slub.c revision 442b06bcea23a01934d3da7ec5898fa154a6cafb
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/swap.h> /* struct reclaim_state */
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
18#include <linux/proc_fs.h>
19#include <linux/seq_file.h>
20#include <linux/kmemcheck.h>
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
25#include <linux/debugobjects.h>
26#include <linux/kallsyms.h>
27#include <linux/memory.h>
28#include <linux/math64.h>
29#include <linux/fault-inject.h>
30
31#include <trace/events/kmem.h>
32
33/*
34 * Lock order:
35 *   1. slab_lock(page)
36 *   2. slab->list_lock
37 *
38 *   The slab_lock protects operations on the object of a particular
39 *   slab and its metadata in the page struct. If the slab lock
40 *   has been taken then no allocations nor frees can be performed
41 *   on the objects in the slab nor can the slab be added or removed
42 *   from the partial or full lists since this would mean modifying
43 *   the page_struct of the slab.
44 *
45 *   The list_lock protects the partial and full list on each node and
46 *   the partial slab counter. If taken then no new slabs may be added or
47 *   removed from the lists nor make the number of partial slabs be modified.
48 *   (Note that the total number of slabs is an atomic value that may be
49 *   modified without taking the list lock).
50 *
51 *   The list_lock is a centralized lock and thus we avoid taking it as
52 *   much as possible. As long as SLUB does not have to handle partial
53 *   slabs, operations can continue without any centralized lock. F.e.
54 *   allocating a long series of objects that fill up slabs does not require
55 *   the list lock.
56 *
57 *   The lock order is sometimes inverted when we are trying to get a slab
58 *   off a list. We take the list_lock and then look for a page on the list
59 *   to use. While we do that objects in the slabs may be freed. We can
60 *   only operate on the slab if we have also taken the slab_lock. So we use
61 *   a slab_trylock() on the slab. If trylock was successful then no frees
62 *   can occur anymore and we can use the slab for allocations etc. If the
63 *   slab_trylock() does not succeed then frees are in progress in the slab and
64 *   we must stay away from it for a while since we may cause a bouncing
65 *   cacheline if we try to acquire the lock. So go onto the next slab.
66 *   If all pages are busy then we may allocate a new slab instead of reusing
67 *   a partial slab. A new slab has noone operating on it and thus there is
68 *   no danger of cacheline contention.
69 *
70 *   Interrupts are disabled during allocation and deallocation in order to
71 *   make the slab allocator safe to use in the context of an irq. In addition
72 *   interrupts are disabled to ensure that the processor does not change
73 *   while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive 		The slab is frozen and exempt from list processing.
91 * 			This means that the slab is dedicated to a purpose
92 * 			such as satisfying allocations for a specific
93 * 			processor. Objects may be freed in the slab while
94 * 			it is frozen but slab_free will then skip the usual
95 * 			list operations. It is up to the processor holding
96 * 			the slab to integrate the slab into the slab lists
97 * 			when the slab is no longer needed.
98 *
99 * 			One use of this flag is to mark slabs that are
100 * 			used for allocations. Then such a slab becomes a cpu
101 * 			slab. The cpu slab may be equipped with an additional
102 * 			freelist that allows lockless access to
103 * 			free objects in addition to the regular freelist
104 * 			that requires the slab lock.
105 *
106 * PageError		Slab requires special handling due to debug
107 * 			options set. This moves	slab handling out of
108 * 			the fast path and disables lockless freelists.
109 */
110
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112		SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
116#ifdef CONFIG_SLUB_DEBUG
117	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118#else
119	return 0;
120#endif
121}
122
123/*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
138#define MIN_PARTIAL 5
139
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148				SLAB_POISON | SLAB_STORE_USER)
149
150/*
151 * Debugging flags that require metadata to be stored in the slab.  These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
154 */
155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
156
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162		SLAB_FAILSLAB)
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165		SLAB_CACHE_DMA | SLAB_NOTRACK)
166
167#define OO_SHIFT	16
168#define OO_MASK		((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
170
171/* Internal SLUB flags */
172#define __OBJECT_POISON		0x80000000UL /* Poison object */
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181	DOWN,		/* No slab functionality available */
182	PARTIAL,	/* Kmem_cache_node works */
183	UP,		/* Everything works but does not show up in sysfs */
184	SYSFS		/* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
189static LIST_HEAD(slab_caches);
190
191/*
192 * Tracking user of a slab.
193 */
194struct track {
195	unsigned long addr;	/* Called from address */
196	int cpu;		/* Was running on cpu */
197	int pid;		/* Pid context */
198	unsigned long when;	/* When did the operation occur */
199};
200
201enum track_item { TRACK_ALLOC, TRACK_FREE };
202
203#ifdef CONFIG_SYSFS
204static int sysfs_slab_add(struct kmem_cache *);
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
207
208#else
209static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211							{ return 0; }
212static inline void sysfs_slab_remove(struct kmem_cache *s)
213{
214	kfree(s->name);
215	kfree(s);
216}
217
218#endif
219
220static inline void stat(const struct kmem_cache *s, enum stat_item si)
221{
222#ifdef CONFIG_SLUB_STATS
223	__this_cpu_inc(s->cpu_slab->stat[si]);
224#endif
225}
226
227/********************************************************************
228 * 			Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233	return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
238	return s->node[node];
239}
240
241/* Verify that a pointer has an address that is valid within a slab page */
242static inline int check_valid_pointer(struct kmem_cache *s,
243				struct page *page, const void *object)
244{
245	void *base;
246
247	if (!object)
248		return 1;
249
250	base = page_address(page);
251	if (object < base || object >= base + page->objects * s->size ||
252		(object - base) % s->size) {
253		return 0;
254	}
255
256	return 1;
257}
258
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261	return *(void **)(object + s->offset);
262}
263
264static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
265{
266	void *p;
267
268#ifdef CONFIG_DEBUG_PAGEALLOC
269	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
270#else
271	p = get_freepointer(s, object);
272#endif
273	return p;
274}
275
276static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277{
278	*(void **)(object + s->offset) = fp;
279}
280
281/* Loop over all objects in a slab */
282#define for_each_object(__p, __s, __addr, __objects) \
283	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
284			__p += (__s)->size)
285
286/* Determine object index from a given position */
287static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
288{
289	return (p - addr) / s->size;
290}
291
292static inline size_t slab_ksize(const struct kmem_cache *s)
293{
294#ifdef CONFIG_SLUB_DEBUG
295	/*
296	 * Debugging requires use of the padding between object
297	 * and whatever may come after it.
298	 */
299	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
300		return s->objsize;
301
302#endif
303	/*
304	 * If we have the need to store the freelist pointer
305	 * back there or track user information then we can
306	 * only use the space before that information.
307	 */
308	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
309		return s->inuse;
310	/*
311	 * Else we can use all the padding etc for the allocation
312	 */
313	return s->size;
314}
315
316static inline int order_objects(int order, unsigned long size, int reserved)
317{
318	return ((PAGE_SIZE << order) - reserved) / size;
319}
320
321static inline struct kmem_cache_order_objects oo_make(int order,
322		unsigned long size, int reserved)
323{
324	struct kmem_cache_order_objects x = {
325		(order << OO_SHIFT) + order_objects(order, size, reserved)
326	};
327
328	return x;
329}
330
331static inline int oo_order(struct kmem_cache_order_objects x)
332{
333	return x.x >> OO_SHIFT;
334}
335
336static inline int oo_objects(struct kmem_cache_order_objects x)
337{
338	return x.x & OO_MASK;
339}
340
341#ifdef CONFIG_SLUB_DEBUG
342/*
343 * Determine a map of object in use on a page.
344 *
345 * Slab lock or node listlock must be held to guarantee that the page does
346 * not vanish from under us.
347 */
348static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
349{
350	void *p;
351	void *addr = page_address(page);
352
353	for (p = page->freelist; p; p = get_freepointer(s, p))
354		set_bit(slab_index(p, s, addr), map);
355}
356
357/*
358 * Debug settings:
359 */
360#ifdef CONFIG_SLUB_DEBUG_ON
361static int slub_debug = DEBUG_DEFAULT_FLAGS;
362#else
363static int slub_debug;
364#endif
365
366static char *slub_debug_slabs;
367static int disable_higher_order_debug;
368
369/*
370 * Object debugging
371 */
372static void print_section(char *text, u8 *addr, unsigned int length)
373{
374	int i, offset;
375	int newline = 1;
376	char ascii[17];
377
378	ascii[16] = 0;
379
380	for (i = 0; i < length; i++) {
381		if (newline) {
382			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
383			newline = 0;
384		}
385		printk(KERN_CONT " %02x", addr[i]);
386		offset = i % 16;
387		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
388		if (offset == 15) {
389			printk(KERN_CONT " %s\n", ascii);
390			newline = 1;
391		}
392	}
393	if (!newline) {
394		i %= 16;
395		while (i < 16) {
396			printk(KERN_CONT "   ");
397			ascii[i] = ' ';
398			i++;
399		}
400		printk(KERN_CONT " %s\n", ascii);
401	}
402}
403
404static struct track *get_track(struct kmem_cache *s, void *object,
405	enum track_item alloc)
406{
407	struct track *p;
408
409	if (s->offset)
410		p = object + s->offset + sizeof(void *);
411	else
412		p = object + s->inuse;
413
414	return p + alloc;
415}
416
417static void set_track(struct kmem_cache *s, void *object,
418			enum track_item alloc, unsigned long addr)
419{
420	struct track *p = get_track(s, object, alloc);
421
422	if (addr) {
423		p->addr = addr;
424		p->cpu = smp_processor_id();
425		p->pid = current->pid;
426		p->when = jiffies;
427	} else
428		memset(p, 0, sizeof(struct track));
429}
430
431static void init_tracking(struct kmem_cache *s, void *object)
432{
433	if (!(s->flags & SLAB_STORE_USER))
434		return;
435
436	set_track(s, object, TRACK_FREE, 0UL);
437	set_track(s, object, TRACK_ALLOC, 0UL);
438}
439
440static void print_track(const char *s, struct track *t)
441{
442	if (!t->addr)
443		return;
444
445	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
446		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
447}
448
449static void print_tracking(struct kmem_cache *s, void *object)
450{
451	if (!(s->flags & SLAB_STORE_USER))
452		return;
453
454	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
455	print_track("Freed", get_track(s, object, TRACK_FREE));
456}
457
458static void print_page_info(struct page *page)
459{
460	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
461		page, page->objects, page->inuse, page->freelist, page->flags);
462
463}
464
465static void slab_bug(struct kmem_cache *s, char *fmt, ...)
466{
467	va_list args;
468	char buf[100];
469
470	va_start(args, fmt);
471	vsnprintf(buf, sizeof(buf), fmt, args);
472	va_end(args);
473	printk(KERN_ERR "========================================"
474			"=====================================\n");
475	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
476	printk(KERN_ERR "----------------------------------------"
477			"-------------------------------------\n\n");
478}
479
480static void slab_fix(struct kmem_cache *s, char *fmt, ...)
481{
482	va_list args;
483	char buf[100];
484
485	va_start(args, fmt);
486	vsnprintf(buf, sizeof(buf), fmt, args);
487	va_end(args);
488	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
489}
490
491static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
492{
493	unsigned int off;	/* Offset of last byte */
494	u8 *addr = page_address(page);
495
496	print_tracking(s, p);
497
498	print_page_info(page);
499
500	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
501			p, p - addr, get_freepointer(s, p));
502
503	if (p > addr + 16)
504		print_section("Bytes b4", p - 16, 16);
505
506	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
507
508	if (s->flags & SLAB_RED_ZONE)
509		print_section("Redzone", p + s->objsize,
510			s->inuse - s->objsize);
511
512	if (s->offset)
513		off = s->offset + sizeof(void *);
514	else
515		off = s->inuse;
516
517	if (s->flags & SLAB_STORE_USER)
518		off += 2 * sizeof(struct track);
519
520	if (off != s->size)
521		/* Beginning of the filler is the free pointer */
522		print_section("Padding", p + off, s->size - off);
523
524	dump_stack();
525}
526
527static void object_err(struct kmem_cache *s, struct page *page,
528			u8 *object, char *reason)
529{
530	slab_bug(s, "%s", reason);
531	print_trailer(s, page, object);
532}
533
534static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
535{
536	va_list args;
537	char buf[100];
538
539	va_start(args, fmt);
540	vsnprintf(buf, sizeof(buf), fmt, args);
541	va_end(args);
542	slab_bug(s, "%s", buf);
543	print_page_info(page);
544	dump_stack();
545}
546
547static void init_object(struct kmem_cache *s, void *object, u8 val)
548{
549	u8 *p = object;
550
551	if (s->flags & __OBJECT_POISON) {
552		memset(p, POISON_FREE, s->objsize - 1);
553		p[s->objsize - 1] = POISON_END;
554	}
555
556	if (s->flags & SLAB_RED_ZONE)
557		memset(p + s->objsize, val, s->inuse - s->objsize);
558}
559
560static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
561{
562	while (bytes) {
563		if (*start != (u8)value)
564			return start;
565		start++;
566		bytes--;
567	}
568	return NULL;
569}
570
571static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
572						void *from, void *to)
573{
574	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
575	memset(from, data, to - from);
576}
577
578static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
579			u8 *object, char *what,
580			u8 *start, unsigned int value, unsigned int bytes)
581{
582	u8 *fault;
583	u8 *end;
584
585	fault = check_bytes(start, value, bytes);
586	if (!fault)
587		return 1;
588
589	end = start + bytes;
590	while (end > fault && end[-1] == value)
591		end--;
592
593	slab_bug(s, "%s overwritten", what);
594	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
595					fault, end - 1, fault[0], value);
596	print_trailer(s, page, object);
597
598	restore_bytes(s, what, value, fault, end);
599	return 0;
600}
601
602/*
603 * Object layout:
604 *
605 * object address
606 * 	Bytes of the object to be managed.
607 * 	If the freepointer may overlay the object then the free
608 * 	pointer is the first word of the object.
609 *
610 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
611 * 	0xa5 (POISON_END)
612 *
613 * object + s->objsize
614 * 	Padding to reach word boundary. This is also used for Redzoning.
615 * 	Padding is extended by another word if Redzoning is enabled and
616 * 	objsize == inuse.
617 *
618 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
619 * 	0xcc (RED_ACTIVE) for objects in use.
620 *
621 * object + s->inuse
622 * 	Meta data starts here.
623 *
624 * 	A. Free pointer (if we cannot overwrite object on free)
625 * 	B. Tracking data for SLAB_STORE_USER
626 * 	C. Padding to reach required alignment boundary or at mininum
627 * 		one word if debugging is on to be able to detect writes
628 * 		before the word boundary.
629 *
630 *	Padding is done using 0x5a (POISON_INUSE)
631 *
632 * object + s->size
633 * 	Nothing is used beyond s->size.
634 *
635 * If slabcaches are merged then the objsize and inuse boundaries are mostly
636 * ignored. And therefore no slab options that rely on these boundaries
637 * may be used with merged slabcaches.
638 */
639
640static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
641{
642	unsigned long off = s->inuse;	/* The end of info */
643
644	if (s->offset)
645		/* Freepointer is placed after the object. */
646		off += sizeof(void *);
647
648	if (s->flags & SLAB_STORE_USER)
649		/* We also have user information there */
650		off += 2 * sizeof(struct track);
651
652	if (s->size == off)
653		return 1;
654
655	return check_bytes_and_report(s, page, p, "Object padding",
656				p + off, POISON_INUSE, s->size - off);
657}
658
659/* Check the pad bytes at the end of a slab page */
660static int slab_pad_check(struct kmem_cache *s, struct page *page)
661{
662	u8 *start;
663	u8 *fault;
664	u8 *end;
665	int length;
666	int remainder;
667
668	if (!(s->flags & SLAB_POISON))
669		return 1;
670
671	start = page_address(page);
672	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
673	end = start + length;
674	remainder = length % s->size;
675	if (!remainder)
676		return 1;
677
678	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
679	if (!fault)
680		return 1;
681	while (end > fault && end[-1] == POISON_INUSE)
682		end--;
683
684	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
685	print_section("Padding", end - remainder, remainder);
686
687	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
688	return 0;
689}
690
691static int check_object(struct kmem_cache *s, struct page *page,
692					void *object, u8 val)
693{
694	u8 *p = object;
695	u8 *endobject = object + s->objsize;
696
697	if (s->flags & SLAB_RED_ZONE) {
698		if (!check_bytes_and_report(s, page, object, "Redzone",
699			endobject, val, s->inuse - s->objsize))
700			return 0;
701	} else {
702		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
703			check_bytes_and_report(s, page, p, "Alignment padding",
704				endobject, POISON_INUSE, s->inuse - s->objsize);
705		}
706	}
707
708	if (s->flags & SLAB_POISON) {
709		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
710			(!check_bytes_and_report(s, page, p, "Poison", p,
711					POISON_FREE, s->objsize - 1) ||
712			 !check_bytes_and_report(s, page, p, "Poison",
713				p + s->objsize - 1, POISON_END, 1)))
714			return 0;
715		/*
716		 * check_pad_bytes cleans up on its own.
717		 */
718		check_pad_bytes(s, page, p);
719	}
720
721	if (!s->offset && val == SLUB_RED_ACTIVE)
722		/*
723		 * Object and freepointer overlap. Cannot check
724		 * freepointer while object is allocated.
725		 */
726		return 1;
727
728	/* Check free pointer validity */
729	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
730		object_err(s, page, p, "Freepointer corrupt");
731		/*
732		 * No choice but to zap it and thus lose the remainder
733		 * of the free objects in this slab. May cause
734		 * another error because the object count is now wrong.
735		 */
736		set_freepointer(s, p, NULL);
737		return 0;
738	}
739	return 1;
740}
741
742static int check_slab(struct kmem_cache *s, struct page *page)
743{
744	int maxobj;
745
746	VM_BUG_ON(!irqs_disabled());
747
748	if (!PageSlab(page)) {
749		slab_err(s, page, "Not a valid slab page");
750		return 0;
751	}
752
753	maxobj = order_objects(compound_order(page), s->size, s->reserved);
754	if (page->objects > maxobj) {
755		slab_err(s, page, "objects %u > max %u",
756			s->name, page->objects, maxobj);
757		return 0;
758	}
759	if (page->inuse > page->objects) {
760		slab_err(s, page, "inuse %u > max %u",
761			s->name, page->inuse, page->objects);
762		return 0;
763	}
764	/* Slab_pad_check fixes things up after itself */
765	slab_pad_check(s, page);
766	return 1;
767}
768
769/*
770 * Determine if a certain object on a page is on the freelist. Must hold the
771 * slab lock to guarantee that the chains are in a consistent state.
772 */
773static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
774{
775	int nr = 0;
776	void *fp = page->freelist;
777	void *object = NULL;
778	unsigned long max_objects;
779
780	while (fp && nr <= page->objects) {
781		if (fp == search)
782			return 1;
783		if (!check_valid_pointer(s, page, fp)) {
784			if (object) {
785				object_err(s, page, object,
786					"Freechain corrupt");
787				set_freepointer(s, object, NULL);
788				break;
789			} else {
790				slab_err(s, page, "Freepointer corrupt");
791				page->freelist = NULL;
792				page->inuse = page->objects;
793				slab_fix(s, "Freelist cleared");
794				return 0;
795			}
796			break;
797		}
798		object = fp;
799		fp = get_freepointer(s, object);
800		nr++;
801	}
802
803	max_objects = order_objects(compound_order(page), s->size, s->reserved);
804	if (max_objects > MAX_OBJS_PER_PAGE)
805		max_objects = MAX_OBJS_PER_PAGE;
806
807	if (page->objects != max_objects) {
808		slab_err(s, page, "Wrong number of objects. Found %d but "
809			"should be %d", page->objects, max_objects);
810		page->objects = max_objects;
811		slab_fix(s, "Number of objects adjusted.");
812	}
813	if (page->inuse != page->objects - nr) {
814		slab_err(s, page, "Wrong object count. Counter is %d but "
815			"counted were %d", page->inuse, page->objects - nr);
816		page->inuse = page->objects - nr;
817		slab_fix(s, "Object count adjusted.");
818	}
819	return search == NULL;
820}
821
822static void trace(struct kmem_cache *s, struct page *page, void *object,
823								int alloc)
824{
825	if (s->flags & SLAB_TRACE) {
826		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
827			s->name,
828			alloc ? "alloc" : "free",
829			object, page->inuse,
830			page->freelist);
831
832		if (!alloc)
833			print_section("Object", (void *)object, s->objsize);
834
835		dump_stack();
836	}
837}
838
839/*
840 * Hooks for other subsystems that check memory allocations. In a typical
841 * production configuration these hooks all should produce no code at all.
842 */
843static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
844{
845	flags &= gfp_allowed_mask;
846	lockdep_trace_alloc(flags);
847	might_sleep_if(flags & __GFP_WAIT);
848
849	return should_failslab(s->objsize, flags, s->flags);
850}
851
852static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
853{
854	flags &= gfp_allowed_mask;
855	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
856	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
857}
858
859static inline void slab_free_hook(struct kmem_cache *s, void *x)
860{
861	kmemleak_free_recursive(x, s->flags);
862
863	/*
864	 * Trouble is that we may no longer disable interupts in the fast path
865	 * So in order to make the debug calls that expect irqs to be
866	 * disabled we need to disable interrupts temporarily.
867	 */
868#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
869	{
870		unsigned long flags;
871
872		local_irq_save(flags);
873		kmemcheck_slab_free(s, x, s->objsize);
874		debug_check_no_locks_freed(x, s->objsize);
875		local_irq_restore(flags);
876	}
877#endif
878	if (!(s->flags & SLAB_DEBUG_OBJECTS))
879		debug_check_no_obj_freed(x, s->objsize);
880}
881
882/*
883 * Tracking of fully allocated slabs for debugging purposes.
884 */
885static void add_full(struct kmem_cache_node *n, struct page *page)
886{
887	spin_lock(&n->list_lock);
888	list_add(&page->lru, &n->full);
889	spin_unlock(&n->list_lock);
890}
891
892static void remove_full(struct kmem_cache *s, struct page *page)
893{
894	struct kmem_cache_node *n;
895
896	if (!(s->flags & SLAB_STORE_USER))
897		return;
898
899	n = get_node(s, page_to_nid(page));
900
901	spin_lock(&n->list_lock);
902	list_del(&page->lru);
903	spin_unlock(&n->list_lock);
904}
905
906/* Tracking of the number of slabs for debugging purposes */
907static inline unsigned long slabs_node(struct kmem_cache *s, int node)
908{
909	struct kmem_cache_node *n = get_node(s, node);
910
911	return atomic_long_read(&n->nr_slabs);
912}
913
914static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
915{
916	return atomic_long_read(&n->nr_slabs);
917}
918
919static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
920{
921	struct kmem_cache_node *n = get_node(s, node);
922
923	/*
924	 * May be called early in order to allocate a slab for the
925	 * kmem_cache_node structure. Solve the chicken-egg
926	 * dilemma by deferring the increment of the count during
927	 * bootstrap (see early_kmem_cache_node_alloc).
928	 */
929	if (n) {
930		atomic_long_inc(&n->nr_slabs);
931		atomic_long_add(objects, &n->total_objects);
932	}
933}
934static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
935{
936	struct kmem_cache_node *n = get_node(s, node);
937
938	atomic_long_dec(&n->nr_slabs);
939	atomic_long_sub(objects, &n->total_objects);
940}
941
942/* Object debug checks for alloc/free paths */
943static void setup_object_debug(struct kmem_cache *s, struct page *page,
944								void *object)
945{
946	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
947		return;
948
949	init_object(s, object, SLUB_RED_INACTIVE);
950	init_tracking(s, object);
951}
952
953static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
954					void *object, unsigned long addr)
955{
956	if (!check_slab(s, page))
957		goto bad;
958
959	if (!on_freelist(s, page, object)) {
960		object_err(s, page, object, "Object already allocated");
961		goto bad;
962	}
963
964	if (!check_valid_pointer(s, page, object)) {
965		object_err(s, page, object, "Freelist Pointer check fails");
966		goto bad;
967	}
968
969	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
970		goto bad;
971
972	/* Success perform special debug activities for allocs */
973	if (s->flags & SLAB_STORE_USER)
974		set_track(s, object, TRACK_ALLOC, addr);
975	trace(s, page, object, 1);
976	init_object(s, object, SLUB_RED_ACTIVE);
977	return 1;
978
979bad:
980	if (PageSlab(page)) {
981		/*
982		 * If this is a slab page then lets do the best we can
983		 * to avoid issues in the future. Marking all objects
984		 * as used avoids touching the remaining objects.
985		 */
986		slab_fix(s, "Marking all objects used");
987		page->inuse = page->objects;
988		page->freelist = NULL;
989	}
990	return 0;
991}
992
993static noinline int free_debug_processing(struct kmem_cache *s,
994		 struct page *page, void *object, unsigned long addr)
995{
996	if (!check_slab(s, page))
997		goto fail;
998
999	if (!check_valid_pointer(s, page, object)) {
1000		slab_err(s, page, "Invalid object pointer 0x%p", object);
1001		goto fail;
1002	}
1003
1004	if (on_freelist(s, page, object)) {
1005		object_err(s, page, object, "Object already free");
1006		goto fail;
1007	}
1008
1009	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1010		return 0;
1011
1012	if (unlikely(s != page->slab)) {
1013		if (!PageSlab(page)) {
1014			slab_err(s, page, "Attempt to free object(0x%p) "
1015				"outside of slab", object);
1016		} else if (!page->slab) {
1017			printk(KERN_ERR
1018				"SLUB <none>: no slab for object 0x%p.\n",
1019						object);
1020			dump_stack();
1021		} else
1022			object_err(s, page, object,
1023					"page slab pointer corrupt.");
1024		goto fail;
1025	}
1026
1027	/* Special debug activities for freeing objects */
1028	if (!PageSlubFrozen(page) && !page->freelist)
1029		remove_full(s, page);
1030	if (s->flags & SLAB_STORE_USER)
1031		set_track(s, object, TRACK_FREE, addr);
1032	trace(s, page, object, 0);
1033	init_object(s, object, SLUB_RED_INACTIVE);
1034	return 1;
1035
1036fail:
1037	slab_fix(s, "Object at 0x%p not freed", object);
1038	return 0;
1039}
1040
1041static int __init setup_slub_debug(char *str)
1042{
1043	slub_debug = DEBUG_DEFAULT_FLAGS;
1044	if (*str++ != '=' || !*str)
1045		/*
1046		 * No options specified. Switch on full debugging.
1047		 */
1048		goto out;
1049
1050	if (*str == ',')
1051		/*
1052		 * No options but restriction on slabs. This means full
1053		 * debugging for slabs matching a pattern.
1054		 */
1055		goto check_slabs;
1056
1057	if (tolower(*str) == 'o') {
1058		/*
1059		 * Avoid enabling debugging on caches if its minimum order
1060		 * would increase as a result.
1061		 */
1062		disable_higher_order_debug = 1;
1063		goto out;
1064	}
1065
1066	slub_debug = 0;
1067	if (*str == '-')
1068		/*
1069		 * Switch off all debugging measures.
1070		 */
1071		goto out;
1072
1073	/*
1074	 * Determine which debug features should be switched on
1075	 */
1076	for (; *str && *str != ','; str++) {
1077		switch (tolower(*str)) {
1078		case 'f':
1079			slub_debug |= SLAB_DEBUG_FREE;
1080			break;
1081		case 'z':
1082			slub_debug |= SLAB_RED_ZONE;
1083			break;
1084		case 'p':
1085			slub_debug |= SLAB_POISON;
1086			break;
1087		case 'u':
1088			slub_debug |= SLAB_STORE_USER;
1089			break;
1090		case 't':
1091			slub_debug |= SLAB_TRACE;
1092			break;
1093		case 'a':
1094			slub_debug |= SLAB_FAILSLAB;
1095			break;
1096		default:
1097			printk(KERN_ERR "slub_debug option '%c' "
1098				"unknown. skipped\n", *str);
1099		}
1100	}
1101
1102check_slabs:
1103	if (*str == ',')
1104		slub_debug_slabs = str + 1;
1105out:
1106	return 1;
1107}
1108
1109__setup("slub_debug", setup_slub_debug);
1110
1111static unsigned long kmem_cache_flags(unsigned long objsize,
1112	unsigned long flags, const char *name,
1113	void (*ctor)(void *))
1114{
1115	/*
1116	 * Enable debugging if selected on the kernel commandline.
1117	 */
1118	if (slub_debug && (!slub_debug_slabs ||
1119		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1120		flags |= slub_debug;
1121
1122	return flags;
1123}
1124#else
1125static inline void setup_object_debug(struct kmem_cache *s,
1126			struct page *page, void *object) {}
1127
1128static inline int alloc_debug_processing(struct kmem_cache *s,
1129	struct page *page, void *object, unsigned long addr) { return 0; }
1130
1131static inline int free_debug_processing(struct kmem_cache *s,
1132	struct page *page, void *object, unsigned long addr) { return 0; }
1133
1134static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1135			{ return 1; }
1136static inline int check_object(struct kmem_cache *s, struct page *page,
1137			void *object, u8 val) { return 1; }
1138static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1139static inline unsigned long kmem_cache_flags(unsigned long objsize,
1140	unsigned long flags, const char *name,
1141	void (*ctor)(void *))
1142{
1143	return flags;
1144}
1145#define slub_debug 0
1146
1147#define disable_higher_order_debug 0
1148
1149static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1150							{ return 0; }
1151static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1152							{ return 0; }
1153static inline void inc_slabs_node(struct kmem_cache *s, int node,
1154							int objects) {}
1155static inline void dec_slabs_node(struct kmem_cache *s, int node,
1156							int objects) {}
1157
1158static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1159							{ return 0; }
1160
1161static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1162		void *object) {}
1163
1164static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1165
1166#endif /* CONFIG_SLUB_DEBUG */
1167
1168/*
1169 * Slab allocation and freeing
1170 */
1171static inline struct page *alloc_slab_page(gfp_t flags, int node,
1172					struct kmem_cache_order_objects oo)
1173{
1174	int order = oo_order(oo);
1175
1176	flags |= __GFP_NOTRACK;
1177
1178	if (node == NUMA_NO_NODE)
1179		return alloc_pages(flags, order);
1180	else
1181		return alloc_pages_exact_node(node, flags, order);
1182}
1183
1184static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1185{
1186	struct page *page;
1187	struct kmem_cache_order_objects oo = s->oo;
1188	gfp_t alloc_gfp;
1189
1190	flags |= s->allocflags;
1191
1192	/*
1193	 * Let the initial higher-order allocation fail under memory pressure
1194	 * so we fall-back to the minimum order allocation.
1195	 */
1196	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1197
1198	page = alloc_slab_page(alloc_gfp, node, oo);
1199	if (unlikely(!page)) {
1200		oo = s->min;
1201		/*
1202		 * Allocation may have failed due to fragmentation.
1203		 * Try a lower order alloc if possible
1204		 */
1205		page = alloc_slab_page(flags, node, oo);
1206		if (!page)
1207			return NULL;
1208
1209		stat(s, ORDER_FALLBACK);
1210	}
1211
1212	if (kmemcheck_enabled
1213		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1214		int pages = 1 << oo_order(oo);
1215
1216		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1217
1218		/*
1219		 * Objects from caches that have a constructor don't get
1220		 * cleared when they're allocated, so we need to do it here.
1221		 */
1222		if (s->ctor)
1223			kmemcheck_mark_uninitialized_pages(page, pages);
1224		else
1225			kmemcheck_mark_unallocated_pages(page, pages);
1226	}
1227
1228	page->objects = oo_objects(oo);
1229	mod_zone_page_state(page_zone(page),
1230		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1231		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1232		1 << oo_order(oo));
1233
1234	return page;
1235}
1236
1237static void setup_object(struct kmem_cache *s, struct page *page,
1238				void *object)
1239{
1240	setup_object_debug(s, page, object);
1241	if (unlikely(s->ctor))
1242		s->ctor(object);
1243}
1244
1245static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1246{
1247	struct page *page;
1248	void *start;
1249	void *last;
1250	void *p;
1251
1252	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1253
1254	page = allocate_slab(s,
1255		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1256	if (!page)
1257		goto out;
1258
1259	inc_slabs_node(s, page_to_nid(page), page->objects);
1260	page->slab = s;
1261	page->flags |= 1 << PG_slab;
1262
1263	start = page_address(page);
1264
1265	if (unlikely(s->flags & SLAB_POISON))
1266		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1267
1268	last = start;
1269	for_each_object(p, s, start, page->objects) {
1270		setup_object(s, page, last);
1271		set_freepointer(s, last, p);
1272		last = p;
1273	}
1274	setup_object(s, page, last);
1275	set_freepointer(s, last, NULL);
1276
1277	page->freelist = start;
1278	page->inuse = 0;
1279out:
1280	return page;
1281}
1282
1283static void __free_slab(struct kmem_cache *s, struct page *page)
1284{
1285	int order = compound_order(page);
1286	int pages = 1 << order;
1287
1288	if (kmem_cache_debug(s)) {
1289		void *p;
1290
1291		slab_pad_check(s, page);
1292		for_each_object(p, s, page_address(page),
1293						page->objects)
1294			check_object(s, page, p, SLUB_RED_INACTIVE);
1295	}
1296
1297	kmemcheck_free_shadow(page, compound_order(page));
1298
1299	mod_zone_page_state(page_zone(page),
1300		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1301		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1302		-pages);
1303
1304	__ClearPageSlab(page);
1305	reset_page_mapcount(page);
1306	if (current->reclaim_state)
1307		current->reclaim_state->reclaimed_slab += pages;
1308	__free_pages(page, order);
1309}
1310
1311#define need_reserve_slab_rcu						\
1312	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1313
1314static void rcu_free_slab(struct rcu_head *h)
1315{
1316	struct page *page;
1317
1318	if (need_reserve_slab_rcu)
1319		page = virt_to_head_page(h);
1320	else
1321		page = container_of((struct list_head *)h, struct page, lru);
1322
1323	__free_slab(page->slab, page);
1324}
1325
1326static void free_slab(struct kmem_cache *s, struct page *page)
1327{
1328	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1329		struct rcu_head *head;
1330
1331		if (need_reserve_slab_rcu) {
1332			int order = compound_order(page);
1333			int offset = (PAGE_SIZE << order) - s->reserved;
1334
1335			VM_BUG_ON(s->reserved != sizeof(*head));
1336			head = page_address(page) + offset;
1337		} else {
1338			/*
1339			 * RCU free overloads the RCU head over the LRU
1340			 */
1341			head = (void *)&page->lru;
1342		}
1343
1344		call_rcu(head, rcu_free_slab);
1345	} else
1346		__free_slab(s, page);
1347}
1348
1349static void discard_slab(struct kmem_cache *s, struct page *page)
1350{
1351	dec_slabs_node(s, page_to_nid(page), page->objects);
1352	free_slab(s, page);
1353}
1354
1355/*
1356 * Per slab locking using the pagelock
1357 */
1358static __always_inline void slab_lock(struct page *page)
1359{
1360	bit_spin_lock(PG_locked, &page->flags);
1361}
1362
1363static __always_inline void slab_unlock(struct page *page)
1364{
1365	__bit_spin_unlock(PG_locked, &page->flags);
1366}
1367
1368static __always_inline int slab_trylock(struct page *page)
1369{
1370	int rc = 1;
1371
1372	rc = bit_spin_trylock(PG_locked, &page->flags);
1373	return rc;
1374}
1375
1376/*
1377 * Management of partially allocated slabs
1378 */
1379static void add_partial(struct kmem_cache_node *n,
1380				struct page *page, int tail)
1381{
1382	spin_lock(&n->list_lock);
1383	n->nr_partial++;
1384	if (tail)
1385		list_add_tail(&page->lru, &n->partial);
1386	else
1387		list_add(&page->lru, &n->partial);
1388	spin_unlock(&n->list_lock);
1389}
1390
1391static inline void __remove_partial(struct kmem_cache_node *n,
1392					struct page *page)
1393{
1394	list_del(&page->lru);
1395	n->nr_partial--;
1396}
1397
1398static void remove_partial(struct kmem_cache *s, struct page *page)
1399{
1400	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1401
1402	spin_lock(&n->list_lock);
1403	__remove_partial(n, page);
1404	spin_unlock(&n->list_lock);
1405}
1406
1407/*
1408 * Lock slab and remove from the partial list.
1409 *
1410 * Must hold list_lock.
1411 */
1412static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1413							struct page *page)
1414{
1415	if (slab_trylock(page)) {
1416		__remove_partial(n, page);
1417		__SetPageSlubFrozen(page);
1418		return 1;
1419	}
1420	return 0;
1421}
1422
1423/*
1424 * Try to allocate a partial slab from a specific node.
1425 */
1426static struct page *get_partial_node(struct kmem_cache_node *n)
1427{
1428	struct page *page;
1429
1430	/*
1431	 * Racy check. If we mistakenly see no partial slabs then we
1432	 * just allocate an empty slab. If we mistakenly try to get a
1433	 * partial slab and there is none available then get_partials()
1434	 * will return NULL.
1435	 */
1436	if (!n || !n->nr_partial)
1437		return NULL;
1438
1439	spin_lock(&n->list_lock);
1440	list_for_each_entry(page, &n->partial, lru)
1441		if (lock_and_freeze_slab(n, page))
1442			goto out;
1443	page = NULL;
1444out:
1445	spin_unlock(&n->list_lock);
1446	return page;
1447}
1448
1449/*
1450 * Get a page from somewhere. Search in increasing NUMA distances.
1451 */
1452static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1453{
1454#ifdef CONFIG_NUMA
1455	struct zonelist *zonelist;
1456	struct zoneref *z;
1457	struct zone *zone;
1458	enum zone_type high_zoneidx = gfp_zone(flags);
1459	struct page *page;
1460
1461	/*
1462	 * The defrag ratio allows a configuration of the tradeoffs between
1463	 * inter node defragmentation and node local allocations. A lower
1464	 * defrag_ratio increases the tendency to do local allocations
1465	 * instead of attempting to obtain partial slabs from other nodes.
1466	 *
1467	 * If the defrag_ratio is set to 0 then kmalloc() always
1468	 * returns node local objects. If the ratio is higher then kmalloc()
1469	 * may return off node objects because partial slabs are obtained
1470	 * from other nodes and filled up.
1471	 *
1472	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1473	 * defrag_ratio = 1000) then every (well almost) allocation will
1474	 * first attempt to defrag slab caches on other nodes. This means
1475	 * scanning over all nodes to look for partial slabs which may be
1476	 * expensive if we do it every time we are trying to find a slab
1477	 * with available objects.
1478	 */
1479	if (!s->remote_node_defrag_ratio ||
1480			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1481		return NULL;
1482
1483	get_mems_allowed();
1484	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1485	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1486		struct kmem_cache_node *n;
1487
1488		n = get_node(s, zone_to_nid(zone));
1489
1490		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1491				n->nr_partial > s->min_partial) {
1492			page = get_partial_node(n);
1493			if (page) {
1494				put_mems_allowed();
1495				return page;
1496			}
1497		}
1498	}
1499	put_mems_allowed();
1500#endif
1501	return NULL;
1502}
1503
1504/*
1505 * Get a partial page, lock it and return it.
1506 */
1507static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1508{
1509	struct page *page;
1510	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1511
1512	page = get_partial_node(get_node(s, searchnode));
1513	if (page || node != NUMA_NO_NODE)
1514		return page;
1515
1516	return get_any_partial(s, flags);
1517}
1518
1519/*
1520 * Move a page back to the lists.
1521 *
1522 * Must be called with the slab lock held.
1523 *
1524 * On exit the slab lock will have been dropped.
1525 */
1526static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1527	__releases(bitlock)
1528{
1529	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1530
1531	__ClearPageSlubFrozen(page);
1532	if (page->inuse) {
1533
1534		if (page->freelist) {
1535			add_partial(n, page, tail);
1536			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1537		} else {
1538			stat(s, DEACTIVATE_FULL);
1539			if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1540				add_full(n, page);
1541		}
1542		slab_unlock(page);
1543	} else {
1544		stat(s, DEACTIVATE_EMPTY);
1545		if (n->nr_partial < s->min_partial) {
1546			/*
1547			 * Adding an empty slab to the partial slabs in order
1548			 * to avoid page allocator overhead. This slab needs
1549			 * to come after the other slabs with objects in
1550			 * so that the others get filled first. That way the
1551			 * size of the partial list stays small.
1552			 *
1553			 * kmem_cache_shrink can reclaim any empty slabs from
1554			 * the partial list.
1555			 */
1556			add_partial(n, page, 1);
1557			slab_unlock(page);
1558		} else {
1559			slab_unlock(page);
1560			stat(s, FREE_SLAB);
1561			discard_slab(s, page);
1562		}
1563	}
1564}
1565
1566#ifdef CONFIG_PREEMPT
1567/*
1568 * Calculate the next globally unique transaction for disambiguiation
1569 * during cmpxchg. The transactions start with the cpu number and are then
1570 * incremented by CONFIG_NR_CPUS.
1571 */
1572#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1573#else
1574/*
1575 * No preemption supported therefore also no need to check for
1576 * different cpus.
1577 */
1578#define TID_STEP 1
1579#endif
1580
1581static inline unsigned long next_tid(unsigned long tid)
1582{
1583	return tid + TID_STEP;
1584}
1585
1586static inline unsigned int tid_to_cpu(unsigned long tid)
1587{
1588	return tid % TID_STEP;
1589}
1590
1591static inline unsigned long tid_to_event(unsigned long tid)
1592{
1593	return tid / TID_STEP;
1594}
1595
1596static inline unsigned int init_tid(int cpu)
1597{
1598	return cpu;
1599}
1600
1601static inline void note_cmpxchg_failure(const char *n,
1602		const struct kmem_cache *s, unsigned long tid)
1603{
1604#ifdef SLUB_DEBUG_CMPXCHG
1605	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1606
1607	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1608
1609#ifdef CONFIG_PREEMPT
1610	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1611		printk("due to cpu change %d -> %d\n",
1612			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1613	else
1614#endif
1615	if (tid_to_event(tid) != tid_to_event(actual_tid))
1616		printk("due to cpu running other code. Event %ld->%ld\n",
1617			tid_to_event(tid), tid_to_event(actual_tid));
1618	else
1619		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1620			actual_tid, tid, next_tid(tid));
1621#endif
1622	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1623}
1624
1625void init_kmem_cache_cpus(struct kmem_cache *s)
1626{
1627	int cpu;
1628
1629	for_each_possible_cpu(cpu)
1630		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1631}
1632/*
1633 * Remove the cpu slab
1634 */
1635static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1636	__releases(bitlock)
1637{
1638	struct page *page = c->page;
1639	int tail = 1;
1640
1641	if (page->freelist)
1642		stat(s, DEACTIVATE_REMOTE_FREES);
1643	/*
1644	 * Merge cpu freelist into slab freelist. Typically we get here
1645	 * because both freelists are empty. So this is unlikely
1646	 * to occur.
1647	 */
1648	while (unlikely(c->freelist)) {
1649		void **object;
1650
1651		tail = 0;	/* Hot objects. Put the slab first */
1652
1653		/* Retrieve object from cpu_freelist */
1654		object = c->freelist;
1655		c->freelist = get_freepointer(s, c->freelist);
1656
1657		/* And put onto the regular freelist */
1658		set_freepointer(s, object, page->freelist);
1659		page->freelist = object;
1660		page->inuse--;
1661	}
1662	c->page = NULL;
1663	c->tid = next_tid(c->tid);
1664	unfreeze_slab(s, page, tail);
1665}
1666
1667static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1668{
1669	stat(s, CPUSLAB_FLUSH);
1670	slab_lock(c->page);
1671	deactivate_slab(s, c);
1672}
1673
1674/*
1675 * Flush cpu slab.
1676 *
1677 * Called from IPI handler with interrupts disabled.
1678 */
1679static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1680{
1681	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1682
1683	if (likely(c && c->page))
1684		flush_slab(s, c);
1685}
1686
1687static void flush_cpu_slab(void *d)
1688{
1689	struct kmem_cache *s = d;
1690
1691	__flush_cpu_slab(s, smp_processor_id());
1692}
1693
1694static void flush_all(struct kmem_cache *s)
1695{
1696	on_each_cpu(flush_cpu_slab, s, 1);
1697}
1698
1699/*
1700 * Check if the objects in a per cpu structure fit numa
1701 * locality expectations.
1702 */
1703static inline int node_match(struct kmem_cache_cpu *c, int node)
1704{
1705#ifdef CONFIG_NUMA
1706	if (node != NUMA_NO_NODE && c->node != node)
1707		return 0;
1708#endif
1709	return 1;
1710}
1711
1712static int count_free(struct page *page)
1713{
1714	return page->objects - page->inuse;
1715}
1716
1717static unsigned long count_partial(struct kmem_cache_node *n,
1718					int (*get_count)(struct page *))
1719{
1720	unsigned long flags;
1721	unsigned long x = 0;
1722	struct page *page;
1723
1724	spin_lock_irqsave(&n->list_lock, flags);
1725	list_for_each_entry(page, &n->partial, lru)
1726		x += get_count(page);
1727	spin_unlock_irqrestore(&n->list_lock, flags);
1728	return x;
1729}
1730
1731static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1732{
1733#ifdef CONFIG_SLUB_DEBUG
1734	return atomic_long_read(&n->total_objects);
1735#else
1736	return 0;
1737#endif
1738}
1739
1740static noinline void
1741slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1742{
1743	int node;
1744
1745	printk(KERN_WARNING
1746		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1747		nid, gfpflags);
1748	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1749		"default order: %d, min order: %d\n", s->name, s->objsize,
1750		s->size, oo_order(s->oo), oo_order(s->min));
1751
1752	if (oo_order(s->min) > get_order(s->objsize))
1753		printk(KERN_WARNING "  %s debugging increased min order, use "
1754		       "slub_debug=O to disable.\n", s->name);
1755
1756	for_each_online_node(node) {
1757		struct kmem_cache_node *n = get_node(s, node);
1758		unsigned long nr_slabs;
1759		unsigned long nr_objs;
1760		unsigned long nr_free;
1761
1762		if (!n)
1763			continue;
1764
1765		nr_free  = count_partial(n, count_free);
1766		nr_slabs = node_nr_slabs(n);
1767		nr_objs  = node_nr_objs(n);
1768
1769		printk(KERN_WARNING
1770			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1771			node, nr_slabs, nr_objs, nr_free);
1772	}
1773}
1774
1775/*
1776 * Slow path. The lockless freelist is empty or we need to perform
1777 * debugging duties.
1778 *
1779 * Interrupts are disabled.
1780 *
1781 * Processing is still very fast if new objects have been freed to the
1782 * regular freelist. In that case we simply take over the regular freelist
1783 * as the lockless freelist and zap the regular freelist.
1784 *
1785 * If that is not working then we fall back to the partial lists. We take the
1786 * first element of the freelist as the object to allocate now and move the
1787 * rest of the freelist to the lockless freelist.
1788 *
1789 * And if we were unable to get a new slab from the partial slab lists then
1790 * we need to allocate a new slab. This is the slowest path since it involves
1791 * a call to the page allocator and the setup of a new slab.
1792 */
1793static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1794			  unsigned long addr, struct kmem_cache_cpu *c)
1795{
1796	void **object;
1797	struct page *page;
1798	unsigned long flags;
1799
1800	local_irq_save(flags);
1801#ifdef CONFIG_PREEMPT
1802	/*
1803	 * We may have been preempted and rescheduled on a different
1804	 * cpu before disabling interrupts. Need to reload cpu area
1805	 * pointer.
1806	 */
1807	c = this_cpu_ptr(s->cpu_slab);
1808#endif
1809
1810	/* We handle __GFP_ZERO in the caller */
1811	gfpflags &= ~__GFP_ZERO;
1812
1813	page = c->page;
1814	if (!page)
1815		goto new_slab;
1816
1817	slab_lock(page);
1818	if (unlikely(!node_match(c, node)))
1819		goto another_slab;
1820
1821	stat(s, ALLOC_REFILL);
1822
1823load_freelist:
1824	object = page->freelist;
1825	if (unlikely(!object))
1826		goto another_slab;
1827	if (kmem_cache_debug(s))
1828		goto debug;
1829
1830	c->freelist = get_freepointer(s, object);
1831	page->inuse = page->objects;
1832	page->freelist = NULL;
1833
1834unlock_out:
1835	slab_unlock(page);
1836	c->tid = next_tid(c->tid);
1837	local_irq_restore(flags);
1838	stat(s, ALLOC_SLOWPATH);
1839	return object;
1840
1841another_slab:
1842	deactivate_slab(s, c);
1843
1844new_slab:
1845	page = get_partial(s, gfpflags, node);
1846	if (page) {
1847		stat(s, ALLOC_FROM_PARTIAL);
1848		c->node = page_to_nid(page);
1849		c->page = page;
1850		goto load_freelist;
1851	}
1852
1853	gfpflags &= gfp_allowed_mask;
1854	if (gfpflags & __GFP_WAIT)
1855		local_irq_enable();
1856
1857	page = new_slab(s, gfpflags, node);
1858
1859	if (gfpflags & __GFP_WAIT)
1860		local_irq_disable();
1861
1862	if (page) {
1863		c = __this_cpu_ptr(s->cpu_slab);
1864		stat(s, ALLOC_SLAB);
1865		if (c->page)
1866			flush_slab(s, c);
1867
1868		slab_lock(page);
1869		__SetPageSlubFrozen(page);
1870		c->node = page_to_nid(page);
1871		c->page = page;
1872		goto load_freelist;
1873	}
1874	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1875		slab_out_of_memory(s, gfpflags, node);
1876	local_irq_restore(flags);
1877	return NULL;
1878debug:
1879	if (!alloc_debug_processing(s, page, object, addr))
1880		goto another_slab;
1881
1882	page->inuse++;
1883	page->freelist = get_freepointer(s, object);
1884	deactivate_slab(s, c);
1885	c->page = NULL;
1886	c->node = NUMA_NO_NODE;
1887	goto unlock_out;
1888}
1889
1890/*
1891 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1892 * have the fastpath folded into their functions. So no function call
1893 * overhead for requests that can be satisfied on the fastpath.
1894 *
1895 * The fastpath works by first checking if the lockless freelist can be used.
1896 * If not then __slab_alloc is called for slow processing.
1897 *
1898 * Otherwise we can simply pick the next object from the lockless free list.
1899 */
1900static __always_inline void *slab_alloc(struct kmem_cache *s,
1901		gfp_t gfpflags, int node, unsigned long addr)
1902{
1903	void **object;
1904	struct kmem_cache_cpu *c;
1905	unsigned long tid;
1906
1907	if (slab_pre_alloc_hook(s, gfpflags))
1908		return NULL;
1909
1910redo:
1911
1912	/*
1913	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1914	 * enabled. We may switch back and forth between cpus while
1915	 * reading from one cpu area. That does not matter as long
1916	 * as we end up on the original cpu again when doing the cmpxchg.
1917	 */
1918	c = __this_cpu_ptr(s->cpu_slab);
1919
1920	/*
1921	 * The transaction ids are globally unique per cpu and per operation on
1922	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1923	 * occurs on the right processor and that there was no operation on the
1924	 * linked list in between.
1925	 */
1926	tid = c->tid;
1927	barrier();
1928
1929	object = c->freelist;
1930	if (unlikely(!object || !node_match(c, node)))
1931
1932		object = __slab_alloc(s, gfpflags, node, addr, c);
1933
1934	else {
1935		/*
1936		 * The cmpxchg will only match if there was no additonal
1937		 * operation and if we are on the right processor.
1938		 *
1939		 * The cmpxchg does the following atomically (without lock semantics!)
1940		 * 1. Relocate first pointer to the current per cpu area.
1941		 * 2. Verify that tid and freelist have not been changed
1942		 * 3. If they were not changed replace tid and freelist
1943		 *
1944		 * Since this is without lock semantics the protection is only against
1945		 * code executing on this cpu *not* from access by other cpus.
1946		 */
1947		if (unlikely(!this_cpu_cmpxchg_double(
1948				s->cpu_slab->freelist, s->cpu_slab->tid,
1949				object, tid,
1950				get_freepointer_safe(s, object), next_tid(tid)))) {
1951
1952			note_cmpxchg_failure("slab_alloc", s, tid);
1953			goto redo;
1954		}
1955		stat(s, ALLOC_FASTPATH);
1956	}
1957
1958	if (unlikely(gfpflags & __GFP_ZERO) && object)
1959		memset(object, 0, s->objsize);
1960
1961	slab_post_alloc_hook(s, gfpflags, object);
1962
1963	return object;
1964}
1965
1966void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1967{
1968	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1969
1970	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1971
1972	return ret;
1973}
1974EXPORT_SYMBOL(kmem_cache_alloc);
1975
1976#ifdef CONFIG_TRACING
1977void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1978{
1979	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1980	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1981	return ret;
1982}
1983EXPORT_SYMBOL(kmem_cache_alloc_trace);
1984
1985void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1986{
1987	void *ret = kmalloc_order(size, flags, order);
1988	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1989	return ret;
1990}
1991EXPORT_SYMBOL(kmalloc_order_trace);
1992#endif
1993
1994#ifdef CONFIG_NUMA
1995void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1996{
1997	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1998
1999	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2000				    s->objsize, s->size, gfpflags, node);
2001
2002	return ret;
2003}
2004EXPORT_SYMBOL(kmem_cache_alloc_node);
2005
2006#ifdef CONFIG_TRACING
2007void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2008				    gfp_t gfpflags,
2009				    int node, size_t size)
2010{
2011	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2012
2013	trace_kmalloc_node(_RET_IP_, ret,
2014			   size, s->size, gfpflags, node);
2015	return ret;
2016}
2017EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2018#endif
2019#endif
2020
2021/*
2022 * Slow patch handling. This may still be called frequently since objects
2023 * have a longer lifetime than the cpu slabs in most processing loads.
2024 *
2025 * So we still attempt to reduce cache line usage. Just take the slab
2026 * lock and free the item. If there is no additional partial page
2027 * handling required then we can return immediately.
2028 */
2029static void __slab_free(struct kmem_cache *s, struct page *page,
2030			void *x, unsigned long addr)
2031{
2032	void *prior;
2033	void **object = (void *)x;
2034	unsigned long flags;
2035
2036	local_irq_save(flags);
2037	slab_lock(page);
2038	stat(s, FREE_SLOWPATH);
2039
2040	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2041		goto out_unlock;
2042
2043	prior = page->freelist;
2044	set_freepointer(s, object, prior);
2045	page->freelist = object;
2046	page->inuse--;
2047
2048	if (unlikely(PageSlubFrozen(page))) {
2049		stat(s, FREE_FROZEN);
2050		goto out_unlock;
2051	}
2052
2053	if (unlikely(!page->inuse))
2054		goto slab_empty;
2055
2056	/*
2057	 * Objects left in the slab. If it was not on the partial list before
2058	 * then add it.
2059	 */
2060	if (unlikely(!prior)) {
2061		add_partial(get_node(s, page_to_nid(page)), page, 1);
2062		stat(s, FREE_ADD_PARTIAL);
2063	}
2064
2065out_unlock:
2066	slab_unlock(page);
2067	local_irq_restore(flags);
2068	return;
2069
2070slab_empty:
2071	if (prior) {
2072		/*
2073		 * Slab still on the partial list.
2074		 */
2075		remove_partial(s, page);
2076		stat(s, FREE_REMOVE_PARTIAL);
2077	}
2078	slab_unlock(page);
2079	local_irq_restore(flags);
2080	stat(s, FREE_SLAB);
2081	discard_slab(s, page);
2082}
2083
2084/*
2085 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2086 * can perform fastpath freeing without additional function calls.
2087 *
2088 * The fastpath is only possible if we are freeing to the current cpu slab
2089 * of this processor. This typically the case if we have just allocated
2090 * the item before.
2091 *
2092 * If fastpath is not possible then fall back to __slab_free where we deal
2093 * with all sorts of special processing.
2094 */
2095static __always_inline void slab_free(struct kmem_cache *s,
2096			struct page *page, void *x, unsigned long addr)
2097{
2098	void **object = (void *)x;
2099	struct kmem_cache_cpu *c;
2100	unsigned long tid;
2101
2102	slab_free_hook(s, x);
2103
2104redo:
2105
2106	/*
2107	 * Determine the currently cpus per cpu slab.
2108	 * The cpu may change afterward. However that does not matter since
2109	 * data is retrieved via this pointer. If we are on the same cpu
2110	 * during the cmpxchg then the free will succedd.
2111	 */
2112	c = __this_cpu_ptr(s->cpu_slab);
2113
2114	tid = c->tid;
2115	barrier();
2116
2117	if (likely(page == c->page)) {
2118		set_freepointer(s, object, c->freelist);
2119
2120		if (unlikely(!this_cpu_cmpxchg_double(
2121				s->cpu_slab->freelist, s->cpu_slab->tid,
2122				c->freelist, tid,
2123				object, next_tid(tid)))) {
2124
2125			note_cmpxchg_failure("slab_free", s, tid);
2126			goto redo;
2127		}
2128		stat(s, FREE_FASTPATH);
2129	} else
2130		__slab_free(s, page, x, addr);
2131
2132}
2133
2134void kmem_cache_free(struct kmem_cache *s, void *x)
2135{
2136	struct page *page;
2137
2138	page = virt_to_head_page(x);
2139
2140	slab_free(s, page, x, _RET_IP_);
2141
2142	trace_kmem_cache_free(_RET_IP_, x);
2143}
2144EXPORT_SYMBOL(kmem_cache_free);
2145
2146/*
2147 * Object placement in a slab is made very easy because we always start at
2148 * offset 0. If we tune the size of the object to the alignment then we can
2149 * get the required alignment by putting one properly sized object after
2150 * another.
2151 *
2152 * Notice that the allocation order determines the sizes of the per cpu
2153 * caches. Each processor has always one slab available for allocations.
2154 * Increasing the allocation order reduces the number of times that slabs
2155 * must be moved on and off the partial lists and is therefore a factor in
2156 * locking overhead.
2157 */
2158
2159/*
2160 * Mininum / Maximum order of slab pages. This influences locking overhead
2161 * and slab fragmentation. A higher order reduces the number of partial slabs
2162 * and increases the number of allocations possible without having to
2163 * take the list_lock.
2164 */
2165static int slub_min_order;
2166static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2167static int slub_min_objects;
2168
2169/*
2170 * Merge control. If this is set then no merging of slab caches will occur.
2171 * (Could be removed. This was introduced to pacify the merge skeptics.)
2172 */
2173static int slub_nomerge;
2174
2175/*
2176 * Calculate the order of allocation given an slab object size.
2177 *
2178 * The order of allocation has significant impact on performance and other
2179 * system components. Generally order 0 allocations should be preferred since
2180 * order 0 does not cause fragmentation in the page allocator. Larger objects
2181 * be problematic to put into order 0 slabs because there may be too much
2182 * unused space left. We go to a higher order if more than 1/16th of the slab
2183 * would be wasted.
2184 *
2185 * In order to reach satisfactory performance we must ensure that a minimum
2186 * number of objects is in one slab. Otherwise we may generate too much
2187 * activity on the partial lists which requires taking the list_lock. This is
2188 * less a concern for large slabs though which are rarely used.
2189 *
2190 * slub_max_order specifies the order where we begin to stop considering the
2191 * number of objects in a slab as critical. If we reach slub_max_order then
2192 * we try to keep the page order as low as possible. So we accept more waste
2193 * of space in favor of a small page order.
2194 *
2195 * Higher order allocations also allow the placement of more objects in a
2196 * slab and thereby reduce object handling overhead. If the user has
2197 * requested a higher mininum order then we start with that one instead of
2198 * the smallest order which will fit the object.
2199 */
2200static inline int slab_order(int size, int min_objects,
2201				int max_order, int fract_leftover, int reserved)
2202{
2203	int order;
2204	int rem;
2205	int min_order = slub_min_order;
2206
2207	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2208		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2209
2210	for (order = max(min_order,
2211				fls(min_objects * size - 1) - PAGE_SHIFT);
2212			order <= max_order; order++) {
2213
2214		unsigned long slab_size = PAGE_SIZE << order;
2215
2216		if (slab_size < min_objects * size + reserved)
2217			continue;
2218
2219		rem = (slab_size - reserved) % size;
2220
2221		if (rem <= slab_size / fract_leftover)
2222			break;
2223
2224	}
2225
2226	return order;
2227}
2228
2229static inline int calculate_order(int size, int reserved)
2230{
2231	int order;
2232	int min_objects;
2233	int fraction;
2234	int max_objects;
2235
2236	/*
2237	 * Attempt to find best configuration for a slab. This
2238	 * works by first attempting to generate a layout with
2239	 * the best configuration and backing off gradually.
2240	 *
2241	 * First we reduce the acceptable waste in a slab. Then
2242	 * we reduce the minimum objects required in a slab.
2243	 */
2244	min_objects = slub_min_objects;
2245	if (!min_objects)
2246		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2247	max_objects = order_objects(slub_max_order, size, reserved);
2248	min_objects = min(min_objects, max_objects);
2249
2250	while (min_objects > 1) {
2251		fraction = 16;
2252		while (fraction >= 4) {
2253			order = slab_order(size, min_objects,
2254					slub_max_order, fraction, reserved);
2255			if (order <= slub_max_order)
2256				return order;
2257			fraction /= 2;
2258		}
2259		min_objects--;
2260	}
2261
2262	/*
2263	 * We were unable to place multiple objects in a slab. Now
2264	 * lets see if we can place a single object there.
2265	 */
2266	order = slab_order(size, 1, slub_max_order, 1, reserved);
2267	if (order <= slub_max_order)
2268		return order;
2269
2270	/*
2271	 * Doh this slab cannot be placed using slub_max_order.
2272	 */
2273	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2274	if (order < MAX_ORDER)
2275		return order;
2276	return -ENOSYS;
2277}
2278
2279/*
2280 * Figure out what the alignment of the objects will be.
2281 */
2282static unsigned long calculate_alignment(unsigned long flags,
2283		unsigned long align, unsigned long size)
2284{
2285	/*
2286	 * If the user wants hardware cache aligned objects then follow that
2287	 * suggestion if the object is sufficiently large.
2288	 *
2289	 * The hardware cache alignment cannot override the specified
2290	 * alignment though. If that is greater then use it.
2291	 */
2292	if (flags & SLAB_HWCACHE_ALIGN) {
2293		unsigned long ralign = cache_line_size();
2294		while (size <= ralign / 2)
2295			ralign /= 2;
2296		align = max(align, ralign);
2297	}
2298
2299	if (align < ARCH_SLAB_MINALIGN)
2300		align = ARCH_SLAB_MINALIGN;
2301
2302	return ALIGN(align, sizeof(void *));
2303}
2304
2305static void
2306init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2307{
2308	n->nr_partial = 0;
2309	spin_lock_init(&n->list_lock);
2310	INIT_LIST_HEAD(&n->partial);
2311#ifdef CONFIG_SLUB_DEBUG
2312	atomic_long_set(&n->nr_slabs, 0);
2313	atomic_long_set(&n->total_objects, 0);
2314	INIT_LIST_HEAD(&n->full);
2315#endif
2316}
2317
2318static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2319{
2320	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2321			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2322
2323#ifdef CONFIG_CMPXCHG_LOCAL
2324	/*
2325	 * Must align to double word boundary for the double cmpxchg instructions
2326	 * to work.
2327	 */
2328	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
2329#else
2330	/* Regular alignment is sufficient */
2331	s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2332#endif
2333
2334	if (!s->cpu_slab)
2335		return 0;
2336
2337	init_kmem_cache_cpus(s);
2338
2339	return 1;
2340}
2341
2342static struct kmem_cache *kmem_cache_node;
2343
2344/*
2345 * No kmalloc_node yet so do it by hand. We know that this is the first
2346 * slab on the node for this slabcache. There are no concurrent accesses
2347 * possible.
2348 *
2349 * Note that this function only works on the kmalloc_node_cache
2350 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2351 * memory on a fresh node that has no slab structures yet.
2352 */
2353static void early_kmem_cache_node_alloc(int node)
2354{
2355	struct page *page;
2356	struct kmem_cache_node *n;
2357	unsigned long flags;
2358
2359	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2360
2361	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2362
2363	BUG_ON(!page);
2364	if (page_to_nid(page) != node) {
2365		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2366				"node %d\n", node);
2367		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2368				"in order to be able to continue\n");
2369	}
2370
2371	n = page->freelist;
2372	BUG_ON(!n);
2373	page->freelist = get_freepointer(kmem_cache_node, n);
2374	page->inuse++;
2375	kmem_cache_node->node[node] = n;
2376#ifdef CONFIG_SLUB_DEBUG
2377	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2378	init_tracking(kmem_cache_node, n);
2379#endif
2380	init_kmem_cache_node(n, kmem_cache_node);
2381	inc_slabs_node(kmem_cache_node, node, page->objects);
2382
2383	/*
2384	 * lockdep requires consistent irq usage for each lock
2385	 * so even though there cannot be a race this early in
2386	 * the boot sequence, we still disable irqs.
2387	 */
2388	local_irq_save(flags);
2389	add_partial(n, page, 0);
2390	local_irq_restore(flags);
2391}
2392
2393static void free_kmem_cache_nodes(struct kmem_cache *s)
2394{
2395	int node;
2396
2397	for_each_node_state(node, N_NORMAL_MEMORY) {
2398		struct kmem_cache_node *n = s->node[node];
2399
2400		if (n)
2401			kmem_cache_free(kmem_cache_node, n);
2402
2403		s->node[node] = NULL;
2404	}
2405}
2406
2407static int init_kmem_cache_nodes(struct kmem_cache *s)
2408{
2409	int node;
2410
2411	for_each_node_state(node, N_NORMAL_MEMORY) {
2412		struct kmem_cache_node *n;
2413
2414		if (slab_state == DOWN) {
2415			early_kmem_cache_node_alloc(node);
2416			continue;
2417		}
2418		n = kmem_cache_alloc_node(kmem_cache_node,
2419						GFP_KERNEL, node);
2420
2421		if (!n) {
2422			free_kmem_cache_nodes(s);
2423			return 0;
2424		}
2425
2426		s->node[node] = n;
2427		init_kmem_cache_node(n, s);
2428	}
2429	return 1;
2430}
2431
2432static void set_min_partial(struct kmem_cache *s, unsigned long min)
2433{
2434	if (min < MIN_PARTIAL)
2435		min = MIN_PARTIAL;
2436	else if (min > MAX_PARTIAL)
2437		min = MAX_PARTIAL;
2438	s->min_partial = min;
2439}
2440
2441/*
2442 * calculate_sizes() determines the order and the distribution of data within
2443 * a slab object.
2444 */
2445static int calculate_sizes(struct kmem_cache *s, int forced_order)
2446{
2447	unsigned long flags = s->flags;
2448	unsigned long size = s->objsize;
2449	unsigned long align = s->align;
2450	int order;
2451
2452	/*
2453	 * Round up object size to the next word boundary. We can only
2454	 * place the free pointer at word boundaries and this determines
2455	 * the possible location of the free pointer.
2456	 */
2457	size = ALIGN(size, sizeof(void *));
2458
2459#ifdef CONFIG_SLUB_DEBUG
2460	/*
2461	 * Determine if we can poison the object itself. If the user of
2462	 * the slab may touch the object after free or before allocation
2463	 * then we should never poison the object itself.
2464	 */
2465	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2466			!s->ctor)
2467		s->flags |= __OBJECT_POISON;
2468	else
2469		s->flags &= ~__OBJECT_POISON;
2470
2471
2472	/*
2473	 * If we are Redzoning then check if there is some space between the
2474	 * end of the object and the free pointer. If not then add an
2475	 * additional word to have some bytes to store Redzone information.
2476	 */
2477	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2478		size += sizeof(void *);
2479#endif
2480
2481	/*
2482	 * With that we have determined the number of bytes in actual use
2483	 * by the object. This is the potential offset to the free pointer.
2484	 */
2485	s->inuse = size;
2486
2487	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2488		s->ctor)) {
2489		/*
2490		 * Relocate free pointer after the object if it is not
2491		 * permitted to overwrite the first word of the object on
2492		 * kmem_cache_free.
2493		 *
2494		 * This is the case if we do RCU, have a constructor or
2495		 * destructor or are poisoning the objects.
2496		 */
2497		s->offset = size;
2498		size += sizeof(void *);
2499	}
2500
2501#ifdef CONFIG_SLUB_DEBUG
2502	if (flags & SLAB_STORE_USER)
2503		/*
2504		 * Need to store information about allocs and frees after
2505		 * the object.
2506		 */
2507		size += 2 * sizeof(struct track);
2508
2509	if (flags & SLAB_RED_ZONE)
2510		/*
2511		 * Add some empty padding so that we can catch
2512		 * overwrites from earlier objects rather than let
2513		 * tracking information or the free pointer be
2514		 * corrupted if a user writes before the start
2515		 * of the object.
2516		 */
2517		size += sizeof(void *);
2518#endif
2519
2520	/*
2521	 * Determine the alignment based on various parameters that the
2522	 * user specified and the dynamic determination of cache line size
2523	 * on bootup.
2524	 */
2525	align = calculate_alignment(flags, align, s->objsize);
2526	s->align = align;
2527
2528	/*
2529	 * SLUB stores one object immediately after another beginning from
2530	 * offset 0. In order to align the objects we have to simply size
2531	 * each object to conform to the alignment.
2532	 */
2533	size = ALIGN(size, align);
2534	s->size = size;
2535	if (forced_order >= 0)
2536		order = forced_order;
2537	else
2538		order = calculate_order(size, s->reserved);
2539
2540	if (order < 0)
2541		return 0;
2542
2543	s->allocflags = 0;
2544	if (order)
2545		s->allocflags |= __GFP_COMP;
2546
2547	if (s->flags & SLAB_CACHE_DMA)
2548		s->allocflags |= SLUB_DMA;
2549
2550	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2551		s->allocflags |= __GFP_RECLAIMABLE;
2552
2553	/*
2554	 * Determine the number of objects per slab
2555	 */
2556	s->oo = oo_make(order, size, s->reserved);
2557	s->min = oo_make(get_order(size), size, s->reserved);
2558	if (oo_objects(s->oo) > oo_objects(s->max))
2559		s->max = s->oo;
2560
2561	return !!oo_objects(s->oo);
2562
2563}
2564
2565static int kmem_cache_open(struct kmem_cache *s,
2566		const char *name, size_t size,
2567		size_t align, unsigned long flags,
2568		void (*ctor)(void *))
2569{
2570	memset(s, 0, kmem_size);
2571	s->name = name;
2572	s->ctor = ctor;
2573	s->objsize = size;
2574	s->align = align;
2575	s->flags = kmem_cache_flags(size, flags, name, ctor);
2576	s->reserved = 0;
2577
2578	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2579		s->reserved = sizeof(struct rcu_head);
2580
2581	if (!calculate_sizes(s, -1))
2582		goto error;
2583	if (disable_higher_order_debug) {
2584		/*
2585		 * Disable debugging flags that store metadata if the min slab
2586		 * order increased.
2587		 */
2588		if (get_order(s->size) > get_order(s->objsize)) {
2589			s->flags &= ~DEBUG_METADATA_FLAGS;
2590			s->offset = 0;
2591			if (!calculate_sizes(s, -1))
2592				goto error;
2593		}
2594	}
2595
2596	/*
2597	 * The larger the object size is, the more pages we want on the partial
2598	 * list to avoid pounding the page allocator excessively.
2599	 */
2600	set_min_partial(s, ilog2(s->size));
2601	s->refcount = 1;
2602#ifdef CONFIG_NUMA
2603	s->remote_node_defrag_ratio = 1000;
2604#endif
2605	if (!init_kmem_cache_nodes(s))
2606		goto error;
2607
2608	if (alloc_kmem_cache_cpus(s))
2609		return 1;
2610
2611	free_kmem_cache_nodes(s);
2612error:
2613	if (flags & SLAB_PANIC)
2614		panic("Cannot create slab %s size=%lu realsize=%u "
2615			"order=%u offset=%u flags=%lx\n",
2616			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2617			s->offset, flags);
2618	return 0;
2619}
2620
2621/*
2622 * Determine the size of a slab object
2623 */
2624unsigned int kmem_cache_size(struct kmem_cache *s)
2625{
2626	return s->objsize;
2627}
2628EXPORT_SYMBOL(kmem_cache_size);
2629
2630static void list_slab_objects(struct kmem_cache *s, struct page *page,
2631							const char *text)
2632{
2633#ifdef CONFIG_SLUB_DEBUG
2634	void *addr = page_address(page);
2635	void *p;
2636	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2637				     sizeof(long), GFP_ATOMIC);
2638	if (!map)
2639		return;
2640	slab_err(s, page, "%s", text);
2641	slab_lock(page);
2642
2643	get_map(s, page, map);
2644	for_each_object(p, s, addr, page->objects) {
2645
2646		if (!test_bit(slab_index(p, s, addr), map)) {
2647			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2648							p, p - addr);
2649			print_tracking(s, p);
2650		}
2651	}
2652	slab_unlock(page);
2653	kfree(map);
2654#endif
2655}
2656
2657/*
2658 * Attempt to free all partial slabs on a node.
2659 */
2660static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2661{
2662	unsigned long flags;
2663	struct page *page, *h;
2664
2665	spin_lock_irqsave(&n->list_lock, flags);
2666	list_for_each_entry_safe(page, h, &n->partial, lru) {
2667		if (!page->inuse) {
2668			__remove_partial(n, page);
2669			discard_slab(s, page);
2670		} else {
2671			list_slab_objects(s, page,
2672				"Objects remaining on kmem_cache_close()");
2673		}
2674	}
2675	spin_unlock_irqrestore(&n->list_lock, flags);
2676}
2677
2678/*
2679 * Release all resources used by a slab cache.
2680 */
2681static inline int kmem_cache_close(struct kmem_cache *s)
2682{
2683	int node;
2684
2685	flush_all(s);
2686	free_percpu(s->cpu_slab);
2687	/* Attempt to free all objects */
2688	for_each_node_state(node, N_NORMAL_MEMORY) {
2689		struct kmem_cache_node *n = get_node(s, node);
2690
2691		free_partial(s, n);
2692		if (n->nr_partial || slabs_node(s, node))
2693			return 1;
2694	}
2695	free_kmem_cache_nodes(s);
2696	return 0;
2697}
2698
2699/*
2700 * Close a cache and release the kmem_cache structure
2701 * (must be used for caches created using kmem_cache_create)
2702 */
2703void kmem_cache_destroy(struct kmem_cache *s)
2704{
2705	down_write(&slub_lock);
2706	s->refcount--;
2707	if (!s->refcount) {
2708		list_del(&s->list);
2709		if (kmem_cache_close(s)) {
2710			printk(KERN_ERR "SLUB %s: %s called for cache that "
2711				"still has objects.\n", s->name, __func__);
2712			dump_stack();
2713		}
2714		if (s->flags & SLAB_DESTROY_BY_RCU)
2715			rcu_barrier();
2716		sysfs_slab_remove(s);
2717	}
2718	up_write(&slub_lock);
2719}
2720EXPORT_SYMBOL(kmem_cache_destroy);
2721
2722/********************************************************************
2723 *		Kmalloc subsystem
2724 *******************************************************************/
2725
2726struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2727EXPORT_SYMBOL(kmalloc_caches);
2728
2729static struct kmem_cache *kmem_cache;
2730
2731#ifdef CONFIG_ZONE_DMA
2732static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2733#endif
2734
2735static int __init setup_slub_min_order(char *str)
2736{
2737	get_option(&str, &slub_min_order);
2738
2739	return 1;
2740}
2741
2742__setup("slub_min_order=", setup_slub_min_order);
2743
2744static int __init setup_slub_max_order(char *str)
2745{
2746	get_option(&str, &slub_max_order);
2747	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2748
2749	return 1;
2750}
2751
2752__setup("slub_max_order=", setup_slub_max_order);
2753
2754static int __init setup_slub_min_objects(char *str)
2755{
2756	get_option(&str, &slub_min_objects);
2757
2758	return 1;
2759}
2760
2761__setup("slub_min_objects=", setup_slub_min_objects);
2762
2763static int __init setup_slub_nomerge(char *str)
2764{
2765	slub_nomerge = 1;
2766	return 1;
2767}
2768
2769__setup("slub_nomerge", setup_slub_nomerge);
2770
2771static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2772						int size, unsigned int flags)
2773{
2774	struct kmem_cache *s;
2775
2776	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2777
2778	/*
2779	 * This function is called with IRQs disabled during early-boot on
2780	 * single CPU so there's no need to take slub_lock here.
2781	 */
2782	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2783								flags, NULL))
2784		goto panic;
2785
2786	list_add(&s->list, &slab_caches);
2787	return s;
2788
2789panic:
2790	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2791	return NULL;
2792}
2793
2794/*
2795 * Conversion table for small slabs sizes / 8 to the index in the
2796 * kmalloc array. This is necessary for slabs < 192 since we have non power
2797 * of two cache sizes there. The size of larger slabs can be determined using
2798 * fls.
2799 */
2800static s8 size_index[24] = {
2801	3,	/* 8 */
2802	4,	/* 16 */
2803	5,	/* 24 */
2804	5,	/* 32 */
2805	6,	/* 40 */
2806	6,	/* 48 */
2807	6,	/* 56 */
2808	6,	/* 64 */
2809	1,	/* 72 */
2810	1,	/* 80 */
2811	1,	/* 88 */
2812	1,	/* 96 */
2813	7,	/* 104 */
2814	7,	/* 112 */
2815	7,	/* 120 */
2816	7,	/* 128 */
2817	2,	/* 136 */
2818	2,	/* 144 */
2819	2,	/* 152 */
2820	2,	/* 160 */
2821	2,	/* 168 */
2822	2,	/* 176 */
2823	2,	/* 184 */
2824	2	/* 192 */
2825};
2826
2827static inline int size_index_elem(size_t bytes)
2828{
2829	return (bytes - 1) / 8;
2830}
2831
2832static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2833{
2834	int index;
2835
2836	if (size <= 192) {
2837		if (!size)
2838			return ZERO_SIZE_PTR;
2839
2840		index = size_index[size_index_elem(size)];
2841	} else
2842		index = fls(size - 1);
2843
2844#ifdef CONFIG_ZONE_DMA
2845	if (unlikely((flags & SLUB_DMA)))
2846		return kmalloc_dma_caches[index];
2847
2848#endif
2849	return kmalloc_caches[index];
2850}
2851
2852void *__kmalloc(size_t size, gfp_t flags)
2853{
2854	struct kmem_cache *s;
2855	void *ret;
2856
2857	if (unlikely(size > SLUB_MAX_SIZE))
2858		return kmalloc_large(size, flags);
2859
2860	s = get_slab(size, flags);
2861
2862	if (unlikely(ZERO_OR_NULL_PTR(s)))
2863		return s;
2864
2865	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2866
2867	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2868
2869	return ret;
2870}
2871EXPORT_SYMBOL(__kmalloc);
2872
2873#ifdef CONFIG_NUMA
2874static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2875{
2876	struct page *page;
2877	void *ptr = NULL;
2878
2879	flags |= __GFP_COMP | __GFP_NOTRACK;
2880	page = alloc_pages_node(node, flags, get_order(size));
2881	if (page)
2882		ptr = page_address(page);
2883
2884	kmemleak_alloc(ptr, size, 1, flags);
2885	return ptr;
2886}
2887
2888void *__kmalloc_node(size_t size, gfp_t flags, int node)
2889{
2890	struct kmem_cache *s;
2891	void *ret;
2892
2893	if (unlikely(size > SLUB_MAX_SIZE)) {
2894		ret = kmalloc_large_node(size, flags, node);
2895
2896		trace_kmalloc_node(_RET_IP_, ret,
2897				   size, PAGE_SIZE << get_order(size),
2898				   flags, node);
2899
2900		return ret;
2901	}
2902
2903	s = get_slab(size, flags);
2904
2905	if (unlikely(ZERO_OR_NULL_PTR(s)))
2906		return s;
2907
2908	ret = slab_alloc(s, flags, node, _RET_IP_);
2909
2910	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2911
2912	return ret;
2913}
2914EXPORT_SYMBOL(__kmalloc_node);
2915#endif
2916
2917size_t ksize(const void *object)
2918{
2919	struct page *page;
2920
2921	if (unlikely(object == ZERO_SIZE_PTR))
2922		return 0;
2923
2924	page = virt_to_head_page(object);
2925
2926	if (unlikely(!PageSlab(page))) {
2927		WARN_ON(!PageCompound(page));
2928		return PAGE_SIZE << compound_order(page);
2929	}
2930
2931	return slab_ksize(page->slab);
2932}
2933EXPORT_SYMBOL(ksize);
2934
2935void kfree(const void *x)
2936{
2937	struct page *page;
2938	void *object = (void *)x;
2939
2940	trace_kfree(_RET_IP_, x);
2941
2942	if (unlikely(ZERO_OR_NULL_PTR(x)))
2943		return;
2944
2945	page = virt_to_head_page(x);
2946	if (unlikely(!PageSlab(page))) {
2947		BUG_ON(!PageCompound(page));
2948		kmemleak_free(x);
2949		put_page(page);
2950		return;
2951	}
2952	slab_free(page->slab, page, object, _RET_IP_);
2953}
2954EXPORT_SYMBOL(kfree);
2955
2956/*
2957 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2958 * the remaining slabs by the number of items in use. The slabs with the
2959 * most items in use come first. New allocations will then fill those up
2960 * and thus they can be removed from the partial lists.
2961 *
2962 * The slabs with the least items are placed last. This results in them
2963 * being allocated from last increasing the chance that the last objects
2964 * are freed in them.
2965 */
2966int kmem_cache_shrink(struct kmem_cache *s)
2967{
2968	int node;
2969	int i;
2970	struct kmem_cache_node *n;
2971	struct page *page;
2972	struct page *t;
2973	int objects = oo_objects(s->max);
2974	struct list_head *slabs_by_inuse =
2975		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2976	unsigned long flags;
2977
2978	if (!slabs_by_inuse)
2979		return -ENOMEM;
2980
2981	flush_all(s);
2982	for_each_node_state(node, N_NORMAL_MEMORY) {
2983		n = get_node(s, node);
2984
2985		if (!n->nr_partial)
2986			continue;
2987
2988		for (i = 0; i < objects; i++)
2989			INIT_LIST_HEAD(slabs_by_inuse + i);
2990
2991		spin_lock_irqsave(&n->list_lock, flags);
2992
2993		/*
2994		 * Build lists indexed by the items in use in each slab.
2995		 *
2996		 * Note that concurrent frees may occur while we hold the
2997		 * list_lock. page->inuse here is the upper limit.
2998		 */
2999		list_for_each_entry_safe(page, t, &n->partial, lru) {
3000			if (!page->inuse && slab_trylock(page)) {
3001				/*
3002				 * Must hold slab lock here because slab_free
3003				 * may have freed the last object and be
3004				 * waiting to release the slab.
3005				 */
3006				__remove_partial(n, page);
3007				slab_unlock(page);
3008				discard_slab(s, page);
3009			} else {
3010				list_move(&page->lru,
3011				slabs_by_inuse + page->inuse);
3012			}
3013		}
3014
3015		/*
3016		 * Rebuild the partial list with the slabs filled up most
3017		 * first and the least used slabs at the end.
3018		 */
3019		for (i = objects - 1; i >= 0; i--)
3020			list_splice(slabs_by_inuse + i, n->partial.prev);
3021
3022		spin_unlock_irqrestore(&n->list_lock, flags);
3023	}
3024
3025	kfree(slabs_by_inuse);
3026	return 0;
3027}
3028EXPORT_SYMBOL(kmem_cache_shrink);
3029
3030#if defined(CONFIG_MEMORY_HOTPLUG)
3031static int slab_mem_going_offline_callback(void *arg)
3032{
3033	struct kmem_cache *s;
3034
3035	down_read(&slub_lock);
3036	list_for_each_entry(s, &slab_caches, list)
3037		kmem_cache_shrink(s);
3038	up_read(&slub_lock);
3039
3040	return 0;
3041}
3042
3043static void slab_mem_offline_callback(void *arg)
3044{
3045	struct kmem_cache_node *n;
3046	struct kmem_cache *s;
3047	struct memory_notify *marg = arg;
3048	int offline_node;
3049
3050	offline_node = marg->status_change_nid;
3051
3052	/*
3053	 * If the node still has available memory. we need kmem_cache_node
3054	 * for it yet.
3055	 */
3056	if (offline_node < 0)
3057		return;
3058
3059	down_read(&slub_lock);
3060	list_for_each_entry(s, &slab_caches, list) {
3061		n = get_node(s, offline_node);
3062		if (n) {
3063			/*
3064			 * if n->nr_slabs > 0, slabs still exist on the node
3065			 * that is going down. We were unable to free them,
3066			 * and offline_pages() function shouldn't call this
3067			 * callback. So, we must fail.
3068			 */
3069			BUG_ON(slabs_node(s, offline_node));
3070
3071			s->node[offline_node] = NULL;
3072			kmem_cache_free(kmem_cache_node, n);
3073		}
3074	}
3075	up_read(&slub_lock);
3076}
3077
3078static int slab_mem_going_online_callback(void *arg)
3079{
3080	struct kmem_cache_node *n;
3081	struct kmem_cache *s;
3082	struct memory_notify *marg = arg;
3083	int nid = marg->status_change_nid;
3084	int ret = 0;
3085
3086	/*
3087	 * If the node's memory is already available, then kmem_cache_node is
3088	 * already created. Nothing to do.
3089	 */
3090	if (nid < 0)
3091		return 0;
3092
3093	/*
3094	 * We are bringing a node online. No memory is available yet. We must
3095	 * allocate a kmem_cache_node structure in order to bring the node
3096	 * online.
3097	 */
3098	down_read(&slub_lock);
3099	list_for_each_entry(s, &slab_caches, list) {
3100		/*
3101		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3102		 *      since memory is not yet available from the node that
3103		 *      is brought up.
3104		 */
3105		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3106		if (!n) {
3107			ret = -ENOMEM;
3108			goto out;
3109		}
3110		init_kmem_cache_node(n, s);
3111		s->node[nid] = n;
3112	}
3113out:
3114	up_read(&slub_lock);
3115	return ret;
3116}
3117
3118static int slab_memory_callback(struct notifier_block *self,
3119				unsigned long action, void *arg)
3120{
3121	int ret = 0;
3122
3123	switch (action) {
3124	case MEM_GOING_ONLINE:
3125		ret = slab_mem_going_online_callback(arg);
3126		break;
3127	case MEM_GOING_OFFLINE:
3128		ret = slab_mem_going_offline_callback(arg);
3129		break;
3130	case MEM_OFFLINE:
3131	case MEM_CANCEL_ONLINE:
3132		slab_mem_offline_callback(arg);
3133		break;
3134	case MEM_ONLINE:
3135	case MEM_CANCEL_OFFLINE:
3136		break;
3137	}
3138	if (ret)
3139		ret = notifier_from_errno(ret);
3140	else
3141		ret = NOTIFY_OK;
3142	return ret;
3143}
3144
3145#endif /* CONFIG_MEMORY_HOTPLUG */
3146
3147/********************************************************************
3148 *			Basic setup of slabs
3149 *******************************************************************/
3150
3151/*
3152 * Used for early kmem_cache structures that were allocated using
3153 * the page allocator
3154 */
3155
3156static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3157{
3158	int node;
3159
3160	list_add(&s->list, &slab_caches);
3161	s->refcount = -1;
3162
3163	for_each_node_state(node, N_NORMAL_MEMORY) {
3164		struct kmem_cache_node *n = get_node(s, node);
3165		struct page *p;
3166
3167		if (n) {
3168			list_for_each_entry(p, &n->partial, lru)
3169				p->slab = s;
3170
3171#ifdef CONFIG_SLUB_DEBUG
3172			list_for_each_entry(p, &n->full, lru)
3173				p->slab = s;
3174#endif
3175		}
3176	}
3177}
3178
3179void __init kmem_cache_init(void)
3180{
3181	int i;
3182	int caches = 0;
3183	struct kmem_cache *temp_kmem_cache;
3184	int order;
3185	struct kmem_cache *temp_kmem_cache_node;
3186	unsigned long kmalloc_size;
3187
3188	kmem_size = offsetof(struct kmem_cache, node) +
3189				nr_node_ids * sizeof(struct kmem_cache_node *);
3190
3191	/* Allocate two kmem_caches from the page allocator */
3192	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3193	order = get_order(2 * kmalloc_size);
3194	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3195
3196	/*
3197	 * Must first have the slab cache available for the allocations of the
3198	 * struct kmem_cache_node's. There is special bootstrap code in
3199	 * kmem_cache_open for slab_state == DOWN.
3200	 */
3201	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3202
3203	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3204		sizeof(struct kmem_cache_node),
3205		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3206
3207	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3208
3209	/* Able to allocate the per node structures */
3210	slab_state = PARTIAL;
3211
3212	temp_kmem_cache = kmem_cache;
3213	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3214		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3215	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3216	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3217
3218	/*
3219	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3220	 * kmem_cache_node is separately allocated so no need to
3221	 * update any list pointers.
3222	 */
3223	temp_kmem_cache_node = kmem_cache_node;
3224
3225	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3226	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3227
3228	kmem_cache_bootstrap_fixup(kmem_cache_node);
3229
3230	caches++;
3231	kmem_cache_bootstrap_fixup(kmem_cache);
3232	caches++;
3233	/* Free temporary boot structure */
3234	free_pages((unsigned long)temp_kmem_cache, order);
3235
3236	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3237
3238	/*
3239	 * Patch up the size_index table if we have strange large alignment
3240	 * requirements for the kmalloc array. This is only the case for
3241	 * MIPS it seems. The standard arches will not generate any code here.
3242	 *
3243	 * Largest permitted alignment is 256 bytes due to the way we
3244	 * handle the index determination for the smaller caches.
3245	 *
3246	 * Make sure that nothing crazy happens if someone starts tinkering
3247	 * around with ARCH_KMALLOC_MINALIGN
3248	 */
3249	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3250		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3251
3252	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3253		int elem = size_index_elem(i);
3254		if (elem >= ARRAY_SIZE(size_index))
3255			break;
3256		size_index[elem] = KMALLOC_SHIFT_LOW;
3257	}
3258
3259	if (KMALLOC_MIN_SIZE == 64) {
3260		/*
3261		 * The 96 byte size cache is not used if the alignment
3262		 * is 64 byte.
3263		 */
3264		for (i = 64 + 8; i <= 96; i += 8)
3265			size_index[size_index_elem(i)] = 7;
3266	} else if (KMALLOC_MIN_SIZE == 128) {
3267		/*
3268		 * The 192 byte sized cache is not used if the alignment
3269		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3270		 * instead.
3271		 */
3272		for (i = 128 + 8; i <= 192; i += 8)
3273			size_index[size_index_elem(i)] = 8;
3274	}
3275
3276	/* Caches that are not of the two-to-the-power-of size */
3277	if (KMALLOC_MIN_SIZE <= 32) {
3278		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3279		caches++;
3280	}
3281
3282	if (KMALLOC_MIN_SIZE <= 64) {
3283		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3284		caches++;
3285	}
3286
3287	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3288		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3289		caches++;
3290	}
3291
3292	slab_state = UP;
3293
3294	/* Provide the correct kmalloc names now that the caches are up */
3295	if (KMALLOC_MIN_SIZE <= 32) {
3296		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3297		BUG_ON(!kmalloc_caches[1]->name);
3298	}
3299
3300	if (KMALLOC_MIN_SIZE <= 64) {
3301		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3302		BUG_ON(!kmalloc_caches[2]->name);
3303	}
3304
3305	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3306		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3307
3308		BUG_ON(!s);
3309		kmalloc_caches[i]->name = s;
3310	}
3311
3312#ifdef CONFIG_SMP
3313	register_cpu_notifier(&slab_notifier);
3314#endif
3315
3316#ifdef CONFIG_ZONE_DMA
3317	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3318		struct kmem_cache *s = kmalloc_caches[i];
3319
3320		if (s && s->size) {
3321			char *name = kasprintf(GFP_NOWAIT,
3322				 "dma-kmalloc-%d", s->objsize);
3323
3324			BUG_ON(!name);
3325			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3326				s->objsize, SLAB_CACHE_DMA);
3327		}
3328	}
3329#endif
3330	printk(KERN_INFO
3331		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3332		" CPUs=%d, Nodes=%d\n",
3333		caches, cache_line_size(),
3334		slub_min_order, slub_max_order, slub_min_objects,
3335		nr_cpu_ids, nr_node_ids);
3336}
3337
3338void __init kmem_cache_init_late(void)
3339{
3340}
3341
3342/*
3343 * Find a mergeable slab cache
3344 */
3345static int slab_unmergeable(struct kmem_cache *s)
3346{
3347	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3348		return 1;
3349
3350	if (s->ctor)
3351		return 1;
3352
3353	/*
3354	 * We may have set a slab to be unmergeable during bootstrap.
3355	 */
3356	if (s->refcount < 0)
3357		return 1;
3358
3359	return 0;
3360}
3361
3362static struct kmem_cache *find_mergeable(size_t size,
3363		size_t align, unsigned long flags, const char *name,
3364		void (*ctor)(void *))
3365{
3366	struct kmem_cache *s;
3367
3368	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3369		return NULL;
3370
3371	if (ctor)
3372		return NULL;
3373
3374	size = ALIGN(size, sizeof(void *));
3375	align = calculate_alignment(flags, align, size);
3376	size = ALIGN(size, align);
3377	flags = kmem_cache_flags(size, flags, name, NULL);
3378
3379	list_for_each_entry(s, &slab_caches, list) {
3380		if (slab_unmergeable(s))
3381			continue;
3382
3383		if (size > s->size)
3384			continue;
3385
3386		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3387				continue;
3388		/*
3389		 * Check if alignment is compatible.
3390		 * Courtesy of Adrian Drzewiecki
3391		 */
3392		if ((s->size & ~(align - 1)) != s->size)
3393			continue;
3394
3395		if (s->size - size >= sizeof(void *))
3396			continue;
3397
3398		return s;
3399	}
3400	return NULL;
3401}
3402
3403struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3404		size_t align, unsigned long flags, void (*ctor)(void *))
3405{
3406	struct kmem_cache *s;
3407	char *n;
3408
3409	if (WARN_ON(!name))
3410		return NULL;
3411
3412	down_write(&slub_lock);
3413	s = find_mergeable(size, align, flags, name, ctor);
3414	if (s) {
3415		s->refcount++;
3416		/*
3417		 * Adjust the object sizes so that we clear
3418		 * the complete object on kzalloc.
3419		 */
3420		s->objsize = max(s->objsize, (int)size);
3421		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3422
3423		if (sysfs_slab_alias(s, name)) {
3424			s->refcount--;
3425			goto err;
3426		}
3427		up_write(&slub_lock);
3428		return s;
3429	}
3430
3431	n = kstrdup(name, GFP_KERNEL);
3432	if (!n)
3433		goto err;
3434
3435	s = kmalloc(kmem_size, GFP_KERNEL);
3436	if (s) {
3437		if (kmem_cache_open(s, n,
3438				size, align, flags, ctor)) {
3439			list_add(&s->list, &slab_caches);
3440			if (sysfs_slab_add(s)) {
3441				list_del(&s->list);
3442				kfree(n);
3443				kfree(s);
3444				goto err;
3445			}
3446			up_write(&slub_lock);
3447			return s;
3448		}
3449		kfree(n);
3450		kfree(s);
3451	}
3452err:
3453	up_write(&slub_lock);
3454
3455	if (flags & SLAB_PANIC)
3456		panic("Cannot create slabcache %s\n", name);
3457	else
3458		s = NULL;
3459	return s;
3460}
3461EXPORT_SYMBOL(kmem_cache_create);
3462
3463#ifdef CONFIG_SMP
3464/*
3465 * Use the cpu notifier to insure that the cpu slabs are flushed when
3466 * necessary.
3467 */
3468static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3469		unsigned long action, void *hcpu)
3470{
3471	long cpu = (long)hcpu;
3472	struct kmem_cache *s;
3473	unsigned long flags;
3474
3475	switch (action) {
3476	case CPU_UP_CANCELED:
3477	case CPU_UP_CANCELED_FROZEN:
3478	case CPU_DEAD:
3479	case CPU_DEAD_FROZEN:
3480		down_read(&slub_lock);
3481		list_for_each_entry(s, &slab_caches, list) {
3482			local_irq_save(flags);
3483			__flush_cpu_slab(s, cpu);
3484			local_irq_restore(flags);
3485		}
3486		up_read(&slub_lock);
3487		break;
3488	default:
3489		break;
3490	}
3491	return NOTIFY_OK;
3492}
3493
3494static struct notifier_block __cpuinitdata slab_notifier = {
3495	.notifier_call = slab_cpuup_callback
3496};
3497
3498#endif
3499
3500void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3501{
3502	struct kmem_cache *s;
3503	void *ret;
3504
3505	if (unlikely(size > SLUB_MAX_SIZE))
3506		return kmalloc_large(size, gfpflags);
3507
3508	s = get_slab(size, gfpflags);
3509
3510	if (unlikely(ZERO_OR_NULL_PTR(s)))
3511		return s;
3512
3513	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3514
3515	/* Honor the call site pointer we recieved. */
3516	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3517
3518	return ret;
3519}
3520
3521#ifdef CONFIG_NUMA
3522void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3523					int node, unsigned long caller)
3524{
3525	struct kmem_cache *s;
3526	void *ret;
3527
3528	if (unlikely(size > SLUB_MAX_SIZE)) {
3529		ret = kmalloc_large_node(size, gfpflags, node);
3530
3531		trace_kmalloc_node(caller, ret,
3532				   size, PAGE_SIZE << get_order(size),
3533				   gfpflags, node);
3534
3535		return ret;
3536	}
3537
3538	s = get_slab(size, gfpflags);
3539
3540	if (unlikely(ZERO_OR_NULL_PTR(s)))
3541		return s;
3542
3543	ret = slab_alloc(s, gfpflags, node, caller);
3544
3545	/* Honor the call site pointer we recieved. */
3546	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3547
3548	return ret;
3549}
3550#endif
3551
3552#ifdef CONFIG_SYSFS
3553static int count_inuse(struct page *page)
3554{
3555	return page->inuse;
3556}
3557
3558static int count_total(struct page *page)
3559{
3560	return page->objects;
3561}
3562#endif
3563
3564#ifdef CONFIG_SLUB_DEBUG
3565static int validate_slab(struct kmem_cache *s, struct page *page,
3566						unsigned long *map)
3567{
3568	void *p;
3569	void *addr = page_address(page);
3570
3571	if (!check_slab(s, page) ||
3572			!on_freelist(s, page, NULL))
3573		return 0;
3574
3575	/* Now we know that a valid freelist exists */
3576	bitmap_zero(map, page->objects);
3577
3578	get_map(s, page, map);
3579	for_each_object(p, s, addr, page->objects) {
3580		if (test_bit(slab_index(p, s, addr), map))
3581			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3582				return 0;
3583	}
3584
3585	for_each_object(p, s, addr, page->objects)
3586		if (!test_bit(slab_index(p, s, addr), map))
3587			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3588				return 0;
3589	return 1;
3590}
3591
3592static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3593						unsigned long *map)
3594{
3595	if (slab_trylock(page)) {
3596		validate_slab(s, page, map);
3597		slab_unlock(page);
3598	} else
3599		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3600			s->name, page);
3601}
3602
3603static int validate_slab_node(struct kmem_cache *s,
3604		struct kmem_cache_node *n, unsigned long *map)
3605{
3606	unsigned long count = 0;
3607	struct page *page;
3608	unsigned long flags;
3609
3610	spin_lock_irqsave(&n->list_lock, flags);
3611
3612	list_for_each_entry(page, &n->partial, lru) {
3613		validate_slab_slab(s, page, map);
3614		count++;
3615	}
3616	if (count != n->nr_partial)
3617		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3618			"counter=%ld\n", s->name, count, n->nr_partial);
3619
3620	if (!(s->flags & SLAB_STORE_USER))
3621		goto out;
3622
3623	list_for_each_entry(page, &n->full, lru) {
3624		validate_slab_slab(s, page, map);
3625		count++;
3626	}
3627	if (count != atomic_long_read(&n->nr_slabs))
3628		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3629			"counter=%ld\n", s->name, count,
3630			atomic_long_read(&n->nr_slabs));
3631
3632out:
3633	spin_unlock_irqrestore(&n->list_lock, flags);
3634	return count;
3635}
3636
3637static long validate_slab_cache(struct kmem_cache *s)
3638{
3639	int node;
3640	unsigned long count = 0;
3641	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3642				sizeof(unsigned long), GFP_KERNEL);
3643
3644	if (!map)
3645		return -ENOMEM;
3646
3647	flush_all(s);
3648	for_each_node_state(node, N_NORMAL_MEMORY) {
3649		struct kmem_cache_node *n = get_node(s, node);
3650
3651		count += validate_slab_node(s, n, map);
3652	}
3653	kfree(map);
3654	return count;
3655}
3656/*
3657 * Generate lists of code addresses where slabcache objects are allocated
3658 * and freed.
3659 */
3660
3661struct location {
3662	unsigned long count;
3663	unsigned long addr;
3664	long long sum_time;
3665	long min_time;
3666	long max_time;
3667	long min_pid;
3668	long max_pid;
3669	DECLARE_BITMAP(cpus, NR_CPUS);
3670	nodemask_t nodes;
3671};
3672
3673struct loc_track {
3674	unsigned long max;
3675	unsigned long count;
3676	struct location *loc;
3677};
3678
3679static void free_loc_track(struct loc_track *t)
3680{
3681	if (t->max)
3682		free_pages((unsigned long)t->loc,
3683			get_order(sizeof(struct location) * t->max));
3684}
3685
3686static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3687{
3688	struct location *l;
3689	int order;
3690
3691	order = get_order(sizeof(struct location) * max);
3692
3693	l = (void *)__get_free_pages(flags, order);
3694	if (!l)
3695		return 0;
3696
3697	if (t->count) {
3698		memcpy(l, t->loc, sizeof(struct location) * t->count);
3699		free_loc_track(t);
3700	}
3701	t->max = max;
3702	t->loc = l;
3703	return 1;
3704}
3705
3706static int add_location(struct loc_track *t, struct kmem_cache *s,
3707				const struct track *track)
3708{
3709	long start, end, pos;
3710	struct location *l;
3711	unsigned long caddr;
3712	unsigned long age = jiffies - track->when;
3713
3714	start = -1;
3715	end = t->count;
3716
3717	for ( ; ; ) {
3718		pos = start + (end - start + 1) / 2;
3719
3720		/*
3721		 * There is nothing at "end". If we end up there
3722		 * we need to add something to before end.
3723		 */
3724		if (pos == end)
3725			break;
3726
3727		caddr = t->loc[pos].addr;
3728		if (track->addr == caddr) {
3729
3730			l = &t->loc[pos];
3731			l->count++;
3732			if (track->when) {
3733				l->sum_time += age;
3734				if (age < l->min_time)
3735					l->min_time = age;
3736				if (age > l->max_time)
3737					l->max_time = age;
3738
3739				if (track->pid < l->min_pid)
3740					l->min_pid = track->pid;
3741				if (track->pid > l->max_pid)
3742					l->max_pid = track->pid;
3743
3744				cpumask_set_cpu(track->cpu,
3745						to_cpumask(l->cpus));
3746			}
3747			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3748			return 1;
3749		}
3750
3751		if (track->addr < caddr)
3752			end = pos;
3753		else
3754			start = pos;
3755	}
3756
3757	/*
3758	 * Not found. Insert new tracking element.
3759	 */
3760	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3761		return 0;
3762
3763	l = t->loc + pos;
3764	if (pos < t->count)
3765		memmove(l + 1, l,
3766			(t->count - pos) * sizeof(struct location));
3767	t->count++;
3768	l->count = 1;
3769	l->addr = track->addr;
3770	l->sum_time = age;
3771	l->min_time = age;
3772	l->max_time = age;
3773	l->min_pid = track->pid;
3774	l->max_pid = track->pid;
3775	cpumask_clear(to_cpumask(l->cpus));
3776	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3777	nodes_clear(l->nodes);
3778	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3779	return 1;
3780}
3781
3782static void process_slab(struct loc_track *t, struct kmem_cache *s,
3783		struct page *page, enum track_item alloc,
3784		unsigned long *map)
3785{
3786	void *addr = page_address(page);
3787	void *p;
3788
3789	bitmap_zero(map, page->objects);
3790	get_map(s, page, map);
3791
3792	for_each_object(p, s, addr, page->objects)
3793		if (!test_bit(slab_index(p, s, addr), map))
3794			add_location(t, s, get_track(s, p, alloc));
3795}
3796
3797static int list_locations(struct kmem_cache *s, char *buf,
3798					enum track_item alloc)
3799{
3800	int len = 0;
3801	unsigned long i;
3802	struct loc_track t = { 0, 0, NULL };
3803	int node;
3804	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3805				     sizeof(unsigned long), GFP_KERNEL);
3806
3807	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3808				     GFP_TEMPORARY)) {
3809		kfree(map);
3810		return sprintf(buf, "Out of memory\n");
3811	}
3812	/* Push back cpu slabs */
3813	flush_all(s);
3814
3815	for_each_node_state(node, N_NORMAL_MEMORY) {
3816		struct kmem_cache_node *n = get_node(s, node);
3817		unsigned long flags;
3818		struct page *page;
3819
3820		if (!atomic_long_read(&n->nr_slabs))
3821			continue;
3822
3823		spin_lock_irqsave(&n->list_lock, flags);
3824		list_for_each_entry(page, &n->partial, lru)
3825			process_slab(&t, s, page, alloc, map);
3826		list_for_each_entry(page, &n->full, lru)
3827			process_slab(&t, s, page, alloc, map);
3828		spin_unlock_irqrestore(&n->list_lock, flags);
3829	}
3830
3831	for (i = 0; i < t.count; i++) {
3832		struct location *l = &t.loc[i];
3833
3834		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3835			break;
3836		len += sprintf(buf + len, "%7ld ", l->count);
3837
3838		if (l->addr)
3839			len += sprintf(buf + len, "%pS", (void *)l->addr);
3840		else
3841			len += sprintf(buf + len, "<not-available>");
3842
3843		if (l->sum_time != l->min_time) {
3844			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3845				l->min_time,
3846				(long)div_u64(l->sum_time, l->count),
3847				l->max_time);
3848		} else
3849			len += sprintf(buf + len, " age=%ld",
3850				l->min_time);
3851
3852		if (l->min_pid != l->max_pid)
3853			len += sprintf(buf + len, " pid=%ld-%ld",
3854				l->min_pid, l->max_pid);
3855		else
3856			len += sprintf(buf + len, " pid=%ld",
3857				l->min_pid);
3858
3859		if (num_online_cpus() > 1 &&
3860				!cpumask_empty(to_cpumask(l->cpus)) &&
3861				len < PAGE_SIZE - 60) {
3862			len += sprintf(buf + len, " cpus=");
3863			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3864						 to_cpumask(l->cpus));
3865		}
3866
3867		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3868				len < PAGE_SIZE - 60) {
3869			len += sprintf(buf + len, " nodes=");
3870			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3871					l->nodes);
3872		}
3873
3874		len += sprintf(buf + len, "\n");
3875	}
3876
3877	free_loc_track(&t);
3878	kfree(map);
3879	if (!t.count)
3880		len += sprintf(buf, "No data\n");
3881	return len;
3882}
3883#endif
3884
3885#ifdef SLUB_RESILIENCY_TEST
3886static void resiliency_test(void)
3887{
3888	u8 *p;
3889
3890	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3891
3892	printk(KERN_ERR "SLUB resiliency testing\n");
3893	printk(KERN_ERR "-----------------------\n");
3894	printk(KERN_ERR "A. Corruption after allocation\n");
3895
3896	p = kzalloc(16, GFP_KERNEL);
3897	p[16] = 0x12;
3898	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3899			" 0x12->0x%p\n\n", p + 16);
3900
3901	validate_slab_cache(kmalloc_caches[4]);
3902
3903	/* Hmmm... The next two are dangerous */
3904	p = kzalloc(32, GFP_KERNEL);
3905	p[32 + sizeof(void *)] = 0x34;
3906	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3907			" 0x34 -> -0x%p\n", p);
3908	printk(KERN_ERR
3909		"If allocated object is overwritten then not detectable\n\n");
3910
3911	validate_slab_cache(kmalloc_caches[5]);
3912	p = kzalloc(64, GFP_KERNEL);
3913	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3914	*p = 0x56;
3915	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3916									p);
3917	printk(KERN_ERR
3918		"If allocated object is overwritten then not detectable\n\n");
3919	validate_slab_cache(kmalloc_caches[6]);
3920
3921	printk(KERN_ERR "\nB. Corruption after free\n");
3922	p = kzalloc(128, GFP_KERNEL);
3923	kfree(p);
3924	*p = 0x78;
3925	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3926	validate_slab_cache(kmalloc_caches[7]);
3927
3928	p = kzalloc(256, GFP_KERNEL);
3929	kfree(p);
3930	p[50] = 0x9a;
3931	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3932			p);
3933	validate_slab_cache(kmalloc_caches[8]);
3934
3935	p = kzalloc(512, GFP_KERNEL);
3936	kfree(p);
3937	p[512] = 0xab;
3938	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3939	validate_slab_cache(kmalloc_caches[9]);
3940}
3941#else
3942#ifdef CONFIG_SYSFS
3943static void resiliency_test(void) {};
3944#endif
3945#endif
3946
3947#ifdef CONFIG_SYSFS
3948enum slab_stat_type {
3949	SL_ALL,			/* All slabs */
3950	SL_PARTIAL,		/* Only partially allocated slabs */
3951	SL_CPU,			/* Only slabs used for cpu caches */
3952	SL_OBJECTS,		/* Determine allocated objects not slabs */
3953	SL_TOTAL		/* Determine object capacity not slabs */
3954};
3955
3956#define SO_ALL		(1 << SL_ALL)
3957#define SO_PARTIAL	(1 << SL_PARTIAL)
3958#define SO_CPU		(1 << SL_CPU)
3959#define SO_OBJECTS	(1 << SL_OBJECTS)
3960#define SO_TOTAL	(1 << SL_TOTAL)
3961
3962static ssize_t show_slab_objects(struct kmem_cache *s,
3963			    char *buf, unsigned long flags)
3964{
3965	unsigned long total = 0;
3966	int node;
3967	int x;
3968	unsigned long *nodes;
3969	unsigned long *per_cpu;
3970
3971	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3972	if (!nodes)
3973		return -ENOMEM;
3974	per_cpu = nodes + nr_node_ids;
3975
3976	if (flags & SO_CPU) {
3977		int cpu;
3978
3979		for_each_possible_cpu(cpu) {
3980			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3981
3982			if (!c || c->node < 0)
3983				continue;
3984
3985			if (c->page) {
3986					if (flags & SO_TOTAL)
3987						x = c->page->objects;
3988				else if (flags & SO_OBJECTS)
3989					x = c->page->inuse;
3990				else
3991					x = 1;
3992
3993				total += x;
3994				nodes[c->node] += x;
3995			}
3996			per_cpu[c->node]++;
3997		}
3998	}
3999
4000	lock_memory_hotplug();
4001#ifdef CONFIG_SLUB_DEBUG
4002	if (flags & SO_ALL) {
4003		for_each_node_state(node, N_NORMAL_MEMORY) {
4004			struct kmem_cache_node *n = get_node(s, node);
4005
4006		if (flags & SO_TOTAL)
4007			x = atomic_long_read(&n->total_objects);
4008		else if (flags & SO_OBJECTS)
4009			x = atomic_long_read(&n->total_objects) -
4010				count_partial(n, count_free);
4011
4012			else
4013				x = atomic_long_read(&n->nr_slabs);
4014			total += x;
4015			nodes[node] += x;
4016		}
4017
4018	} else
4019#endif
4020	if (flags & SO_PARTIAL) {
4021		for_each_node_state(node, N_NORMAL_MEMORY) {
4022			struct kmem_cache_node *n = get_node(s, node);
4023
4024			if (flags & SO_TOTAL)
4025				x = count_partial(n, count_total);
4026			else if (flags & SO_OBJECTS)
4027				x = count_partial(n, count_inuse);
4028			else
4029				x = n->nr_partial;
4030			total += x;
4031			nodes[node] += x;
4032		}
4033	}
4034	x = sprintf(buf, "%lu", total);
4035#ifdef CONFIG_NUMA
4036	for_each_node_state(node, N_NORMAL_MEMORY)
4037		if (nodes[node])
4038			x += sprintf(buf + x, " N%d=%lu",
4039					node, nodes[node]);
4040#endif
4041	unlock_memory_hotplug();
4042	kfree(nodes);
4043	return x + sprintf(buf + x, "\n");
4044}
4045
4046#ifdef CONFIG_SLUB_DEBUG
4047static int any_slab_objects(struct kmem_cache *s)
4048{
4049	int node;
4050
4051	for_each_online_node(node) {
4052		struct kmem_cache_node *n = get_node(s, node);
4053
4054		if (!n)
4055			continue;
4056
4057		if (atomic_long_read(&n->total_objects))
4058			return 1;
4059	}
4060	return 0;
4061}
4062#endif
4063
4064#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4065#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4066
4067struct slab_attribute {
4068	struct attribute attr;
4069	ssize_t (*show)(struct kmem_cache *s, char *buf);
4070	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4071};
4072
4073#define SLAB_ATTR_RO(_name) \
4074	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4075
4076#define SLAB_ATTR(_name) \
4077	static struct slab_attribute _name##_attr =  \
4078	__ATTR(_name, 0644, _name##_show, _name##_store)
4079
4080static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4081{
4082	return sprintf(buf, "%d\n", s->size);
4083}
4084SLAB_ATTR_RO(slab_size);
4085
4086static ssize_t align_show(struct kmem_cache *s, char *buf)
4087{
4088	return sprintf(buf, "%d\n", s->align);
4089}
4090SLAB_ATTR_RO(align);
4091
4092static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4093{
4094	return sprintf(buf, "%d\n", s->objsize);
4095}
4096SLAB_ATTR_RO(object_size);
4097
4098static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4099{
4100	return sprintf(buf, "%d\n", oo_objects(s->oo));
4101}
4102SLAB_ATTR_RO(objs_per_slab);
4103
4104static ssize_t order_store(struct kmem_cache *s,
4105				const char *buf, size_t length)
4106{
4107	unsigned long order;
4108	int err;
4109
4110	err = strict_strtoul(buf, 10, &order);
4111	if (err)
4112		return err;
4113
4114	if (order > slub_max_order || order < slub_min_order)
4115		return -EINVAL;
4116
4117	calculate_sizes(s, order);
4118	return length;
4119}
4120
4121static ssize_t order_show(struct kmem_cache *s, char *buf)
4122{
4123	return sprintf(buf, "%d\n", oo_order(s->oo));
4124}
4125SLAB_ATTR(order);
4126
4127static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4128{
4129	return sprintf(buf, "%lu\n", s->min_partial);
4130}
4131
4132static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4133				 size_t length)
4134{
4135	unsigned long min;
4136	int err;
4137
4138	err = strict_strtoul(buf, 10, &min);
4139	if (err)
4140		return err;
4141
4142	set_min_partial(s, min);
4143	return length;
4144}
4145SLAB_ATTR(min_partial);
4146
4147static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4148{
4149	if (!s->ctor)
4150		return 0;
4151	return sprintf(buf, "%pS\n", s->ctor);
4152}
4153SLAB_ATTR_RO(ctor);
4154
4155static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4156{
4157	return sprintf(buf, "%d\n", s->refcount - 1);
4158}
4159SLAB_ATTR_RO(aliases);
4160
4161static ssize_t partial_show(struct kmem_cache *s, char *buf)
4162{
4163	return show_slab_objects(s, buf, SO_PARTIAL);
4164}
4165SLAB_ATTR_RO(partial);
4166
4167static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4168{
4169	return show_slab_objects(s, buf, SO_CPU);
4170}
4171SLAB_ATTR_RO(cpu_slabs);
4172
4173static ssize_t objects_show(struct kmem_cache *s, char *buf)
4174{
4175	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4176}
4177SLAB_ATTR_RO(objects);
4178
4179static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4180{
4181	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4182}
4183SLAB_ATTR_RO(objects_partial);
4184
4185static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4186{
4187	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4188}
4189
4190static ssize_t reclaim_account_store(struct kmem_cache *s,
4191				const char *buf, size_t length)
4192{
4193	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4194	if (buf[0] == '1')
4195		s->flags |= SLAB_RECLAIM_ACCOUNT;
4196	return length;
4197}
4198SLAB_ATTR(reclaim_account);
4199
4200static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4201{
4202	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4203}
4204SLAB_ATTR_RO(hwcache_align);
4205
4206#ifdef CONFIG_ZONE_DMA
4207static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4208{
4209	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4210}
4211SLAB_ATTR_RO(cache_dma);
4212#endif
4213
4214static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4215{
4216	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4217}
4218SLAB_ATTR_RO(destroy_by_rcu);
4219
4220static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4221{
4222	return sprintf(buf, "%d\n", s->reserved);
4223}
4224SLAB_ATTR_RO(reserved);
4225
4226#ifdef CONFIG_SLUB_DEBUG
4227static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4228{
4229	return show_slab_objects(s, buf, SO_ALL);
4230}
4231SLAB_ATTR_RO(slabs);
4232
4233static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4234{
4235	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4236}
4237SLAB_ATTR_RO(total_objects);
4238
4239static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4240{
4241	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4242}
4243
4244static ssize_t sanity_checks_store(struct kmem_cache *s,
4245				const char *buf, size_t length)
4246{
4247	s->flags &= ~SLAB_DEBUG_FREE;
4248	if (buf[0] == '1')
4249		s->flags |= SLAB_DEBUG_FREE;
4250	return length;
4251}
4252SLAB_ATTR(sanity_checks);
4253
4254static ssize_t trace_show(struct kmem_cache *s, char *buf)
4255{
4256	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4257}
4258
4259static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4260							size_t length)
4261{
4262	s->flags &= ~SLAB_TRACE;
4263	if (buf[0] == '1')
4264		s->flags |= SLAB_TRACE;
4265	return length;
4266}
4267SLAB_ATTR(trace);
4268
4269static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4270{
4271	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4272}
4273
4274static ssize_t red_zone_store(struct kmem_cache *s,
4275				const char *buf, size_t length)
4276{
4277	if (any_slab_objects(s))
4278		return -EBUSY;
4279
4280	s->flags &= ~SLAB_RED_ZONE;
4281	if (buf[0] == '1')
4282		s->flags |= SLAB_RED_ZONE;
4283	calculate_sizes(s, -1);
4284	return length;
4285}
4286SLAB_ATTR(red_zone);
4287
4288static ssize_t poison_show(struct kmem_cache *s, char *buf)
4289{
4290	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4291}
4292
4293static ssize_t poison_store(struct kmem_cache *s,
4294				const char *buf, size_t length)
4295{
4296	if (any_slab_objects(s))
4297		return -EBUSY;
4298
4299	s->flags &= ~SLAB_POISON;
4300	if (buf[0] == '1')
4301		s->flags |= SLAB_POISON;
4302	calculate_sizes(s, -1);
4303	return length;
4304}
4305SLAB_ATTR(poison);
4306
4307static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4308{
4309	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4310}
4311
4312static ssize_t store_user_store(struct kmem_cache *s,
4313				const char *buf, size_t length)
4314{
4315	if (any_slab_objects(s))
4316		return -EBUSY;
4317
4318	s->flags &= ~SLAB_STORE_USER;
4319	if (buf[0] == '1')
4320		s->flags |= SLAB_STORE_USER;
4321	calculate_sizes(s, -1);
4322	return length;
4323}
4324SLAB_ATTR(store_user);
4325
4326static ssize_t validate_show(struct kmem_cache *s, char *buf)
4327{
4328	return 0;
4329}
4330
4331static ssize_t validate_store(struct kmem_cache *s,
4332			const char *buf, size_t length)
4333{
4334	int ret = -EINVAL;
4335
4336	if (buf[0] == '1') {
4337		ret = validate_slab_cache(s);
4338		if (ret >= 0)
4339			ret = length;
4340	}
4341	return ret;
4342}
4343SLAB_ATTR(validate);
4344
4345static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4346{
4347	if (!(s->flags & SLAB_STORE_USER))
4348		return -ENOSYS;
4349	return list_locations(s, buf, TRACK_ALLOC);
4350}
4351SLAB_ATTR_RO(alloc_calls);
4352
4353static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4354{
4355	if (!(s->flags & SLAB_STORE_USER))
4356		return -ENOSYS;
4357	return list_locations(s, buf, TRACK_FREE);
4358}
4359SLAB_ATTR_RO(free_calls);
4360#endif /* CONFIG_SLUB_DEBUG */
4361
4362#ifdef CONFIG_FAILSLAB
4363static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4364{
4365	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4366}
4367
4368static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4369							size_t length)
4370{
4371	s->flags &= ~SLAB_FAILSLAB;
4372	if (buf[0] == '1')
4373		s->flags |= SLAB_FAILSLAB;
4374	return length;
4375}
4376SLAB_ATTR(failslab);
4377#endif
4378
4379static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4380{
4381	return 0;
4382}
4383
4384static ssize_t shrink_store(struct kmem_cache *s,
4385			const char *buf, size_t length)
4386{
4387	if (buf[0] == '1') {
4388		int rc = kmem_cache_shrink(s);
4389
4390		if (rc)
4391			return rc;
4392	} else
4393		return -EINVAL;
4394	return length;
4395}
4396SLAB_ATTR(shrink);
4397
4398#ifdef CONFIG_NUMA
4399static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4400{
4401	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4402}
4403
4404static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4405				const char *buf, size_t length)
4406{
4407	unsigned long ratio;
4408	int err;
4409
4410	err = strict_strtoul(buf, 10, &ratio);
4411	if (err)
4412		return err;
4413
4414	if (ratio <= 100)
4415		s->remote_node_defrag_ratio = ratio * 10;
4416
4417	return length;
4418}
4419SLAB_ATTR(remote_node_defrag_ratio);
4420#endif
4421
4422#ifdef CONFIG_SLUB_STATS
4423static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4424{
4425	unsigned long sum  = 0;
4426	int cpu;
4427	int len;
4428	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4429
4430	if (!data)
4431		return -ENOMEM;
4432
4433	for_each_online_cpu(cpu) {
4434		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4435
4436		data[cpu] = x;
4437		sum += x;
4438	}
4439
4440	len = sprintf(buf, "%lu", sum);
4441
4442#ifdef CONFIG_SMP
4443	for_each_online_cpu(cpu) {
4444		if (data[cpu] && len < PAGE_SIZE - 20)
4445			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4446	}
4447#endif
4448	kfree(data);
4449	return len + sprintf(buf + len, "\n");
4450}
4451
4452static void clear_stat(struct kmem_cache *s, enum stat_item si)
4453{
4454	int cpu;
4455
4456	for_each_online_cpu(cpu)
4457		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4458}
4459
4460#define STAT_ATTR(si, text) 					\
4461static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4462{								\
4463	return show_stat(s, buf, si);				\
4464}								\
4465static ssize_t text##_store(struct kmem_cache *s,		\
4466				const char *buf, size_t length)	\
4467{								\
4468	if (buf[0] != '0')					\
4469		return -EINVAL;					\
4470	clear_stat(s, si);					\
4471	return length;						\
4472}								\
4473SLAB_ATTR(text);						\
4474
4475STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4476STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4477STAT_ATTR(FREE_FASTPATH, free_fastpath);
4478STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4479STAT_ATTR(FREE_FROZEN, free_frozen);
4480STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4481STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4482STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4483STAT_ATTR(ALLOC_SLAB, alloc_slab);
4484STAT_ATTR(ALLOC_REFILL, alloc_refill);
4485STAT_ATTR(FREE_SLAB, free_slab);
4486STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4487STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4488STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4489STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4490STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4491STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4492STAT_ATTR(ORDER_FALLBACK, order_fallback);
4493#endif
4494
4495static struct attribute *slab_attrs[] = {
4496	&slab_size_attr.attr,
4497	&object_size_attr.attr,
4498	&objs_per_slab_attr.attr,
4499	&order_attr.attr,
4500	&min_partial_attr.attr,
4501	&objects_attr.attr,
4502	&objects_partial_attr.attr,
4503	&partial_attr.attr,
4504	&cpu_slabs_attr.attr,
4505	&ctor_attr.attr,
4506	&aliases_attr.attr,
4507	&align_attr.attr,
4508	&hwcache_align_attr.attr,
4509	&reclaim_account_attr.attr,
4510	&destroy_by_rcu_attr.attr,
4511	&shrink_attr.attr,
4512	&reserved_attr.attr,
4513#ifdef CONFIG_SLUB_DEBUG
4514	&total_objects_attr.attr,
4515	&slabs_attr.attr,
4516	&sanity_checks_attr.attr,
4517	&trace_attr.attr,
4518	&red_zone_attr.attr,
4519	&poison_attr.attr,
4520	&store_user_attr.attr,
4521	&validate_attr.attr,
4522	&alloc_calls_attr.attr,
4523	&free_calls_attr.attr,
4524#endif
4525#ifdef CONFIG_ZONE_DMA
4526	&cache_dma_attr.attr,
4527#endif
4528#ifdef CONFIG_NUMA
4529	&remote_node_defrag_ratio_attr.attr,
4530#endif
4531#ifdef CONFIG_SLUB_STATS
4532	&alloc_fastpath_attr.attr,
4533	&alloc_slowpath_attr.attr,
4534	&free_fastpath_attr.attr,
4535	&free_slowpath_attr.attr,
4536	&free_frozen_attr.attr,
4537	&free_add_partial_attr.attr,
4538	&free_remove_partial_attr.attr,
4539	&alloc_from_partial_attr.attr,
4540	&alloc_slab_attr.attr,
4541	&alloc_refill_attr.attr,
4542	&free_slab_attr.attr,
4543	&cpuslab_flush_attr.attr,
4544	&deactivate_full_attr.attr,
4545	&deactivate_empty_attr.attr,
4546	&deactivate_to_head_attr.attr,
4547	&deactivate_to_tail_attr.attr,
4548	&deactivate_remote_frees_attr.attr,
4549	&order_fallback_attr.attr,
4550#endif
4551#ifdef CONFIG_FAILSLAB
4552	&failslab_attr.attr,
4553#endif
4554
4555	NULL
4556};
4557
4558static struct attribute_group slab_attr_group = {
4559	.attrs = slab_attrs,
4560};
4561
4562static ssize_t slab_attr_show(struct kobject *kobj,
4563				struct attribute *attr,
4564				char *buf)
4565{
4566	struct slab_attribute *attribute;
4567	struct kmem_cache *s;
4568	int err;
4569
4570	attribute = to_slab_attr(attr);
4571	s = to_slab(kobj);
4572
4573	if (!attribute->show)
4574		return -EIO;
4575
4576	err = attribute->show(s, buf);
4577
4578	return err;
4579}
4580
4581static ssize_t slab_attr_store(struct kobject *kobj,
4582				struct attribute *attr,
4583				const char *buf, size_t len)
4584{
4585	struct slab_attribute *attribute;
4586	struct kmem_cache *s;
4587	int err;
4588
4589	attribute = to_slab_attr(attr);
4590	s = to_slab(kobj);
4591
4592	if (!attribute->store)
4593		return -EIO;
4594
4595	err = attribute->store(s, buf, len);
4596
4597	return err;
4598}
4599
4600static void kmem_cache_release(struct kobject *kobj)
4601{
4602	struct kmem_cache *s = to_slab(kobj);
4603
4604	kfree(s->name);
4605	kfree(s);
4606}
4607
4608static const struct sysfs_ops slab_sysfs_ops = {
4609	.show = slab_attr_show,
4610	.store = slab_attr_store,
4611};
4612
4613static struct kobj_type slab_ktype = {
4614	.sysfs_ops = &slab_sysfs_ops,
4615	.release = kmem_cache_release
4616};
4617
4618static int uevent_filter(struct kset *kset, struct kobject *kobj)
4619{
4620	struct kobj_type *ktype = get_ktype(kobj);
4621
4622	if (ktype == &slab_ktype)
4623		return 1;
4624	return 0;
4625}
4626
4627static const struct kset_uevent_ops slab_uevent_ops = {
4628	.filter = uevent_filter,
4629};
4630
4631static struct kset *slab_kset;
4632
4633#define ID_STR_LENGTH 64
4634
4635/* Create a unique string id for a slab cache:
4636 *
4637 * Format	:[flags-]size
4638 */
4639static char *create_unique_id(struct kmem_cache *s)
4640{
4641	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4642	char *p = name;
4643
4644	BUG_ON(!name);
4645
4646	*p++ = ':';
4647	/*
4648	 * First flags affecting slabcache operations. We will only
4649	 * get here for aliasable slabs so we do not need to support
4650	 * too many flags. The flags here must cover all flags that
4651	 * are matched during merging to guarantee that the id is
4652	 * unique.
4653	 */
4654	if (s->flags & SLAB_CACHE_DMA)
4655		*p++ = 'd';
4656	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4657		*p++ = 'a';
4658	if (s->flags & SLAB_DEBUG_FREE)
4659		*p++ = 'F';
4660	if (!(s->flags & SLAB_NOTRACK))
4661		*p++ = 't';
4662	if (p != name + 1)
4663		*p++ = '-';
4664	p += sprintf(p, "%07d", s->size);
4665	BUG_ON(p > name + ID_STR_LENGTH - 1);
4666	return name;
4667}
4668
4669static int sysfs_slab_add(struct kmem_cache *s)
4670{
4671	int err;
4672	const char *name;
4673	int unmergeable;
4674
4675	if (slab_state < SYSFS)
4676		/* Defer until later */
4677		return 0;
4678
4679	unmergeable = slab_unmergeable(s);
4680	if (unmergeable) {
4681		/*
4682		 * Slabcache can never be merged so we can use the name proper.
4683		 * This is typically the case for debug situations. In that
4684		 * case we can catch duplicate names easily.
4685		 */
4686		sysfs_remove_link(&slab_kset->kobj, s->name);
4687		name = s->name;
4688	} else {
4689		/*
4690		 * Create a unique name for the slab as a target
4691		 * for the symlinks.
4692		 */
4693		name = create_unique_id(s);
4694	}
4695
4696	s->kobj.kset = slab_kset;
4697	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4698	if (err) {
4699		kobject_put(&s->kobj);
4700		return err;
4701	}
4702
4703	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4704	if (err) {
4705		kobject_del(&s->kobj);
4706		kobject_put(&s->kobj);
4707		return err;
4708	}
4709	kobject_uevent(&s->kobj, KOBJ_ADD);
4710	if (!unmergeable) {
4711		/* Setup first alias */
4712		sysfs_slab_alias(s, s->name);
4713		kfree(name);
4714	}
4715	return 0;
4716}
4717
4718static void sysfs_slab_remove(struct kmem_cache *s)
4719{
4720	if (slab_state < SYSFS)
4721		/*
4722		 * Sysfs has not been setup yet so no need to remove the
4723		 * cache from sysfs.
4724		 */
4725		return;
4726
4727	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4728	kobject_del(&s->kobj);
4729	kobject_put(&s->kobj);
4730}
4731
4732/*
4733 * Need to buffer aliases during bootup until sysfs becomes
4734 * available lest we lose that information.
4735 */
4736struct saved_alias {
4737	struct kmem_cache *s;
4738	const char *name;
4739	struct saved_alias *next;
4740};
4741
4742static struct saved_alias *alias_list;
4743
4744static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4745{
4746	struct saved_alias *al;
4747
4748	if (slab_state == SYSFS) {
4749		/*
4750		 * If we have a leftover link then remove it.
4751		 */
4752		sysfs_remove_link(&slab_kset->kobj, name);
4753		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4754	}
4755
4756	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4757	if (!al)
4758		return -ENOMEM;
4759
4760	al->s = s;
4761	al->name = name;
4762	al->next = alias_list;
4763	alias_list = al;
4764	return 0;
4765}
4766
4767static int __init slab_sysfs_init(void)
4768{
4769	struct kmem_cache *s;
4770	int err;
4771
4772	down_write(&slub_lock);
4773
4774	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4775	if (!slab_kset) {
4776		up_write(&slub_lock);
4777		printk(KERN_ERR "Cannot register slab subsystem.\n");
4778		return -ENOSYS;
4779	}
4780
4781	slab_state = SYSFS;
4782
4783	list_for_each_entry(s, &slab_caches, list) {
4784		err = sysfs_slab_add(s);
4785		if (err)
4786			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4787						" to sysfs\n", s->name);
4788	}
4789
4790	while (alias_list) {
4791		struct saved_alias *al = alias_list;
4792
4793		alias_list = alias_list->next;
4794		err = sysfs_slab_alias(al->s, al->name);
4795		if (err)
4796			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4797					" %s to sysfs\n", s->name);
4798		kfree(al);
4799	}
4800
4801	up_write(&slub_lock);
4802	resiliency_test();
4803	return 0;
4804}
4805
4806__initcall(slab_sysfs_init);
4807#endif /* CONFIG_SYSFS */
4808
4809/*
4810 * The /proc/slabinfo ABI
4811 */
4812#ifdef CONFIG_SLABINFO
4813static void print_slabinfo_header(struct seq_file *m)
4814{
4815	seq_puts(m, "slabinfo - version: 2.1\n");
4816	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4817		 "<objperslab> <pagesperslab>");
4818	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4819	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4820	seq_putc(m, '\n');
4821}
4822
4823static void *s_start(struct seq_file *m, loff_t *pos)
4824{
4825	loff_t n = *pos;
4826
4827	down_read(&slub_lock);
4828	if (!n)
4829		print_slabinfo_header(m);
4830
4831	return seq_list_start(&slab_caches, *pos);
4832}
4833
4834static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4835{
4836	return seq_list_next(p, &slab_caches, pos);
4837}
4838
4839static void s_stop(struct seq_file *m, void *p)
4840{
4841	up_read(&slub_lock);
4842}
4843
4844static int s_show(struct seq_file *m, void *p)
4845{
4846	unsigned long nr_partials = 0;
4847	unsigned long nr_slabs = 0;
4848	unsigned long nr_inuse = 0;
4849	unsigned long nr_objs = 0;
4850	unsigned long nr_free = 0;
4851	struct kmem_cache *s;
4852	int node;
4853
4854	s = list_entry(p, struct kmem_cache, list);
4855
4856	for_each_online_node(node) {
4857		struct kmem_cache_node *n = get_node(s, node);
4858
4859		if (!n)
4860			continue;
4861
4862		nr_partials += n->nr_partial;
4863		nr_slabs += atomic_long_read(&n->nr_slabs);
4864		nr_objs += atomic_long_read(&n->total_objects);
4865		nr_free += count_partial(n, count_free);
4866	}
4867
4868	nr_inuse = nr_objs - nr_free;
4869
4870	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4871		   nr_objs, s->size, oo_objects(s->oo),
4872		   (1 << oo_order(s->oo)));
4873	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4874	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4875		   0UL);
4876	seq_putc(m, '\n');
4877	return 0;
4878}
4879
4880static const struct seq_operations slabinfo_op = {
4881	.start = s_start,
4882	.next = s_next,
4883	.stop = s_stop,
4884	.show = s_show,
4885};
4886
4887static int slabinfo_open(struct inode *inode, struct file *file)
4888{
4889	return seq_open(file, &slabinfo_op);
4890}
4891
4892static const struct file_operations proc_slabinfo_operations = {
4893	.open		= slabinfo_open,
4894	.read		= seq_read,
4895	.llseek		= seq_lseek,
4896	.release	= seq_release,
4897};
4898
4899static int __init slab_proc_init(void)
4900{
4901	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4902	return 0;
4903}
4904module_init(slab_proc_init);
4905#endif /* CONFIG_SLABINFO */
4906