slub.c revision 4c93c355d5d563f300df7e61ef753d7a064411e9
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 *   1. slab_lock(page)
27 *   2. slab->list_lock
28 *
29 *   The slab_lock protects operations on the object of a particular
30 *   slab and its metadata in the page struct. If the slab lock
31 *   has been taken then no allocations nor frees can be performed
32 *   on the objects in the slab nor can the slab be added or removed
33 *   from the partial or full lists since this would mean modifying
34 *   the page_struct of the slab.
35 *
36 *   The list_lock protects the partial and full list on each node and
37 *   the partial slab counter. If taken then no new slabs may be added or
38 *   removed from the lists nor make the number of partial slabs be modified.
39 *   (Note that the total number of slabs is an atomic value that may be
40 *   modified without taking the list lock).
41 *
42 *   The list_lock is a centralized lock and thus we avoid taking it as
43 *   much as possible. As long as SLUB does not have to handle partial
44 *   slabs, operations can continue without any centralized lock. F.e.
45 *   allocating a long series of objects that fill up slabs does not require
46 *   the list lock.
47 *
48 *   The lock order is sometimes inverted when we are trying to get a slab
49 *   off a list. We take the list_lock and then look for a page on the list
50 *   to use. While we do that objects in the slabs may be freed. We can
51 *   only operate on the slab if we have also taken the slab_lock. So we use
52 *   a slab_trylock() on the slab. If trylock was successful then no frees
53 *   can occur anymore and we can use the slab for allocations etc. If the
54 *   slab_trylock() does not succeed then frees are in progress in the slab and
55 *   we must stay away from it for a while since we may cause a bouncing
56 *   cacheline if we try to acquire the lock. So go onto the next slab.
57 *   If all pages are busy then we may allocate a new slab instead of reusing
58 *   a partial slab. A new slab has noone operating on it and thus there is
59 *   no danger of cacheline contention.
60 *
61 *   Interrupts are disabled during allocation and deallocation in order to
62 *   make the slab allocator safe to use in the context of an irq. In addition
63 *   interrupts are disabled to ensure that the processor does not change
64 *   while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive 		The slab is frozen and exempt from list processing.
82 * 			This means that the slab is dedicated to a purpose
83 * 			such as satisfying allocations for a specific
84 * 			processor. Objects may be freed in the slab while
85 * 			it is frozen but slab_free will then skip the usual
86 * 			list operations. It is up to the processor holding
87 * 			the slab to integrate the slab into the slab lists
88 * 			when the slab is no longer needed.
89 *
90 * 			One use of this flag is to mark slabs that are
91 * 			used for allocations. Then such a slab becomes a cpu
92 * 			slab. The cpu slab may be equipped with an additional
93 * 			freelist that allows lockless access to
94 * 			free objects in addition to the regular freelist
95 * 			that requires the slab lock.
96 *
97 * PageError		Slab requires special handling due to debug
98 * 			options set. This moves	slab handling out of
99 * 			the fast path and disables lockless freelists.
100 */
101
102#define FROZEN (1 << PG_active)
103
104#ifdef CONFIG_SLUB_DEBUG
105#define SLABDEBUG (1 << PG_error)
106#else
107#define SLABDEBUG 0
108#endif
109
110static inline int SlabFrozen(struct page *page)
111{
112	return page->flags & FROZEN;
113}
114
115static inline void SetSlabFrozen(struct page *page)
116{
117	page->flags |= FROZEN;
118}
119
120static inline void ClearSlabFrozen(struct page *page)
121{
122	page->flags &= ~FROZEN;
123}
124
125static inline int SlabDebug(struct page *page)
126{
127	return page->flags & SLABDEBUG;
128}
129
130static inline void SetSlabDebug(struct page *page)
131{
132	page->flags |= SLABDEBUG;
133}
134
135static inline void ClearSlabDebug(struct page *page)
136{
137	page->flags &= ~SLABDEBUG;
138}
139
140/*
141 * Issues still to be resolved:
142 *
143 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
144 *
145 * - Variable sizing of the per node arrays
146 */
147
148/* Enable to test recovery from slab corruption on boot */
149#undef SLUB_RESILIENCY_TEST
150
151#if PAGE_SHIFT <= 12
152
153/*
154 * Small page size. Make sure that we do not fragment memory
155 */
156#define DEFAULT_MAX_ORDER 1
157#define DEFAULT_MIN_OBJECTS 4
158
159#else
160
161/*
162 * Large page machines are customarily able to handle larger
163 * page orders.
164 */
165#define DEFAULT_MAX_ORDER 2
166#define DEFAULT_MIN_OBJECTS 8
167
168#endif
169
170/*
171 * Mininum number of partial slabs. These will be left on the partial
172 * lists even if they are empty. kmem_cache_shrink may reclaim them.
173 */
174#define MIN_PARTIAL 2
175
176/*
177 * Maximum number of desirable partial slabs.
178 * The existence of more partial slabs makes kmem_cache_shrink
179 * sort the partial list by the number of objects in the.
180 */
181#define MAX_PARTIAL 10
182
183#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
184				SLAB_POISON | SLAB_STORE_USER)
185
186/*
187 * Set of flags that will prevent slab merging
188 */
189#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
190		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
191
192#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
193		SLAB_CACHE_DMA)
194
195#ifndef ARCH_KMALLOC_MINALIGN
196#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
197#endif
198
199#ifndef ARCH_SLAB_MINALIGN
200#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
201#endif
202
203/* Internal SLUB flags */
204#define __OBJECT_POISON		0x80000000 /* Poison object */
205#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
206
207/* Not all arches define cache_line_size */
208#ifndef cache_line_size
209#define cache_line_size()	L1_CACHE_BYTES
210#endif
211
212static int kmem_size = sizeof(struct kmem_cache);
213
214#ifdef CONFIG_SMP
215static struct notifier_block slab_notifier;
216#endif
217
218static enum {
219	DOWN,		/* No slab functionality available */
220	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
221	UP,		/* Everything works but does not show up in sysfs */
222	SYSFS		/* Sysfs up */
223} slab_state = DOWN;
224
225/* A list of all slab caches on the system */
226static DECLARE_RWSEM(slub_lock);
227static LIST_HEAD(slab_caches);
228
229/*
230 * Tracking user of a slab.
231 */
232struct track {
233	void *addr;		/* Called from address */
234	int cpu;		/* Was running on cpu */
235	int pid;		/* Pid context */
236	unsigned long when;	/* When did the operation occur */
237};
238
239enum track_item { TRACK_ALLOC, TRACK_FREE };
240
241#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
242static int sysfs_slab_add(struct kmem_cache *);
243static int sysfs_slab_alias(struct kmem_cache *, const char *);
244static void sysfs_slab_remove(struct kmem_cache *);
245#else
246static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
247static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
248							{ return 0; }
249static inline void sysfs_slab_remove(struct kmem_cache *s) {}
250#endif
251
252/********************************************************************
253 * 			Core slab cache functions
254 *******************************************************************/
255
256int slab_is_available(void)
257{
258	return slab_state >= UP;
259}
260
261static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
262{
263#ifdef CONFIG_NUMA
264	return s->node[node];
265#else
266	return &s->local_node;
267#endif
268}
269
270static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
271{
272#ifdef CONFIG_SMP
273	return s->cpu_slab[cpu];
274#else
275	return &s->cpu_slab;
276#endif
277}
278
279static inline int check_valid_pointer(struct kmem_cache *s,
280				struct page *page, const void *object)
281{
282	void *base;
283
284	if (!object)
285		return 1;
286
287	base = page_address(page);
288	if (object < base || object >= base + s->objects * s->size ||
289		(object - base) % s->size) {
290		return 0;
291	}
292
293	return 1;
294}
295
296/*
297 * Slow version of get and set free pointer.
298 *
299 * This version requires touching the cache lines of kmem_cache which
300 * we avoid to do in the fast alloc free paths. There we obtain the offset
301 * from the page struct.
302 */
303static inline void *get_freepointer(struct kmem_cache *s, void *object)
304{
305	return *(void **)(object + s->offset);
306}
307
308static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
309{
310	*(void **)(object + s->offset) = fp;
311}
312
313/* Loop over all objects in a slab */
314#define for_each_object(__p, __s, __addr) \
315	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
316			__p += (__s)->size)
317
318/* Scan freelist */
319#define for_each_free_object(__p, __s, __free) \
320	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
321
322/* Determine object index from a given position */
323static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
324{
325	return (p - addr) / s->size;
326}
327
328#ifdef CONFIG_SLUB_DEBUG
329/*
330 * Debug settings:
331 */
332#ifdef CONFIG_SLUB_DEBUG_ON
333static int slub_debug = DEBUG_DEFAULT_FLAGS;
334#else
335static int slub_debug;
336#endif
337
338static char *slub_debug_slabs;
339
340/*
341 * Object debugging
342 */
343static void print_section(char *text, u8 *addr, unsigned int length)
344{
345	int i, offset;
346	int newline = 1;
347	char ascii[17];
348
349	ascii[16] = 0;
350
351	for (i = 0; i < length; i++) {
352		if (newline) {
353			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
354			newline = 0;
355		}
356		printk(" %02x", addr[i]);
357		offset = i % 16;
358		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
359		if (offset == 15) {
360			printk(" %s\n",ascii);
361			newline = 1;
362		}
363	}
364	if (!newline) {
365		i %= 16;
366		while (i < 16) {
367			printk("   ");
368			ascii[i] = ' ';
369			i++;
370		}
371		printk(" %s\n", ascii);
372	}
373}
374
375static struct track *get_track(struct kmem_cache *s, void *object,
376	enum track_item alloc)
377{
378	struct track *p;
379
380	if (s->offset)
381		p = object + s->offset + sizeof(void *);
382	else
383		p = object + s->inuse;
384
385	return p + alloc;
386}
387
388static void set_track(struct kmem_cache *s, void *object,
389				enum track_item alloc, void *addr)
390{
391	struct track *p;
392
393	if (s->offset)
394		p = object + s->offset + sizeof(void *);
395	else
396		p = object + s->inuse;
397
398	p += alloc;
399	if (addr) {
400		p->addr = addr;
401		p->cpu = smp_processor_id();
402		p->pid = current ? current->pid : -1;
403		p->when = jiffies;
404	} else
405		memset(p, 0, sizeof(struct track));
406}
407
408static void init_tracking(struct kmem_cache *s, void *object)
409{
410	if (!(s->flags & SLAB_STORE_USER))
411		return;
412
413	set_track(s, object, TRACK_FREE, NULL);
414	set_track(s, object, TRACK_ALLOC, NULL);
415}
416
417static void print_track(const char *s, struct track *t)
418{
419	if (!t->addr)
420		return;
421
422	printk(KERN_ERR "INFO: %s in ", s);
423	__print_symbol("%s", (unsigned long)t->addr);
424	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
425}
426
427static void print_tracking(struct kmem_cache *s, void *object)
428{
429	if (!(s->flags & SLAB_STORE_USER))
430		return;
431
432	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
433	print_track("Freed", get_track(s, object, TRACK_FREE));
434}
435
436static void print_page_info(struct page *page)
437{
438	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
439		page, page->inuse, page->freelist, page->flags);
440
441}
442
443static void slab_bug(struct kmem_cache *s, char *fmt, ...)
444{
445	va_list args;
446	char buf[100];
447
448	va_start(args, fmt);
449	vsnprintf(buf, sizeof(buf), fmt, args);
450	va_end(args);
451	printk(KERN_ERR "========================================"
452			"=====================================\n");
453	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
454	printk(KERN_ERR "----------------------------------------"
455			"-------------------------------------\n\n");
456}
457
458static void slab_fix(struct kmem_cache *s, char *fmt, ...)
459{
460	va_list args;
461	char buf[100];
462
463	va_start(args, fmt);
464	vsnprintf(buf, sizeof(buf), fmt, args);
465	va_end(args);
466	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
467}
468
469static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
470{
471	unsigned int off;	/* Offset of last byte */
472	u8 *addr = page_address(page);
473
474	print_tracking(s, p);
475
476	print_page_info(page);
477
478	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
479			p, p - addr, get_freepointer(s, p));
480
481	if (p > addr + 16)
482		print_section("Bytes b4", p - 16, 16);
483
484	print_section("Object", p, min(s->objsize, 128));
485
486	if (s->flags & SLAB_RED_ZONE)
487		print_section("Redzone", p + s->objsize,
488			s->inuse - s->objsize);
489
490	if (s->offset)
491		off = s->offset + sizeof(void *);
492	else
493		off = s->inuse;
494
495	if (s->flags & SLAB_STORE_USER)
496		off += 2 * sizeof(struct track);
497
498	if (off != s->size)
499		/* Beginning of the filler is the free pointer */
500		print_section("Padding", p + off, s->size - off);
501
502	dump_stack();
503}
504
505static void object_err(struct kmem_cache *s, struct page *page,
506			u8 *object, char *reason)
507{
508	slab_bug(s, reason);
509	print_trailer(s, page, object);
510}
511
512static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
513{
514	va_list args;
515	char buf[100];
516
517	va_start(args, fmt);
518	vsnprintf(buf, sizeof(buf), fmt, args);
519	va_end(args);
520	slab_bug(s, fmt);
521	print_page_info(page);
522	dump_stack();
523}
524
525static void init_object(struct kmem_cache *s, void *object, int active)
526{
527	u8 *p = object;
528
529	if (s->flags & __OBJECT_POISON) {
530		memset(p, POISON_FREE, s->objsize - 1);
531		p[s->objsize -1] = POISON_END;
532	}
533
534	if (s->flags & SLAB_RED_ZONE)
535		memset(p + s->objsize,
536			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
537			s->inuse - s->objsize);
538}
539
540static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
541{
542	while (bytes) {
543		if (*start != (u8)value)
544			return start;
545		start++;
546		bytes--;
547	}
548	return NULL;
549}
550
551static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
552						void *from, void *to)
553{
554	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
555	memset(from, data, to - from);
556}
557
558static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
559			u8 *object, char *what,
560			u8* start, unsigned int value, unsigned int bytes)
561{
562	u8 *fault;
563	u8 *end;
564
565	fault = check_bytes(start, value, bytes);
566	if (!fault)
567		return 1;
568
569	end = start + bytes;
570	while (end > fault && end[-1] == value)
571		end--;
572
573	slab_bug(s, "%s overwritten", what);
574	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
575					fault, end - 1, fault[0], value);
576	print_trailer(s, page, object);
577
578	restore_bytes(s, what, value, fault, end);
579	return 0;
580}
581
582/*
583 * Object layout:
584 *
585 * object address
586 * 	Bytes of the object to be managed.
587 * 	If the freepointer may overlay the object then the free
588 * 	pointer is the first word of the object.
589 *
590 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
591 * 	0xa5 (POISON_END)
592 *
593 * object + s->objsize
594 * 	Padding to reach word boundary. This is also used for Redzoning.
595 * 	Padding is extended by another word if Redzoning is enabled and
596 * 	objsize == inuse.
597 *
598 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
599 * 	0xcc (RED_ACTIVE) for objects in use.
600 *
601 * object + s->inuse
602 * 	Meta data starts here.
603 *
604 * 	A. Free pointer (if we cannot overwrite object on free)
605 * 	B. Tracking data for SLAB_STORE_USER
606 * 	C. Padding to reach required alignment boundary or at mininum
607 * 		one word if debuggin is on to be able to detect writes
608 * 		before the word boundary.
609 *
610 *	Padding is done using 0x5a (POISON_INUSE)
611 *
612 * object + s->size
613 * 	Nothing is used beyond s->size.
614 *
615 * If slabcaches are merged then the objsize and inuse boundaries are mostly
616 * ignored. And therefore no slab options that rely on these boundaries
617 * may be used with merged slabcaches.
618 */
619
620static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
621{
622	unsigned long off = s->inuse;	/* The end of info */
623
624	if (s->offset)
625		/* Freepointer is placed after the object. */
626		off += sizeof(void *);
627
628	if (s->flags & SLAB_STORE_USER)
629		/* We also have user information there */
630		off += 2 * sizeof(struct track);
631
632	if (s->size == off)
633		return 1;
634
635	return check_bytes_and_report(s, page, p, "Object padding",
636				p + off, POISON_INUSE, s->size - off);
637}
638
639static int slab_pad_check(struct kmem_cache *s, struct page *page)
640{
641	u8 *start;
642	u8 *fault;
643	u8 *end;
644	int length;
645	int remainder;
646
647	if (!(s->flags & SLAB_POISON))
648		return 1;
649
650	start = page_address(page);
651	end = start + (PAGE_SIZE << s->order);
652	length = s->objects * s->size;
653	remainder = end - (start + length);
654	if (!remainder)
655		return 1;
656
657	fault = check_bytes(start + length, POISON_INUSE, remainder);
658	if (!fault)
659		return 1;
660	while (end > fault && end[-1] == POISON_INUSE)
661		end--;
662
663	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
664	print_section("Padding", start, length);
665
666	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
667	return 0;
668}
669
670static int check_object(struct kmem_cache *s, struct page *page,
671					void *object, int active)
672{
673	u8 *p = object;
674	u8 *endobject = object + s->objsize;
675
676	if (s->flags & SLAB_RED_ZONE) {
677		unsigned int red =
678			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
679
680		if (!check_bytes_and_report(s, page, object, "Redzone",
681			endobject, red, s->inuse - s->objsize))
682			return 0;
683	} else {
684		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
685			check_bytes_and_report(s, page, p, "Alignment padding", endobject,
686				POISON_INUSE, s->inuse - s->objsize);
687	}
688
689	if (s->flags & SLAB_POISON) {
690		if (!active && (s->flags & __OBJECT_POISON) &&
691			(!check_bytes_and_report(s, page, p, "Poison", p,
692					POISON_FREE, s->objsize - 1) ||
693			 !check_bytes_and_report(s, page, p, "Poison",
694			 	p + s->objsize -1, POISON_END, 1)))
695			return 0;
696		/*
697		 * check_pad_bytes cleans up on its own.
698		 */
699		check_pad_bytes(s, page, p);
700	}
701
702	if (!s->offset && active)
703		/*
704		 * Object and freepointer overlap. Cannot check
705		 * freepointer while object is allocated.
706		 */
707		return 1;
708
709	/* Check free pointer validity */
710	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
711		object_err(s, page, p, "Freepointer corrupt");
712		/*
713		 * No choice but to zap it and thus loose the remainder
714		 * of the free objects in this slab. May cause
715		 * another error because the object count is now wrong.
716		 */
717		set_freepointer(s, p, NULL);
718		return 0;
719	}
720	return 1;
721}
722
723static int check_slab(struct kmem_cache *s, struct page *page)
724{
725	VM_BUG_ON(!irqs_disabled());
726
727	if (!PageSlab(page)) {
728		slab_err(s, page, "Not a valid slab page");
729		return 0;
730	}
731	if (page->inuse > s->objects) {
732		slab_err(s, page, "inuse %u > max %u",
733			s->name, page->inuse, s->objects);
734		return 0;
735	}
736	/* Slab_pad_check fixes things up after itself */
737	slab_pad_check(s, page);
738	return 1;
739}
740
741/*
742 * Determine if a certain object on a page is on the freelist. Must hold the
743 * slab lock to guarantee that the chains are in a consistent state.
744 */
745static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
746{
747	int nr = 0;
748	void *fp = page->freelist;
749	void *object = NULL;
750
751	while (fp && nr <= s->objects) {
752		if (fp == search)
753			return 1;
754		if (!check_valid_pointer(s, page, fp)) {
755			if (object) {
756				object_err(s, page, object,
757					"Freechain corrupt");
758				set_freepointer(s, object, NULL);
759				break;
760			} else {
761				slab_err(s, page, "Freepointer corrupt");
762				page->freelist = NULL;
763				page->inuse = s->objects;
764				slab_fix(s, "Freelist cleared");
765				return 0;
766			}
767			break;
768		}
769		object = fp;
770		fp = get_freepointer(s, object);
771		nr++;
772	}
773
774	if (page->inuse != s->objects - nr) {
775		slab_err(s, page, "Wrong object count. Counter is %d but "
776			"counted were %d", page->inuse, s->objects - nr);
777		page->inuse = s->objects - nr;
778		slab_fix(s, "Object count adjusted.");
779	}
780	return search == NULL;
781}
782
783static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
784{
785	if (s->flags & SLAB_TRACE) {
786		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
787			s->name,
788			alloc ? "alloc" : "free",
789			object, page->inuse,
790			page->freelist);
791
792		if (!alloc)
793			print_section("Object", (void *)object, s->objsize);
794
795		dump_stack();
796	}
797}
798
799/*
800 * Tracking of fully allocated slabs for debugging purposes.
801 */
802static void add_full(struct kmem_cache_node *n, struct page *page)
803{
804	spin_lock(&n->list_lock);
805	list_add(&page->lru, &n->full);
806	spin_unlock(&n->list_lock);
807}
808
809static void remove_full(struct kmem_cache *s, struct page *page)
810{
811	struct kmem_cache_node *n;
812
813	if (!(s->flags & SLAB_STORE_USER))
814		return;
815
816	n = get_node(s, page_to_nid(page));
817
818	spin_lock(&n->list_lock);
819	list_del(&page->lru);
820	spin_unlock(&n->list_lock);
821}
822
823static void setup_object_debug(struct kmem_cache *s, struct page *page,
824								void *object)
825{
826	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
827		return;
828
829	init_object(s, object, 0);
830	init_tracking(s, object);
831}
832
833static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
834						void *object, void *addr)
835{
836	if (!check_slab(s, page))
837		goto bad;
838
839	if (object && !on_freelist(s, page, object)) {
840		object_err(s, page, object, "Object already allocated");
841		goto bad;
842	}
843
844	if (!check_valid_pointer(s, page, object)) {
845		object_err(s, page, object, "Freelist Pointer check fails");
846		goto bad;
847	}
848
849	if (object && !check_object(s, page, object, 0))
850		goto bad;
851
852	/* Success perform special debug activities for allocs */
853	if (s->flags & SLAB_STORE_USER)
854		set_track(s, object, TRACK_ALLOC, addr);
855	trace(s, page, object, 1);
856	init_object(s, object, 1);
857	return 1;
858
859bad:
860	if (PageSlab(page)) {
861		/*
862		 * If this is a slab page then lets do the best we can
863		 * to avoid issues in the future. Marking all objects
864		 * as used avoids touching the remaining objects.
865		 */
866		slab_fix(s, "Marking all objects used");
867		page->inuse = s->objects;
868		page->freelist = NULL;
869	}
870	return 0;
871}
872
873static int free_debug_processing(struct kmem_cache *s, struct page *page,
874						void *object, void *addr)
875{
876	if (!check_slab(s, page))
877		goto fail;
878
879	if (!check_valid_pointer(s, page, object)) {
880		slab_err(s, page, "Invalid object pointer 0x%p", object);
881		goto fail;
882	}
883
884	if (on_freelist(s, page, object)) {
885		object_err(s, page, object, "Object already free");
886		goto fail;
887	}
888
889	if (!check_object(s, page, object, 1))
890		return 0;
891
892	if (unlikely(s != page->slab)) {
893		if (!PageSlab(page))
894			slab_err(s, page, "Attempt to free object(0x%p) "
895				"outside of slab", object);
896		else
897		if (!page->slab) {
898			printk(KERN_ERR
899				"SLUB <none>: no slab for object 0x%p.\n",
900						object);
901			dump_stack();
902		}
903		else
904			object_err(s, page, object,
905					"page slab pointer corrupt.");
906		goto fail;
907	}
908
909	/* Special debug activities for freeing objects */
910	if (!SlabFrozen(page) && !page->freelist)
911		remove_full(s, page);
912	if (s->flags & SLAB_STORE_USER)
913		set_track(s, object, TRACK_FREE, addr);
914	trace(s, page, object, 0);
915	init_object(s, object, 0);
916	return 1;
917
918fail:
919	slab_fix(s, "Object at 0x%p not freed", object);
920	return 0;
921}
922
923static int __init setup_slub_debug(char *str)
924{
925	slub_debug = DEBUG_DEFAULT_FLAGS;
926	if (*str++ != '=' || !*str)
927		/*
928		 * No options specified. Switch on full debugging.
929		 */
930		goto out;
931
932	if (*str == ',')
933		/*
934		 * No options but restriction on slabs. This means full
935		 * debugging for slabs matching a pattern.
936		 */
937		goto check_slabs;
938
939	slub_debug = 0;
940	if (*str == '-')
941		/*
942		 * Switch off all debugging measures.
943		 */
944		goto out;
945
946	/*
947	 * Determine which debug features should be switched on
948	 */
949	for ( ;*str && *str != ','; str++) {
950		switch (tolower(*str)) {
951		case 'f':
952			slub_debug |= SLAB_DEBUG_FREE;
953			break;
954		case 'z':
955			slub_debug |= SLAB_RED_ZONE;
956			break;
957		case 'p':
958			slub_debug |= SLAB_POISON;
959			break;
960		case 'u':
961			slub_debug |= SLAB_STORE_USER;
962			break;
963		case 't':
964			slub_debug |= SLAB_TRACE;
965			break;
966		default:
967			printk(KERN_ERR "slub_debug option '%c' "
968				"unknown. skipped\n",*str);
969		}
970	}
971
972check_slabs:
973	if (*str == ',')
974		slub_debug_slabs = str + 1;
975out:
976	return 1;
977}
978
979__setup("slub_debug", setup_slub_debug);
980
981static unsigned long kmem_cache_flags(unsigned long objsize,
982	unsigned long flags, const char *name,
983	void (*ctor)(void *, struct kmem_cache *, unsigned long))
984{
985	/*
986	 * The page->offset field is only 16 bit wide. This is an offset
987	 * in units of words from the beginning of an object. If the slab
988	 * size is bigger then we cannot move the free pointer behind the
989	 * object anymore.
990	 *
991	 * On 32 bit platforms the limit is 256k. On 64bit platforms
992	 * the limit is 512k.
993	 *
994	 * Debugging or ctor may create a need to move the free
995	 * pointer. Fail if this happens.
996	 */
997	if (objsize >= 65535 * sizeof(void *)) {
998		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
999				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1000		BUG_ON(ctor);
1001	} else {
1002		/*
1003		 * Enable debugging if selected on the kernel commandline.
1004		 */
1005		if (slub_debug && (!slub_debug_slabs ||
1006		    strncmp(slub_debug_slabs, name,
1007		    	strlen(slub_debug_slabs)) == 0))
1008				flags |= slub_debug;
1009	}
1010
1011	return flags;
1012}
1013#else
1014static inline void setup_object_debug(struct kmem_cache *s,
1015			struct page *page, void *object) {}
1016
1017static inline int alloc_debug_processing(struct kmem_cache *s,
1018	struct page *page, void *object, void *addr) { return 0; }
1019
1020static inline int free_debug_processing(struct kmem_cache *s,
1021	struct page *page, void *object, void *addr) { return 0; }
1022
1023static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1024			{ return 1; }
1025static inline int check_object(struct kmem_cache *s, struct page *page,
1026			void *object, int active) { return 1; }
1027static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1028static inline unsigned long kmem_cache_flags(unsigned long objsize,
1029	unsigned long flags, const char *name,
1030	void (*ctor)(void *, struct kmem_cache *, unsigned long))
1031{
1032	return flags;
1033}
1034#define slub_debug 0
1035#endif
1036/*
1037 * Slab allocation and freeing
1038 */
1039static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1040{
1041	struct page * page;
1042	int pages = 1 << s->order;
1043
1044	if (s->order)
1045		flags |= __GFP_COMP;
1046
1047	if (s->flags & SLAB_CACHE_DMA)
1048		flags |= SLUB_DMA;
1049
1050	if (s->flags & SLAB_RECLAIM_ACCOUNT)
1051		flags |= __GFP_RECLAIMABLE;
1052
1053	if (node == -1)
1054		page = alloc_pages(flags, s->order);
1055	else
1056		page = alloc_pages_node(node, flags, s->order);
1057
1058	if (!page)
1059		return NULL;
1060
1061	mod_zone_page_state(page_zone(page),
1062		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1063		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1064		pages);
1065
1066	return page;
1067}
1068
1069static void setup_object(struct kmem_cache *s, struct page *page,
1070				void *object)
1071{
1072	setup_object_debug(s, page, object);
1073	if (unlikely(s->ctor))
1074		s->ctor(object, s, 0);
1075}
1076
1077static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1078{
1079	struct page *page;
1080	struct kmem_cache_node *n;
1081	void *start;
1082	void *end;
1083	void *last;
1084	void *p;
1085
1086	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1087
1088	if (flags & __GFP_WAIT)
1089		local_irq_enable();
1090
1091	page = allocate_slab(s,
1092		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1093	if (!page)
1094		goto out;
1095
1096	n = get_node(s, page_to_nid(page));
1097	if (n)
1098		atomic_long_inc(&n->nr_slabs);
1099	page->slab = s;
1100	page->flags |= 1 << PG_slab;
1101	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1102			SLAB_STORE_USER | SLAB_TRACE))
1103		SetSlabDebug(page);
1104
1105	start = page_address(page);
1106	end = start + s->objects * s->size;
1107
1108	if (unlikely(s->flags & SLAB_POISON))
1109		memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1110
1111	last = start;
1112	for_each_object(p, s, start) {
1113		setup_object(s, page, last);
1114		set_freepointer(s, last, p);
1115		last = p;
1116	}
1117	setup_object(s, page, last);
1118	set_freepointer(s, last, NULL);
1119
1120	page->freelist = start;
1121	page->inuse = 0;
1122out:
1123	if (flags & __GFP_WAIT)
1124		local_irq_disable();
1125	return page;
1126}
1127
1128static void __free_slab(struct kmem_cache *s, struct page *page)
1129{
1130	int pages = 1 << s->order;
1131
1132	if (unlikely(SlabDebug(page))) {
1133		void *p;
1134
1135		slab_pad_check(s, page);
1136		for_each_object(p, s, page_address(page))
1137			check_object(s, page, p, 0);
1138		ClearSlabDebug(page);
1139	}
1140
1141	mod_zone_page_state(page_zone(page),
1142		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1143		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1144		- pages);
1145
1146	__free_pages(page, s->order);
1147}
1148
1149static void rcu_free_slab(struct rcu_head *h)
1150{
1151	struct page *page;
1152
1153	page = container_of((struct list_head *)h, struct page, lru);
1154	__free_slab(page->slab, page);
1155}
1156
1157static void free_slab(struct kmem_cache *s, struct page *page)
1158{
1159	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1160		/*
1161		 * RCU free overloads the RCU head over the LRU
1162		 */
1163		struct rcu_head *head = (void *)&page->lru;
1164
1165		call_rcu(head, rcu_free_slab);
1166	} else
1167		__free_slab(s, page);
1168}
1169
1170static void discard_slab(struct kmem_cache *s, struct page *page)
1171{
1172	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1173
1174	atomic_long_dec(&n->nr_slabs);
1175	reset_page_mapcount(page);
1176	__ClearPageSlab(page);
1177	free_slab(s, page);
1178}
1179
1180/*
1181 * Per slab locking using the pagelock
1182 */
1183static __always_inline void slab_lock(struct page *page)
1184{
1185	bit_spin_lock(PG_locked, &page->flags);
1186}
1187
1188static __always_inline void slab_unlock(struct page *page)
1189{
1190	bit_spin_unlock(PG_locked, &page->flags);
1191}
1192
1193static __always_inline int slab_trylock(struct page *page)
1194{
1195	int rc = 1;
1196
1197	rc = bit_spin_trylock(PG_locked, &page->flags);
1198	return rc;
1199}
1200
1201/*
1202 * Management of partially allocated slabs
1203 */
1204static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1205{
1206	spin_lock(&n->list_lock);
1207	n->nr_partial++;
1208	list_add_tail(&page->lru, &n->partial);
1209	spin_unlock(&n->list_lock);
1210}
1211
1212static void add_partial(struct kmem_cache_node *n, struct page *page)
1213{
1214	spin_lock(&n->list_lock);
1215	n->nr_partial++;
1216	list_add(&page->lru, &n->partial);
1217	spin_unlock(&n->list_lock);
1218}
1219
1220static void remove_partial(struct kmem_cache *s,
1221						struct page *page)
1222{
1223	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1224
1225	spin_lock(&n->list_lock);
1226	list_del(&page->lru);
1227	n->nr_partial--;
1228	spin_unlock(&n->list_lock);
1229}
1230
1231/*
1232 * Lock slab and remove from the partial list.
1233 *
1234 * Must hold list_lock.
1235 */
1236static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1237{
1238	if (slab_trylock(page)) {
1239		list_del(&page->lru);
1240		n->nr_partial--;
1241		SetSlabFrozen(page);
1242		return 1;
1243	}
1244	return 0;
1245}
1246
1247/*
1248 * Try to allocate a partial slab from a specific node.
1249 */
1250static struct page *get_partial_node(struct kmem_cache_node *n)
1251{
1252	struct page *page;
1253
1254	/*
1255	 * Racy check. If we mistakenly see no partial slabs then we
1256	 * just allocate an empty slab. If we mistakenly try to get a
1257	 * partial slab and there is none available then get_partials()
1258	 * will return NULL.
1259	 */
1260	if (!n || !n->nr_partial)
1261		return NULL;
1262
1263	spin_lock(&n->list_lock);
1264	list_for_each_entry(page, &n->partial, lru)
1265		if (lock_and_freeze_slab(n, page))
1266			goto out;
1267	page = NULL;
1268out:
1269	spin_unlock(&n->list_lock);
1270	return page;
1271}
1272
1273/*
1274 * Get a page from somewhere. Search in increasing NUMA distances.
1275 */
1276static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1277{
1278#ifdef CONFIG_NUMA
1279	struct zonelist *zonelist;
1280	struct zone **z;
1281	struct page *page;
1282
1283	/*
1284	 * The defrag ratio allows a configuration of the tradeoffs between
1285	 * inter node defragmentation and node local allocations. A lower
1286	 * defrag_ratio increases the tendency to do local allocations
1287	 * instead of attempting to obtain partial slabs from other nodes.
1288	 *
1289	 * If the defrag_ratio is set to 0 then kmalloc() always
1290	 * returns node local objects. If the ratio is higher then kmalloc()
1291	 * may return off node objects because partial slabs are obtained
1292	 * from other nodes and filled up.
1293	 *
1294	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1295	 * defrag_ratio = 1000) then every (well almost) allocation will
1296	 * first attempt to defrag slab caches on other nodes. This means
1297	 * scanning over all nodes to look for partial slabs which may be
1298	 * expensive if we do it every time we are trying to find a slab
1299	 * with available objects.
1300	 */
1301	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1302		return NULL;
1303
1304	zonelist = &NODE_DATA(slab_node(current->mempolicy))
1305					->node_zonelists[gfp_zone(flags)];
1306	for (z = zonelist->zones; *z; z++) {
1307		struct kmem_cache_node *n;
1308
1309		n = get_node(s, zone_to_nid(*z));
1310
1311		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1312				n->nr_partial > MIN_PARTIAL) {
1313			page = get_partial_node(n);
1314			if (page)
1315				return page;
1316		}
1317	}
1318#endif
1319	return NULL;
1320}
1321
1322/*
1323 * Get a partial page, lock it and return it.
1324 */
1325static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1326{
1327	struct page *page;
1328	int searchnode = (node == -1) ? numa_node_id() : node;
1329
1330	page = get_partial_node(get_node(s, searchnode));
1331	if (page || (flags & __GFP_THISNODE))
1332		return page;
1333
1334	return get_any_partial(s, flags);
1335}
1336
1337/*
1338 * Move a page back to the lists.
1339 *
1340 * Must be called with the slab lock held.
1341 *
1342 * On exit the slab lock will have been dropped.
1343 */
1344static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1345{
1346	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1347
1348	ClearSlabFrozen(page);
1349	if (page->inuse) {
1350
1351		if (page->freelist)
1352			add_partial(n, page);
1353		else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1354			add_full(n, page);
1355		slab_unlock(page);
1356
1357	} else {
1358		if (n->nr_partial < MIN_PARTIAL) {
1359			/*
1360			 * Adding an empty slab to the partial slabs in order
1361			 * to avoid page allocator overhead. This slab needs
1362			 * to come after the other slabs with objects in
1363			 * order to fill them up. That way the size of the
1364			 * partial list stays small. kmem_cache_shrink can
1365			 * reclaim empty slabs from the partial list.
1366			 */
1367			add_partial_tail(n, page);
1368			slab_unlock(page);
1369		} else {
1370			slab_unlock(page);
1371			discard_slab(s, page);
1372		}
1373	}
1374}
1375
1376/*
1377 * Remove the cpu slab
1378 */
1379static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1380{
1381	struct page *page = c->page;
1382	/*
1383	 * Merge cpu freelist into freelist. Typically we get here
1384	 * because both freelists are empty. So this is unlikely
1385	 * to occur.
1386	 */
1387	while (unlikely(c->freelist)) {
1388		void **object;
1389
1390		/* Retrieve object from cpu_freelist */
1391		object = c->freelist;
1392		c->freelist = c->freelist[c->offset];
1393
1394		/* And put onto the regular freelist */
1395		object[c->offset] = page->freelist;
1396		page->freelist = object;
1397		page->inuse--;
1398	}
1399	c->page = NULL;
1400	unfreeze_slab(s, page);
1401}
1402
1403static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1404{
1405	slab_lock(c->page);
1406	deactivate_slab(s, c);
1407}
1408
1409/*
1410 * Flush cpu slab.
1411 * Called from IPI handler with interrupts disabled.
1412 */
1413static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1414{
1415	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1416
1417	if (likely(c && c->page))
1418		flush_slab(s, c);
1419}
1420
1421static void flush_cpu_slab(void *d)
1422{
1423	struct kmem_cache *s = d;
1424
1425	__flush_cpu_slab(s, smp_processor_id());
1426}
1427
1428static void flush_all(struct kmem_cache *s)
1429{
1430#ifdef CONFIG_SMP
1431	on_each_cpu(flush_cpu_slab, s, 1, 1);
1432#else
1433	unsigned long flags;
1434
1435	local_irq_save(flags);
1436	flush_cpu_slab(s);
1437	local_irq_restore(flags);
1438#endif
1439}
1440
1441/*
1442 * Check if the objects in a per cpu structure fit numa
1443 * locality expectations.
1444 */
1445static inline int node_match(struct kmem_cache_cpu *c, int node)
1446{
1447#ifdef CONFIG_NUMA
1448	if (node != -1 && c->node != node)
1449		return 0;
1450#endif
1451	return 1;
1452}
1453
1454/*
1455 * Slow path. The lockless freelist is empty or we need to perform
1456 * debugging duties.
1457 *
1458 * Interrupts are disabled.
1459 *
1460 * Processing is still very fast if new objects have been freed to the
1461 * regular freelist. In that case we simply take over the regular freelist
1462 * as the lockless freelist and zap the regular freelist.
1463 *
1464 * If that is not working then we fall back to the partial lists. We take the
1465 * first element of the freelist as the object to allocate now and move the
1466 * rest of the freelist to the lockless freelist.
1467 *
1468 * And if we were unable to get a new slab from the partial slab lists then
1469 * we need to allocate a new slab. This is slowest path since we may sleep.
1470 */
1471static void *__slab_alloc(struct kmem_cache *s,
1472		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1473{
1474	void **object;
1475	struct page *new;
1476
1477	if (!c->page)
1478		goto new_slab;
1479
1480	slab_lock(c->page);
1481	if (unlikely(!node_match(c, node)))
1482		goto another_slab;
1483load_freelist:
1484	object = c->page->freelist;
1485	if (unlikely(!object))
1486		goto another_slab;
1487	if (unlikely(SlabDebug(c->page)))
1488		goto debug;
1489
1490	object = c->page->freelist;
1491	c->freelist = object[c->offset];
1492	c->page->inuse = s->objects;
1493	c->page->freelist = NULL;
1494	c->node = page_to_nid(c->page);
1495	slab_unlock(c->page);
1496	return object;
1497
1498another_slab:
1499	deactivate_slab(s, c);
1500
1501new_slab:
1502	new = get_partial(s, gfpflags, node);
1503	if (new) {
1504		c->page = new;
1505		goto load_freelist;
1506	}
1507
1508	new = new_slab(s, gfpflags, node);
1509	if (new) {
1510		c = get_cpu_slab(s, smp_processor_id());
1511		if (c->page) {
1512			/*
1513			 * Someone else populated the cpu_slab while we
1514			 * enabled interrupts, or we have gotten scheduled
1515			 * on another cpu. The page may not be on the
1516			 * requested node even if __GFP_THISNODE was
1517			 * specified. So we need to recheck.
1518			 */
1519			if (node_match(c, node)) {
1520				/*
1521				 * Current cpuslab is acceptable and we
1522				 * want the current one since its cache hot
1523				 */
1524				discard_slab(s, new);
1525				slab_lock(c->page);
1526				goto load_freelist;
1527			}
1528			/* New slab does not fit our expectations */
1529			flush_slab(s, c);
1530		}
1531		slab_lock(new);
1532		SetSlabFrozen(new);
1533		c->page = new;
1534		goto load_freelist;
1535	}
1536	return NULL;
1537debug:
1538	object = c->page->freelist;
1539	if (!alloc_debug_processing(s, c->page, object, addr))
1540		goto another_slab;
1541
1542	c->page->inuse++;
1543	c->page->freelist = object[c->offset];
1544	c->node = -1;
1545	slab_unlock(c->page);
1546	return object;
1547}
1548
1549/*
1550 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1551 * have the fastpath folded into their functions. So no function call
1552 * overhead for requests that can be satisfied on the fastpath.
1553 *
1554 * The fastpath works by first checking if the lockless freelist can be used.
1555 * If not then __slab_alloc is called for slow processing.
1556 *
1557 * Otherwise we can simply pick the next object from the lockless free list.
1558 */
1559static void __always_inline *slab_alloc(struct kmem_cache *s,
1560		gfp_t gfpflags, int node, void *addr)
1561{
1562	void **object;
1563	unsigned long flags;
1564	struct kmem_cache_cpu *c;
1565
1566	local_irq_save(flags);
1567	c = get_cpu_slab(s, smp_processor_id());
1568	if (unlikely(!c->freelist || !node_match(c, node)))
1569
1570		object = __slab_alloc(s, gfpflags, node, addr, c);
1571
1572	else {
1573		object = c->freelist;
1574		c->freelist = object[c->offset];
1575	}
1576	local_irq_restore(flags);
1577
1578	if (unlikely((gfpflags & __GFP_ZERO) && object))
1579		memset(object, 0, s->objsize);
1580
1581	return object;
1582}
1583
1584void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1585{
1586	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1587}
1588EXPORT_SYMBOL(kmem_cache_alloc);
1589
1590#ifdef CONFIG_NUMA
1591void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1592{
1593	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1594}
1595EXPORT_SYMBOL(kmem_cache_alloc_node);
1596#endif
1597
1598/*
1599 * Slow patch handling. This may still be called frequently since objects
1600 * have a longer lifetime than the cpu slabs in most processing loads.
1601 *
1602 * So we still attempt to reduce cache line usage. Just take the slab
1603 * lock and free the item. If there is no additional partial page
1604 * handling required then we can return immediately.
1605 */
1606static void __slab_free(struct kmem_cache *s, struct page *page,
1607				void *x, void *addr, unsigned int offset)
1608{
1609	void *prior;
1610	void **object = (void *)x;
1611
1612	slab_lock(page);
1613
1614	if (unlikely(SlabDebug(page)))
1615		goto debug;
1616checks_ok:
1617	prior = object[offset] = page->freelist;
1618	page->freelist = object;
1619	page->inuse--;
1620
1621	if (unlikely(SlabFrozen(page)))
1622		goto out_unlock;
1623
1624	if (unlikely(!page->inuse))
1625		goto slab_empty;
1626
1627	/*
1628	 * Objects left in the slab. If it
1629	 * was not on the partial list before
1630	 * then add it.
1631	 */
1632	if (unlikely(!prior))
1633		add_partial(get_node(s, page_to_nid(page)), page);
1634
1635out_unlock:
1636	slab_unlock(page);
1637	return;
1638
1639slab_empty:
1640	if (prior)
1641		/*
1642		 * Slab still on the partial list.
1643		 */
1644		remove_partial(s, page);
1645
1646	slab_unlock(page);
1647	discard_slab(s, page);
1648	return;
1649
1650debug:
1651	if (!free_debug_processing(s, page, x, addr))
1652		goto out_unlock;
1653	goto checks_ok;
1654}
1655
1656/*
1657 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1658 * can perform fastpath freeing without additional function calls.
1659 *
1660 * The fastpath is only possible if we are freeing to the current cpu slab
1661 * of this processor. This typically the case if we have just allocated
1662 * the item before.
1663 *
1664 * If fastpath is not possible then fall back to __slab_free where we deal
1665 * with all sorts of special processing.
1666 */
1667static void __always_inline slab_free(struct kmem_cache *s,
1668			struct page *page, void *x, void *addr)
1669{
1670	void **object = (void *)x;
1671	unsigned long flags;
1672	struct kmem_cache_cpu *c;
1673
1674	local_irq_save(flags);
1675	debug_check_no_locks_freed(object, s->objsize);
1676	c = get_cpu_slab(s, smp_processor_id());
1677	if (likely(page == c->page && c->node >= 0)) {
1678		object[c->offset] = c->freelist;
1679		c->freelist = object;
1680	} else
1681		__slab_free(s, page, x, addr, c->offset);
1682
1683	local_irq_restore(flags);
1684}
1685
1686void kmem_cache_free(struct kmem_cache *s, void *x)
1687{
1688	struct page *page;
1689
1690	page = virt_to_head_page(x);
1691
1692	slab_free(s, page, x, __builtin_return_address(0));
1693}
1694EXPORT_SYMBOL(kmem_cache_free);
1695
1696/* Figure out on which slab object the object resides */
1697static struct page *get_object_page(const void *x)
1698{
1699	struct page *page = virt_to_head_page(x);
1700
1701	if (!PageSlab(page))
1702		return NULL;
1703
1704	return page;
1705}
1706
1707/*
1708 * Object placement in a slab is made very easy because we always start at
1709 * offset 0. If we tune the size of the object to the alignment then we can
1710 * get the required alignment by putting one properly sized object after
1711 * another.
1712 *
1713 * Notice that the allocation order determines the sizes of the per cpu
1714 * caches. Each processor has always one slab available for allocations.
1715 * Increasing the allocation order reduces the number of times that slabs
1716 * must be moved on and off the partial lists and is therefore a factor in
1717 * locking overhead.
1718 */
1719
1720/*
1721 * Mininum / Maximum order of slab pages. This influences locking overhead
1722 * and slab fragmentation. A higher order reduces the number of partial slabs
1723 * and increases the number of allocations possible without having to
1724 * take the list_lock.
1725 */
1726static int slub_min_order;
1727static int slub_max_order = DEFAULT_MAX_ORDER;
1728static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1729
1730/*
1731 * Merge control. If this is set then no merging of slab caches will occur.
1732 * (Could be removed. This was introduced to pacify the merge skeptics.)
1733 */
1734static int slub_nomerge;
1735
1736/*
1737 * Calculate the order of allocation given an slab object size.
1738 *
1739 * The order of allocation has significant impact on performance and other
1740 * system components. Generally order 0 allocations should be preferred since
1741 * order 0 does not cause fragmentation in the page allocator. Larger objects
1742 * be problematic to put into order 0 slabs because there may be too much
1743 * unused space left. We go to a higher order if more than 1/8th of the slab
1744 * would be wasted.
1745 *
1746 * In order to reach satisfactory performance we must ensure that a minimum
1747 * number of objects is in one slab. Otherwise we may generate too much
1748 * activity on the partial lists which requires taking the list_lock. This is
1749 * less a concern for large slabs though which are rarely used.
1750 *
1751 * slub_max_order specifies the order where we begin to stop considering the
1752 * number of objects in a slab as critical. If we reach slub_max_order then
1753 * we try to keep the page order as low as possible. So we accept more waste
1754 * of space in favor of a small page order.
1755 *
1756 * Higher order allocations also allow the placement of more objects in a
1757 * slab and thereby reduce object handling overhead. If the user has
1758 * requested a higher mininum order then we start with that one instead of
1759 * the smallest order which will fit the object.
1760 */
1761static inline int slab_order(int size, int min_objects,
1762				int max_order, int fract_leftover)
1763{
1764	int order;
1765	int rem;
1766	int min_order = slub_min_order;
1767
1768	for (order = max(min_order,
1769				fls(min_objects * size - 1) - PAGE_SHIFT);
1770			order <= max_order; order++) {
1771
1772		unsigned long slab_size = PAGE_SIZE << order;
1773
1774		if (slab_size < min_objects * size)
1775			continue;
1776
1777		rem = slab_size % size;
1778
1779		if (rem <= slab_size / fract_leftover)
1780			break;
1781
1782	}
1783
1784	return order;
1785}
1786
1787static inline int calculate_order(int size)
1788{
1789	int order;
1790	int min_objects;
1791	int fraction;
1792
1793	/*
1794	 * Attempt to find best configuration for a slab. This
1795	 * works by first attempting to generate a layout with
1796	 * the best configuration and backing off gradually.
1797	 *
1798	 * First we reduce the acceptable waste in a slab. Then
1799	 * we reduce the minimum objects required in a slab.
1800	 */
1801	min_objects = slub_min_objects;
1802	while (min_objects > 1) {
1803		fraction = 8;
1804		while (fraction >= 4) {
1805			order = slab_order(size, min_objects,
1806						slub_max_order, fraction);
1807			if (order <= slub_max_order)
1808				return order;
1809			fraction /= 2;
1810		}
1811		min_objects /= 2;
1812	}
1813
1814	/*
1815	 * We were unable to place multiple objects in a slab. Now
1816	 * lets see if we can place a single object there.
1817	 */
1818	order = slab_order(size, 1, slub_max_order, 1);
1819	if (order <= slub_max_order)
1820		return order;
1821
1822	/*
1823	 * Doh this slab cannot be placed using slub_max_order.
1824	 */
1825	order = slab_order(size, 1, MAX_ORDER, 1);
1826	if (order <= MAX_ORDER)
1827		return order;
1828	return -ENOSYS;
1829}
1830
1831/*
1832 * Figure out what the alignment of the objects will be.
1833 */
1834static unsigned long calculate_alignment(unsigned long flags,
1835		unsigned long align, unsigned long size)
1836{
1837	/*
1838	 * If the user wants hardware cache aligned objects then
1839	 * follow that suggestion if the object is sufficiently
1840	 * large.
1841	 *
1842	 * The hardware cache alignment cannot override the
1843	 * specified alignment though. If that is greater
1844	 * then use it.
1845	 */
1846	if ((flags & SLAB_HWCACHE_ALIGN) &&
1847			size > cache_line_size() / 2)
1848		return max_t(unsigned long, align, cache_line_size());
1849
1850	if (align < ARCH_SLAB_MINALIGN)
1851		return ARCH_SLAB_MINALIGN;
1852
1853	return ALIGN(align, sizeof(void *));
1854}
1855
1856static void init_kmem_cache_cpu(struct kmem_cache *s,
1857			struct kmem_cache_cpu *c)
1858{
1859	c->page = NULL;
1860	c->freelist = NULL;
1861	c->offset = s->offset / sizeof(void *);
1862	c->node = 0;
1863}
1864
1865static void init_kmem_cache_node(struct kmem_cache_node *n)
1866{
1867	n->nr_partial = 0;
1868	atomic_long_set(&n->nr_slabs, 0);
1869	spin_lock_init(&n->list_lock);
1870	INIT_LIST_HEAD(&n->partial);
1871#ifdef CONFIG_SLUB_DEBUG
1872	INIT_LIST_HEAD(&n->full);
1873#endif
1874}
1875
1876#ifdef CONFIG_SMP
1877/*
1878 * Per cpu array for per cpu structures.
1879 *
1880 * The per cpu array places all kmem_cache_cpu structures from one processor
1881 * close together meaning that it becomes possible that multiple per cpu
1882 * structures are contained in one cacheline. This may be particularly
1883 * beneficial for the kmalloc caches.
1884 *
1885 * A desktop system typically has around 60-80 slabs. With 100 here we are
1886 * likely able to get per cpu structures for all caches from the array defined
1887 * here. We must be able to cover all kmalloc caches during bootstrap.
1888 *
1889 * If the per cpu array is exhausted then fall back to kmalloc
1890 * of individual cachelines. No sharing is possible then.
1891 */
1892#define NR_KMEM_CACHE_CPU 100
1893
1894static DEFINE_PER_CPU(struct kmem_cache_cpu,
1895				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1896
1897static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1898static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1899
1900static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1901							int cpu, gfp_t flags)
1902{
1903	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1904
1905	if (c)
1906		per_cpu(kmem_cache_cpu_free, cpu) =
1907				(void *)c->freelist;
1908	else {
1909		/* Table overflow: So allocate ourselves */
1910		c = kmalloc_node(
1911			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1912			flags, cpu_to_node(cpu));
1913		if (!c)
1914			return NULL;
1915	}
1916
1917	init_kmem_cache_cpu(s, c);
1918	return c;
1919}
1920
1921static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1922{
1923	if (c < per_cpu(kmem_cache_cpu, cpu) ||
1924			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1925		kfree(c);
1926		return;
1927	}
1928	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1929	per_cpu(kmem_cache_cpu_free, cpu) = c;
1930}
1931
1932static void free_kmem_cache_cpus(struct kmem_cache *s)
1933{
1934	int cpu;
1935
1936	for_each_online_cpu(cpu) {
1937		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1938
1939		if (c) {
1940			s->cpu_slab[cpu] = NULL;
1941			free_kmem_cache_cpu(c, cpu);
1942		}
1943	}
1944}
1945
1946static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1947{
1948	int cpu;
1949
1950	for_each_online_cpu(cpu) {
1951		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1952
1953		if (c)
1954			continue;
1955
1956		c = alloc_kmem_cache_cpu(s, cpu, flags);
1957		if (!c) {
1958			free_kmem_cache_cpus(s);
1959			return 0;
1960		}
1961		s->cpu_slab[cpu] = c;
1962	}
1963	return 1;
1964}
1965
1966/*
1967 * Initialize the per cpu array.
1968 */
1969static void init_alloc_cpu_cpu(int cpu)
1970{
1971	int i;
1972
1973	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1974		return;
1975
1976	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1977		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1978
1979	cpu_set(cpu, kmem_cach_cpu_free_init_once);
1980}
1981
1982static void __init init_alloc_cpu(void)
1983{
1984	int cpu;
1985
1986	for_each_online_cpu(cpu)
1987		init_alloc_cpu_cpu(cpu);
1988  }
1989
1990#else
1991static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
1992static inline void init_alloc_cpu(void) {}
1993
1994static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1995{
1996	init_kmem_cache_cpu(s, &s->cpu_slab);
1997	return 1;
1998}
1999#endif
2000
2001#ifdef CONFIG_NUMA
2002/*
2003 * No kmalloc_node yet so do it by hand. We know that this is the first
2004 * slab on the node for this slabcache. There are no concurrent accesses
2005 * possible.
2006 *
2007 * Note that this function only works on the kmalloc_node_cache
2008 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2009 * memory on a fresh node that has no slab structures yet.
2010 */
2011static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2012							   int node)
2013{
2014	struct page *page;
2015	struct kmem_cache_node *n;
2016
2017	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2018
2019	page = new_slab(kmalloc_caches, gfpflags, node);
2020
2021	BUG_ON(!page);
2022	if (page_to_nid(page) != node) {
2023		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2024				"node %d\n", node);
2025		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2026				"in order to be able to continue\n");
2027	}
2028
2029	n = page->freelist;
2030	BUG_ON(!n);
2031	page->freelist = get_freepointer(kmalloc_caches, n);
2032	page->inuse++;
2033	kmalloc_caches->node[node] = n;
2034#ifdef CONFIG_SLUB_DEBUG
2035	init_object(kmalloc_caches, n, 1);
2036	init_tracking(kmalloc_caches, n);
2037#endif
2038	init_kmem_cache_node(n);
2039	atomic_long_inc(&n->nr_slabs);
2040	add_partial(n, page);
2041
2042	/*
2043	 * new_slab() disables interupts. If we do not reenable interrupts here
2044	 * then bootup would continue with interrupts disabled.
2045	 */
2046	local_irq_enable();
2047	return n;
2048}
2049
2050static void free_kmem_cache_nodes(struct kmem_cache *s)
2051{
2052	int node;
2053
2054	for_each_node_state(node, N_NORMAL_MEMORY) {
2055		struct kmem_cache_node *n = s->node[node];
2056		if (n && n != &s->local_node)
2057			kmem_cache_free(kmalloc_caches, n);
2058		s->node[node] = NULL;
2059	}
2060}
2061
2062static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2063{
2064	int node;
2065	int local_node;
2066
2067	if (slab_state >= UP)
2068		local_node = page_to_nid(virt_to_page(s));
2069	else
2070		local_node = 0;
2071
2072	for_each_node_state(node, N_NORMAL_MEMORY) {
2073		struct kmem_cache_node *n;
2074
2075		if (local_node == node)
2076			n = &s->local_node;
2077		else {
2078			if (slab_state == DOWN) {
2079				n = early_kmem_cache_node_alloc(gfpflags,
2080								node);
2081				continue;
2082			}
2083			n = kmem_cache_alloc_node(kmalloc_caches,
2084							gfpflags, node);
2085
2086			if (!n) {
2087				free_kmem_cache_nodes(s);
2088				return 0;
2089			}
2090
2091		}
2092		s->node[node] = n;
2093		init_kmem_cache_node(n);
2094	}
2095	return 1;
2096}
2097#else
2098static void free_kmem_cache_nodes(struct kmem_cache *s)
2099{
2100}
2101
2102static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2103{
2104	init_kmem_cache_node(&s->local_node);
2105	return 1;
2106}
2107#endif
2108
2109/*
2110 * calculate_sizes() determines the order and the distribution of data within
2111 * a slab object.
2112 */
2113static int calculate_sizes(struct kmem_cache *s)
2114{
2115	unsigned long flags = s->flags;
2116	unsigned long size = s->objsize;
2117	unsigned long align = s->align;
2118
2119	/*
2120	 * Determine if we can poison the object itself. If the user of
2121	 * the slab may touch the object after free or before allocation
2122	 * then we should never poison the object itself.
2123	 */
2124	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2125			!s->ctor)
2126		s->flags |= __OBJECT_POISON;
2127	else
2128		s->flags &= ~__OBJECT_POISON;
2129
2130	/*
2131	 * Round up object size to the next word boundary. We can only
2132	 * place the free pointer at word boundaries and this determines
2133	 * the possible location of the free pointer.
2134	 */
2135	size = ALIGN(size, sizeof(void *));
2136
2137#ifdef CONFIG_SLUB_DEBUG
2138	/*
2139	 * If we are Redzoning then check if there is some space between the
2140	 * end of the object and the free pointer. If not then add an
2141	 * additional word to have some bytes to store Redzone information.
2142	 */
2143	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2144		size += sizeof(void *);
2145#endif
2146
2147	/*
2148	 * With that we have determined the number of bytes in actual use
2149	 * by the object. This is the potential offset to the free pointer.
2150	 */
2151	s->inuse = size;
2152
2153	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2154		s->ctor)) {
2155		/*
2156		 * Relocate free pointer after the object if it is not
2157		 * permitted to overwrite the first word of the object on
2158		 * kmem_cache_free.
2159		 *
2160		 * This is the case if we do RCU, have a constructor or
2161		 * destructor or are poisoning the objects.
2162		 */
2163		s->offset = size;
2164		size += sizeof(void *);
2165	}
2166
2167#ifdef CONFIG_SLUB_DEBUG
2168	if (flags & SLAB_STORE_USER)
2169		/*
2170		 * Need to store information about allocs and frees after
2171		 * the object.
2172		 */
2173		size += 2 * sizeof(struct track);
2174
2175	if (flags & SLAB_RED_ZONE)
2176		/*
2177		 * Add some empty padding so that we can catch
2178		 * overwrites from earlier objects rather than let
2179		 * tracking information or the free pointer be
2180		 * corrupted if an user writes before the start
2181		 * of the object.
2182		 */
2183		size += sizeof(void *);
2184#endif
2185
2186	/*
2187	 * Determine the alignment based on various parameters that the
2188	 * user specified and the dynamic determination of cache line size
2189	 * on bootup.
2190	 */
2191	align = calculate_alignment(flags, align, s->objsize);
2192
2193	/*
2194	 * SLUB stores one object immediately after another beginning from
2195	 * offset 0. In order to align the objects we have to simply size
2196	 * each object to conform to the alignment.
2197	 */
2198	size = ALIGN(size, align);
2199	s->size = size;
2200
2201	s->order = calculate_order(size);
2202	if (s->order < 0)
2203		return 0;
2204
2205	/*
2206	 * Determine the number of objects per slab
2207	 */
2208	s->objects = (PAGE_SIZE << s->order) / size;
2209
2210	return !!s->objects;
2211
2212}
2213
2214static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2215		const char *name, size_t size,
2216		size_t align, unsigned long flags,
2217		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2218{
2219	memset(s, 0, kmem_size);
2220	s->name = name;
2221	s->ctor = ctor;
2222	s->objsize = size;
2223	s->align = align;
2224	s->flags = kmem_cache_flags(size, flags, name, ctor);
2225
2226	if (!calculate_sizes(s))
2227		goto error;
2228
2229	s->refcount = 1;
2230#ifdef CONFIG_NUMA
2231	s->defrag_ratio = 100;
2232#endif
2233	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2234		goto error;
2235
2236	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2237		return 1;
2238	free_kmem_cache_nodes(s);
2239error:
2240	if (flags & SLAB_PANIC)
2241		panic("Cannot create slab %s size=%lu realsize=%u "
2242			"order=%u offset=%u flags=%lx\n",
2243			s->name, (unsigned long)size, s->size, s->order,
2244			s->offset, flags);
2245	return 0;
2246}
2247
2248/*
2249 * Check if a given pointer is valid
2250 */
2251int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2252{
2253	struct page * page;
2254
2255	page = get_object_page(object);
2256
2257	if (!page || s != page->slab)
2258		/* No slab or wrong slab */
2259		return 0;
2260
2261	if (!check_valid_pointer(s, page, object))
2262		return 0;
2263
2264	/*
2265	 * We could also check if the object is on the slabs freelist.
2266	 * But this would be too expensive and it seems that the main
2267	 * purpose of kmem_ptr_valid is to check if the object belongs
2268	 * to a certain slab.
2269	 */
2270	return 1;
2271}
2272EXPORT_SYMBOL(kmem_ptr_validate);
2273
2274/*
2275 * Determine the size of a slab object
2276 */
2277unsigned int kmem_cache_size(struct kmem_cache *s)
2278{
2279	return s->objsize;
2280}
2281EXPORT_SYMBOL(kmem_cache_size);
2282
2283const char *kmem_cache_name(struct kmem_cache *s)
2284{
2285	return s->name;
2286}
2287EXPORT_SYMBOL(kmem_cache_name);
2288
2289/*
2290 * Attempt to free all slabs on a node. Return the number of slabs we
2291 * were unable to free.
2292 */
2293static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2294			struct list_head *list)
2295{
2296	int slabs_inuse = 0;
2297	unsigned long flags;
2298	struct page *page, *h;
2299
2300	spin_lock_irqsave(&n->list_lock, flags);
2301	list_for_each_entry_safe(page, h, list, lru)
2302		if (!page->inuse) {
2303			list_del(&page->lru);
2304			discard_slab(s, page);
2305		} else
2306			slabs_inuse++;
2307	spin_unlock_irqrestore(&n->list_lock, flags);
2308	return slabs_inuse;
2309}
2310
2311/*
2312 * Release all resources used by a slab cache.
2313 */
2314static inline int kmem_cache_close(struct kmem_cache *s)
2315{
2316	int node;
2317
2318	flush_all(s);
2319
2320	/* Attempt to free all objects */
2321	free_kmem_cache_cpus(s);
2322	for_each_node_state(node, N_NORMAL_MEMORY) {
2323		struct kmem_cache_node *n = get_node(s, node);
2324
2325		n->nr_partial -= free_list(s, n, &n->partial);
2326		if (atomic_long_read(&n->nr_slabs))
2327			return 1;
2328	}
2329	free_kmem_cache_nodes(s);
2330	return 0;
2331}
2332
2333/*
2334 * Close a cache and release the kmem_cache structure
2335 * (must be used for caches created using kmem_cache_create)
2336 */
2337void kmem_cache_destroy(struct kmem_cache *s)
2338{
2339	down_write(&slub_lock);
2340	s->refcount--;
2341	if (!s->refcount) {
2342		list_del(&s->list);
2343		up_write(&slub_lock);
2344		if (kmem_cache_close(s))
2345			WARN_ON(1);
2346		sysfs_slab_remove(s);
2347		kfree(s);
2348	} else
2349		up_write(&slub_lock);
2350}
2351EXPORT_SYMBOL(kmem_cache_destroy);
2352
2353/********************************************************************
2354 *		Kmalloc subsystem
2355 *******************************************************************/
2356
2357struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2358EXPORT_SYMBOL(kmalloc_caches);
2359
2360#ifdef CONFIG_ZONE_DMA
2361static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2362#endif
2363
2364static int __init setup_slub_min_order(char *str)
2365{
2366	get_option (&str, &slub_min_order);
2367
2368	return 1;
2369}
2370
2371__setup("slub_min_order=", setup_slub_min_order);
2372
2373static int __init setup_slub_max_order(char *str)
2374{
2375	get_option (&str, &slub_max_order);
2376
2377	return 1;
2378}
2379
2380__setup("slub_max_order=", setup_slub_max_order);
2381
2382static int __init setup_slub_min_objects(char *str)
2383{
2384	get_option (&str, &slub_min_objects);
2385
2386	return 1;
2387}
2388
2389__setup("slub_min_objects=", setup_slub_min_objects);
2390
2391static int __init setup_slub_nomerge(char *str)
2392{
2393	slub_nomerge = 1;
2394	return 1;
2395}
2396
2397__setup("slub_nomerge", setup_slub_nomerge);
2398
2399static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2400		const char *name, int size, gfp_t gfp_flags)
2401{
2402	unsigned int flags = 0;
2403
2404	if (gfp_flags & SLUB_DMA)
2405		flags = SLAB_CACHE_DMA;
2406
2407	down_write(&slub_lock);
2408	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2409			flags, NULL))
2410		goto panic;
2411
2412	list_add(&s->list, &slab_caches);
2413	up_write(&slub_lock);
2414	if (sysfs_slab_add(s))
2415		goto panic;
2416	return s;
2417
2418panic:
2419	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2420}
2421
2422#ifdef CONFIG_ZONE_DMA
2423
2424static void sysfs_add_func(struct work_struct *w)
2425{
2426	struct kmem_cache *s;
2427
2428	down_write(&slub_lock);
2429	list_for_each_entry(s, &slab_caches, list) {
2430		if (s->flags & __SYSFS_ADD_DEFERRED) {
2431			s->flags &= ~__SYSFS_ADD_DEFERRED;
2432			sysfs_slab_add(s);
2433		}
2434	}
2435	up_write(&slub_lock);
2436}
2437
2438static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2439
2440static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2441{
2442	struct kmem_cache *s;
2443	char *text;
2444	size_t realsize;
2445
2446	s = kmalloc_caches_dma[index];
2447	if (s)
2448		return s;
2449
2450	/* Dynamically create dma cache */
2451	if (flags & __GFP_WAIT)
2452		down_write(&slub_lock);
2453	else {
2454		if (!down_write_trylock(&slub_lock))
2455			goto out;
2456	}
2457
2458	if (kmalloc_caches_dma[index])
2459		goto unlock_out;
2460
2461	realsize = kmalloc_caches[index].objsize;
2462	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2463	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2464
2465	if (!s || !text || !kmem_cache_open(s, flags, text,
2466			realsize, ARCH_KMALLOC_MINALIGN,
2467			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2468		kfree(s);
2469		kfree(text);
2470		goto unlock_out;
2471	}
2472
2473	list_add(&s->list, &slab_caches);
2474	kmalloc_caches_dma[index] = s;
2475
2476	schedule_work(&sysfs_add_work);
2477
2478unlock_out:
2479	up_write(&slub_lock);
2480out:
2481	return kmalloc_caches_dma[index];
2482}
2483#endif
2484
2485/*
2486 * Conversion table for small slabs sizes / 8 to the index in the
2487 * kmalloc array. This is necessary for slabs < 192 since we have non power
2488 * of two cache sizes there. The size of larger slabs can be determined using
2489 * fls.
2490 */
2491static s8 size_index[24] = {
2492	3,	/* 8 */
2493	4,	/* 16 */
2494	5,	/* 24 */
2495	5,	/* 32 */
2496	6,	/* 40 */
2497	6,	/* 48 */
2498	6,	/* 56 */
2499	6,	/* 64 */
2500	1,	/* 72 */
2501	1,	/* 80 */
2502	1,	/* 88 */
2503	1,	/* 96 */
2504	7,	/* 104 */
2505	7,	/* 112 */
2506	7,	/* 120 */
2507	7,	/* 128 */
2508	2,	/* 136 */
2509	2,	/* 144 */
2510	2,	/* 152 */
2511	2,	/* 160 */
2512	2,	/* 168 */
2513	2,	/* 176 */
2514	2,	/* 184 */
2515	2	/* 192 */
2516};
2517
2518static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2519{
2520	int index;
2521
2522	if (size <= 192) {
2523		if (!size)
2524			return ZERO_SIZE_PTR;
2525
2526		index = size_index[(size - 1) / 8];
2527	} else
2528		index = fls(size - 1);
2529
2530#ifdef CONFIG_ZONE_DMA
2531	if (unlikely((flags & SLUB_DMA)))
2532		return dma_kmalloc_cache(index, flags);
2533
2534#endif
2535	return &kmalloc_caches[index];
2536}
2537
2538void *__kmalloc(size_t size, gfp_t flags)
2539{
2540	struct kmem_cache *s;
2541
2542	if (unlikely(size > PAGE_SIZE / 2))
2543		return (void *)__get_free_pages(flags | __GFP_COMP,
2544							get_order(size));
2545
2546	s = get_slab(size, flags);
2547
2548	if (unlikely(ZERO_OR_NULL_PTR(s)))
2549		return s;
2550
2551	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2552}
2553EXPORT_SYMBOL(__kmalloc);
2554
2555#ifdef CONFIG_NUMA
2556void *__kmalloc_node(size_t size, gfp_t flags, int node)
2557{
2558	struct kmem_cache *s;
2559
2560	if (unlikely(size > PAGE_SIZE / 2))
2561		return (void *)__get_free_pages(flags | __GFP_COMP,
2562							get_order(size));
2563
2564	s = get_slab(size, flags);
2565
2566	if (unlikely(ZERO_OR_NULL_PTR(s)))
2567		return s;
2568
2569	return slab_alloc(s, flags, node, __builtin_return_address(0));
2570}
2571EXPORT_SYMBOL(__kmalloc_node);
2572#endif
2573
2574size_t ksize(const void *object)
2575{
2576	struct page *page;
2577	struct kmem_cache *s;
2578
2579	BUG_ON(!object);
2580	if (unlikely(object == ZERO_SIZE_PTR))
2581		return 0;
2582
2583	page = get_object_page(object);
2584	BUG_ON(!page);
2585	s = page->slab;
2586	BUG_ON(!s);
2587
2588	/*
2589	 * Debugging requires use of the padding between object
2590	 * and whatever may come after it.
2591	 */
2592	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2593		return s->objsize;
2594
2595	/*
2596	 * If we have the need to store the freelist pointer
2597	 * back there or track user information then we can
2598	 * only use the space before that information.
2599	 */
2600	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2601		return s->inuse;
2602
2603	/*
2604	 * Else we can use all the padding etc for the allocation
2605	 */
2606	return s->size;
2607}
2608EXPORT_SYMBOL(ksize);
2609
2610void kfree(const void *x)
2611{
2612	struct page *page;
2613
2614	if (unlikely(ZERO_OR_NULL_PTR(x)))
2615		return;
2616
2617	page = virt_to_head_page(x);
2618	if (unlikely(!PageSlab(page))) {
2619		put_page(page);
2620		return;
2621	}
2622	slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2623}
2624EXPORT_SYMBOL(kfree);
2625
2626/*
2627 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2628 * the remaining slabs by the number of items in use. The slabs with the
2629 * most items in use come first. New allocations will then fill those up
2630 * and thus they can be removed from the partial lists.
2631 *
2632 * The slabs with the least items are placed last. This results in them
2633 * being allocated from last increasing the chance that the last objects
2634 * are freed in them.
2635 */
2636int kmem_cache_shrink(struct kmem_cache *s)
2637{
2638	int node;
2639	int i;
2640	struct kmem_cache_node *n;
2641	struct page *page;
2642	struct page *t;
2643	struct list_head *slabs_by_inuse =
2644		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2645	unsigned long flags;
2646
2647	if (!slabs_by_inuse)
2648		return -ENOMEM;
2649
2650	flush_all(s);
2651	for_each_node_state(node, N_NORMAL_MEMORY) {
2652		n = get_node(s, node);
2653
2654		if (!n->nr_partial)
2655			continue;
2656
2657		for (i = 0; i < s->objects; i++)
2658			INIT_LIST_HEAD(slabs_by_inuse + i);
2659
2660		spin_lock_irqsave(&n->list_lock, flags);
2661
2662		/*
2663		 * Build lists indexed by the items in use in each slab.
2664		 *
2665		 * Note that concurrent frees may occur while we hold the
2666		 * list_lock. page->inuse here is the upper limit.
2667		 */
2668		list_for_each_entry_safe(page, t, &n->partial, lru) {
2669			if (!page->inuse && slab_trylock(page)) {
2670				/*
2671				 * Must hold slab lock here because slab_free
2672				 * may have freed the last object and be
2673				 * waiting to release the slab.
2674				 */
2675				list_del(&page->lru);
2676				n->nr_partial--;
2677				slab_unlock(page);
2678				discard_slab(s, page);
2679			} else {
2680				list_move(&page->lru,
2681				slabs_by_inuse + page->inuse);
2682			}
2683		}
2684
2685		/*
2686		 * Rebuild the partial list with the slabs filled up most
2687		 * first and the least used slabs at the end.
2688		 */
2689		for (i = s->objects - 1; i >= 0; i--)
2690			list_splice(slabs_by_inuse + i, n->partial.prev);
2691
2692		spin_unlock_irqrestore(&n->list_lock, flags);
2693	}
2694
2695	kfree(slabs_by_inuse);
2696	return 0;
2697}
2698EXPORT_SYMBOL(kmem_cache_shrink);
2699
2700/********************************************************************
2701 *			Basic setup of slabs
2702 *******************************************************************/
2703
2704void __init kmem_cache_init(void)
2705{
2706	int i;
2707	int caches = 0;
2708
2709	init_alloc_cpu();
2710
2711#ifdef CONFIG_NUMA
2712	/*
2713	 * Must first have the slab cache available for the allocations of the
2714	 * struct kmem_cache_node's. There is special bootstrap code in
2715	 * kmem_cache_open for slab_state == DOWN.
2716	 */
2717	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2718		sizeof(struct kmem_cache_node), GFP_KERNEL);
2719	kmalloc_caches[0].refcount = -1;
2720	caches++;
2721#endif
2722
2723	/* Able to allocate the per node structures */
2724	slab_state = PARTIAL;
2725
2726	/* Caches that are not of the two-to-the-power-of size */
2727	if (KMALLOC_MIN_SIZE <= 64) {
2728		create_kmalloc_cache(&kmalloc_caches[1],
2729				"kmalloc-96", 96, GFP_KERNEL);
2730		caches++;
2731	}
2732	if (KMALLOC_MIN_SIZE <= 128) {
2733		create_kmalloc_cache(&kmalloc_caches[2],
2734				"kmalloc-192", 192, GFP_KERNEL);
2735		caches++;
2736	}
2737
2738	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2739		create_kmalloc_cache(&kmalloc_caches[i],
2740			"kmalloc", 1 << i, GFP_KERNEL);
2741		caches++;
2742	}
2743
2744
2745	/*
2746	 * Patch up the size_index table if we have strange large alignment
2747	 * requirements for the kmalloc array. This is only the case for
2748	 * mips it seems. The standard arches will not generate any code here.
2749	 *
2750	 * Largest permitted alignment is 256 bytes due to the way we
2751	 * handle the index determination for the smaller caches.
2752	 *
2753	 * Make sure that nothing crazy happens if someone starts tinkering
2754	 * around with ARCH_KMALLOC_MINALIGN
2755	 */
2756	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2757		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2758
2759	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2760		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2761
2762	slab_state = UP;
2763
2764	/* Provide the correct kmalloc names now that the caches are up */
2765	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2766		kmalloc_caches[i]. name =
2767			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2768
2769#ifdef CONFIG_SMP
2770	register_cpu_notifier(&slab_notifier);
2771	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2772				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2773#else
2774	kmem_size = sizeof(struct kmem_cache);
2775#endif
2776
2777
2778	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2779		" CPUs=%d, Nodes=%d\n",
2780		caches, cache_line_size(),
2781		slub_min_order, slub_max_order, slub_min_objects,
2782		nr_cpu_ids, nr_node_ids);
2783}
2784
2785/*
2786 * Find a mergeable slab cache
2787 */
2788static int slab_unmergeable(struct kmem_cache *s)
2789{
2790	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2791		return 1;
2792
2793	if (s->ctor)
2794		return 1;
2795
2796	/*
2797	 * We may have set a slab to be unmergeable during bootstrap.
2798	 */
2799	if (s->refcount < 0)
2800		return 1;
2801
2802	return 0;
2803}
2804
2805static struct kmem_cache *find_mergeable(size_t size,
2806		size_t align, unsigned long flags, const char *name,
2807		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2808{
2809	struct kmem_cache *s;
2810
2811	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2812		return NULL;
2813
2814	if (ctor)
2815		return NULL;
2816
2817	size = ALIGN(size, sizeof(void *));
2818	align = calculate_alignment(flags, align, size);
2819	size = ALIGN(size, align);
2820	flags = kmem_cache_flags(size, flags, name, NULL);
2821
2822	list_for_each_entry(s, &slab_caches, list) {
2823		if (slab_unmergeable(s))
2824			continue;
2825
2826		if (size > s->size)
2827			continue;
2828
2829		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2830				continue;
2831		/*
2832		 * Check if alignment is compatible.
2833		 * Courtesy of Adrian Drzewiecki
2834		 */
2835		if ((s->size & ~(align -1)) != s->size)
2836			continue;
2837
2838		if (s->size - size >= sizeof(void *))
2839			continue;
2840
2841		return s;
2842	}
2843	return NULL;
2844}
2845
2846struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2847		size_t align, unsigned long flags,
2848		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2849{
2850	struct kmem_cache *s;
2851
2852	down_write(&slub_lock);
2853	s = find_mergeable(size, align, flags, name, ctor);
2854	if (s) {
2855		s->refcount++;
2856		/*
2857		 * Adjust the object sizes so that we clear
2858		 * the complete object on kzalloc.
2859		 */
2860		s->objsize = max(s->objsize, (int)size);
2861		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2862		up_write(&slub_lock);
2863		if (sysfs_slab_alias(s, name))
2864			goto err;
2865		return s;
2866	}
2867	s = kmalloc(kmem_size, GFP_KERNEL);
2868	if (s) {
2869		if (kmem_cache_open(s, GFP_KERNEL, name,
2870				size, align, flags, ctor)) {
2871			list_add(&s->list, &slab_caches);
2872			up_write(&slub_lock);
2873			if (sysfs_slab_add(s))
2874				goto err;
2875			return s;
2876		}
2877		kfree(s);
2878	}
2879	up_write(&slub_lock);
2880
2881err:
2882	if (flags & SLAB_PANIC)
2883		panic("Cannot create slabcache %s\n", name);
2884	else
2885		s = NULL;
2886	return s;
2887}
2888EXPORT_SYMBOL(kmem_cache_create);
2889
2890#ifdef CONFIG_SMP
2891/*
2892 * Use the cpu notifier to insure that the cpu slabs are flushed when
2893 * necessary.
2894 */
2895static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2896		unsigned long action, void *hcpu)
2897{
2898	long cpu = (long)hcpu;
2899	struct kmem_cache *s;
2900	unsigned long flags;
2901
2902	switch (action) {
2903	case CPU_UP_PREPARE:
2904	case CPU_UP_PREPARE_FROZEN:
2905		init_alloc_cpu_cpu(cpu);
2906		down_read(&slub_lock);
2907		list_for_each_entry(s, &slab_caches, list)
2908			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
2909							GFP_KERNEL);
2910		up_read(&slub_lock);
2911		break;
2912
2913	case CPU_UP_CANCELED:
2914	case CPU_UP_CANCELED_FROZEN:
2915	case CPU_DEAD:
2916	case CPU_DEAD_FROZEN:
2917		down_read(&slub_lock);
2918		list_for_each_entry(s, &slab_caches, list) {
2919			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2920
2921			local_irq_save(flags);
2922			__flush_cpu_slab(s, cpu);
2923			local_irq_restore(flags);
2924			free_kmem_cache_cpu(c, cpu);
2925			s->cpu_slab[cpu] = NULL;
2926		}
2927		up_read(&slub_lock);
2928		break;
2929	default:
2930		break;
2931	}
2932	return NOTIFY_OK;
2933}
2934
2935static struct notifier_block __cpuinitdata slab_notifier =
2936	{ &slab_cpuup_callback, NULL, 0 };
2937
2938#endif
2939
2940void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2941{
2942	struct kmem_cache *s;
2943
2944	if (unlikely(size > PAGE_SIZE / 2))
2945		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2946							get_order(size));
2947	s = get_slab(size, gfpflags);
2948
2949	if (unlikely(ZERO_OR_NULL_PTR(s)))
2950		return s;
2951
2952	return slab_alloc(s, gfpflags, -1, caller);
2953}
2954
2955void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2956					int node, void *caller)
2957{
2958	struct kmem_cache *s;
2959
2960	if (unlikely(size > PAGE_SIZE / 2))
2961		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2962							get_order(size));
2963	s = get_slab(size, gfpflags);
2964
2965	if (unlikely(ZERO_OR_NULL_PTR(s)))
2966		return s;
2967
2968	return slab_alloc(s, gfpflags, node, caller);
2969}
2970
2971#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2972static int validate_slab(struct kmem_cache *s, struct page *page,
2973						unsigned long *map)
2974{
2975	void *p;
2976	void *addr = page_address(page);
2977
2978	if (!check_slab(s, page) ||
2979			!on_freelist(s, page, NULL))
2980		return 0;
2981
2982	/* Now we know that a valid freelist exists */
2983	bitmap_zero(map, s->objects);
2984
2985	for_each_free_object(p, s, page->freelist) {
2986		set_bit(slab_index(p, s, addr), map);
2987		if (!check_object(s, page, p, 0))
2988			return 0;
2989	}
2990
2991	for_each_object(p, s, addr)
2992		if (!test_bit(slab_index(p, s, addr), map))
2993			if (!check_object(s, page, p, 1))
2994				return 0;
2995	return 1;
2996}
2997
2998static void validate_slab_slab(struct kmem_cache *s, struct page *page,
2999						unsigned long *map)
3000{
3001	if (slab_trylock(page)) {
3002		validate_slab(s, page, map);
3003		slab_unlock(page);
3004	} else
3005		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3006			s->name, page);
3007
3008	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3009		if (!SlabDebug(page))
3010			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3011				"on slab 0x%p\n", s->name, page);
3012	} else {
3013		if (SlabDebug(page))
3014			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3015				"slab 0x%p\n", s->name, page);
3016	}
3017}
3018
3019static int validate_slab_node(struct kmem_cache *s,
3020		struct kmem_cache_node *n, unsigned long *map)
3021{
3022	unsigned long count = 0;
3023	struct page *page;
3024	unsigned long flags;
3025
3026	spin_lock_irqsave(&n->list_lock, flags);
3027
3028	list_for_each_entry(page, &n->partial, lru) {
3029		validate_slab_slab(s, page, map);
3030		count++;
3031	}
3032	if (count != n->nr_partial)
3033		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3034			"counter=%ld\n", s->name, count, n->nr_partial);
3035
3036	if (!(s->flags & SLAB_STORE_USER))
3037		goto out;
3038
3039	list_for_each_entry(page, &n->full, lru) {
3040		validate_slab_slab(s, page, map);
3041		count++;
3042	}
3043	if (count != atomic_long_read(&n->nr_slabs))
3044		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3045			"counter=%ld\n", s->name, count,
3046			atomic_long_read(&n->nr_slabs));
3047
3048out:
3049	spin_unlock_irqrestore(&n->list_lock, flags);
3050	return count;
3051}
3052
3053static long validate_slab_cache(struct kmem_cache *s)
3054{
3055	int node;
3056	unsigned long count = 0;
3057	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3058				sizeof(unsigned long), GFP_KERNEL);
3059
3060	if (!map)
3061		return -ENOMEM;
3062
3063	flush_all(s);
3064	for_each_node_state(node, N_NORMAL_MEMORY) {
3065		struct kmem_cache_node *n = get_node(s, node);
3066
3067		count += validate_slab_node(s, n, map);
3068	}
3069	kfree(map);
3070	return count;
3071}
3072
3073#ifdef SLUB_RESILIENCY_TEST
3074static void resiliency_test(void)
3075{
3076	u8 *p;
3077
3078	printk(KERN_ERR "SLUB resiliency testing\n");
3079	printk(KERN_ERR "-----------------------\n");
3080	printk(KERN_ERR "A. Corruption after allocation\n");
3081
3082	p = kzalloc(16, GFP_KERNEL);
3083	p[16] = 0x12;
3084	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3085			" 0x12->0x%p\n\n", p + 16);
3086
3087	validate_slab_cache(kmalloc_caches + 4);
3088
3089	/* Hmmm... The next two are dangerous */
3090	p = kzalloc(32, GFP_KERNEL);
3091	p[32 + sizeof(void *)] = 0x34;
3092	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3093		 	" 0x34 -> -0x%p\n", p);
3094	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3095
3096	validate_slab_cache(kmalloc_caches + 5);
3097	p = kzalloc(64, GFP_KERNEL);
3098	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3099	*p = 0x56;
3100	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3101									p);
3102	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3103	validate_slab_cache(kmalloc_caches + 6);
3104
3105	printk(KERN_ERR "\nB. Corruption after free\n");
3106	p = kzalloc(128, GFP_KERNEL);
3107	kfree(p);
3108	*p = 0x78;
3109	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3110	validate_slab_cache(kmalloc_caches + 7);
3111
3112	p = kzalloc(256, GFP_KERNEL);
3113	kfree(p);
3114	p[50] = 0x9a;
3115	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3116	validate_slab_cache(kmalloc_caches + 8);
3117
3118	p = kzalloc(512, GFP_KERNEL);
3119	kfree(p);
3120	p[512] = 0xab;
3121	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3122	validate_slab_cache(kmalloc_caches + 9);
3123}
3124#else
3125static void resiliency_test(void) {};
3126#endif
3127
3128/*
3129 * Generate lists of code addresses where slabcache objects are allocated
3130 * and freed.
3131 */
3132
3133struct location {
3134	unsigned long count;
3135	void *addr;
3136	long long sum_time;
3137	long min_time;
3138	long max_time;
3139	long min_pid;
3140	long max_pid;
3141	cpumask_t cpus;
3142	nodemask_t nodes;
3143};
3144
3145struct loc_track {
3146	unsigned long max;
3147	unsigned long count;
3148	struct location *loc;
3149};
3150
3151static void free_loc_track(struct loc_track *t)
3152{
3153	if (t->max)
3154		free_pages((unsigned long)t->loc,
3155			get_order(sizeof(struct location) * t->max));
3156}
3157
3158static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3159{
3160	struct location *l;
3161	int order;
3162
3163	order = get_order(sizeof(struct location) * max);
3164
3165	l = (void *)__get_free_pages(flags, order);
3166	if (!l)
3167		return 0;
3168
3169	if (t->count) {
3170		memcpy(l, t->loc, sizeof(struct location) * t->count);
3171		free_loc_track(t);
3172	}
3173	t->max = max;
3174	t->loc = l;
3175	return 1;
3176}
3177
3178static int add_location(struct loc_track *t, struct kmem_cache *s,
3179				const struct track *track)
3180{
3181	long start, end, pos;
3182	struct location *l;
3183	void *caddr;
3184	unsigned long age = jiffies - track->when;
3185
3186	start = -1;
3187	end = t->count;
3188
3189	for ( ; ; ) {
3190		pos = start + (end - start + 1) / 2;
3191
3192		/*
3193		 * There is nothing at "end". If we end up there
3194		 * we need to add something to before end.
3195		 */
3196		if (pos == end)
3197			break;
3198
3199		caddr = t->loc[pos].addr;
3200		if (track->addr == caddr) {
3201
3202			l = &t->loc[pos];
3203			l->count++;
3204			if (track->when) {
3205				l->sum_time += age;
3206				if (age < l->min_time)
3207					l->min_time = age;
3208				if (age > l->max_time)
3209					l->max_time = age;
3210
3211				if (track->pid < l->min_pid)
3212					l->min_pid = track->pid;
3213				if (track->pid > l->max_pid)
3214					l->max_pid = track->pid;
3215
3216				cpu_set(track->cpu, l->cpus);
3217			}
3218			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3219			return 1;
3220		}
3221
3222		if (track->addr < caddr)
3223			end = pos;
3224		else
3225			start = pos;
3226	}
3227
3228	/*
3229	 * Not found. Insert new tracking element.
3230	 */
3231	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3232		return 0;
3233
3234	l = t->loc + pos;
3235	if (pos < t->count)
3236		memmove(l + 1, l,
3237			(t->count - pos) * sizeof(struct location));
3238	t->count++;
3239	l->count = 1;
3240	l->addr = track->addr;
3241	l->sum_time = age;
3242	l->min_time = age;
3243	l->max_time = age;
3244	l->min_pid = track->pid;
3245	l->max_pid = track->pid;
3246	cpus_clear(l->cpus);
3247	cpu_set(track->cpu, l->cpus);
3248	nodes_clear(l->nodes);
3249	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3250	return 1;
3251}
3252
3253static void process_slab(struct loc_track *t, struct kmem_cache *s,
3254		struct page *page, enum track_item alloc)
3255{
3256	void *addr = page_address(page);
3257	DECLARE_BITMAP(map, s->objects);
3258	void *p;
3259
3260	bitmap_zero(map, s->objects);
3261	for_each_free_object(p, s, page->freelist)
3262		set_bit(slab_index(p, s, addr), map);
3263
3264	for_each_object(p, s, addr)
3265		if (!test_bit(slab_index(p, s, addr), map))
3266			add_location(t, s, get_track(s, p, alloc));
3267}
3268
3269static int list_locations(struct kmem_cache *s, char *buf,
3270					enum track_item alloc)
3271{
3272	int n = 0;
3273	unsigned long i;
3274	struct loc_track t = { 0, 0, NULL };
3275	int node;
3276
3277	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3278			GFP_KERNEL))
3279		return sprintf(buf, "Out of memory\n");
3280
3281	/* Push back cpu slabs */
3282	flush_all(s);
3283
3284	for_each_node_state(node, N_NORMAL_MEMORY) {
3285		struct kmem_cache_node *n = get_node(s, node);
3286		unsigned long flags;
3287		struct page *page;
3288
3289		if (!atomic_long_read(&n->nr_slabs))
3290			continue;
3291
3292		spin_lock_irqsave(&n->list_lock, flags);
3293		list_for_each_entry(page, &n->partial, lru)
3294			process_slab(&t, s, page, alloc);
3295		list_for_each_entry(page, &n->full, lru)
3296			process_slab(&t, s, page, alloc);
3297		spin_unlock_irqrestore(&n->list_lock, flags);
3298	}
3299
3300	for (i = 0; i < t.count; i++) {
3301		struct location *l = &t.loc[i];
3302
3303		if (n > PAGE_SIZE - 100)
3304			break;
3305		n += sprintf(buf + n, "%7ld ", l->count);
3306
3307		if (l->addr)
3308			n += sprint_symbol(buf + n, (unsigned long)l->addr);
3309		else
3310			n += sprintf(buf + n, "<not-available>");
3311
3312		if (l->sum_time != l->min_time) {
3313			unsigned long remainder;
3314
3315			n += sprintf(buf + n, " age=%ld/%ld/%ld",
3316			l->min_time,
3317			div_long_long_rem(l->sum_time, l->count, &remainder),
3318			l->max_time);
3319		} else
3320			n += sprintf(buf + n, " age=%ld",
3321				l->min_time);
3322
3323		if (l->min_pid != l->max_pid)
3324			n += sprintf(buf + n, " pid=%ld-%ld",
3325				l->min_pid, l->max_pid);
3326		else
3327			n += sprintf(buf + n, " pid=%ld",
3328				l->min_pid);
3329
3330		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3331				n < PAGE_SIZE - 60) {
3332			n += sprintf(buf + n, " cpus=");
3333			n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3334					l->cpus);
3335		}
3336
3337		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3338				n < PAGE_SIZE - 60) {
3339			n += sprintf(buf + n, " nodes=");
3340			n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3341					l->nodes);
3342		}
3343
3344		n += sprintf(buf + n, "\n");
3345	}
3346
3347	free_loc_track(&t);
3348	if (!t.count)
3349		n += sprintf(buf, "No data\n");
3350	return n;
3351}
3352
3353static unsigned long count_partial(struct kmem_cache_node *n)
3354{
3355	unsigned long flags;
3356	unsigned long x = 0;
3357	struct page *page;
3358
3359	spin_lock_irqsave(&n->list_lock, flags);
3360	list_for_each_entry(page, &n->partial, lru)
3361		x += page->inuse;
3362	spin_unlock_irqrestore(&n->list_lock, flags);
3363	return x;
3364}
3365
3366enum slab_stat_type {
3367	SL_FULL,
3368	SL_PARTIAL,
3369	SL_CPU,
3370	SL_OBJECTS
3371};
3372
3373#define SO_FULL		(1 << SL_FULL)
3374#define SO_PARTIAL	(1 << SL_PARTIAL)
3375#define SO_CPU		(1 << SL_CPU)
3376#define SO_OBJECTS	(1 << SL_OBJECTS)
3377
3378static unsigned long slab_objects(struct kmem_cache *s,
3379			char *buf, unsigned long flags)
3380{
3381	unsigned long total = 0;
3382	int cpu;
3383	int node;
3384	int x;
3385	unsigned long *nodes;
3386	unsigned long *per_cpu;
3387
3388	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3389	per_cpu = nodes + nr_node_ids;
3390
3391	for_each_possible_cpu(cpu) {
3392		struct page *page;
3393		int node;
3394		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3395
3396		if (!c)
3397			continue;
3398
3399		page = c->page;
3400		node = c->node;
3401		if (node < 0)
3402			continue;
3403		if (page) {
3404			if (flags & SO_CPU) {
3405				int x = 0;
3406
3407				if (flags & SO_OBJECTS)
3408					x = page->inuse;
3409				else
3410					x = 1;
3411				total += x;
3412				nodes[node] += x;
3413			}
3414			per_cpu[node]++;
3415		}
3416	}
3417
3418	for_each_node_state(node, N_NORMAL_MEMORY) {
3419		struct kmem_cache_node *n = get_node(s, node);
3420
3421		if (flags & SO_PARTIAL) {
3422			if (flags & SO_OBJECTS)
3423				x = count_partial(n);
3424			else
3425				x = n->nr_partial;
3426			total += x;
3427			nodes[node] += x;
3428		}
3429
3430		if (flags & SO_FULL) {
3431			int full_slabs = atomic_long_read(&n->nr_slabs)
3432					- per_cpu[node]
3433					- n->nr_partial;
3434
3435			if (flags & SO_OBJECTS)
3436				x = full_slabs * s->objects;
3437			else
3438				x = full_slabs;
3439			total += x;
3440			nodes[node] += x;
3441		}
3442	}
3443
3444	x = sprintf(buf, "%lu", total);
3445#ifdef CONFIG_NUMA
3446	for_each_node_state(node, N_NORMAL_MEMORY)
3447		if (nodes[node])
3448			x += sprintf(buf + x, " N%d=%lu",
3449					node, nodes[node]);
3450#endif
3451	kfree(nodes);
3452	return x + sprintf(buf + x, "\n");
3453}
3454
3455static int any_slab_objects(struct kmem_cache *s)
3456{
3457	int node;
3458	int cpu;
3459
3460	for_each_possible_cpu(cpu) {
3461		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3462
3463		if (c && c->page)
3464			return 1;
3465	}
3466
3467	for_each_online_node(node) {
3468		struct kmem_cache_node *n = get_node(s, node);
3469
3470		if (!n)
3471			continue;
3472
3473		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3474			return 1;
3475	}
3476	return 0;
3477}
3478
3479#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3480#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3481
3482struct slab_attribute {
3483	struct attribute attr;
3484	ssize_t (*show)(struct kmem_cache *s, char *buf);
3485	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3486};
3487
3488#define SLAB_ATTR_RO(_name) \
3489	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3490
3491#define SLAB_ATTR(_name) \
3492	static struct slab_attribute _name##_attr =  \
3493	__ATTR(_name, 0644, _name##_show, _name##_store)
3494
3495static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3496{
3497	return sprintf(buf, "%d\n", s->size);
3498}
3499SLAB_ATTR_RO(slab_size);
3500
3501static ssize_t align_show(struct kmem_cache *s, char *buf)
3502{
3503	return sprintf(buf, "%d\n", s->align);
3504}
3505SLAB_ATTR_RO(align);
3506
3507static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3508{
3509	return sprintf(buf, "%d\n", s->objsize);
3510}
3511SLAB_ATTR_RO(object_size);
3512
3513static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3514{
3515	return sprintf(buf, "%d\n", s->objects);
3516}
3517SLAB_ATTR_RO(objs_per_slab);
3518
3519static ssize_t order_show(struct kmem_cache *s, char *buf)
3520{
3521	return sprintf(buf, "%d\n", s->order);
3522}
3523SLAB_ATTR_RO(order);
3524
3525static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3526{
3527	if (s->ctor) {
3528		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3529
3530		return n + sprintf(buf + n, "\n");
3531	}
3532	return 0;
3533}
3534SLAB_ATTR_RO(ctor);
3535
3536static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3537{
3538	return sprintf(buf, "%d\n", s->refcount - 1);
3539}
3540SLAB_ATTR_RO(aliases);
3541
3542static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3543{
3544	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3545}
3546SLAB_ATTR_RO(slabs);
3547
3548static ssize_t partial_show(struct kmem_cache *s, char *buf)
3549{
3550	return slab_objects(s, buf, SO_PARTIAL);
3551}
3552SLAB_ATTR_RO(partial);
3553
3554static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3555{
3556	return slab_objects(s, buf, SO_CPU);
3557}
3558SLAB_ATTR_RO(cpu_slabs);
3559
3560static ssize_t objects_show(struct kmem_cache *s, char *buf)
3561{
3562	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3563}
3564SLAB_ATTR_RO(objects);
3565
3566static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3567{
3568	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3569}
3570
3571static ssize_t sanity_checks_store(struct kmem_cache *s,
3572				const char *buf, size_t length)
3573{
3574	s->flags &= ~SLAB_DEBUG_FREE;
3575	if (buf[0] == '1')
3576		s->flags |= SLAB_DEBUG_FREE;
3577	return length;
3578}
3579SLAB_ATTR(sanity_checks);
3580
3581static ssize_t trace_show(struct kmem_cache *s, char *buf)
3582{
3583	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3584}
3585
3586static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3587							size_t length)
3588{
3589	s->flags &= ~SLAB_TRACE;
3590	if (buf[0] == '1')
3591		s->flags |= SLAB_TRACE;
3592	return length;
3593}
3594SLAB_ATTR(trace);
3595
3596static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3597{
3598	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3599}
3600
3601static ssize_t reclaim_account_store(struct kmem_cache *s,
3602				const char *buf, size_t length)
3603{
3604	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3605	if (buf[0] == '1')
3606		s->flags |= SLAB_RECLAIM_ACCOUNT;
3607	return length;
3608}
3609SLAB_ATTR(reclaim_account);
3610
3611static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3612{
3613	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3614}
3615SLAB_ATTR_RO(hwcache_align);
3616
3617#ifdef CONFIG_ZONE_DMA
3618static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3619{
3620	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3621}
3622SLAB_ATTR_RO(cache_dma);
3623#endif
3624
3625static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3626{
3627	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3628}
3629SLAB_ATTR_RO(destroy_by_rcu);
3630
3631static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3632{
3633	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3634}
3635
3636static ssize_t red_zone_store(struct kmem_cache *s,
3637				const char *buf, size_t length)
3638{
3639	if (any_slab_objects(s))
3640		return -EBUSY;
3641
3642	s->flags &= ~SLAB_RED_ZONE;
3643	if (buf[0] == '1')
3644		s->flags |= SLAB_RED_ZONE;
3645	calculate_sizes(s);
3646	return length;
3647}
3648SLAB_ATTR(red_zone);
3649
3650static ssize_t poison_show(struct kmem_cache *s, char *buf)
3651{
3652	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3653}
3654
3655static ssize_t poison_store(struct kmem_cache *s,
3656				const char *buf, size_t length)
3657{
3658	if (any_slab_objects(s))
3659		return -EBUSY;
3660
3661	s->flags &= ~SLAB_POISON;
3662	if (buf[0] == '1')
3663		s->flags |= SLAB_POISON;
3664	calculate_sizes(s);
3665	return length;
3666}
3667SLAB_ATTR(poison);
3668
3669static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3670{
3671	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3672}
3673
3674static ssize_t store_user_store(struct kmem_cache *s,
3675				const char *buf, size_t length)
3676{
3677	if (any_slab_objects(s))
3678		return -EBUSY;
3679
3680	s->flags &= ~SLAB_STORE_USER;
3681	if (buf[0] == '1')
3682		s->flags |= SLAB_STORE_USER;
3683	calculate_sizes(s);
3684	return length;
3685}
3686SLAB_ATTR(store_user);
3687
3688static ssize_t validate_show(struct kmem_cache *s, char *buf)
3689{
3690	return 0;
3691}
3692
3693static ssize_t validate_store(struct kmem_cache *s,
3694			const char *buf, size_t length)
3695{
3696	int ret = -EINVAL;
3697
3698	if (buf[0] == '1') {
3699		ret = validate_slab_cache(s);
3700		if (ret >= 0)
3701			ret = length;
3702	}
3703	return ret;
3704}
3705SLAB_ATTR(validate);
3706
3707static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3708{
3709	return 0;
3710}
3711
3712static ssize_t shrink_store(struct kmem_cache *s,
3713			const char *buf, size_t length)
3714{
3715	if (buf[0] == '1') {
3716		int rc = kmem_cache_shrink(s);
3717
3718		if (rc)
3719			return rc;
3720	} else
3721		return -EINVAL;
3722	return length;
3723}
3724SLAB_ATTR(shrink);
3725
3726static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3727{
3728	if (!(s->flags & SLAB_STORE_USER))
3729		return -ENOSYS;
3730	return list_locations(s, buf, TRACK_ALLOC);
3731}
3732SLAB_ATTR_RO(alloc_calls);
3733
3734static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3735{
3736	if (!(s->flags & SLAB_STORE_USER))
3737		return -ENOSYS;
3738	return list_locations(s, buf, TRACK_FREE);
3739}
3740SLAB_ATTR_RO(free_calls);
3741
3742#ifdef CONFIG_NUMA
3743static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3744{
3745	return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3746}
3747
3748static ssize_t defrag_ratio_store(struct kmem_cache *s,
3749				const char *buf, size_t length)
3750{
3751	int n = simple_strtoul(buf, NULL, 10);
3752
3753	if (n < 100)
3754		s->defrag_ratio = n * 10;
3755	return length;
3756}
3757SLAB_ATTR(defrag_ratio);
3758#endif
3759
3760static struct attribute * slab_attrs[] = {
3761	&slab_size_attr.attr,
3762	&object_size_attr.attr,
3763	&objs_per_slab_attr.attr,
3764	&order_attr.attr,
3765	&objects_attr.attr,
3766	&slabs_attr.attr,
3767	&partial_attr.attr,
3768	&cpu_slabs_attr.attr,
3769	&ctor_attr.attr,
3770	&aliases_attr.attr,
3771	&align_attr.attr,
3772	&sanity_checks_attr.attr,
3773	&trace_attr.attr,
3774	&hwcache_align_attr.attr,
3775	&reclaim_account_attr.attr,
3776	&destroy_by_rcu_attr.attr,
3777	&red_zone_attr.attr,
3778	&poison_attr.attr,
3779	&store_user_attr.attr,
3780	&validate_attr.attr,
3781	&shrink_attr.attr,
3782	&alloc_calls_attr.attr,
3783	&free_calls_attr.attr,
3784#ifdef CONFIG_ZONE_DMA
3785	&cache_dma_attr.attr,
3786#endif
3787#ifdef CONFIG_NUMA
3788	&defrag_ratio_attr.attr,
3789#endif
3790	NULL
3791};
3792
3793static struct attribute_group slab_attr_group = {
3794	.attrs = slab_attrs,
3795};
3796
3797static ssize_t slab_attr_show(struct kobject *kobj,
3798				struct attribute *attr,
3799				char *buf)
3800{
3801	struct slab_attribute *attribute;
3802	struct kmem_cache *s;
3803	int err;
3804
3805	attribute = to_slab_attr(attr);
3806	s = to_slab(kobj);
3807
3808	if (!attribute->show)
3809		return -EIO;
3810
3811	err = attribute->show(s, buf);
3812
3813	return err;
3814}
3815
3816static ssize_t slab_attr_store(struct kobject *kobj,
3817				struct attribute *attr,
3818				const char *buf, size_t len)
3819{
3820	struct slab_attribute *attribute;
3821	struct kmem_cache *s;
3822	int err;
3823
3824	attribute = to_slab_attr(attr);
3825	s = to_slab(kobj);
3826
3827	if (!attribute->store)
3828		return -EIO;
3829
3830	err = attribute->store(s, buf, len);
3831
3832	return err;
3833}
3834
3835static struct sysfs_ops slab_sysfs_ops = {
3836	.show = slab_attr_show,
3837	.store = slab_attr_store,
3838};
3839
3840static struct kobj_type slab_ktype = {
3841	.sysfs_ops = &slab_sysfs_ops,
3842};
3843
3844static int uevent_filter(struct kset *kset, struct kobject *kobj)
3845{
3846	struct kobj_type *ktype = get_ktype(kobj);
3847
3848	if (ktype == &slab_ktype)
3849		return 1;
3850	return 0;
3851}
3852
3853static struct kset_uevent_ops slab_uevent_ops = {
3854	.filter = uevent_filter,
3855};
3856
3857static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3858
3859#define ID_STR_LENGTH 64
3860
3861/* Create a unique string id for a slab cache:
3862 * format
3863 * :[flags-]size:[memory address of kmemcache]
3864 */
3865static char *create_unique_id(struct kmem_cache *s)
3866{
3867	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3868	char *p = name;
3869
3870	BUG_ON(!name);
3871
3872	*p++ = ':';
3873	/*
3874	 * First flags affecting slabcache operations. We will only
3875	 * get here for aliasable slabs so we do not need to support
3876	 * too many flags. The flags here must cover all flags that
3877	 * are matched during merging to guarantee that the id is
3878	 * unique.
3879	 */
3880	if (s->flags & SLAB_CACHE_DMA)
3881		*p++ = 'd';
3882	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3883		*p++ = 'a';
3884	if (s->flags & SLAB_DEBUG_FREE)
3885		*p++ = 'F';
3886	if (p != name + 1)
3887		*p++ = '-';
3888	p += sprintf(p, "%07d", s->size);
3889	BUG_ON(p > name + ID_STR_LENGTH - 1);
3890	return name;
3891}
3892
3893static int sysfs_slab_add(struct kmem_cache *s)
3894{
3895	int err;
3896	const char *name;
3897	int unmergeable;
3898
3899	if (slab_state < SYSFS)
3900		/* Defer until later */
3901		return 0;
3902
3903	unmergeable = slab_unmergeable(s);
3904	if (unmergeable) {
3905		/*
3906		 * Slabcache can never be merged so we can use the name proper.
3907		 * This is typically the case for debug situations. In that
3908		 * case we can catch duplicate names easily.
3909		 */
3910		sysfs_remove_link(&slab_subsys.kobj, s->name);
3911		name = s->name;
3912	} else {
3913		/*
3914		 * Create a unique name for the slab as a target
3915		 * for the symlinks.
3916		 */
3917		name = create_unique_id(s);
3918	}
3919
3920	kobj_set_kset_s(s, slab_subsys);
3921	kobject_set_name(&s->kobj, name);
3922	kobject_init(&s->kobj);
3923	err = kobject_add(&s->kobj);
3924	if (err)
3925		return err;
3926
3927	err = sysfs_create_group(&s->kobj, &slab_attr_group);
3928	if (err)
3929		return err;
3930	kobject_uevent(&s->kobj, KOBJ_ADD);
3931	if (!unmergeable) {
3932		/* Setup first alias */
3933		sysfs_slab_alias(s, s->name);
3934		kfree(name);
3935	}
3936	return 0;
3937}
3938
3939static void sysfs_slab_remove(struct kmem_cache *s)
3940{
3941	kobject_uevent(&s->kobj, KOBJ_REMOVE);
3942	kobject_del(&s->kobj);
3943}
3944
3945/*
3946 * Need to buffer aliases during bootup until sysfs becomes
3947 * available lest we loose that information.
3948 */
3949struct saved_alias {
3950	struct kmem_cache *s;
3951	const char *name;
3952	struct saved_alias *next;
3953};
3954
3955static struct saved_alias *alias_list;
3956
3957static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3958{
3959	struct saved_alias *al;
3960
3961	if (slab_state == SYSFS) {
3962		/*
3963		 * If we have a leftover link then remove it.
3964		 */
3965		sysfs_remove_link(&slab_subsys.kobj, name);
3966		return sysfs_create_link(&slab_subsys.kobj,
3967						&s->kobj, name);
3968	}
3969
3970	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3971	if (!al)
3972		return -ENOMEM;
3973
3974	al->s = s;
3975	al->name = name;
3976	al->next = alias_list;
3977	alias_list = al;
3978	return 0;
3979}
3980
3981static int __init slab_sysfs_init(void)
3982{
3983	struct kmem_cache *s;
3984	int err;
3985
3986	err = subsystem_register(&slab_subsys);
3987	if (err) {
3988		printk(KERN_ERR "Cannot register slab subsystem.\n");
3989		return -ENOSYS;
3990	}
3991
3992	slab_state = SYSFS;
3993
3994	list_for_each_entry(s, &slab_caches, list) {
3995		err = sysfs_slab_add(s);
3996		if (err)
3997			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
3998						" to sysfs\n", s->name);
3999	}
4000
4001	while (alias_list) {
4002		struct saved_alias *al = alias_list;
4003
4004		alias_list = alias_list->next;
4005		err = sysfs_slab_alias(al->s, al->name);
4006		if (err)
4007			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4008					" %s to sysfs\n", s->name);
4009		kfree(al);
4010	}
4011
4012	resiliency_test();
4013	return 0;
4014}
4015
4016__initcall(slab_sysfs_init);
4017#endif
4018