369				sizeof(unsigned long), GFP_KERNEL);
3370
3371	if (!map)
3372		return -ENOMEM;
3373
3374	flush_all(s);
3375	for_each_node_state(node, N_NORMAL_MEMORY) {
3376		struct kmem_cache_node *n = get_node(s, node);
3377
3378		count += validate_slab_node(s, n, map);
3379	}
3380	kfree(map);
3381	return count;
3382}
3383
3384#ifdef SLUB_RESILIENCY_TEST
3385static void resiliency_test(void)
3386{
3387	u8 *p;
3388
3389	printk(KERN_ERR "SLUB resiliency testing\n");
3390	printk(KERN_ERR "-----------------------\n");
3391	printk(KERN_ERR "A. Corruption after allocation\n");
3392
3393	p = kzalloc(16, GFP_KERNEL);
3394	p[16] = 0x12;
3395	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3396			" 0x12->0x%p\n\n", p + 16);
3397
3398	validate_slab_cache(kmalloc_caches + 4);
3399
3400	/* Hmmm... The next two are dangerous */
3401	p = kzalloc(32, GFP_KERNEL);
3402	p[32 + sizeof(void *)] = 0x34;
3403	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3404			" 0x34 -> -0x%p\n", p);
3405	printk(KERN_ERR
3406		"If allocated object is overwritten then not detectable\n\n");
3407
3408	validate_slab_cache(kmalloc_caches + 5);
3409	p = kzalloc(64, GFP_KERNEL);
3410	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3411	*p = 0x56;
3412	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3413									p);
3414	printk(KERN_ERR
3415		"If allocated object is overwritten then not detectable\n\n");
3416	validate_slab_cache(kmalloc_caches + 6);
3417
3418	printk(KERN_ERR "\nB. Corruption after free\n");
3419	p = kzalloc(128, GFP_KERNEL);
3420	kfree(p);
3421	*p = 0x78;
3422	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3423	validate_slab_cache(kmalloc_caches + 7);
3424
3425	p = kzalloc(256, GFP_KERNEL);
3426	kfree(p);
3427	p[50] = 0x9a;
3428	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3429			p);
3430	validate_slab_cache(kmalloc_caches + 8);
3431
3432	p = kzalloc(512, GFP_KERNEL);
3433	kfree(p);
3434	p[512] = 0xab;
3435	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3436	validate_slab_cache(kmalloc_caches + 9);
3437}
3438#else
3439static void resiliency_test(void) {};
3440#endif
3441
3442/*
3443 * Generate lists of code addresses where slabcache objects are allocated
3444 * and freed.
3445 */
3446
3447struct location {
3448	unsigned long count;
3449	void *addr;
3450	long long sum_time;
3451	long min_time;
3452	long max_time;
3453	long min_pid;
3454	long max_pid;
3455	cpumask_t cpus;
3456	nodemask_t nodes;
3457};
3458
3459struct loc_track {
3460	unsigned long max;
3461	unsigned long count;
3462	struct location *loc;
3463};
3464
3465static void free_loc_track(struct loc_track *t)
3466{
3467	if (t->max)
3468		free_pages((unsigned long)t->loc,
3469			get_order(sizeof(struct location) * t->max));
3470}
3471
3472static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3473{
3474	struct location *l;
3475	int order;
3476
3477	order = get_order(sizeof(struct location) * max);
3478
3479	l = (void *)__get_free_pages(flags, order);
3480	if (!l)
3481		return 0;
3482
3483	if (t->count) {
3484		memcpy(l, t->loc, sizeof(struct location) * t->count);
3485		free_loc_track(t);
3486	}
3487	t->max = max;
3488	t->loc = l;
3489	return 1;
3490}
3491
3492static int add_location(struct loc_track *t, struct kmem_cache *s,
3493				const struct track *track)
3494{
3495	long start, end, pos;
3496	struct location *l;
3497	void *caddr;
3498	unsigned long age = jiffies - track->when;
3499
3500	start = -1;
3501	end = t->count;
3502
3503	for ( ; ; ) {
3504		pos = start + (end - start + 1) / 2;
3505
3506		/*
3507		 * There is nothing at "end". If we end up there
3508		 * we need to add something to before end.
3509		 */
3510		if (pos == end)
3511			break;
3512
3513		caddr = t->loc[pos].addr;
3514		if (track->addr == caddr) {
3515
3516			l = &t->loc[pos];
3517			l->count++;
3518			if (track->when) {
3519				l->sum_time += age;
3520				if (age < l->min_time)
3521					l->min_time = age;
3522				if (age > l->max_time)
3523					l->max_time = age;
3524
3525				if (track->pid < l->min_pid)
3526					l->min_pid = track->pid;
3527				if (track->pid > l->max_pid)
3528					l->max_pid = track->pid;
3529
3530				cpu_set(track->cpu, l->cpus);
3531			}
3532			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3533			return 1;
3534		}
3535
3536		if (track->addr < caddr)
3537			end = pos;
3538		else
3539			start = pos;
3540	}
3541
3542	/*
3543	 * Not found. Insert new tracking element.
3544	 */
3545	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3546		return 0;
3547
3548	l = t->loc + pos;
3549	if (pos < t->count)
3550		memmove(l + 1, l,
3551			(t->count - pos) * sizeof(struct location));
3552	t->count++;
3553	l->count = 1;
3554	l->addr = track->addr;
3555	l->sum_time = age;
3556	l->min_time = age;
3557	l->max_time = age;
3558	l->min_pid = track->pid;
3559	l->max_pid = track->pid;
3560	cpus_clear(l->cpus);
3561	cpu_set(track->cpu, l->cpus);
3562	nodes_clear(l->nodes);
3563	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3564	return 1;
3565}
3566
3567static void process_slab(struct loc_track *t, struct kmem_cache *s,
3568		struct page *page, enum track_item alloc)
3569{
3570	void *addr = page_address(page);
3571	DECLARE_BITMAP(map, page->objects);
3572	void *p;
3573
3574	bitmap_zero(map, page->objects);
3575	for_each_free_object(p, s, page->freelist)
3576		set_bit(slab_index(p, s, addr), map);
3577
3578	for_each_object(p, s, addr, page->objects)
3579		if (!test_bit(slab_index(p, s, addr), map))
3580			add_location(t, s, get_track(s, p, alloc));
3581}
3582
3583static int list_locations(struct kmem_cache *s, char *buf,
3584					enum track_item alloc)
3585{
3586	int len = 0;
3587	unsigned long i;
3588	struct loc_track t = { 0, 0, NULL };
3589	int node;
3590
3591	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3592			GFP_TEMPORARY))
3593		return sprintf(buf, "Out of memory\n");
3594
3595	/* Push back cpu slabs */
3596	flush_all(s);
3597
3598	for_each_node_state(node, N_NORMAL_MEMORY) {
3599		struct kmem_cache_node *n = get_node(s, node);
3600		unsigned long flags;
3601		struct page *page;
3602
3603		if (!atomic_long_read(&n->nr_slabs))
3604			continue;
3605
3606		spin_lock_irqsave(&n->list_lock, flags);
3607		list_for_each_entry(page, &n->partial, lru)
3608			process_slab(&t, s, page, alloc);
3609		list_for_each_entry(page, &n->full, lru)
3610			process_slab(&t, s, page, alloc);
3611		spin_unlock_irqrestore(&n->list_lock, flags);
3612	}
3613
3614	for (i = 0; i < t.count; i++) {
3615		struct location *l = &t.loc[i];
3616
3617		if (len > PAGE_SIZE - 100)
3618			break;
3619		len += sprintf(buf + len, "%7ld ", l->count);
3620
3621		if (l->addr)
3622			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3623		else
3624			len += sprintf(buf + len, "<not-available>");
3625
3626		if (l->sum_time != l->min_time) {
3627			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3628				l->min_time,
3629				(long)div_u64(l->sum_time, l->count),
3630				l->max_time);
3631		} else
3632			len += sprintf(buf + len, " age=%ld",
3633				l->min_time);
3634
3635		if (l->min_pid != l->max_pid)
3636			len += sprintf(buf + len, " pid=%ld-%ld",
3637				l->min_pid, l->max_pid);
3638		else
3639			len += sprintf(buf + len, " pid=%ld",
3640				l->min_pid);
3641
3642		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3643				len < PAGE_SIZE - 60) {
3644			len += sprintf(buf + len, " cpus=");
3645			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3646					l->cpus);
3647		}
3648
3649		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3650				len < PAGE_SIZE - 60) {
3651			len += sprintf(buf + len, " nodes=");
3652			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3653					l->nodes);
3654		}
3655
3656		len += sprintf(buf + len, "\n");
3657	}
3658
3659	free_loc_track(&t);
3660	if (!t.count)
3661		len += sprintf(buf, "No data\n");
3662	return len;
3663}
3664
3665enum slab_stat_type {
3666	SL_ALL,			/* All slabs */
3667	SL_PARTIAL,		/* Only partially allocated slabs */
3668	SL_CPU,			/* Only slabs used for cpu caches */
3669	SL_OBJECTS,		/* Determine allocated objects not slabs */
3670	SL_TOTAL		/* Determine object capacity not slabs */
3671};
3672
3673#define SO_ALL		(1 << SL_ALL)
3674#define SO_PARTIAL	(1 << SL_PARTIAL)
3675#define SO_CPU		(1 << SL_CPU)
3676#define SO_OBJECTS	(1 << SL_OBJECTS)
3677#define SO_TOTAL	(1 << SL_TOTAL)
3678
3679static ssize_t show_slab_objects(struct kmem_cache *s,
3680			    char *buf, unsigned long flags)
3681{
3682	unsigned long total = 0;
3683	int node;
3684	int x;
3685	unsigned long *nodes;
3686	unsigned long *per_cpu;
3687
3688	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3689	if (!nodes)
3690		return -ENOMEM;
3691	per_cpu = nodes + nr_node_ids;
3692
3693	if (flags & SO_CPU) {
3694		int cpu;
3695
3696		for_each_possible_cpu(cpu) {
3697			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3698
3699			if (!c || c->node < 0)
3700				continue;
3701
3702			if (c->page) {
3703					if (flags & SO_TOTAL)
3704						x = c->page->objects;
3705				else if (flags & SO_OBJECTS)
3706					x = c->page->inuse;
3707				else
3708					x = 1;
3709
3710				total += x;
3711				nodes[c->node] += x;
3712			}
3713			per_cpu[c->node]++;
3714		}
3715	}
3716
3717	if (flags & SO_ALL) {
3718		for_each_node_state(node, N_NORMAL_MEMORY) {
3719			struct kmem_cache_node *n = get_node(s, node);
3720
3721		if (flags & SO_TOTAL)
3722			x = atomic_long_read(&n->total_objects);
3723		else if (flags & SO_OBJECTS)
3724			x = atomic_long_read(&n->total_objects) -
3725				count_partial(n, count_free);
3726
3727			else
3728				x = atomic_long_read(&n->nr_slabs);
3729			total += x;
3730			nodes[node] += x;
3731		}
3732
3733	} else if (flags & SO_PARTIAL) {
3734		for_each_node_state(node, N_NORMAL_MEMORY) {
3735			struct kmem_cache_node *n = get_node(s, node);
3736
3737			if (flags & SO_TOTAL)
3738				x = count_partial(n, count_total);
3739			else if (flags & SO_OBJECTS)
3740				x = count_partial(n, count_inuse);
3741			else
3742				x = n->nr_partial;
3743			total += x;
3744			nodes[node] += x;
3745		}
3746	}
3747	x = sprintf(buf, "%lu", total);
3748#ifdef CONFIG_NUMA
3749	for_each_node_state(node, N_NORMAL_MEMORY)
3750		if (nodes[node])
3751			x += sprintf(buf + x, " N%d=%lu",
3752					node, nodes[node]);
3753#endif
3754	kfree(nodes);
3755	return x + sprintf(buf + x, "\n");
3756}
3757
3758static int any_slab_objects(struct kmem_cache *s)
3759{
3760	int node;
3761
3762	for_each_online_node(node) {
3763		struct kmem_cache_node *n = get_node(s, node);
3764
3765		if (!n)
3766			continue;
3767
3768		if (atomic_long_read(&n->total_objects))
3769			return 1;
3770	}
3771	return 0;
3772}
3773
3774#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3775#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3776
3777struct slab_attribute {
3778	struct attribute attr;
3779	ssize_t (*show)(struct kmem_cache *s, char *buf);
3780	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3781};
3782
3783#define SLAB_ATTR_RO(_name) \
3784	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3785
3786#define SLAB_ATTR(_name) \
3787	static struct slab_attribute _name##_attr =  \
3788	__ATTR(_name, 0644, _name##_show, _name##_store)
3789
3790static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3791{
3792	return sprintf(buf, "%d\n", s->size);
3793}
3794SLAB_ATTR_RO(slab_size);
3795
3796static ssize_t align_show(struct kmem_cache *s, char *buf)
3797{
3798	return sprintf(buf, "%d\n", s->align);
3799}
3800SLAB_ATTR_RO(align);
3801
3802static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3803{
3804	return sprintf(buf, "%d\n", s->objsize);
3805}
3806SLAB_ATTR_RO(object_size);
3807
3808static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3809{
3810	return sprintf(buf, "%d\n", oo_objects(s->oo));
3811}
3812SLAB_ATTR_RO(objs_per_slab);
3813
3814static ssize_t order_store(struct kmem_cache *s,
3815				const char *buf, size_t length)
3816{
3817	unsigned long order;
3818	int err;
3819
3820	err = strict_strtoul(buf, 10, &order);
3821	if (err)
3822		return err;
3823
3824	if (order > slub_max_order || order < slub_min_order)
3825		return -EINVAL;
3826
3827	calculate_sizes(s, order);
3828	return length;
3829}
3830
3831static ssize_t order_show(struct kmem_cache *s, char *buf)
3832{
3833	return sprintf(buf, "%d\n", oo_order(s->oo));
3834}
3835SLAB_ATTR(order);
3836
3837static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3838{
3839	if (s->ctor) {
3840		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3841
3842		return n + sprintf(buf + n, "\n");
3843	}
3844	return 0;
3845}
3846SLAB_ATTR_RO(ctor);
3847
3848static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3849{
3850	return sprintf(buf, "%d\n", s->refcount - 1);
3851}
3852SLAB_ATTR_RO(aliases);
3853
3854static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3855{
3856	return show_slab_objects(s, buf, SO_ALL);
3857}
3858SLAB_ATTR_RO(slabs);
3859
3860static ssize_t partial_show(struct kmem_cache *s, char *buf)
3861{
3862	return show_slab_objects(s, buf, SO_PARTIAL);
3863}
3864SLAB_ATTR_RO(partial);
3865
3866static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3867{
3868	return show_slab_objects(s, buf, SO_CPU);
3869}
3870SLAB_ATTR_RO(cpu_slabs);
3871
3872static ssize_t objects_show(struct kmem_cache *s, char *buf)
3873{
3874	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3875}
3876SLAB_ATTR_RO(objects);
3877
3878static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3879{
3880	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3881}
3882SLAB_ATTR_RO(objects_partial);
3883
3884static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3885{
3886	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3887}
3888SLAB_ATTR_RO(total_objects);
3889
3890static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3891{
3892	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3893}
3894
3895static ssize_t sanity_checks_store(struct kmem_cache *s,
3896				const char *buf, size_t length)
3897{
3898	s->flags &= ~SLAB_DEBUG_FREE;
3899	if (buf[0] == '1')
3900		s->flags |= SLAB_DEBUG_FREE;
3901	return length;
3902}
3903SLAB_ATTR(sanity_checks);
3904
3905static ssize_t trace_show(struct kmem_cache *s, char *buf)
3906{
3907	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3908}
3909
3910static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3911							size_t length)
3912{
3913	s->flags &= ~SLAB_TRACE;
3914	if (buf[0] == '1')
3915		s->flags |= SLAB_TRACE;
3916	return length;
3917}
3918SLAB_ATTR(trace);
3919
3920static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3921{
3922	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3923}
3924
3925static ssize_t reclaim_account_store(struct kmem_cache *s,
3926				const char *buf, size_t length)
3927{
3928	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3929	if (buf[0] == '1')
3930		s->flags |= SLAB_RECLAIM_ACCOUNT;
3931	return length;
3932}
3933SLAB_ATTR(reclaim_account);
3934
3935static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3936{
3937	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3938}
3939SLAB_ATTR_RO(hwcache_align);
3940
3941#ifdef CONFIG_ZONE_DMA
3942static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3943{
3944	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3945}
3946SLAB_ATTR_RO(cache_dma);
3947#endif
3948
3949static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3950{
3951	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3952}
3953SLAB_ATTR_RO(destroy_by_rcu);
3954
3955static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3956{
3957	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3958}
3959
3960static ssize_t red_zone_store(struct kmem_cache *s,
3961				const char *buf, size_t length)
3962{
3963	if (any_slab_objects(s))
3964		return -EBUSY;
3965
3966	s->flags &= ~SLAB_RED_ZONE;
3967	if (buf[0] == '1')
3968		s->flags |= SLAB_RED_ZONE;
3969	calculate_sizes(s, -1);
3970	return length;
3971}
3972SLAB_ATTR(red_zone);
3973
3974static ssize_t poison_show(struct kmem_cache *s, char *buf)
3975{
3976	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3977}
3978
3979static ssize_t poison_store(struct kmem_cache *s,
3980				const char *buf, size_t length)
3981{
3982	if (any_slab_objects(s))
3983		return -EBUSY;
3984
3985	s->flags &= ~SLAB_POISON;
3986	if (buf[0] == '1')
3987		s->flags |= SLAB_POISON;
3988	calculate_sizes(s, -1);
3989	return length;
3990}
3991SLAB_ATTR(poison);
3992
3993static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3994{
3995	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3996}
3997
3998static ssize_t store_user_store(struct kmem_cache *s,
3999				const char *buf, size_t length)
4000{
4001	if (any_slab_objects(s))
4002		return -EBUSY;
4003
4004	s->flags &= ~SLAB_STORE_USER;
4005	if (buf[0] == '1')
4006		s->flags |= SLAB_STORE_USER;
4007	calculate_sizes(s, -1);
4008	return length;
4009}
4010SLAB_ATTR(store_user);
4011
4012static ssize_t validate_show(struct kmem_cache *s, char *buf)
4013{
4014	return 0;
4015}
4016
4017static ssize_t validate_store(struct kmem_cache *s,
4018			const char *buf, size_t length)
4019{
4020	int ret = -EINVAL;
4021
4022	if (buf[0] == '1') {
4023		ret = validate_slab_cache(s);
4024		if (ret >= 0)
4025			ret = length;
4026	}
4027	return ret;
4028}
4029SLAB_ATTR(validate);
4030
4031static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4032{
4033	return 0;
4034}
4035
4036static ssize_t shrink_store(struct kmem_cache *s,
4037			const char *buf, size_t length)
4038{
4039	if (buf[0] == '1') {
4040		int rc = kmem_cache_shrink(s);
4041
4042		if (rc)
4043			return rc;
4044	} else
4045		return -EINVAL;
4046	return length;
4047}
4048SLAB_ATTR(shrink);
4049
4050static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4051{
4052	if (!(s->flags & SLAB_STORE_USER))
4053		return -ENOSYS;
4054	return list_locations(s, buf, TRACK_ALLOC);
4055}
4056SLAB_ATTR_RO(alloc_calls);
4057
4058static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4059{
4060	if (!(s->flags & SLAB_STORE_USER))
4061		return -ENOSYS;
4062	return list_locations(s, buf, TRACK_FREE);
4063}
4064SLAB_ATTR_RO(free_calls);
4065
4066#ifdef CONFIG_NUMA
4067static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4068{
4069	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4070}
4071
4072static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4073				const char *buf, size_t length)
4074{
4075	unsigned long ratio;
4076	int err;
4077
4078	err = strict_strtoul(buf, 10, &ratio);
4079	if (err)
4080		return err;
4081
4082	if (ratio < 100)
4083		s->remote_node_defrag_ratio = ratio * 10;
4084
4085	return length;
4086}
4087SLAB_ATTR(remote_node_defrag_ratio);
4088#endif
4089
4090#ifdef CONFIG_SLUB_STATS
4091static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4092{
4093	unsigned long sum  = 0;
4094	int cpu;
4095	int len;
4096	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4097
4098	if (!data)
4099		return -ENOMEM;
4100
4101	for_each_online_cpu(cpu) {
4102		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4103
4104		data[cpu] = x;
4105		sum += x;
4106	}
4107
4108	len = sprintf(buf, "%lu", sum);
4109
4110#ifdef CONFIG_SMP
4111	for_each_online_cpu(cpu) {
4112		if (data[cpu] && len < PAGE_SIZE - 20)
4113			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4114	}
4115#endif
4116	kfree(data);
4117	return len + sprintf(buf + len, "\n");
4118}
4119
4120#define STAT_ATTR(si, text) 					\
4121static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4122{								\
4123	return show_stat(s, buf, si);				\
4124}								\
4125SLAB_ATTR_RO(text);						\
4126
4127STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4128STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4129STAT_ATTR(FREE_FASTPATH, free_fastpath);
4130STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4131STAT_ATTR(FREE_FROZEN, free_frozen);
4132STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4133STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4134STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4135STAT_ATTR(ALLOC_SLAB, alloc_slab);
4136STAT_ATTR(ALLOC_REFILL, alloc_refill);
4137STAT_ATTR(FREE_SLAB, free_slab);
4138STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4139STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4140STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4141STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4142STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4143STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4144STAT_ATTR(ORDER_FALLBACK, order_fallback);
4145#endif
4146
4147static struct attribute *slab_attrs[] = {
4148	&slab_size_attr.attr,
4149	&object_size_attr.attr,
4150	&objs_per_slab_attr.attr,
4151	&order_attr.attr,
4152	&objects_attr.attr,
4153	&objects_partial_attr.attr,
4154	&total_objects_attr.attr,
4155	&slabs_attr.attr,
4156	&partial_attr.attr,
4157	&cpu_slabs_attr.attr,
4158	&ctor_attr.attr,
4159	&aliases_attr.attr,
4160	&align_attr.attr,
4161	&sanity_checks_attr.attr,
4162	&trace_attr.attr,
4163	&hwcache_align_attr.attr,
4164	&reclaim_account_attr.attr,
4165	&destroy_by_rcu_attr.attr,
4166	&red_zone_attr.attr,
4167	&poison_attr.attr,
4168	&store_user_attr.attr,
4169	&validate_attr.attr,
4170	&shrink_attr.attr,
4171	&alloc_calls_attr.attr,
4172	&free_calls_attr.attr,
4173#ifdef CONFIG_ZONE_DMA
4174	&cache_dma_attr.attr,
4175#endif
4176#ifdef CONFIG_NUMA
4177	&remote_node_defrag_ratio_attr.attr,
4178#endif
4179#ifdef CONFIG_SLUB_STATS
4180	&alloc_fastpath_attr.attr,
4181	&alloc_slowpath_attr.attr,
4182	&free_fastpath_attr.attr,
4183	&free_slowpath_attr.attr,
4184	&free_frozen_attr.attr,
4185	&free_add_partial_attr.attr,
4186	&free_remove_partial_attr.attr,
4187	&alloc_from_partial_attr.attr,
4188	&alloc_slab_attr.attr,
4189	&alloc_refill_attr.attr,
4190	&free_slab_attr.attr,
4191	&cpuslab_flush_attr.attr,
4192	&deactivate_full_attr.attr,
4193	&deactivate_empty_attr.attr,
4194	&deactivate_to_head_attr.attr,
4195	&deactivate_to_tail_attr.attr,
4196	&deactivate_remote_frees_attr.attr,
4197	&order_fallback_attr.attr,
4198#endif
4199	NULL
4200};
4201
4202static struct attribute_group slab_attr_group = {
4203	.attrs = slab_attrs,
4204};
4205
4206static ssize_t slab_attr_show(struct kobject *kobj,
4207				struct attribute *attr,
4208				char *buf)
4209{
4210	struct slab_attribute *attribute;
4211	struct kmem_cache *s;
4212	int err;
4213
4214	attribute = to_slab_attr(attr);
4215	s = to_slab(kobj);
4216
4217	if (!attribute->show)
4218		return -EIO;
4219
4220	err = attribute->show(s, buf);
4221
4222	return err;
4223}
4224
4225static ssize_t slab_attr_store(struct kobject *kobj,
4226				struct attribute *attr,
4227				const char *buf, size_t len)
4228{
4229	struct slab_attribute *attribute;
4230	struct kmem_cache *s;
4231	int err;
4232
4233	attribute = to_slab_attr(attr);
4234	s = to_slab(kobj);
4235
4236	if (!attribute->store)
4237		return -EIO;
4238
4239	err = attribute->store(s, buf, len);
4240
4241	return err;
4242}
4243
4244static void kmem_cache_release(struct kobject *kobj)
4245{
4246	struct kmem_cache *s = to_slab(kobj);
4247
4248	kfree(s);
4249}
4250
4251static struct sysfs_ops slab_sysfs_ops = {
4252	.show = slab_attr_show,
4253	.store = slab_attr_store,
4254};
4255
4256static struct kobj_type slab_ktype = {
4257	.sysfs_ops = &slab_sysfs_ops,
4258	.release = kmem_cache_release
4259};
4260
4261static int uevent_filter(struct kset *kset, struct kobject *kobj)
4262{
4263	struct kobj_type *ktype = get_ktype(kobj);
4264
4265	if (ktype == &slab_ktype)
4266		return 1;
4267	return 0;
4268}
4269
4270static struct kset_uevent_ops slab_uevent_ops = {
4271	.filter = uevent_filter,
4272};
4273
4274static struct kset *slab_kset;
4275
4276#define ID_STR_LENGTH 64
4277
4278/* Create a unique string id for a slab cache:
4279 *
4280 * Format	:[flags-]size
4281 */
4282static char *create_unique_id(struct kmem_cache *s)
4283{
4284	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4285	char *p = name;
4286
4287	BUG_ON(!name);
4288
4289	*p++ = ':';
4290	/*
4291	 * First flags affecting slabcache operations. We will only
4292	 * get here for aliasable slabs so we do not need to support
4293	 * too many flags. The flags here must cover all flags that
4294	 * are matched during merging to guarantee that the id is
4295	 * unique.
4296	 */
4297	if (s->flags & SLAB_CACHE_DMA)
4298		*p++ = 'd';
4299	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4300		*p++ = 'a';
4301	if (s->flags & SLAB_DEBUG_FREE)
4302		*p++ = 'F';
4303	if (p != name + 1)
4304		*p++ = '-';
4305	p += sprintf(p, "%07d", s->size);
4306	BUG_ON(p > name + ID_STR_LENGTH - 1);
4307	return name;
4308}
4309
4310static int sysfs_slab_add(struct kmem_cache *s)
4311{
4312	int err;
4313	const char *name;
4314	int unmergeable;
4315
4316	if (slab_state < SYSFS)
4317		/* Defer until later */
4318		return 0;
4319
4320	unmergeable = slab_unmergeable(s);
4321	if (unmergeable) {
4322		/*
4323		 * Slabcache can never be merged so we can use the name proper.
4324		 * This is typically the case for debug situations. In that
4325		 * case we can catch duplicate names easily.
4326		 */
4327		sysfs_remove_link(&slab_kset->kobj, s->name);
4328		name = s->name;
4329	} else {
4330		/*
4331		 * Create a unique name for the slab as a target
4332		 * for the symlinks.
4333		 */
4334		name = create_unique_id(s);
4335	}
4336
4337	s->kobj.kset = slab_kset;
4338	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4339	if (err) {
4340		kobject_put(&s->kobj);
4341		return err;
4342	}
4343
4344	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4345	if (err)
4346		return err;
4347	kobject_uevent(&s->kobj, KOBJ_ADD);
4348	if (!unmergeable) {
4349		/* Setup first alias */
4350		sysfs_slab_alias(s, s->name);
4351		kfree(name);
4352	}
4353	return 0;
4354}
4355
4356static void sysfs_slab_remove(struct kmem_cache *s)
4357{
4358	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4359	kobject_del(&s->kobj);
4360	kobject_put(&s->kobj);
4361}
4362
4363/*
4364 * Need to buffer aliases during bootup until sysfs becomes
4365 * available lest we loose that information.
4366 */
4367struct saved_alias {
4368	struct kmem_cache *s;
4369	const char *name;
4370	struct saved_alias *next;
4371};
4372
4373static struct saved_alias *alias_list;
4374
4375static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4376{
4377	struct saved_alias *al;
4378
4379	if (slab_state == SYSFS) {
4380		/*
4381		 * If we have a leftover link then remove it.
4382		 */
4383		sysfs_remove_link(&slab_kset->kobj, name);
4384		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4385	}
4386
4387	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4388	if (!al)
4389		return -ENOMEM;
4390
4391	al->s = s;
4392	al->name = name;
4393	al->next = alias_list;
4394	alias_list = al;
4395	return 0;
4396}
4397
4398static int __init slab_sysfs_init(void)
4399{
4400	struct kmem_cache *s;
4401	int err;
4402
4403	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4404	if (!slab_kset) {
4405		printk(KERN_ERR "Cannot register slab subsystem.\n");
4406		return -ENOSYS;
4407	}
4408
4409	slab_state = SYSFS;
4410
4411	list_for_each_entry(s, &slab_caches, list) {
4412		err = sysfs_slab_add(s);
4413		if (err)
4414			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4415						" to sysfs\n", s->name);
4416	}
4417
4418	while (alias_list) {
4419		struct saved_alias *al = alias_list;
4420
4421		alias_list = alias_list->next;
4422		err = sysfs_slab_alias(al->s, al->name);
4423		if (err)
4424			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4425					" %s to sysfs\n", s->name);
4426		kfree(al);
4427	}
4428
4429	resiliency_test();
4430	return 0;
4431}
4432
4433__initcall(slab_sysfs_init);
4434#endif
4435
4436/*
4437 * The /proc/slabinfo ABI
4438 */
4439#ifdef CONFIG_SLABINFO
4440
4441ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4442		       size_t count, loff_t *ppos)
4443{
4444	return -EINVAL;
4445}
4446
4447
4448static void print_slabinfo_header(struct seq_file *m)
4449{
4450	seq_puts(m, "slabinfo - version: 2.1\n");
4451	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4452		 "<objperslab> <pagesperslab>");
4453	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4454	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4455	seq_putc(m, '\n');
4456}
4457
4458static void *s_start(struct seq_file *m, loff_t *pos)
4459{
4460	loff_t n = *pos;
4461
4462	down_read(&slub_lock);
4463	if (!n)
4464		print_slabinfo_header(m);
4465
4466	return seq_list_start(&slab_caches, *pos);
4467}
4468
4469static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4470{
4471	return seq_list_next(p, &slab_caches, pos);
4472}
4473
4474static void s_stop(struct seq_file *m, void *p)
4475{
4476	up_read(&slub_lock);
4477}
4478
4479static int s_show(struct seq_file *m, void *p)
4480{
4481	unsigned long nr_partials = 0;
4482	unsigned long nr_slabs = 0;
4483	unsigned long nr_inuse = 0;
4484	unsigned long nr_objs = 0;
4485	unsigned long nr_free = 0;
4486	struct kmem_cache *s;
4487	int node;
4488
4489	s = list_entry(p, struct kmem_cache, list);
4490
4491	for_each_online_node(node) {
4492		struct kmem_cache_node *n = get_node(s, node);
4493
4494		if (!n)
4495			continue;
4496
4497		nr_partials += n->nr_partial;
4498		nr_slabs += atomic_long_read(&n->nr_slabs);
4499		nr_objs += atomic_long_read(&n->total_objects);
4500		nr_free += count_partial(n, count_free);
4501	}
4502
4503	nr_inuse = nr_objs - nr_free;
4504
4505	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4506		   nr_objs, s->size, oo_objects(s->oo),
4507		   (1 << oo_order(s->oo)));
4508	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4509	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4510		   0UL);
4511	seq_putc(m, '\n');
4512	return 0;
4513}
4514
4515const struct seq_operations slabinfo_op = {
4516	.start = s_start,
4517	.next = s_next,
4518	.stop = s_stop,
4519	.show = s_show,
4520};
4521
4522#endif /* CONFIG_SLABINFO */
4523