slub.c revision 5595cffc8248e4672c5803547445e85e4053c8fc
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/debugobjects.h>
23#include <linux/kallsyms.h>
24#include <linux/memory.h>
25#include <linux/math64.h>
26
27/*
28 * Lock order:
29 *   1. slab_lock(page)
30 *   2. slab->list_lock
31 *
32 *   The slab_lock protects operations on the object of a particular
33 *   slab and its metadata in the page struct. If the slab lock
34 *   has been taken then no allocations nor frees can be performed
35 *   on the objects in the slab nor can the slab be added or removed
36 *   from the partial or full lists since this would mean modifying
37 *   the page_struct of the slab.
38 *
39 *   The list_lock protects the partial and full list on each node and
40 *   the partial slab counter. If taken then no new slabs may be added or
41 *   removed from the lists nor make the number of partial slabs be modified.
42 *   (Note that the total number of slabs is an atomic value that may be
43 *   modified without taking the list lock).
44 *
45 *   The list_lock is a centralized lock and thus we avoid taking it as
46 *   much as possible. As long as SLUB does not have to handle partial
47 *   slabs, operations can continue without any centralized lock. F.e.
48 *   allocating a long series of objects that fill up slabs does not require
49 *   the list lock.
50 *
51 *   The lock order is sometimes inverted when we are trying to get a slab
52 *   off a list. We take the list_lock and then look for a page on the list
53 *   to use. While we do that objects in the slabs may be freed. We can
54 *   only operate on the slab if we have also taken the slab_lock. So we use
55 *   a slab_trylock() on the slab. If trylock was successful then no frees
56 *   can occur anymore and we can use the slab for allocations etc. If the
57 *   slab_trylock() does not succeed then frees are in progress in the slab and
58 *   we must stay away from it for a while since we may cause a bouncing
59 *   cacheline if we try to acquire the lock. So go onto the next slab.
60 *   If all pages are busy then we may allocate a new slab instead of reusing
61 *   a partial slab. A new slab has noone operating on it and thus there is
62 *   no danger of cacheline contention.
63 *
64 *   Interrupts are disabled during allocation and deallocation in order to
65 *   make the slab allocator safe to use in the context of an irq. In addition
66 *   interrupts are disabled to ensure that the processor does not change
67 *   while handling per_cpu slabs, due to kernel preemption.
68 *
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
71 *
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
77 *
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
81 *
82 * Overloading of page flags that are otherwise used for LRU management.
83 *
84 * PageActive 		The slab is frozen and exempt from list processing.
85 * 			This means that the slab is dedicated to a purpose
86 * 			such as satisfying allocations for a specific
87 * 			processor. Objects may be freed in the slab while
88 * 			it is frozen but slab_free will then skip the usual
89 * 			list operations. It is up to the processor holding
90 * 			the slab to integrate the slab into the slab lists
91 * 			when the slab is no longer needed.
92 *
93 * 			One use of this flag is to mark slabs that are
94 * 			used for allocations. Then such a slab becomes a cpu
95 * 			slab. The cpu slab may be equipped with an additional
96 * 			freelist that allows lockless access to
97 * 			free objects in addition to the regular freelist
98 * 			that requires the slab lock.
99 *
100 * PageError		Slab requires special handling due to debug
101 * 			options set. This moves	slab handling out of
102 * 			the fast path and disables lockless freelists.
103 */
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG 1
107#else
108#define SLABDEBUG 0
109#endif
110
111/*
112 * Issues still to be resolved:
113 *
114 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
115 *
116 * - Variable sizing of the per node arrays
117 */
118
119/* Enable to test recovery from slab corruption on boot */
120#undef SLUB_RESILIENCY_TEST
121
122/*
123 * Mininum number of partial slabs. These will be left on the partial
124 * lists even if they are empty. kmem_cache_shrink may reclaim them.
125 */
126#define MIN_PARTIAL 5
127
128/*
129 * Maximum number of desirable partial slabs.
130 * The existence of more partial slabs makes kmem_cache_shrink
131 * sort the partial list by the number of objects in the.
132 */
133#define MAX_PARTIAL 10
134
135#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
136				SLAB_POISON | SLAB_STORE_USER)
137
138/*
139 * Set of flags that will prevent slab merging
140 */
141#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
142		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
143
144#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
145		SLAB_CACHE_DMA)
146
147#ifndef ARCH_KMALLOC_MINALIGN
148#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
149#endif
150
151#ifndef ARCH_SLAB_MINALIGN
152#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
153#endif
154
155/* Internal SLUB flags */
156#define __OBJECT_POISON		0x80000000 /* Poison object */
157#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
158
159static int kmem_size = sizeof(struct kmem_cache);
160
161#ifdef CONFIG_SMP
162static struct notifier_block slab_notifier;
163#endif
164
165static enum {
166	DOWN,		/* No slab functionality available */
167	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
168	UP,		/* Everything works but does not show up in sysfs */
169	SYSFS		/* Sysfs up */
170} slab_state = DOWN;
171
172/* A list of all slab caches on the system */
173static DECLARE_RWSEM(slub_lock);
174static LIST_HEAD(slab_caches);
175
176/*
177 * Tracking user of a slab.
178 */
179struct track {
180	void *addr;		/* Called from address */
181	int cpu;		/* Was running on cpu */
182	int pid;		/* Pid context */
183	unsigned long when;	/* When did the operation occur */
184};
185
186enum track_item { TRACK_ALLOC, TRACK_FREE };
187
188#ifdef CONFIG_SLUB_DEBUG
189static int sysfs_slab_add(struct kmem_cache *);
190static int sysfs_slab_alias(struct kmem_cache *, const char *);
191static void sysfs_slab_remove(struct kmem_cache *);
192
193#else
194static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
195static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
196							{ return 0; }
197static inline void sysfs_slab_remove(struct kmem_cache *s)
198{
199	kfree(s);
200}
201
202#endif
203
204static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
205{
206#ifdef CONFIG_SLUB_STATS
207	c->stat[si]++;
208#endif
209}
210
211/********************************************************************
212 * 			Core slab cache functions
213 *******************************************************************/
214
215int slab_is_available(void)
216{
217	return slab_state >= UP;
218}
219
220static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
221{
222#ifdef CONFIG_NUMA
223	return s->node[node];
224#else
225	return &s->local_node;
226#endif
227}
228
229static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
230{
231#ifdef CONFIG_SMP
232	return s->cpu_slab[cpu];
233#else
234	return &s->cpu_slab;
235#endif
236}
237
238/* Verify that a pointer has an address that is valid within a slab page */
239static inline int check_valid_pointer(struct kmem_cache *s,
240				struct page *page, const void *object)
241{
242	void *base;
243
244	if (!object)
245		return 1;
246
247	base = page_address(page);
248	if (object < base || object >= base + page->objects * s->size ||
249		(object - base) % s->size) {
250		return 0;
251	}
252
253	return 1;
254}
255
256/*
257 * Slow version of get and set free pointer.
258 *
259 * This version requires touching the cache lines of kmem_cache which
260 * we avoid to do in the fast alloc free paths. There we obtain the offset
261 * from the page struct.
262 */
263static inline void *get_freepointer(struct kmem_cache *s, void *object)
264{
265	return *(void **)(object + s->offset);
266}
267
268static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
269{
270	*(void **)(object + s->offset) = fp;
271}
272
273/* Loop over all objects in a slab */
274#define for_each_object(__p, __s, __addr, __objects) \
275	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
276			__p += (__s)->size)
277
278/* Scan freelist */
279#define for_each_free_object(__p, __s, __free) \
280	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
281
282/* Determine object index from a given position */
283static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
284{
285	return (p - addr) / s->size;
286}
287
288static inline struct kmem_cache_order_objects oo_make(int order,
289						unsigned long size)
290{
291	struct kmem_cache_order_objects x = {
292		(order << 16) + (PAGE_SIZE << order) / size
293	};
294
295	return x;
296}
297
298static inline int oo_order(struct kmem_cache_order_objects x)
299{
300	return x.x >> 16;
301}
302
303static inline int oo_objects(struct kmem_cache_order_objects x)
304{
305	return x.x & ((1 << 16) - 1);
306}
307
308#ifdef CONFIG_SLUB_DEBUG
309/*
310 * Debug settings:
311 */
312#ifdef CONFIG_SLUB_DEBUG_ON
313static int slub_debug = DEBUG_DEFAULT_FLAGS;
314#else
315static int slub_debug;
316#endif
317
318static char *slub_debug_slabs;
319
320/*
321 * Object debugging
322 */
323static void print_section(char *text, u8 *addr, unsigned int length)
324{
325	int i, offset;
326	int newline = 1;
327	char ascii[17];
328
329	ascii[16] = 0;
330
331	for (i = 0; i < length; i++) {
332		if (newline) {
333			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
334			newline = 0;
335		}
336		printk(KERN_CONT " %02x", addr[i]);
337		offset = i % 16;
338		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
339		if (offset == 15) {
340			printk(KERN_CONT " %s\n", ascii);
341			newline = 1;
342		}
343	}
344	if (!newline) {
345		i %= 16;
346		while (i < 16) {
347			printk(KERN_CONT "   ");
348			ascii[i] = ' ';
349			i++;
350		}
351		printk(KERN_CONT " %s\n", ascii);
352	}
353}
354
355static struct track *get_track(struct kmem_cache *s, void *object,
356	enum track_item alloc)
357{
358	struct track *p;
359
360	if (s->offset)
361		p = object + s->offset + sizeof(void *);
362	else
363		p = object + s->inuse;
364
365	return p + alloc;
366}
367
368static void set_track(struct kmem_cache *s, void *object,
369				enum track_item alloc, void *addr)
370{
371	struct track *p;
372
373	if (s->offset)
374		p = object + s->offset + sizeof(void *);
375	else
376		p = object + s->inuse;
377
378	p += alloc;
379	if (addr) {
380		p->addr = addr;
381		p->cpu = smp_processor_id();
382		p->pid = current->pid;
383		p->when = jiffies;
384	} else
385		memset(p, 0, sizeof(struct track));
386}
387
388static void init_tracking(struct kmem_cache *s, void *object)
389{
390	if (!(s->flags & SLAB_STORE_USER))
391		return;
392
393	set_track(s, object, TRACK_FREE, NULL);
394	set_track(s, object, TRACK_ALLOC, NULL);
395}
396
397static void print_track(const char *s, struct track *t)
398{
399	if (!t->addr)
400		return;
401
402	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
403		s, t->addr, jiffies - t->when, t->cpu, t->pid);
404}
405
406static void print_tracking(struct kmem_cache *s, void *object)
407{
408	if (!(s->flags & SLAB_STORE_USER))
409		return;
410
411	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
412	print_track("Freed", get_track(s, object, TRACK_FREE));
413}
414
415static void print_page_info(struct page *page)
416{
417	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
418		page, page->objects, page->inuse, page->freelist, page->flags);
419
420}
421
422static void slab_bug(struct kmem_cache *s, char *fmt, ...)
423{
424	va_list args;
425	char buf[100];
426
427	va_start(args, fmt);
428	vsnprintf(buf, sizeof(buf), fmt, args);
429	va_end(args);
430	printk(KERN_ERR "========================================"
431			"=====================================\n");
432	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
433	printk(KERN_ERR "----------------------------------------"
434			"-------------------------------------\n\n");
435}
436
437static void slab_fix(struct kmem_cache *s, char *fmt, ...)
438{
439	va_list args;
440	char buf[100];
441
442	va_start(args, fmt);
443	vsnprintf(buf, sizeof(buf), fmt, args);
444	va_end(args);
445	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
446}
447
448static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
449{
450	unsigned int off;	/* Offset of last byte */
451	u8 *addr = page_address(page);
452
453	print_tracking(s, p);
454
455	print_page_info(page);
456
457	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
458			p, p - addr, get_freepointer(s, p));
459
460	if (p > addr + 16)
461		print_section("Bytes b4", p - 16, 16);
462
463	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
464
465	if (s->flags & SLAB_RED_ZONE)
466		print_section("Redzone", p + s->objsize,
467			s->inuse - s->objsize);
468
469	if (s->offset)
470		off = s->offset + sizeof(void *);
471	else
472		off = s->inuse;
473
474	if (s->flags & SLAB_STORE_USER)
475		off += 2 * sizeof(struct track);
476
477	if (off != s->size)
478		/* Beginning of the filler is the free pointer */
479		print_section("Padding", p + off, s->size - off);
480
481	dump_stack();
482}
483
484static void object_err(struct kmem_cache *s, struct page *page,
485			u8 *object, char *reason)
486{
487	slab_bug(s, "%s", reason);
488	print_trailer(s, page, object);
489}
490
491static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
492{
493	va_list args;
494	char buf[100];
495
496	va_start(args, fmt);
497	vsnprintf(buf, sizeof(buf), fmt, args);
498	va_end(args);
499	slab_bug(s, "%s", buf);
500	print_page_info(page);
501	dump_stack();
502}
503
504static void init_object(struct kmem_cache *s, void *object, int active)
505{
506	u8 *p = object;
507
508	if (s->flags & __OBJECT_POISON) {
509		memset(p, POISON_FREE, s->objsize - 1);
510		p[s->objsize - 1] = POISON_END;
511	}
512
513	if (s->flags & SLAB_RED_ZONE)
514		memset(p + s->objsize,
515			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
516			s->inuse - s->objsize);
517}
518
519static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
520{
521	while (bytes) {
522		if (*start != (u8)value)
523			return start;
524		start++;
525		bytes--;
526	}
527	return NULL;
528}
529
530static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
531						void *from, void *to)
532{
533	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
534	memset(from, data, to - from);
535}
536
537static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
538			u8 *object, char *what,
539			u8 *start, unsigned int value, unsigned int bytes)
540{
541	u8 *fault;
542	u8 *end;
543
544	fault = check_bytes(start, value, bytes);
545	if (!fault)
546		return 1;
547
548	end = start + bytes;
549	while (end > fault && end[-1] == value)
550		end--;
551
552	slab_bug(s, "%s overwritten", what);
553	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
554					fault, end - 1, fault[0], value);
555	print_trailer(s, page, object);
556
557	restore_bytes(s, what, value, fault, end);
558	return 0;
559}
560
561/*
562 * Object layout:
563 *
564 * object address
565 * 	Bytes of the object to be managed.
566 * 	If the freepointer may overlay the object then the free
567 * 	pointer is the first word of the object.
568 *
569 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
570 * 	0xa5 (POISON_END)
571 *
572 * object + s->objsize
573 * 	Padding to reach word boundary. This is also used for Redzoning.
574 * 	Padding is extended by another word if Redzoning is enabled and
575 * 	objsize == inuse.
576 *
577 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
578 * 	0xcc (RED_ACTIVE) for objects in use.
579 *
580 * object + s->inuse
581 * 	Meta data starts here.
582 *
583 * 	A. Free pointer (if we cannot overwrite object on free)
584 * 	B. Tracking data for SLAB_STORE_USER
585 * 	C. Padding to reach required alignment boundary or at mininum
586 * 		one word if debugging is on to be able to detect writes
587 * 		before the word boundary.
588 *
589 *	Padding is done using 0x5a (POISON_INUSE)
590 *
591 * object + s->size
592 * 	Nothing is used beyond s->size.
593 *
594 * If slabcaches are merged then the objsize and inuse boundaries are mostly
595 * ignored. And therefore no slab options that rely on these boundaries
596 * may be used with merged slabcaches.
597 */
598
599static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
600{
601	unsigned long off = s->inuse;	/* The end of info */
602
603	if (s->offset)
604		/* Freepointer is placed after the object. */
605		off += sizeof(void *);
606
607	if (s->flags & SLAB_STORE_USER)
608		/* We also have user information there */
609		off += 2 * sizeof(struct track);
610
611	if (s->size == off)
612		return 1;
613
614	return check_bytes_and_report(s, page, p, "Object padding",
615				p + off, POISON_INUSE, s->size - off);
616}
617
618/* Check the pad bytes at the end of a slab page */
619static int slab_pad_check(struct kmem_cache *s, struct page *page)
620{
621	u8 *start;
622	u8 *fault;
623	u8 *end;
624	int length;
625	int remainder;
626
627	if (!(s->flags & SLAB_POISON))
628		return 1;
629
630	start = page_address(page);
631	length = (PAGE_SIZE << compound_order(page));
632	end = start + length;
633	remainder = length % s->size;
634	if (!remainder)
635		return 1;
636
637	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
638	if (!fault)
639		return 1;
640	while (end > fault && end[-1] == POISON_INUSE)
641		end--;
642
643	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
644	print_section("Padding", end - remainder, remainder);
645
646	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
647	return 0;
648}
649
650static int check_object(struct kmem_cache *s, struct page *page,
651					void *object, int active)
652{
653	u8 *p = object;
654	u8 *endobject = object + s->objsize;
655
656	if (s->flags & SLAB_RED_ZONE) {
657		unsigned int red =
658			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
659
660		if (!check_bytes_and_report(s, page, object, "Redzone",
661			endobject, red, s->inuse - s->objsize))
662			return 0;
663	} else {
664		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
665			check_bytes_and_report(s, page, p, "Alignment padding",
666				endobject, POISON_INUSE, s->inuse - s->objsize);
667		}
668	}
669
670	if (s->flags & SLAB_POISON) {
671		if (!active && (s->flags & __OBJECT_POISON) &&
672			(!check_bytes_and_report(s, page, p, "Poison", p,
673					POISON_FREE, s->objsize - 1) ||
674			 !check_bytes_and_report(s, page, p, "Poison",
675				p + s->objsize - 1, POISON_END, 1)))
676			return 0;
677		/*
678		 * check_pad_bytes cleans up on its own.
679		 */
680		check_pad_bytes(s, page, p);
681	}
682
683	if (!s->offset && active)
684		/*
685		 * Object and freepointer overlap. Cannot check
686		 * freepointer while object is allocated.
687		 */
688		return 1;
689
690	/* Check free pointer validity */
691	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
692		object_err(s, page, p, "Freepointer corrupt");
693		/*
694		 * No choice but to zap it and thus loose the remainder
695		 * of the free objects in this slab. May cause
696		 * another error because the object count is now wrong.
697		 */
698		set_freepointer(s, p, NULL);
699		return 0;
700	}
701	return 1;
702}
703
704static int check_slab(struct kmem_cache *s, struct page *page)
705{
706	int maxobj;
707
708	VM_BUG_ON(!irqs_disabled());
709
710	if (!PageSlab(page)) {
711		slab_err(s, page, "Not a valid slab page");
712		return 0;
713	}
714
715	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
716	if (page->objects > maxobj) {
717		slab_err(s, page, "objects %u > max %u",
718			s->name, page->objects, maxobj);
719		return 0;
720	}
721	if (page->inuse > page->objects) {
722		slab_err(s, page, "inuse %u > max %u",
723			s->name, page->inuse, page->objects);
724		return 0;
725	}
726	/* Slab_pad_check fixes things up after itself */
727	slab_pad_check(s, page);
728	return 1;
729}
730
731/*
732 * Determine if a certain object on a page is on the freelist. Must hold the
733 * slab lock to guarantee that the chains are in a consistent state.
734 */
735static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
736{
737	int nr = 0;
738	void *fp = page->freelist;
739	void *object = NULL;
740	unsigned long max_objects;
741
742	while (fp && nr <= page->objects) {
743		if (fp == search)
744			return 1;
745		if (!check_valid_pointer(s, page, fp)) {
746			if (object) {
747				object_err(s, page, object,
748					"Freechain corrupt");
749				set_freepointer(s, object, NULL);
750				break;
751			} else {
752				slab_err(s, page, "Freepointer corrupt");
753				page->freelist = NULL;
754				page->inuse = page->objects;
755				slab_fix(s, "Freelist cleared");
756				return 0;
757			}
758			break;
759		}
760		object = fp;
761		fp = get_freepointer(s, object);
762		nr++;
763	}
764
765	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
766	if (max_objects > 65535)
767		max_objects = 65535;
768
769	if (page->objects != max_objects) {
770		slab_err(s, page, "Wrong number of objects. Found %d but "
771			"should be %d", page->objects, max_objects);
772		page->objects = max_objects;
773		slab_fix(s, "Number of objects adjusted.");
774	}
775	if (page->inuse != page->objects - nr) {
776		slab_err(s, page, "Wrong object count. Counter is %d but "
777			"counted were %d", page->inuse, page->objects - nr);
778		page->inuse = page->objects - nr;
779		slab_fix(s, "Object count adjusted.");
780	}
781	return search == NULL;
782}
783
784static void trace(struct kmem_cache *s, struct page *page, void *object,
785								int alloc)
786{
787	if (s->flags & SLAB_TRACE) {
788		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
789			s->name,
790			alloc ? "alloc" : "free",
791			object, page->inuse,
792			page->freelist);
793
794		if (!alloc)
795			print_section("Object", (void *)object, s->objsize);
796
797		dump_stack();
798	}
799}
800
801/*
802 * Tracking of fully allocated slabs for debugging purposes.
803 */
804static void add_full(struct kmem_cache_node *n, struct page *page)
805{
806	spin_lock(&n->list_lock);
807	list_add(&page->lru, &n->full);
808	spin_unlock(&n->list_lock);
809}
810
811static void remove_full(struct kmem_cache *s, struct page *page)
812{
813	struct kmem_cache_node *n;
814
815	if (!(s->flags & SLAB_STORE_USER))
816		return;
817
818	n = get_node(s, page_to_nid(page));
819
820	spin_lock(&n->list_lock);
821	list_del(&page->lru);
822	spin_unlock(&n->list_lock);
823}
824
825/* Tracking of the number of slabs for debugging purposes */
826static inline unsigned long slabs_node(struct kmem_cache *s, int node)
827{
828	struct kmem_cache_node *n = get_node(s, node);
829
830	return atomic_long_read(&n->nr_slabs);
831}
832
833static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
834{
835	struct kmem_cache_node *n = get_node(s, node);
836
837	/*
838	 * May be called early in order to allocate a slab for the
839	 * kmem_cache_node structure. Solve the chicken-egg
840	 * dilemma by deferring the increment of the count during
841	 * bootstrap (see early_kmem_cache_node_alloc).
842	 */
843	if (!NUMA_BUILD || n) {
844		atomic_long_inc(&n->nr_slabs);
845		atomic_long_add(objects, &n->total_objects);
846	}
847}
848static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
849{
850	struct kmem_cache_node *n = get_node(s, node);
851
852	atomic_long_dec(&n->nr_slabs);
853	atomic_long_sub(objects, &n->total_objects);
854}
855
856/* Object debug checks for alloc/free paths */
857static void setup_object_debug(struct kmem_cache *s, struct page *page,
858								void *object)
859{
860	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
861		return;
862
863	init_object(s, object, 0);
864	init_tracking(s, object);
865}
866
867static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
868						void *object, void *addr)
869{
870	if (!check_slab(s, page))
871		goto bad;
872
873	if (!on_freelist(s, page, object)) {
874		object_err(s, page, object, "Object already allocated");
875		goto bad;
876	}
877
878	if (!check_valid_pointer(s, page, object)) {
879		object_err(s, page, object, "Freelist Pointer check fails");
880		goto bad;
881	}
882
883	if (!check_object(s, page, object, 0))
884		goto bad;
885
886	/* Success perform special debug activities for allocs */
887	if (s->flags & SLAB_STORE_USER)
888		set_track(s, object, TRACK_ALLOC, addr);
889	trace(s, page, object, 1);
890	init_object(s, object, 1);
891	return 1;
892
893bad:
894	if (PageSlab(page)) {
895		/*
896		 * If this is a slab page then lets do the best we can
897		 * to avoid issues in the future. Marking all objects
898		 * as used avoids touching the remaining objects.
899		 */
900		slab_fix(s, "Marking all objects used");
901		page->inuse = page->objects;
902		page->freelist = NULL;
903	}
904	return 0;
905}
906
907static int free_debug_processing(struct kmem_cache *s, struct page *page,
908						void *object, void *addr)
909{
910	if (!check_slab(s, page))
911		goto fail;
912
913	if (!check_valid_pointer(s, page, object)) {
914		slab_err(s, page, "Invalid object pointer 0x%p", object);
915		goto fail;
916	}
917
918	if (on_freelist(s, page, object)) {
919		object_err(s, page, object, "Object already free");
920		goto fail;
921	}
922
923	if (!check_object(s, page, object, 1))
924		return 0;
925
926	if (unlikely(s != page->slab)) {
927		if (!PageSlab(page)) {
928			slab_err(s, page, "Attempt to free object(0x%p) "
929				"outside of slab", object);
930		} else if (!page->slab) {
931			printk(KERN_ERR
932				"SLUB <none>: no slab for object 0x%p.\n",
933						object);
934			dump_stack();
935		} else
936			object_err(s, page, object,
937					"page slab pointer corrupt.");
938		goto fail;
939	}
940
941	/* Special debug activities for freeing objects */
942	if (!PageSlubFrozen(page) && !page->freelist)
943		remove_full(s, page);
944	if (s->flags & SLAB_STORE_USER)
945		set_track(s, object, TRACK_FREE, addr);
946	trace(s, page, object, 0);
947	init_object(s, object, 0);
948	return 1;
949
950fail:
951	slab_fix(s, "Object at 0x%p not freed", object);
952	return 0;
953}
954
955static int __init setup_slub_debug(char *str)
956{
957	slub_debug = DEBUG_DEFAULT_FLAGS;
958	if (*str++ != '=' || !*str)
959		/*
960		 * No options specified. Switch on full debugging.
961		 */
962		goto out;
963
964	if (*str == ',')
965		/*
966		 * No options but restriction on slabs. This means full
967		 * debugging for slabs matching a pattern.
968		 */
969		goto check_slabs;
970
971	slub_debug = 0;
972	if (*str == '-')
973		/*
974		 * Switch off all debugging measures.
975		 */
976		goto out;
977
978	/*
979	 * Determine which debug features should be switched on
980	 */
981	for (; *str && *str != ','; str++) {
982		switch (tolower(*str)) {
983		case 'f':
984			slub_debug |= SLAB_DEBUG_FREE;
985			break;
986		case 'z':
987			slub_debug |= SLAB_RED_ZONE;
988			break;
989		case 'p':
990			slub_debug |= SLAB_POISON;
991			break;
992		case 'u':
993			slub_debug |= SLAB_STORE_USER;
994			break;
995		case 't':
996			slub_debug |= SLAB_TRACE;
997			break;
998		default:
999			printk(KERN_ERR "slub_debug option '%c' "
1000				"unknown. skipped\n", *str);
1001		}
1002	}
1003
1004check_slabs:
1005	if (*str == ',')
1006		slub_debug_slabs = str + 1;
1007out:
1008	return 1;
1009}
1010
1011__setup("slub_debug", setup_slub_debug);
1012
1013static unsigned long kmem_cache_flags(unsigned long objsize,
1014	unsigned long flags, const char *name,
1015	void (*ctor)(void *))
1016{
1017	/*
1018	 * Enable debugging if selected on the kernel commandline.
1019	 */
1020	if (slub_debug && (!slub_debug_slabs ||
1021	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1022			flags |= slub_debug;
1023
1024	return flags;
1025}
1026#else
1027static inline void setup_object_debug(struct kmem_cache *s,
1028			struct page *page, void *object) {}
1029
1030static inline int alloc_debug_processing(struct kmem_cache *s,
1031	struct page *page, void *object, void *addr) { return 0; }
1032
1033static inline int free_debug_processing(struct kmem_cache *s,
1034	struct page *page, void *object, void *addr) { return 0; }
1035
1036static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1037			{ return 1; }
1038static inline int check_object(struct kmem_cache *s, struct page *page,
1039			void *object, int active) { return 1; }
1040static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1041static inline unsigned long kmem_cache_flags(unsigned long objsize,
1042	unsigned long flags, const char *name,
1043	void (*ctor)(void *))
1044{
1045	return flags;
1046}
1047#define slub_debug 0
1048
1049static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050							{ return 0; }
1051static inline void inc_slabs_node(struct kmem_cache *s, int node,
1052							int objects) {}
1053static inline void dec_slabs_node(struct kmem_cache *s, int node,
1054							int objects) {}
1055#endif
1056
1057/*
1058 * Slab allocation and freeing
1059 */
1060static inline struct page *alloc_slab_page(gfp_t flags, int node,
1061					struct kmem_cache_order_objects oo)
1062{
1063	int order = oo_order(oo);
1064
1065	if (node == -1)
1066		return alloc_pages(flags, order);
1067	else
1068		return alloc_pages_node(node, flags, order);
1069}
1070
1071static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1072{
1073	struct page *page;
1074	struct kmem_cache_order_objects oo = s->oo;
1075
1076	flags |= s->allocflags;
1077
1078	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1079									oo);
1080	if (unlikely(!page)) {
1081		oo = s->min;
1082		/*
1083		 * Allocation may have failed due to fragmentation.
1084		 * Try a lower order alloc if possible
1085		 */
1086		page = alloc_slab_page(flags, node, oo);
1087		if (!page)
1088			return NULL;
1089
1090		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1091	}
1092	page->objects = oo_objects(oo);
1093	mod_zone_page_state(page_zone(page),
1094		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1095		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1096		1 << oo_order(oo));
1097
1098	return page;
1099}
1100
1101static void setup_object(struct kmem_cache *s, struct page *page,
1102				void *object)
1103{
1104	setup_object_debug(s, page, object);
1105	if (unlikely(s->ctor))
1106		s->ctor(object);
1107}
1108
1109static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1110{
1111	struct page *page;
1112	void *start;
1113	void *last;
1114	void *p;
1115
1116	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1117
1118	page = allocate_slab(s,
1119		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1120	if (!page)
1121		goto out;
1122
1123	inc_slabs_node(s, page_to_nid(page), page->objects);
1124	page->slab = s;
1125	page->flags |= 1 << PG_slab;
1126	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1127			SLAB_STORE_USER | SLAB_TRACE))
1128		__SetPageSlubDebug(page);
1129
1130	start = page_address(page);
1131
1132	if (unlikely(s->flags & SLAB_POISON))
1133		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1134
1135	last = start;
1136	for_each_object(p, s, start, page->objects) {
1137		setup_object(s, page, last);
1138		set_freepointer(s, last, p);
1139		last = p;
1140	}
1141	setup_object(s, page, last);
1142	set_freepointer(s, last, NULL);
1143
1144	page->freelist = start;
1145	page->inuse = 0;
1146out:
1147	return page;
1148}
1149
1150static void __free_slab(struct kmem_cache *s, struct page *page)
1151{
1152	int order = compound_order(page);
1153	int pages = 1 << order;
1154
1155	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1156		void *p;
1157
1158		slab_pad_check(s, page);
1159		for_each_object(p, s, page_address(page),
1160						page->objects)
1161			check_object(s, page, p, 0);
1162		__ClearPageSlubDebug(page);
1163	}
1164
1165	mod_zone_page_state(page_zone(page),
1166		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1167		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1168		-pages);
1169
1170	__ClearPageSlab(page);
1171	reset_page_mapcount(page);
1172	__free_pages(page, order);
1173}
1174
1175static void rcu_free_slab(struct rcu_head *h)
1176{
1177	struct page *page;
1178
1179	page = container_of((struct list_head *)h, struct page, lru);
1180	__free_slab(page->slab, page);
1181}
1182
1183static void free_slab(struct kmem_cache *s, struct page *page)
1184{
1185	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1186		/*
1187		 * RCU free overloads the RCU head over the LRU
1188		 */
1189		struct rcu_head *head = (void *)&page->lru;
1190
1191		call_rcu(head, rcu_free_slab);
1192	} else
1193		__free_slab(s, page);
1194}
1195
1196static void discard_slab(struct kmem_cache *s, struct page *page)
1197{
1198	dec_slabs_node(s, page_to_nid(page), page->objects);
1199	free_slab(s, page);
1200}
1201
1202/*
1203 * Per slab locking using the pagelock
1204 */
1205static __always_inline void slab_lock(struct page *page)
1206{
1207	bit_spin_lock(PG_locked, &page->flags);
1208}
1209
1210static __always_inline void slab_unlock(struct page *page)
1211{
1212	__bit_spin_unlock(PG_locked, &page->flags);
1213}
1214
1215static __always_inline int slab_trylock(struct page *page)
1216{
1217	int rc = 1;
1218
1219	rc = bit_spin_trylock(PG_locked, &page->flags);
1220	return rc;
1221}
1222
1223/*
1224 * Management of partially allocated slabs
1225 */
1226static void add_partial(struct kmem_cache_node *n,
1227				struct page *page, int tail)
1228{
1229	spin_lock(&n->list_lock);
1230	n->nr_partial++;
1231	if (tail)
1232		list_add_tail(&page->lru, &n->partial);
1233	else
1234		list_add(&page->lru, &n->partial);
1235	spin_unlock(&n->list_lock);
1236}
1237
1238static void remove_partial(struct kmem_cache *s, struct page *page)
1239{
1240	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1241
1242	spin_lock(&n->list_lock);
1243	list_del(&page->lru);
1244	n->nr_partial--;
1245	spin_unlock(&n->list_lock);
1246}
1247
1248/*
1249 * Lock slab and remove from the partial list.
1250 *
1251 * Must hold list_lock.
1252 */
1253static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1254							struct page *page)
1255{
1256	if (slab_trylock(page)) {
1257		list_del(&page->lru);
1258		n->nr_partial--;
1259		__SetPageSlubFrozen(page);
1260		return 1;
1261	}
1262	return 0;
1263}
1264
1265/*
1266 * Try to allocate a partial slab from a specific node.
1267 */
1268static struct page *get_partial_node(struct kmem_cache_node *n)
1269{
1270	struct page *page;
1271
1272	/*
1273	 * Racy check. If we mistakenly see no partial slabs then we
1274	 * just allocate an empty slab. If we mistakenly try to get a
1275	 * partial slab and there is none available then get_partials()
1276	 * will return NULL.
1277	 */
1278	if (!n || !n->nr_partial)
1279		return NULL;
1280
1281	spin_lock(&n->list_lock);
1282	list_for_each_entry(page, &n->partial, lru)
1283		if (lock_and_freeze_slab(n, page))
1284			goto out;
1285	page = NULL;
1286out:
1287	spin_unlock(&n->list_lock);
1288	return page;
1289}
1290
1291/*
1292 * Get a page from somewhere. Search in increasing NUMA distances.
1293 */
1294static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1295{
1296#ifdef CONFIG_NUMA
1297	struct zonelist *zonelist;
1298	struct zoneref *z;
1299	struct zone *zone;
1300	enum zone_type high_zoneidx = gfp_zone(flags);
1301	struct page *page;
1302
1303	/*
1304	 * The defrag ratio allows a configuration of the tradeoffs between
1305	 * inter node defragmentation and node local allocations. A lower
1306	 * defrag_ratio increases the tendency to do local allocations
1307	 * instead of attempting to obtain partial slabs from other nodes.
1308	 *
1309	 * If the defrag_ratio is set to 0 then kmalloc() always
1310	 * returns node local objects. If the ratio is higher then kmalloc()
1311	 * may return off node objects because partial slabs are obtained
1312	 * from other nodes and filled up.
1313	 *
1314	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1315	 * defrag_ratio = 1000) then every (well almost) allocation will
1316	 * first attempt to defrag slab caches on other nodes. This means
1317	 * scanning over all nodes to look for partial slabs which may be
1318	 * expensive if we do it every time we are trying to find a slab
1319	 * with available objects.
1320	 */
1321	if (!s->remote_node_defrag_ratio ||
1322			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1323		return NULL;
1324
1325	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1326	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1327		struct kmem_cache_node *n;
1328
1329		n = get_node(s, zone_to_nid(zone));
1330
1331		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1332				n->nr_partial > n->min_partial) {
1333			page = get_partial_node(n);
1334			if (page)
1335				return page;
1336		}
1337	}
1338#endif
1339	return NULL;
1340}
1341
1342/*
1343 * Get a partial page, lock it and return it.
1344 */
1345static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1346{
1347	struct page *page;
1348	int searchnode = (node == -1) ? numa_node_id() : node;
1349
1350	page = get_partial_node(get_node(s, searchnode));
1351	if (page || (flags & __GFP_THISNODE))
1352		return page;
1353
1354	return get_any_partial(s, flags);
1355}
1356
1357/*
1358 * Move a page back to the lists.
1359 *
1360 * Must be called with the slab lock held.
1361 *
1362 * On exit the slab lock will have been dropped.
1363 */
1364static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1365{
1366	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1367	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1368
1369	__ClearPageSlubFrozen(page);
1370	if (page->inuse) {
1371
1372		if (page->freelist) {
1373			add_partial(n, page, tail);
1374			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1375		} else {
1376			stat(c, DEACTIVATE_FULL);
1377			if (SLABDEBUG && PageSlubDebug(page) &&
1378						(s->flags & SLAB_STORE_USER))
1379				add_full(n, page);
1380		}
1381		slab_unlock(page);
1382	} else {
1383		stat(c, DEACTIVATE_EMPTY);
1384		if (n->nr_partial < n->min_partial) {
1385			/*
1386			 * Adding an empty slab to the partial slabs in order
1387			 * to avoid page allocator overhead. This slab needs
1388			 * to come after the other slabs with objects in
1389			 * so that the others get filled first. That way the
1390			 * size of the partial list stays small.
1391			 *
1392			 * kmem_cache_shrink can reclaim any empty slabs from
1393			 * the partial list.
1394			 */
1395			add_partial(n, page, 1);
1396			slab_unlock(page);
1397		} else {
1398			slab_unlock(page);
1399			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1400			discard_slab(s, page);
1401		}
1402	}
1403}
1404
1405/*
1406 * Remove the cpu slab
1407 */
1408static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1409{
1410	struct page *page = c->page;
1411	int tail = 1;
1412
1413	if (page->freelist)
1414		stat(c, DEACTIVATE_REMOTE_FREES);
1415	/*
1416	 * Merge cpu freelist into slab freelist. Typically we get here
1417	 * because both freelists are empty. So this is unlikely
1418	 * to occur.
1419	 */
1420	while (unlikely(c->freelist)) {
1421		void **object;
1422
1423		tail = 0;	/* Hot objects. Put the slab first */
1424
1425		/* Retrieve object from cpu_freelist */
1426		object = c->freelist;
1427		c->freelist = c->freelist[c->offset];
1428
1429		/* And put onto the regular freelist */
1430		object[c->offset] = page->freelist;
1431		page->freelist = object;
1432		page->inuse--;
1433	}
1434	c->page = NULL;
1435	unfreeze_slab(s, page, tail);
1436}
1437
1438static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1439{
1440	stat(c, CPUSLAB_FLUSH);
1441	slab_lock(c->page);
1442	deactivate_slab(s, c);
1443}
1444
1445/*
1446 * Flush cpu slab.
1447 *
1448 * Called from IPI handler with interrupts disabled.
1449 */
1450static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1451{
1452	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1453
1454	if (likely(c && c->page))
1455		flush_slab(s, c);
1456}
1457
1458static void flush_cpu_slab(void *d)
1459{
1460	struct kmem_cache *s = d;
1461
1462	__flush_cpu_slab(s, smp_processor_id());
1463}
1464
1465static void flush_all(struct kmem_cache *s)
1466{
1467	on_each_cpu(flush_cpu_slab, s, 1);
1468}
1469
1470/*
1471 * Check if the objects in a per cpu structure fit numa
1472 * locality expectations.
1473 */
1474static inline int node_match(struct kmem_cache_cpu *c, int node)
1475{
1476#ifdef CONFIG_NUMA
1477	if (node != -1 && c->node != node)
1478		return 0;
1479#endif
1480	return 1;
1481}
1482
1483/*
1484 * Slow path. The lockless freelist is empty or we need to perform
1485 * debugging duties.
1486 *
1487 * Interrupts are disabled.
1488 *
1489 * Processing is still very fast if new objects have been freed to the
1490 * regular freelist. In that case we simply take over the regular freelist
1491 * as the lockless freelist and zap the regular freelist.
1492 *
1493 * If that is not working then we fall back to the partial lists. We take the
1494 * first element of the freelist as the object to allocate now and move the
1495 * rest of the freelist to the lockless freelist.
1496 *
1497 * And if we were unable to get a new slab from the partial slab lists then
1498 * we need to allocate a new slab. This is the slowest path since it involves
1499 * a call to the page allocator and the setup of a new slab.
1500 */
1501static void *__slab_alloc(struct kmem_cache *s,
1502		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1503{
1504	void **object;
1505	struct page *new;
1506
1507	/* We handle __GFP_ZERO in the caller */
1508	gfpflags &= ~__GFP_ZERO;
1509
1510	if (!c->page)
1511		goto new_slab;
1512
1513	slab_lock(c->page);
1514	if (unlikely(!node_match(c, node)))
1515		goto another_slab;
1516
1517	stat(c, ALLOC_REFILL);
1518
1519load_freelist:
1520	object = c->page->freelist;
1521	if (unlikely(!object))
1522		goto another_slab;
1523	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1524		goto debug;
1525
1526	c->freelist = object[c->offset];
1527	c->page->inuse = c->page->objects;
1528	c->page->freelist = NULL;
1529	c->node = page_to_nid(c->page);
1530unlock_out:
1531	slab_unlock(c->page);
1532	stat(c, ALLOC_SLOWPATH);
1533	return object;
1534
1535another_slab:
1536	deactivate_slab(s, c);
1537
1538new_slab:
1539	new = get_partial(s, gfpflags, node);
1540	if (new) {
1541		c->page = new;
1542		stat(c, ALLOC_FROM_PARTIAL);
1543		goto load_freelist;
1544	}
1545
1546	if (gfpflags & __GFP_WAIT)
1547		local_irq_enable();
1548
1549	new = new_slab(s, gfpflags, node);
1550
1551	if (gfpflags & __GFP_WAIT)
1552		local_irq_disable();
1553
1554	if (new) {
1555		c = get_cpu_slab(s, smp_processor_id());
1556		stat(c, ALLOC_SLAB);
1557		if (c->page)
1558			flush_slab(s, c);
1559		slab_lock(new);
1560		__SetPageSlubFrozen(new);
1561		c->page = new;
1562		goto load_freelist;
1563	}
1564	return NULL;
1565debug:
1566	if (!alloc_debug_processing(s, c->page, object, addr))
1567		goto another_slab;
1568
1569	c->page->inuse++;
1570	c->page->freelist = object[c->offset];
1571	c->node = -1;
1572	goto unlock_out;
1573}
1574
1575/*
1576 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1577 * have the fastpath folded into their functions. So no function call
1578 * overhead for requests that can be satisfied on the fastpath.
1579 *
1580 * The fastpath works by first checking if the lockless freelist can be used.
1581 * If not then __slab_alloc is called for slow processing.
1582 *
1583 * Otherwise we can simply pick the next object from the lockless free list.
1584 */
1585static __always_inline void *slab_alloc(struct kmem_cache *s,
1586		gfp_t gfpflags, int node, void *addr)
1587{
1588	void **object;
1589	struct kmem_cache_cpu *c;
1590	unsigned long flags;
1591	unsigned int objsize;
1592
1593	local_irq_save(flags);
1594	c = get_cpu_slab(s, smp_processor_id());
1595	objsize = c->objsize;
1596	if (unlikely(!c->freelist || !node_match(c, node)))
1597
1598		object = __slab_alloc(s, gfpflags, node, addr, c);
1599
1600	else {
1601		object = c->freelist;
1602		c->freelist = object[c->offset];
1603		stat(c, ALLOC_FASTPATH);
1604	}
1605	local_irq_restore(flags);
1606
1607	if (unlikely((gfpflags & __GFP_ZERO) && object))
1608		memset(object, 0, objsize);
1609
1610	return object;
1611}
1612
1613void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1614{
1615	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1616}
1617EXPORT_SYMBOL(kmem_cache_alloc);
1618
1619#ifdef CONFIG_NUMA
1620void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1621{
1622	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1623}
1624EXPORT_SYMBOL(kmem_cache_alloc_node);
1625#endif
1626
1627/*
1628 * Slow patch handling. This may still be called frequently since objects
1629 * have a longer lifetime than the cpu slabs in most processing loads.
1630 *
1631 * So we still attempt to reduce cache line usage. Just take the slab
1632 * lock and free the item. If there is no additional partial page
1633 * handling required then we can return immediately.
1634 */
1635static void __slab_free(struct kmem_cache *s, struct page *page,
1636				void *x, void *addr, unsigned int offset)
1637{
1638	void *prior;
1639	void **object = (void *)x;
1640	struct kmem_cache_cpu *c;
1641
1642	c = get_cpu_slab(s, raw_smp_processor_id());
1643	stat(c, FREE_SLOWPATH);
1644	slab_lock(page);
1645
1646	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1647		goto debug;
1648
1649checks_ok:
1650	prior = object[offset] = page->freelist;
1651	page->freelist = object;
1652	page->inuse--;
1653
1654	if (unlikely(PageSlubFrozen(page))) {
1655		stat(c, FREE_FROZEN);
1656		goto out_unlock;
1657	}
1658
1659	if (unlikely(!page->inuse))
1660		goto slab_empty;
1661
1662	/*
1663	 * Objects left in the slab. If it was not on the partial list before
1664	 * then add it.
1665	 */
1666	if (unlikely(!prior)) {
1667		add_partial(get_node(s, page_to_nid(page)), page, 1);
1668		stat(c, FREE_ADD_PARTIAL);
1669	}
1670
1671out_unlock:
1672	slab_unlock(page);
1673	return;
1674
1675slab_empty:
1676	if (prior) {
1677		/*
1678		 * Slab still on the partial list.
1679		 */
1680		remove_partial(s, page);
1681		stat(c, FREE_REMOVE_PARTIAL);
1682	}
1683	slab_unlock(page);
1684	stat(c, FREE_SLAB);
1685	discard_slab(s, page);
1686	return;
1687
1688debug:
1689	if (!free_debug_processing(s, page, x, addr))
1690		goto out_unlock;
1691	goto checks_ok;
1692}
1693
1694/*
1695 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1696 * can perform fastpath freeing without additional function calls.
1697 *
1698 * The fastpath is only possible if we are freeing to the current cpu slab
1699 * of this processor. This typically the case if we have just allocated
1700 * the item before.
1701 *
1702 * If fastpath is not possible then fall back to __slab_free where we deal
1703 * with all sorts of special processing.
1704 */
1705static __always_inline void slab_free(struct kmem_cache *s,
1706			struct page *page, void *x, void *addr)
1707{
1708	void **object = (void *)x;
1709	struct kmem_cache_cpu *c;
1710	unsigned long flags;
1711
1712	local_irq_save(flags);
1713	c = get_cpu_slab(s, smp_processor_id());
1714	debug_check_no_locks_freed(object, c->objsize);
1715	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1716		debug_check_no_obj_freed(object, s->objsize);
1717	if (likely(page == c->page && c->node >= 0)) {
1718		object[c->offset] = c->freelist;
1719		c->freelist = object;
1720		stat(c, FREE_FASTPATH);
1721	} else
1722		__slab_free(s, page, x, addr, c->offset);
1723
1724	local_irq_restore(flags);
1725}
1726
1727void kmem_cache_free(struct kmem_cache *s, void *x)
1728{
1729	struct page *page;
1730
1731	page = virt_to_head_page(x);
1732
1733	slab_free(s, page, x, __builtin_return_address(0));
1734}
1735EXPORT_SYMBOL(kmem_cache_free);
1736
1737/* Figure out on which slab object the object resides */
1738static struct page *get_object_page(const void *x)
1739{
1740	struct page *page = virt_to_head_page(x);
1741
1742	if (!PageSlab(page))
1743		return NULL;
1744
1745	return page;
1746}
1747
1748/*
1749 * Object placement in a slab is made very easy because we always start at
1750 * offset 0. If we tune the size of the object to the alignment then we can
1751 * get the required alignment by putting one properly sized object after
1752 * another.
1753 *
1754 * Notice that the allocation order determines the sizes of the per cpu
1755 * caches. Each processor has always one slab available for allocations.
1756 * Increasing the allocation order reduces the number of times that slabs
1757 * must be moved on and off the partial lists and is therefore a factor in
1758 * locking overhead.
1759 */
1760
1761/*
1762 * Mininum / Maximum order of slab pages. This influences locking overhead
1763 * and slab fragmentation. A higher order reduces the number of partial slabs
1764 * and increases the number of allocations possible without having to
1765 * take the list_lock.
1766 */
1767static int slub_min_order;
1768static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1769static int slub_min_objects;
1770
1771/*
1772 * Merge control. If this is set then no merging of slab caches will occur.
1773 * (Could be removed. This was introduced to pacify the merge skeptics.)
1774 */
1775static int slub_nomerge;
1776
1777/*
1778 * Calculate the order of allocation given an slab object size.
1779 *
1780 * The order of allocation has significant impact on performance and other
1781 * system components. Generally order 0 allocations should be preferred since
1782 * order 0 does not cause fragmentation in the page allocator. Larger objects
1783 * be problematic to put into order 0 slabs because there may be too much
1784 * unused space left. We go to a higher order if more than 1/16th of the slab
1785 * would be wasted.
1786 *
1787 * In order to reach satisfactory performance we must ensure that a minimum
1788 * number of objects is in one slab. Otherwise we may generate too much
1789 * activity on the partial lists which requires taking the list_lock. This is
1790 * less a concern for large slabs though which are rarely used.
1791 *
1792 * slub_max_order specifies the order where we begin to stop considering the
1793 * number of objects in a slab as critical. If we reach slub_max_order then
1794 * we try to keep the page order as low as possible. So we accept more waste
1795 * of space in favor of a small page order.
1796 *
1797 * Higher order allocations also allow the placement of more objects in a
1798 * slab and thereby reduce object handling overhead. If the user has
1799 * requested a higher mininum order then we start with that one instead of
1800 * the smallest order which will fit the object.
1801 */
1802static inline int slab_order(int size, int min_objects,
1803				int max_order, int fract_leftover)
1804{
1805	int order;
1806	int rem;
1807	int min_order = slub_min_order;
1808
1809	if ((PAGE_SIZE << min_order) / size > 65535)
1810		return get_order(size * 65535) - 1;
1811
1812	for (order = max(min_order,
1813				fls(min_objects * size - 1) - PAGE_SHIFT);
1814			order <= max_order; order++) {
1815
1816		unsigned long slab_size = PAGE_SIZE << order;
1817
1818		if (slab_size < min_objects * size)
1819			continue;
1820
1821		rem = slab_size % size;
1822
1823		if (rem <= slab_size / fract_leftover)
1824			break;
1825
1826	}
1827
1828	return order;
1829}
1830
1831static inline int calculate_order(int size)
1832{
1833	int order;
1834	int min_objects;
1835	int fraction;
1836
1837	/*
1838	 * Attempt to find best configuration for a slab. This
1839	 * works by first attempting to generate a layout with
1840	 * the best configuration and backing off gradually.
1841	 *
1842	 * First we reduce the acceptable waste in a slab. Then
1843	 * we reduce the minimum objects required in a slab.
1844	 */
1845	min_objects = slub_min_objects;
1846	if (!min_objects)
1847		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1848	while (min_objects > 1) {
1849		fraction = 16;
1850		while (fraction >= 4) {
1851			order = slab_order(size, min_objects,
1852						slub_max_order, fraction);
1853			if (order <= slub_max_order)
1854				return order;
1855			fraction /= 2;
1856		}
1857		min_objects /= 2;
1858	}
1859
1860	/*
1861	 * We were unable to place multiple objects in a slab. Now
1862	 * lets see if we can place a single object there.
1863	 */
1864	order = slab_order(size, 1, slub_max_order, 1);
1865	if (order <= slub_max_order)
1866		return order;
1867
1868	/*
1869	 * Doh this slab cannot be placed using slub_max_order.
1870	 */
1871	order = slab_order(size, 1, MAX_ORDER, 1);
1872	if (order <= MAX_ORDER)
1873		return order;
1874	return -ENOSYS;
1875}
1876
1877/*
1878 * Figure out what the alignment of the objects will be.
1879 */
1880static unsigned long calculate_alignment(unsigned long flags,
1881		unsigned long align, unsigned long size)
1882{
1883	/*
1884	 * If the user wants hardware cache aligned objects then follow that
1885	 * suggestion if the object is sufficiently large.
1886	 *
1887	 * The hardware cache alignment cannot override the specified
1888	 * alignment though. If that is greater then use it.
1889	 */
1890	if (flags & SLAB_HWCACHE_ALIGN) {
1891		unsigned long ralign = cache_line_size();
1892		while (size <= ralign / 2)
1893			ralign /= 2;
1894		align = max(align, ralign);
1895	}
1896
1897	if (align < ARCH_SLAB_MINALIGN)
1898		align = ARCH_SLAB_MINALIGN;
1899
1900	return ALIGN(align, sizeof(void *));
1901}
1902
1903static void init_kmem_cache_cpu(struct kmem_cache *s,
1904			struct kmem_cache_cpu *c)
1905{
1906	c->page = NULL;
1907	c->freelist = NULL;
1908	c->node = 0;
1909	c->offset = s->offset / sizeof(void *);
1910	c->objsize = s->objsize;
1911#ifdef CONFIG_SLUB_STATS
1912	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1913#endif
1914}
1915
1916static void
1917init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1918{
1919	n->nr_partial = 0;
1920
1921	/*
1922	 * The larger the object size is, the more pages we want on the partial
1923	 * list to avoid pounding the page allocator excessively.
1924	 */
1925	n->min_partial = ilog2(s->size);
1926	if (n->min_partial < MIN_PARTIAL)
1927		n->min_partial = MIN_PARTIAL;
1928	else if (n->min_partial > MAX_PARTIAL)
1929		n->min_partial = MAX_PARTIAL;
1930
1931	spin_lock_init(&n->list_lock);
1932	INIT_LIST_HEAD(&n->partial);
1933#ifdef CONFIG_SLUB_DEBUG
1934	atomic_long_set(&n->nr_slabs, 0);
1935	INIT_LIST_HEAD(&n->full);
1936#endif
1937}
1938
1939#ifdef CONFIG_SMP
1940/*
1941 * Per cpu array for per cpu structures.
1942 *
1943 * The per cpu array places all kmem_cache_cpu structures from one processor
1944 * close together meaning that it becomes possible that multiple per cpu
1945 * structures are contained in one cacheline. This may be particularly
1946 * beneficial for the kmalloc caches.
1947 *
1948 * A desktop system typically has around 60-80 slabs. With 100 here we are
1949 * likely able to get per cpu structures for all caches from the array defined
1950 * here. We must be able to cover all kmalloc caches during bootstrap.
1951 *
1952 * If the per cpu array is exhausted then fall back to kmalloc
1953 * of individual cachelines. No sharing is possible then.
1954 */
1955#define NR_KMEM_CACHE_CPU 100
1956
1957static DEFINE_PER_CPU(struct kmem_cache_cpu,
1958				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1959
1960static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1961static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1962
1963static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1964							int cpu, gfp_t flags)
1965{
1966	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1967
1968	if (c)
1969		per_cpu(kmem_cache_cpu_free, cpu) =
1970				(void *)c->freelist;
1971	else {
1972		/* Table overflow: So allocate ourselves */
1973		c = kmalloc_node(
1974			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1975			flags, cpu_to_node(cpu));
1976		if (!c)
1977			return NULL;
1978	}
1979
1980	init_kmem_cache_cpu(s, c);
1981	return c;
1982}
1983
1984static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1985{
1986	if (c < per_cpu(kmem_cache_cpu, cpu) ||
1987			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1988		kfree(c);
1989		return;
1990	}
1991	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1992	per_cpu(kmem_cache_cpu_free, cpu) = c;
1993}
1994
1995static void free_kmem_cache_cpus(struct kmem_cache *s)
1996{
1997	int cpu;
1998
1999	for_each_online_cpu(cpu) {
2000		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2001
2002		if (c) {
2003			s->cpu_slab[cpu] = NULL;
2004			free_kmem_cache_cpu(c, cpu);
2005		}
2006	}
2007}
2008
2009static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2010{
2011	int cpu;
2012
2013	for_each_online_cpu(cpu) {
2014		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2015
2016		if (c)
2017			continue;
2018
2019		c = alloc_kmem_cache_cpu(s, cpu, flags);
2020		if (!c) {
2021			free_kmem_cache_cpus(s);
2022			return 0;
2023		}
2024		s->cpu_slab[cpu] = c;
2025	}
2026	return 1;
2027}
2028
2029/*
2030 * Initialize the per cpu array.
2031 */
2032static void init_alloc_cpu_cpu(int cpu)
2033{
2034	int i;
2035
2036	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2037		return;
2038
2039	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2040		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2041
2042	cpu_set(cpu, kmem_cach_cpu_free_init_once);
2043}
2044
2045static void __init init_alloc_cpu(void)
2046{
2047	int cpu;
2048
2049	for_each_online_cpu(cpu)
2050		init_alloc_cpu_cpu(cpu);
2051  }
2052
2053#else
2054static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2055static inline void init_alloc_cpu(void) {}
2056
2057static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2058{
2059	init_kmem_cache_cpu(s, &s->cpu_slab);
2060	return 1;
2061}
2062#endif
2063
2064#ifdef CONFIG_NUMA
2065/*
2066 * No kmalloc_node yet so do it by hand. We know that this is the first
2067 * slab on the node for this slabcache. There are no concurrent accesses
2068 * possible.
2069 *
2070 * Note that this function only works on the kmalloc_node_cache
2071 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2072 * memory on a fresh node that has no slab structures yet.
2073 */
2074static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2075							   int node)
2076{
2077	struct page *page;
2078	struct kmem_cache_node *n;
2079	unsigned long flags;
2080
2081	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2082
2083	page = new_slab(kmalloc_caches, gfpflags, node);
2084
2085	BUG_ON(!page);
2086	if (page_to_nid(page) != node) {
2087		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2088				"node %d\n", node);
2089		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2090				"in order to be able to continue\n");
2091	}
2092
2093	n = page->freelist;
2094	BUG_ON(!n);
2095	page->freelist = get_freepointer(kmalloc_caches, n);
2096	page->inuse++;
2097	kmalloc_caches->node[node] = n;
2098#ifdef CONFIG_SLUB_DEBUG
2099	init_object(kmalloc_caches, n, 1);
2100	init_tracking(kmalloc_caches, n);
2101#endif
2102	init_kmem_cache_node(n, kmalloc_caches);
2103	inc_slabs_node(kmalloc_caches, node, page->objects);
2104
2105	/*
2106	 * lockdep requires consistent irq usage for each lock
2107	 * so even though there cannot be a race this early in
2108	 * the boot sequence, we still disable irqs.
2109	 */
2110	local_irq_save(flags);
2111	add_partial(n, page, 0);
2112	local_irq_restore(flags);
2113	return n;
2114}
2115
2116static void free_kmem_cache_nodes(struct kmem_cache *s)
2117{
2118	int node;
2119
2120	for_each_node_state(node, N_NORMAL_MEMORY) {
2121		struct kmem_cache_node *n = s->node[node];
2122		if (n && n != &s->local_node)
2123			kmem_cache_free(kmalloc_caches, n);
2124		s->node[node] = NULL;
2125	}
2126}
2127
2128static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2129{
2130	int node;
2131	int local_node;
2132
2133	if (slab_state >= UP)
2134		local_node = page_to_nid(virt_to_page(s));
2135	else
2136		local_node = 0;
2137
2138	for_each_node_state(node, N_NORMAL_MEMORY) {
2139		struct kmem_cache_node *n;
2140
2141		if (local_node == node)
2142			n = &s->local_node;
2143		else {
2144			if (slab_state == DOWN) {
2145				n = early_kmem_cache_node_alloc(gfpflags,
2146								node);
2147				continue;
2148			}
2149			n = kmem_cache_alloc_node(kmalloc_caches,
2150							gfpflags, node);
2151
2152			if (!n) {
2153				free_kmem_cache_nodes(s);
2154				return 0;
2155			}
2156
2157		}
2158		s->node[node] = n;
2159		init_kmem_cache_node(n, s);
2160	}
2161	return 1;
2162}
2163#else
2164static void free_kmem_cache_nodes(struct kmem_cache *s)
2165{
2166}
2167
2168static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2169{
2170	init_kmem_cache_node(&s->local_node, s);
2171	return 1;
2172}
2173#endif
2174
2175/*
2176 * calculate_sizes() determines the order and the distribution of data within
2177 * a slab object.
2178 */
2179static int calculate_sizes(struct kmem_cache *s, int forced_order)
2180{
2181	unsigned long flags = s->flags;
2182	unsigned long size = s->objsize;
2183	unsigned long align = s->align;
2184	int order;
2185
2186	/*
2187	 * Round up object size to the next word boundary. We can only
2188	 * place the free pointer at word boundaries and this determines
2189	 * the possible location of the free pointer.
2190	 */
2191	size = ALIGN(size, sizeof(void *));
2192
2193#ifdef CONFIG_SLUB_DEBUG
2194	/*
2195	 * Determine if we can poison the object itself. If the user of
2196	 * the slab may touch the object after free or before allocation
2197	 * then we should never poison the object itself.
2198	 */
2199	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2200			!s->ctor)
2201		s->flags |= __OBJECT_POISON;
2202	else
2203		s->flags &= ~__OBJECT_POISON;
2204
2205
2206	/*
2207	 * If we are Redzoning then check if there is some space between the
2208	 * end of the object and the free pointer. If not then add an
2209	 * additional word to have some bytes to store Redzone information.
2210	 */
2211	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2212		size += sizeof(void *);
2213#endif
2214
2215	/*
2216	 * With that we have determined the number of bytes in actual use
2217	 * by the object. This is the potential offset to the free pointer.
2218	 */
2219	s->inuse = size;
2220
2221	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2222		s->ctor)) {
2223		/*
2224		 * Relocate free pointer after the object if it is not
2225		 * permitted to overwrite the first word of the object on
2226		 * kmem_cache_free.
2227		 *
2228		 * This is the case if we do RCU, have a constructor or
2229		 * destructor or are poisoning the objects.
2230		 */
2231		s->offset = size;
2232		size += sizeof(void *);
2233	}
2234
2235#ifdef CONFIG_SLUB_DEBUG
2236	if (flags & SLAB_STORE_USER)
2237		/*
2238		 * Need to store information about allocs and frees after
2239		 * the object.
2240		 */
2241		size += 2 * sizeof(struct track);
2242
2243	if (flags & SLAB_RED_ZONE)
2244		/*
2245		 * Add some empty padding so that we can catch
2246		 * overwrites from earlier objects rather than let
2247		 * tracking information or the free pointer be
2248		 * corrupted if an user writes before the start
2249		 * of the object.
2250		 */
2251		size += sizeof(void *);
2252#endif
2253
2254	/*
2255	 * Determine the alignment based on various parameters that the
2256	 * user specified and the dynamic determination of cache line size
2257	 * on bootup.
2258	 */
2259	align = calculate_alignment(flags, align, s->objsize);
2260
2261	/*
2262	 * SLUB stores one object immediately after another beginning from
2263	 * offset 0. In order to align the objects we have to simply size
2264	 * each object to conform to the alignment.
2265	 */
2266	size = ALIGN(size, align);
2267	s->size = size;
2268	if (forced_order >= 0)
2269		order = forced_order;
2270	else
2271		order = calculate_order(size);
2272
2273	if (order < 0)
2274		return 0;
2275
2276	s->allocflags = 0;
2277	if (order)
2278		s->allocflags |= __GFP_COMP;
2279
2280	if (s->flags & SLAB_CACHE_DMA)
2281		s->allocflags |= SLUB_DMA;
2282
2283	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2284		s->allocflags |= __GFP_RECLAIMABLE;
2285
2286	/*
2287	 * Determine the number of objects per slab
2288	 */
2289	s->oo = oo_make(order, size);
2290	s->min = oo_make(get_order(size), size);
2291	if (oo_objects(s->oo) > oo_objects(s->max))
2292		s->max = s->oo;
2293
2294	return !!oo_objects(s->oo);
2295
2296}
2297
2298static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2299		const char *name, size_t size,
2300		size_t align, unsigned long flags,
2301		void (*ctor)(void *))
2302{
2303	memset(s, 0, kmem_size);
2304	s->name = name;
2305	s->ctor = ctor;
2306	s->objsize = size;
2307	s->align = align;
2308	s->flags = kmem_cache_flags(size, flags, name, ctor);
2309
2310	if (!calculate_sizes(s, -1))
2311		goto error;
2312
2313	s->refcount = 1;
2314#ifdef CONFIG_NUMA
2315	s->remote_node_defrag_ratio = 100;
2316#endif
2317	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2318		goto error;
2319
2320	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2321		return 1;
2322	free_kmem_cache_nodes(s);
2323error:
2324	if (flags & SLAB_PANIC)
2325		panic("Cannot create slab %s size=%lu realsize=%u "
2326			"order=%u offset=%u flags=%lx\n",
2327			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2328			s->offset, flags);
2329	return 0;
2330}
2331
2332/*
2333 * Check if a given pointer is valid
2334 */
2335int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2336{
2337	struct page *page;
2338
2339	page = get_object_page(object);
2340
2341	if (!page || s != page->slab)
2342		/* No slab or wrong slab */
2343		return 0;
2344
2345	if (!check_valid_pointer(s, page, object))
2346		return 0;
2347
2348	/*
2349	 * We could also check if the object is on the slabs freelist.
2350	 * But this would be too expensive and it seems that the main
2351	 * purpose of kmem_ptr_valid() is to check if the object belongs
2352	 * to a certain slab.
2353	 */
2354	return 1;
2355}
2356EXPORT_SYMBOL(kmem_ptr_validate);
2357
2358/*
2359 * Determine the size of a slab object
2360 */
2361unsigned int kmem_cache_size(struct kmem_cache *s)
2362{
2363	return s->objsize;
2364}
2365EXPORT_SYMBOL(kmem_cache_size);
2366
2367const char *kmem_cache_name(struct kmem_cache *s)
2368{
2369	return s->name;
2370}
2371EXPORT_SYMBOL(kmem_cache_name);
2372
2373static void list_slab_objects(struct kmem_cache *s, struct page *page,
2374							const char *text)
2375{
2376#ifdef CONFIG_SLUB_DEBUG
2377	void *addr = page_address(page);
2378	void *p;
2379	DECLARE_BITMAP(map, page->objects);
2380
2381	bitmap_zero(map, page->objects);
2382	slab_err(s, page, "%s", text);
2383	slab_lock(page);
2384	for_each_free_object(p, s, page->freelist)
2385		set_bit(slab_index(p, s, addr), map);
2386
2387	for_each_object(p, s, addr, page->objects) {
2388
2389		if (!test_bit(slab_index(p, s, addr), map)) {
2390			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2391							p, p - addr);
2392			print_tracking(s, p);
2393		}
2394	}
2395	slab_unlock(page);
2396#endif
2397}
2398
2399/*
2400 * Attempt to free all partial slabs on a node.
2401 */
2402static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2403{
2404	unsigned long flags;
2405	struct page *page, *h;
2406
2407	spin_lock_irqsave(&n->list_lock, flags);
2408	list_for_each_entry_safe(page, h, &n->partial, lru) {
2409		if (!page->inuse) {
2410			list_del(&page->lru);
2411			discard_slab(s, page);
2412			n->nr_partial--;
2413		} else {
2414			list_slab_objects(s, page,
2415				"Objects remaining on kmem_cache_close()");
2416		}
2417	}
2418	spin_unlock_irqrestore(&n->list_lock, flags);
2419}
2420
2421/*
2422 * Release all resources used by a slab cache.
2423 */
2424static inline int kmem_cache_close(struct kmem_cache *s)
2425{
2426	int node;
2427
2428	flush_all(s);
2429
2430	/* Attempt to free all objects */
2431	free_kmem_cache_cpus(s);
2432	for_each_node_state(node, N_NORMAL_MEMORY) {
2433		struct kmem_cache_node *n = get_node(s, node);
2434
2435		free_partial(s, n);
2436		if (n->nr_partial || slabs_node(s, node))
2437			return 1;
2438	}
2439	free_kmem_cache_nodes(s);
2440	return 0;
2441}
2442
2443/*
2444 * Close a cache and release the kmem_cache structure
2445 * (must be used for caches created using kmem_cache_create)
2446 */
2447void kmem_cache_destroy(struct kmem_cache *s)
2448{
2449	down_write(&slub_lock);
2450	s->refcount--;
2451	if (!s->refcount) {
2452		list_del(&s->list);
2453		up_write(&slub_lock);
2454		if (kmem_cache_close(s)) {
2455			printk(KERN_ERR "SLUB %s: %s called for cache that "
2456				"still has objects.\n", s->name, __func__);
2457			dump_stack();
2458		}
2459		sysfs_slab_remove(s);
2460	} else
2461		up_write(&slub_lock);
2462}
2463EXPORT_SYMBOL(kmem_cache_destroy);
2464
2465/********************************************************************
2466 *		Kmalloc subsystem
2467 *******************************************************************/
2468
2469struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2470EXPORT_SYMBOL(kmalloc_caches);
2471
2472static int __init setup_slub_min_order(char *str)
2473{
2474	get_option(&str, &slub_min_order);
2475
2476	return 1;
2477}
2478
2479__setup("slub_min_order=", setup_slub_min_order);
2480
2481static int __init setup_slub_max_order(char *str)
2482{
2483	get_option(&str, &slub_max_order);
2484
2485	return 1;
2486}
2487
2488__setup("slub_max_order=", setup_slub_max_order);
2489
2490static int __init setup_slub_min_objects(char *str)
2491{
2492	get_option(&str, &slub_min_objects);
2493
2494	return 1;
2495}
2496
2497__setup("slub_min_objects=", setup_slub_min_objects);
2498
2499static int __init setup_slub_nomerge(char *str)
2500{
2501	slub_nomerge = 1;
2502	return 1;
2503}
2504
2505__setup("slub_nomerge", setup_slub_nomerge);
2506
2507static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2508		const char *name, int size, gfp_t gfp_flags)
2509{
2510	unsigned int flags = 0;
2511
2512	if (gfp_flags & SLUB_DMA)
2513		flags = SLAB_CACHE_DMA;
2514
2515	down_write(&slub_lock);
2516	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2517								flags, NULL))
2518		goto panic;
2519
2520	list_add(&s->list, &slab_caches);
2521	up_write(&slub_lock);
2522	if (sysfs_slab_add(s))
2523		goto panic;
2524	return s;
2525
2526panic:
2527	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2528}
2529
2530#ifdef CONFIG_ZONE_DMA
2531static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2532
2533static void sysfs_add_func(struct work_struct *w)
2534{
2535	struct kmem_cache *s;
2536
2537	down_write(&slub_lock);
2538	list_for_each_entry(s, &slab_caches, list) {
2539		if (s->flags & __SYSFS_ADD_DEFERRED) {
2540			s->flags &= ~__SYSFS_ADD_DEFERRED;
2541			sysfs_slab_add(s);
2542		}
2543	}
2544	up_write(&slub_lock);
2545}
2546
2547static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2548
2549static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2550{
2551	struct kmem_cache *s;
2552	char *text;
2553	size_t realsize;
2554
2555	s = kmalloc_caches_dma[index];
2556	if (s)
2557		return s;
2558
2559	/* Dynamically create dma cache */
2560	if (flags & __GFP_WAIT)
2561		down_write(&slub_lock);
2562	else {
2563		if (!down_write_trylock(&slub_lock))
2564			goto out;
2565	}
2566
2567	if (kmalloc_caches_dma[index])
2568		goto unlock_out;
2569
2570	realsize = kmalloc_caches[index].objsize;
2571	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2572			 (unsigned int)realsize);
2573	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2574
2575	if (!s || !text || !kmem_cache_open(s, flags, text,
2576			realsize, ARCH_KMALLOC_MINALIGN,
2577			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2578		kfree(s);
2579		kfree(text);
2580		goto unlock_out;
2581	}
2582
2583	list_add(&s->list, &slab_caches);
2584	kmalloc_caches_dma[index] = s;
2585
2586	schedule_work(&sysfs_add_work);
2587
2588unlock_out:
2589	up_write(&slub_lock);
2590out:
2591	return kmalloc_caches_dma[index];
2592}
2593#endif
2594
2595/*
2596 * Conversion table for small slabs sizes / 8 to the index in the
2597 * kmalloc array. This is necessary for slabs < 192 since we have non power
2598 * of two cache sizes there. The size of larger slabs can be determined using
2599 * fls.
2600 */
2601static s8 size_index[24] = {
2602	3,	/* 8 */
2603	4,	/* 16 */
2604	5,	/* 24 */
2605	5,	/* 32 */
2606	6,	/* 40 */
2607	6,	/* 48 */
2608	6,	/* 56 */
2609	6,	/* 64 */
2610	1,	/* 72 */
2611	1,	/* 80 */
2612	1,	/* 88 */
2613	1,	/* 96 */
2614	7,	/* 104 */
2615	7,	/* 112 */
2616	7,	/* 120 */
2617	7,	/* 128 */
2618	2,	/* 136 */
2619	2,	/* 144 */
2620	2,	/* 152 */
2621	2,	/* 160 */
2622	2,	/* 168 */
2623	2,	/* 176 */
2624	2,	/* 184 */
2625	2	/* 192 */
2626};
2627
2628static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2629{
2630	int index;
2631
2632	if (size <= 192) {
2633		if (!size)
2634			return ZERO_SIZE_PTR;
2635
2636		index = size_index[(size - 1) / 8];
2637	} else
2638		index = fls(size - 1);
2639
2640#ifdef CONFIG_ZONE_DMA
2641	if (unlikely((flags & SLUB_DMA)))
2642		return dma_kmalloc_cache(index, flags);
2643
2644#endif
2645	return &kmalloc_caches[index];
2646}
2647
2648void *__kmalloc(size_t size, gfp_t flags)
2649{
2650	struct kmem_cache *s;
2651
2652	if (unlikely(size > PAGE_SIZE))
2653		return kmalloc_large(size, flags);
2654
2655	s = get_slab(size, flags);
2656
2657	if (unlikely(ZERO_OR_NULL_PTR(s)))
2658		return s;
2659
2660	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2661}
2662EXPORT_SYMBOL(__kmalloc);
2663
2664static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2665{
2666	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2667						get_order(size));
2668
2669	if (page)
2670		return page_address(page);
2671	else
2672		return NULL;
2673}
2674
2675#ifdef CONFIG_NUMA
2676void *__kmalloc_node(size_t size, gfp_t flags, int node)
2677{
2678	struct kmem_cache *s;
2679
2680	if (unlikely(size > PAGE_SIZE))
2681		return kmalloc_large_node(size, flags, node);
2682
2683	s = get_slab(size, flags);
2684
2685	if (unlikely(ZERO_OR_NULL_PTR(s)))
2686		return s;
2687
2688	return slab_alloc(s, flags, node, __builtin_return_address(0));
2689}
2690EXPORT_SYMBOL(__kmalloc_node);
2691#endif
2692
2693size_t ksize(const void *object)
2694{
2695	struct page *page;
2696	struct kmem_cache *s;
2697
2698	if (unlikely(object == ZERO_SIZE_PTR))
2699		return 0;
2700
2701	page = virt_to_head_page(object);
2702
2703	if (unlikely(!PageSlab(page))) {
2704		WARN_ON(!PageCompound(page));
2705		return PAGE_SIZE << compound_order(page);
2706	}
2707	s = page->slab;
2708
2709#ifdef CONFIG_SLUB_DEBUG
2710	/*
2711	 * Debugging requires use of the padding between object
2712	 * and whatever may come after it.
2713	 */
2714	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2715		return s->objsize;
2716
2717#endif
2718	/*
2719	 * If we have the need to store the freelist pointer
2720	 * back there or track user information then we can
2721	 * only use the space before that information.
2722	 */
2723	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2724		return s->inuse;
2725	/*
2726	 * Else we can use all the padding etc for the allocation
2727	 */
2728	return s->size;
2729}
2730
2731void kfree(const void *x)
2732{
2733	struct page *page;
2734	void *object = (void *)x;
2735
2736	if (unlikely(ZERO_OR_NULL_PTR(x)))
2737		return;
2738
2739	page = virt_to_head_page(x);
2740	if (unlikely(!PageSlab(page))) {
2741		BUG_ON(!PageCompound(page));
2742		put_page(page);
2743		return;
2744	}
2745	slab_free(page->slab, page, object, __builtin_return_address(0));
2746}
2747EXPORT_SYMBOL(kfree);
2748
2749/*
2750 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2751 * the remaining slabs by the number of items in use. The slabs with the
2752 * most items in use come first. New allocations will then fill those up
2753 * and thus they can be removed from the partial lists.
2754 *
2755 * The slabs with the least items are placed last. This results in them
2756 * being allocated from last increasing the chance that the last objects
2757 * are freed in them.
2758 */
2759int kmem_cache_shrink(struct kmem_cache *s)
2760{
2761	int node;
2762	int i;
2763	struct kmem_cache_node *n;
2764	struct page *page;
2765	struct page *t;
2766	int objects = oo_objects(s->max);
2767	struct list_head *slabs_by_inuse =
2768		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2769	unsigned long flags;
2770
2771	if (!slabs_by_inuse)
2772		return -ENOMEM;
2773
2774	flush_all(s);
2775	for_each_node_state(node, N_NORMAL_MEMORY) {
2776		n = get_node(s, node);
2777
2778		if (!n->nr_partial)
2779			continue;
2780
2781		for (i = 0; i < objects; i++)
2782			INIT_LIST_HEAD(slabs_by_inuse + i);
2783
2784		spin_lock_irqsave(&n->list_lock, flags);
2785
2786		/*
2787		 * Build lists indexed by the items in use in each slab.
2788		 *
2789		 * Note that concurrent frees may occur while we hold the
2790		 * list_lock. page->inuse here is the upper limit.
2791		 */
2792		list_for_each_entry_safe(page, t, &n->partial, lru) {
2793			if (!page->inuse && slab_trylock(page)) {
2794				/*
2795				 * Must hold slab lock here because slab_free
2796				 * may have freed the last object and be
2797				 * waiting to release the slab.
2798				 */
2799				list_del(&page->lru);
2800				n->nr_partial--;
2801				slab_unlock(page);
2802				discard_slab(s, page);
2803			} else {
2804				list_move(&page->lru,
2805				slabs_by_inuse + page->inuse);
2806			}
2807		}
2808
2809		/*
2810		 * Rebuild the partial list with the slabs filled up most
2811		 * first and the least used slabs at the end.
2812		 */
2813		for (i = objects - 1; i >= 0; i--)
2814			list_splice(slabs_by_inuse + i, n->partial.prev);
2815
2816		spin_unlock_irqrestore(&n->list_lock, flags);
2817	}
2818
2819	kfree(slabs_by_inuse);
2820	return 0;
2821}
2822EXPORT_SYMBOL(kmem_cache_shrink);
2823
2824#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2825static int slab_mem_going_offline_callback(void *arg)
2826{
2827	struct kmem_cache *s;
2828
2829	down_read(&slub_lock);
2830	list_for_each_entry(s, &slab_caches, list)
2831		kmem_cache_shrink(s);
2832	up_read(&slub_lock);
2833
2834	return 0;
2835}
2836
2837static void slab_mem_offline_callback(void *arg)
2838{
2839	struct kmem_cache_node *n;
2840	struct kmem_cache *s;
2841	struct memory_notify *marg = arg;
2842	int offline_node;
2843
2844	offline_node = marg->status_change_nid;
2845
2846	/*
2847	 * If the node still has available memory. we need kmem_cache_node
2848	 * for it yet.
2849	 */
2850	if (offline_node < 0)
2851		return;
2852
2853	down_read(&slub_lock);
2854	list_for_each_entry(s, &slab_caches, list) {
2855		n = get_node(s, offline_node);
2856		if (n) {
2857			/*
2858			 * if n->nr_slabs > 0, slabs still exist on the node
2859			 * that is going down. We were unable to free them,
2860			 * and offline_pages() function shoudn't call this
2861			 * callback. So, we must fail.
2862			 */
2863			BUG_ON(slabs_node(s, offline_node));
2864
2865			s->node[offline_node] = NULL;
2866			kmem_cache_free(kmalloc_caches, n);
2867		}
2868	}
2869	up_read(&slub_lock);
2870}
2871
2872static int slab_mem_going_online_callback(void *arg)
2873{
2874	struct kmem_cache_node *n;
2875	struct kmem_cache *s;
2876	struct memory_notify *marg = arg;
2877	int nid = marg->status_change_nid;
2878	int ret = 0;
2879
2880	/*
2881	 * If the node's memory is already available, then kmem_cache_node is
2882	 * already created. Nothing to do.
2883	 */
2884	if (nid < 0)
2885		return 0;
2886
2887	/*
2888	 * We are bringing a node online. No memory is available yet. We must
2889	 * allocate a kmem_cache_node structure in order to bring the node
2890	 * online.
2891	 */
2892	down_read(&slub_lock);
2893	list_for_each_entry(s, &slab_caches, list) {
2894		/*
2895		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2896		 *      since memory is not yet available from the node that
2897		 *      is brought up.
2898		 */
2899		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2900		if (!n) {
2901			ret = -ENOMEM;
2902			goto out;
2903		}
2904		init_kmem_cache_node(n, s);
2905		s->node[nid] = n;
2906	}
2907out:
2908	up_read(&slub_lock);
2909	return ret;
2910}
2911
2912static int slab_memory_callback(struct notifier_block *self,
2913				unsigned long action, void *arg)
2914{
2915	int ret = 0;
2916
2917	switch (action) {
2918	case MEM_GOING_ONLINE:
2919		ret = slab_mem_going_online_callback(arg);
2920		break;
2921	case MEM_GOING_OFFLINE:
2922		ret = slab_mem_going_offline_callback(arg);
2923		break;
2924	case MEM_OFFLINE:
2925	case MEM_CANCEL_ONLINE:
2926		slab_mem_offline_callback(arg);
2927		break;
2928	case MEM_ONLINE:
2929	case MEM_CANCEL_OFFLINE:
2930		break;
2931	}
2932
2933	ret = notifier_from_errno(ret);
2934	return ret;
2935}
2936
2937#endif /* CONFIG_MEMORY_HOTPLUG */
2938
2939/********************************************************************
2940 *			Basic setup of slabs
2941 *******************************************************************/
2942
2943void __init kmem_cache_init(void)
2944{
2945	int i;
2946	int caches = 0;
2947
2948	init_alloc_cpu();
2949
2950#ifdef CONFIG_NUMA
2951	/*
2952	 * Must first have the slab cache available for the allocations of the
2953	 * struct kmem_cache_node's. There is special bootstrap code in
2954	 * kmem_cache_open for slab_state == DOWN.
2955	 */
2956	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2957		sizeof(struct kmem_cache_node), GFP_KERNEL);
2958	kmalloc_caches[0].refcount = -1;
2959	caches++;
2960
2961	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2962#endif
2963
2964	/* Able to allocate the per node structures */
2965	slab_state = PARTIAL;
2966
2967	/* Caches that are not of the two-to-the-power-of size */
2968	if (KMALLOC_MIN_SIZE <= 64) {
2969		create_kmalloc_cache(&kmalloc_caches[1],
2970				"kmalloc-96", 96, GFP_KERNEL);
2971		caches++;
2972		create_kmalloc_cache(&kmalloc_caches[2],
2973				"kmalloc-192", 192, GFP_KERNEL);
2974		caches++;
2975	}
2976
2977	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2978		create_kmalloc_cache(&kmalloc_caches[i],
2979			"kmalloc", 1 << i, GFP_KERNEL);
2980		caches++;
2981	}
2982
2983
2984	/*
2985	 * Patch up the size_index table if we have strange large alignment
2986	 * requirements for the kmalloc array. This is only the case for
2987	 * MIPS it seems. The standard arches will not generate any code here.
2988	 *
2989	 * Largest permitted alignment is 256 bytes due to the way we
2990	 * handle the index determination for the smaller caches.
2991	 *
2992	 * Make sure that nothing crazy happens if someone starts tinkering
2993	 * around with ARCH_KMALLOC_MINALIGN
2994	 */
2995	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2996		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2997
2998	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2999		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3000
3001	if (KMALLOC_MIN_SIZE == 128) {
3002		/*
3003		 * The 192 byte sized cache is not used if the alignment
3004		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3005		 * instead.
3006		 */
3007		for (i = 128 + 8; i <= 192; i += 8)
3008			size_index[(i - 1) / 8] = 8;
3009	}
3010
3011	slab_state = UP;
3012
3013	/* Provide the correct kmalloc names now that the caches are up */
3014	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3015		kmalloc_caches[i]. name =
3016			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3017
3018#ifdef CONFIG_SMP
3019	register_cpu_notifier(&slab_notifier);
3020	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3021				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3022#else
3023	kmem_size = sizeof(struct kmem_cache);
3024#endif
3025
3026	printk(KERN_INFO
3027		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3028		" CPUs=%d, Nodes=%d\n",
3029		caches, cache_line_size(),
3030		slub_min_order, slub_max_order, slub_min_objects,
3031		nr_cpu_ids, nr_node_ids);
3032}
3033
3034/*
3035 * Find a mergeable slab cache
3036 */
3037static int slab_unmergeable(struct kmem_cache *s)
3038{
3039	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3040		return 1;
3041
3042	if (s->ctor)
3043		return 1;
3044
3045	/*
3046	 * We may have set a slab to be unmergeable during bootstrap.
3047	 */
3048	if (s->refcount < 0)
3049		return 1;
3050
3051	return 0;
3052}
3053
3054static struct kmem_cache *find_mergeable(size_t size,
3055		size_t align, unsigned long flags, const char *name,
3056		void (*ctor)(void *))
3057{
3058	struct kmem_cache *s;
3059
3060	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3061		return NULL;
3062
3063	if (ctor)
3064		return NULL;
3065
3066	size = ALIGN(size, sizeof(void *));
3067	align = calculate_alignment(flags, align, size);
3068	size = ALIGN(size, align);
3069	flags = kmem_cache_flags(size, flags, name, NULL);
3070
3071	list_for_each_entry(s, &slab_caches, list) {
3072		if (slab_unmergeable(s))
3073			continue;
3074
3075		if (size > s->size)
3076			continue;
3077
3078		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3079				continue;
3080		/*
3081		 * Check if alignment is compatible.
3082		 * Courtesy of Adrian Drzewiecki
3083		 */
3084		if ((s->size & ~(align - 1)) != s->size)
3085			continue;
3086
3087		if (s->size - size >= sizeof(void *))
3088			continue;
3089
3090		return s;
3091	}
3092	return NULL;
3093}
3094
3095struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3096		size_t align, unsigned long flags, void (*ctor)(void *))
3097{
3098	struct kmem_cache *s;
3099
3100	down_write(&slub_lock);
3101	s = find_mergeable(size, align, flags, name, ctor);
3102	if (s) {
3103		int cpu;
3104
3105		s->refcount++;
3106		/*
3107		 * Adjust the object sizes so that we clear
3108		 * the complete object on kzalloc.
3109		 */
3110		s->objsize = max(s->objsize, (int)size);
3111
3112		/*
3113		 * And then we need to update the object size in the
3114		 * per cpu structures
3115		 */
3116		for_each_online_cpu(cpu)
3117			get_cpu_slab(s, cpu)->objsize = s->objsize;
3118
3119		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3120		up_write(&slub_lock);
3121
3122		if (sysfs_slab_alias(s, name))
3123			goto err;
3124		return s;
3125	}
3126
3127	s = kmalloc(kmem_size, GFP_KERNEL);
3128	if (s) {
3129		if (kmem_cache_open(s, GFP_KERNEL, name,
3130				size, align, flags, ctor)) {
3131			list_add(&s->list, &slab_caches);
3132			up_write(&slub_lock);
3133			if (sysfs_slab_add(s))
3134				goto err;
3135			return s;
3136		}
3137		kfree(s);
3138	}
3139	up_write(&slub_lock);
3140
3141err:
3142	if (flags & SLAB_PANIC)
3143		panic("Cannot create slabcache %s\n", name);
3144	else
3145		s = NULL;
3146	return s;
3147}
3148EXPORT_SYMBOL(kmem_cache_create);
3149
3150#ifdef CONFIG_SMP
3151/*
3152 * Use the cpu notifier to insure that the cpu slabs are flushed when
3153 * necessary.
3154 */
3155static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3156		unsigned long action, void *hcpu)
3157{
3158	long cpu = (long)hcpu;
3159	struct kmem_cache *s;
3160	unsigned long flags;
3161
3162	switch (action) {
3163	case CPU_UP_PREPARE:
3164	case CPU_UP_PREPARE_FROZEN:
3165		init_alloc_cpu_cpu(cpu);
3166		down_read(&slub_lock);
3167		list_for_each_entry(s, &slab_caches, list)
3168			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3169							GFP_KERNEL);
3170		up_read(&slub_lock);
3171		break;
3172
3173	case CPU_UP_CANCELED:
3174	case CPU_UP_CANCELED_FROZEN:
3175	case CPU_DEAD:
3176	case CPU_DEAD_FROZEN:
3177		down_read(&slub_lock);
3178		list_for_each_entry(s, &slab_caches, list) {
3179			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3180
3181			local_irq_save(flags);
3182			__flush_cpu_slab(s, cpu);
3183			local_irq_restore(flags);
3184			free_kmem_cache_cpu(c, cpu);
3185			s->cpu_slab[cpu] = NULL;
3186		}
3187		up_read(&slub_lock);
3188		break;
3189	default:
3190		break;
3191	}
3192	return NOTIFY_OK;
3193}
3194
3195static struct notifier_block __cpuinitdata slab_notifier = {
3196	.notifier_call = slab_cpuup_callback
3197};
3198
3199#endif
3200
3201void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3202{
3203	struct kmem_cache *s;
3204
3205	if (unlikely(size > PAGE_SIZE))
3206		return kmalloc_large(size, gfpflags);
3207
3208	s = get_slab(size, gfpflags);
3209
3210	if (unlikely(ZERO_OR_NULL_PTR(s)))
3211		return s;
3212
3213	return slab_alloc(s, gfpflags, -1, caller);
3214}
3215
3216void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3217					int node, void *caller)
3218{
3219	struct kmem_cache *s;
3220
3221	if (unlikely(size > PAGE_SIZE))
3222		return kmalloc_large_node(size, gfpflags, node);
3223
3224	s = get_slab(size, gfpflags);
3225
3226	if (unlikely(ZERO_OR_NULL_PTR(s)))
3227		return s;
3228
3229	return slab_alloc(s, gfpflags, node, caller);
3230}
3231
3232#ifdef CONFIG_SLUB_DEBUG
3233static unsigned long count_partial(struct kmem_cache_node *n,
3234					int (*get_count)(struct page *))
3235{
3236	unsigned long flags;
3237	unsigned long x = 0;
3238	struct page *page;
3239
3240	spin_lock_irqsave(&n->list_lock, flags);
3241	list_for_each_entry(page, &n->partial, lru)
3242		x += get_count(page);
3243	spin_unlock_irqrestore(&n->list_lock, flags);
3244	return x;
3245}
3246
3247static int count_inuse(struct page *page)
3248{
3249	return page->inuse;
3250}
3251
3252static int count_total(struct page *page)
3253{
3254	return page->objects;
3255}
3256
3257static int count_free(struct page *page)
3258{
3259	return page->objects - page->inuse;
3260}
3261
3262static int validate_slab(struct kmem_cache *s, struct page *page,
3263						unsigned long *map)
3264{
3265	void *p;
3266	void *addr = page_address(page);
3267
3268	if (!check_slab(s, page) ||
3269			!on_freelist(s, page, NULL))
3270		return 0;
3271
3272	/* Now we know that a valid freelist exists */
3273	bitmap_zero(map, page->objects);
3274
3275	for_each_free_object(p, s, page->freelist) {
3276		set_bit(slab_index(p, s, addr), map);
3277		if (!check_object(s, page, p, 0))
3278			return 0;
3279	}
3280
3281	for_each_object(p, s, addr, page->objects)
3282		if (!test_bit(slab_index(p, s, addr), map))
3283			if (!check_object(s, page, p, 1))
3284				return 0;
3285	return 1;
3286}
3287
3288static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3289						unsigned long *map)
3290{
3291	if (slab_trylock(page)) {
3292		validate_slab(s, page, map);
3293		slab_unlock(page);
3294	} else
3295		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3296			s->name, page);
3297
3298	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3299		if (!PageSlubDebug(page))
3300			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3301				"on slab 0x%p\n", s->name, page);
3302	} else {
3303		if (PageSlubDebug(page))
3304			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3305				"slab 0x%p\n", s->name, page);
3306	}
3307}
3308
3309static int validate_slab_node(struct kmem_cache *s,
3310		struct kmem_cache_node *n, unsigned long *map)
3311{
3312	unsigned long count = 0;
3313	struct page *page;
3314	unsigned long flags;
3315
3316	spin_lock_irqsave(&n->list_lock, flags);
3317
3318	list_for_each_entry(page, &n->partial, lru) {
3319		validate_slab_slab(s, page, map);
3320		count++;
3321	}
3322	if (count != n->nr_partial)
3323		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3324			"counter=%ld\n", s->name, count, n->nr_partial);
3325
3326	if (!(s->flags & SLAB_STORE_USER))
3327		goto out;
3328
3329	list_for_each_entry(page, &n->full, lru) {
3330		validate_slab_slab(s, page, map);
3331		count++;
3332	}
3333	if (count != atomic_long_read(&n->nr_slabs))
3334		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3335			"counter=%ld\n", s->name, count,
3336			atomic_long_read(&n->nr_slabs));
3337
3338out:
3339	spin_unlock_irqrestore(&n->list_lock, flags);
3340	return count;
3341}
3342
3343static long validate_slab_cache(struct kmem_cache *s)
3344{
3345	int node;
3346	unsigned long count = 0;
3347	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3348				sizeof(unsigned long), GFP_KERNEL);
3349
3350	if (!map)
3351		return -ENOMEM;
3352
3353	flush_all(s);
3354	for_each_node_state(node, N_NORMAL_MEMORY) {
3355		struct kmem_cache_node *n = get_node(s, node);
3356
3357		count += validate_slab_node(s, n, map);
3358	}
3359	kfree(map);
3360	return count;
3361}
3362
3363#ifdef SLUB_RESILIENCY_TEST
3364static void resiliency_test(void)
3365{
3366	u8 *p;
3367
3368	printk(KERN_ERR "SLUB resiliency testing\n");
3369	printk(KERN_ERR "-----------------------\n");
3370	printk(KERN_ERR "A. Corruption after allocation\n");
3371
3372	p = kzalloc(16, GFP_KERNEL);
3373	p[16] = 0x12;
3374	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3375			" 0x12->0x%p\n\n", p + 16);
3376
3377	validate_slab_cache(kmalloc_caches + 4);
3378
3379	/* Hmmm... The next two are dangerous */
3380	p = kzalloc(32, GFP_KERNEL);
3381	p[32 + sizeof(void *)] = 0x34;
3382	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3383			" 0x34 -> -0x%p\n", p);
3384	printk(KERN_ERR
3385		"If allocated object is overwritten then not detectable\n\n");
3386
3387	validate_slab_cache(kmalloc_caches + 5);
3388	p = kzalloc(64, GFP_KERNEL);
3389	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3390	*p = 0x56;
3391	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3392									p);
3393	printk(KERN_ERR
3394		"If allocated object is overwritten then not detectable\n\n");
3395	validate_slab_cache(kmalloc_caches + 6);
3396
3397	printk(KERN_ERR "\nB. Corruption after free\n");
3398	p = kzalloc(128, GFP_KERNEL);
3399	kfree(p);
3400	*p = 0x78;
3401	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3402	validate_slab_cache(kmalloc_caches + 7);
3403
3404	p = kzalloc(256, GFP_KERNEL);
3405	kfree(p);
3406	p[50] = 0x9a;
3407	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3408			p);
3409	validate_slab_cache(kmalloc_caches + 8);
3410
3411	p = kzalloc(512, GFP_KERNEL);
3412	kfree(p);
3413	p[512] = 0xab;
3414	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3415	validate_slab_cache(kmalloc_caches + 9);
3416}
3417#else
3418static void resiliency_test(void) {};
3419#endif
3420
3421/*
3422 * Generate lists of code addresses where slabcache objects are allocated
3423 * and freed.
3424 */
3425
3426struct location {
3427	unsigned long count;
3428	void *addr;
3429	long long sum_time;
3430	long min_time;
3431	long max_time;
3432	long min_pid;
3433	long max_pid;
3434	cpumask_t cpus;
3435	nodemask_t nodes;
3436};
3437
3438struct loc_track {
3439	unsigned long max;
3440	unsigned long count;
3441	struct location *loc;
3442};
3443
3444static void free_loc_track(struct loc_track *t)
3445{
3446	if (t->max)
3447		free_pages((unsigned long)t->loc,
3448			get_order(sizeof(struct location) * t->max));
3449}
3450
3451static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3452{
3453	struct location *l;
3454	int order;
3455
3456	order = get_order(sizeof(struct location) * max);
3457
3458	l = (void *)__get_free_pages(flags, order);
3459	if (!l)
3460		return 0;
3461
3462	if (t->count) {
3463		memcpy(l, t->loc, sizeof(struct location) * t->count);
3464		free_loc_track(t);
3465	}
3466	t->max = max;
3467	t->loc = l;
3468	return 1;
3469}
3470
3471static int add_location(struct loc_track *t, struct kmem_cache *s,
3472				const struct track *track)
3473{
3474	long start, end, pos;
3475	struct location *l;
3476	void *caddr;
3477	unsigned long age = jiffies - track->when;
3478
3479	start = -1;
3480	end = t->count;
3481
3482	for ( ; ; ) {
3483		pos = start + (end - start + 1) / 2;
3484
3485		/*
3486		 * There is nothing at "end". If we end up there
3487		 * we need to add something to before end.
3488		 */
3489		if (pos == end)
3490			break;
3491
3492		caddr = t->loc[pos].addr;
3493		if (track->addr == caddr) {
3494
3495			l = &t->loc[pos];
3496			l->count++;
3497			if (track->when) {
3498				l->sum_time += age;
3499				if (age < l->min_time)
3500					l->min_time = age;
3501				if (age > l->max_time)
3502					l->max_time = age;
3503
3504				if (track->pid < l->min_pid)
3505					l->min_pid = track->pid;
3506				if (track->pid > l->max_pid)
3507					l->max_pid = track->pid;
3508
3509				cpu_set(track->cpu, l->cpus);
3510			}
3511			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3512			return 1;
3513		}
3514
3515		if (track->addr < caddr)
3516			end = pos;
3517		else
3518			start = pos;
3519	}
3520
3521	/*
3522	 * Not found. Insert new tracking element.
3523	 */
3524	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3525		return 0;
3526
3527	l = t->loc + pos;
3528	if (pos < t->count)
3529		memmove(l + 1, l,
3530			(t->count - pos) * sizeof(struct location));
3531	t->count++;
3532	l->count = 1;
3533	l->addr = track->addr;
3534	l->sum_time = age;
3535	l->min_time = age;
3536	l->max_time = age;
3537	l->min_pid = track->pid;
3538	l->max_pid = track->pid;
3539	cpus_clear(l->cpus);
3540	cpu_set(track->cpu, l->cpus);
3541	nodes_clear(l->nodes);
3542	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3543	return 1;
3544}
3545
3546static void process_slab(struct loc_track *t, struct kmem_cache *s,
3547		struct page *page, enum track_item alloc)
3548{
3549	void *addr = page_address(page);
3550	DECLARE_BITMAP(map, page->objects);
3551	void *p;
3552
3553	bitmap_zero(map, page->objects);
3554	for_each_free_object(p, s, page->freelist)
3555		set_bit(slab_index(p, s, addr), map);
3556
3557	for_each_object(p, s, addr, page->objects)
3558		if (!test_bit(slab_index(p, s, addr), map))
3559			add_location(t, s, get_track(s, p, alloc));
3560}
3561
3562static int list_locations(struct kmem_cache *s, char *buf,
3563					enum track_item alloc)
3564{
3565	int len = 0;
3566	unsigned long i;
3567	struct loc_track t = { 0, 0, NULL };
3568	int node;
3569
3570	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3571			GFP_TEMPORARY))
3572		return sprintf(buf, "Out of memory\n");
3573
3574	/* Push back cpu slabs */
3575	flush_all(s);
3576
3577	for_each_node_state(node, N_NORMAL_MEMORY) {
3578		struct kmem_cache_node *n = get_node(s, node);
3579		unsigned long flags;
3580		struct page *page;
3581
3582		if (!atomic_long_read(&n->nr_slabs))
3583			continue;
3584
3585		spin_lock_irqsave(&n->list_lock, flags);
3586		list_for_each_entry(page, &n->partial, lru)
3587			process_slab(&t, s, page, alloc);
3588		list_for_each_entry(page, &n->full, lru)
3589			process_slab(&t, s, page, alloc);
3590		spin_unlock_irqrestore(&n->list_lock, flags);
3591	}
3592
3593	for (i = 0; i < t.count; i++) {
3594		struct location *l = &t.loc[i];
3595
3596		if (len > PAGE_SIZE - 100)
3597			break;
3598		len += sprintf(buf + len, "%7ld ", l->count);
3599
3600		if (l->addr)
3601			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3602		else
3603			len += sprintf(buf + len, "<not-available>");
3604
3605		if (l->sum_time != l->min_time) {
3606			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3607				l->min_time,
3608				(long)div_u64(l->sum_time, l->count),
3609				l->max_time);
3610		} else
3611			len += sprintf(buf + len, " age=%ld",
3612				l->min_time);
3613
3614		if (l->min_pid != l->max_pid)
3615			len += sprintf(buf + len, " pid=%ld-%ld",
3616				l->min_pid, l->max_pid);
3617		else
3618			len += sprintf(buf + len, " pid=%ld",
3619				l->min_pid);
3620
3621		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3622				len < PAGE_SIZE - 60) {
3623			len += sprintf(buf + len, " cpus=");
3624			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3625					l->cpus);
3626		}
3627
3628		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3629				len < PAGE_SIZE - 60) {
3630			len += sprintf(buf + len, " nodes=");
3631			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3632					l->nodes);
3633		}
3634
3635		len += sprintf(buf + len, "\n");
3636	}
3637
3638	free_loc_track(&t);
3639	if (!t.count)
3640		len += sprintf(buf, "No data\n");
3641	return len;
3642}
3643
3644enum slab_stat_type {
3645	SL_ALL,			/* All slabs */
3646	SL_PARTIAL,		/* Only partially allocated slabs */
3647	SL_CPU,			/* Only slabs used for cpu caches */
3648	SL_OBJECTS,		/* Determine allocated objects not slabs */
3649	SL_TOTAL		/* Determine object capacity not slabs */
3650};
3651
3652#define SO_ALL		(1 << SL_ALL)
3653#define SO_PARTIAL	(1 << SL_PARTIAL)
3654#define SO_CPU		(1 << SL_CPU)
3655#define SO_OBJECTS	(1 << SL_OBJECTS)
3656#define SO_TOTAL	(1 << SL_TOTAL)
3657
3658static ssize_t show_slab_objects(struct kmem_cache *s,
3659			    char *buf, unsigned long flags)
3660{
3661	unsigned long total = 0;
3662	int node;
3663	int x;
3664	unsigned long *nodes;
3665	unsigned long *per_cpu;
3666
3667	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3668	if (!nodes)
3669		return -ENOMEM;
3670	per_cpu = nodes + nr_node_ids;
3671
3672	if (flags & SO_CPU) {
3673		int cpu;
3674
3675		for_each_possible_cpu(cpu) {
3676			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3677
3678			if (!c || c->node < 0)
3679				continue;
3680
3681			if (c->page) {
3682					if (flags & SO_TOTAL)
3683						x = c->page->objects;
3684				else if (flags & SO_OBJECTS)
3685					x = c->page->inuse;
3686				else
3687					x = 1;
3688
3689				total += x;
3690				nodes[c->node] += x;
3691			}
3692			per_cpu[c->node]++;
3693		}
3694	}
3695
3696	if (flags & SO_ALL) {
3697		for_each_node_state(node, N_NORMAL_MEMORY) {
3698			struct kmem_cache_node *n = get_node(s, node);
3699
3700		if (flags & SO_TOTAL)
3701			x = atomic_long_read(&n->total_objects);
3702		else if (flags & SO_OBJECTS)
3703			x = atomic_long_read(&n->total_objects) -
3704				count_partial(n, count_free);
3705
3706			else
3707				x = atomic_long_read(&n->nr_slabs);
3708			total += x;
3709			nodes[node] += x;
3710		}
3711
3712	} else if (flags & SO_PARTIAL) {
3713		for_each_node_state(node, N_NORMAL_MEMORY) {
3714			struct kmem_cache_node *n = get_node(s, node);
3715
3716			if (flags & SO_TOTAL)
3717				x = count_partial(n, count_total);
3718			else if (flags & SO_OBJECTS)
3719				x = count_partial(n, count_inuse);
3720			else
3721				x = n->nr_partial;
3722			total += x;
3723			nodes[node] += x;
3724		}
3725	}
3726	x = sprintf(buf, "%lu", total);
3727#ifdef CONFIG_NUMA
3728	for_each_node_state(node, N_NORMAL_MEMORY)
3729		if (nodes[node])
3730			x += sprintf(buf + x, " N%d=%lu",
3731					node, nodes[node]);
3732#endif
3733	kfree(nodes);
3734	return x + sprintf(buf + x, "\n");
3735}
3736
3737static int any_slab_objects(struct kmem_cache *s)
3738{
3739	int node;
3740
3741	for_each_online_node(node) {
3742		struct kmem_cache_node *n = get_node(s, node);
3743
3744		if (!n)
3745			continue;
3746
3747		if (atomic_long_read(&n->total_objects))
3748			return 1;
3749	}
3750	return 0;
3751}
3752
3753#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3754#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3755
3756struct slab_attribute {
3757	struct attribute attr;
3758	ssize_t (*show)(struct kmem_cache *s, char *buf);
3759	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3760};
3761
3762#define SLAB_ATTR_RO(_name) \
3763	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3764
3765#define SLAB_ATTR(_name) \
3766	static struct slab_attribute _name##_attr =  \
3767	__ATTR(_name, 0644, _name##_show, _name##_store)
3768
3769static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3770{
3771	return sprintf(buf, "%d\n", s->size);
3772}
3773SLAB_ATTR_RO(slab_size);
3774
3775static ssize_t align_show(struct kmem_cache *s, char *buf)
3776{
3777	return sprintf(buf, "%d\n", s->align);
3778}
3779SLAB_ATTR_RO(align);
3780
3781static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3782{
3783	return sprintf(buf, "%d\n", s->objsize);
3784}
3785SLAB_ATTR_RO(object_size);
3786
3787static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3788{
3789	return sprintf(buf, "%d\n", oo_objects(s->oo));
3790}
3791SLAB_ATTR_RO(objs_per_slab);
3792
3793static ssize_t order_store(struct kmem_cache *s,
3794				const char *buf, size_t length)
3795{
3796	unsigned long order;
3797	int err;
3798
3799	err = strict_strtoul(buf, 10, &order);
3800	if (err)
3801		return err;
3802
3803	if (order > slub_max_order || order < slub_min_order)
3804		return -EINVAL;
3805
3806	calculate_sizes(s, order);
3807	return length;
3808}
3809
3810static ssize_t order_show(struct kmem_cache *s, char *buf)
3811{
3812	return sprintf(buf, "%d\n", oo_order(s->oo));
3813}
3814SLAB_ATTR(order);
3815
3816static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3817{
3818	if (s->ctor) {
3819		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3820
3821		return n + sprintf(buf + n, "\n");
3822	}
3823	return 0;
3824}
3825SLAB_ATTR_RO(ctor);
3826
3827static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3828{
3829	return sprintf(buf, "%d\n", s->refcount - 1);
3830}
3831SLAB_ATTR_RO(aliases);
3832
3833static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3834{
3835	return show_slab_objects(s, buf, SO_ALL);
3836}
3837SLAB_ATTR_RO(slabs);
3838
3839static ssize_t partial_show(struct kmem_cache *s, char *buf)
3840{
3841	return show_slab_objects(s, buf, SO_PARTIAL);
3842}
3843SLAB_ATTR_RO(partial);
3844
3845static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3846{
3847	return show_slab_objects(s, buf, SO_CPU);
3848}
3849SLAB_ATTR_RO(cpu_slabs);
3850
3851static ssize_t objects_show(struct kmem_cache *s, char *buf)
3852{
3853	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3854}
3855SLAB_ATTR_RO(objects);
3856
3857static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3858{
3859	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3860}
3861SLAB_ATTR_RO(objects_partial);
3862
3863static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3864{
3865	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3866}
3867SLAB_ATTR_RO(total_objects);
3868
3869static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3870{
3871	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3872}
3873
3874static ssize_t sanity_checks_store(struct kmem_cache *s,
3875				const char *buf, size_t length)
3876{
3877	s->flags &= ~SLAB_DEBUG_FREE;
3878	if (buf[0] == '1')
3879		s->flags |= SLAB_DEBUG_FREE;
3880	return length;
3881}
3882SLAB_ATTR(sanity_checks);
3883
3884static ssize_t trace_show(struct kmem_cache *s, char *buf)
3885{
3886	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3887}
3888
3889static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3890							size_t length)
3891{
3892	s->flags &= ~SLAB_TRACE;
3893	if (buf[0] == '1')
3894		s->flags |= SLAB_TRACE;
3895	return length;
3896}
3897SLAB_ATTR(trace);
3898
3899static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3900{
3901	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3902}
3903
3904static ssize_t reclaim_account_store(struct kmem_cache *s,
3905				const char *buf, size_t length)
3906{
3907	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3908	if (buf[0] == '1')
3909		s->flags |= SLAB_RECLAIM_ACCOUNT;
3910	return length;
3911}
3912SLAB_ATTR(reclaim_account);
3913
3914static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3915{
3916	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3917}
3918SLAB_ATTR_RO(hwcache_align);
3919
3920#ifdef CONFIG_ZONE_DMA
3921static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3922{
3923	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3924}
3925SLAB_ATTR_RO(cache_dma);
3926#endif
3927
3928static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3929{
3930	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3931}
3932SLAB_ATTR_RO(destroy_by_rcu);
3933
3934static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3935{
3936	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3937}
3938
3939static ssize_t red_zone_store(struct kmem_cache *s,
3940				const char *buf, size_t length)
3941{
3942	if (any_slab_objects(s))
3943		return -EBUSY;
3944
3945	s->flags &= ~SLAB_RED_ZONE;
3946	if (buf[0] == '1')
3947		s->flags |= SLAB_RED_ZONE;
3948	calculate_sizes(s, -1);
3949	return length;
3950}
3951SLAB_ATTR(red_zone);
3952
3953static ssize_t poison_show(struct kmem_cache *s, char *buf)
3954{
3955	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3956}
3957
3958static ssize_t poison_store(struct kmem_cache *s,
3959				const char *buf, size_t length)
3960{
3961	if (any_slab_objects(s))
3962		return -EBUSY;
3963
3964	s->flags &= ~SLAB_POISON;
3965	if (buf[0] == '1')
3966		s->flags |= SLAB_POISON;
3967	calculate_sizes(s, -1);
3968	return length;
3969}
3970SLAB_ATTR(poison);
3971
3972static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3973{
3974	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3975}
3976
3977static ssize_t store_user_store(struct kmem_cache *s,
3978				const char *buf, size_t length)
3979{
3980	if (any_slab_objects(s))
3981		return -EBUSY;
3982
3983	s->flags &= ~SLAB_STORE_USER;
3984	if (buf[0] == '1')
3985		s->flags |= SLAB_STORE_USER;
3986	calculate_sizes(s, -1);
3987	return length;
3988}
3989SLAB_ATTR(store_user);
3990
3991static ssize_t validate_show(struct kmem_cache *s, char *buf)
3992{
3993	return 0;
3994}
3995
3996static ssize_t validate_store(struct kmem_cache *s,
3997			const char *buf, size_t length)
3998{
3999	int ret = -EINVAL;
4000
4001	if (buf[0] == '1') {
4002		ret = validate_slab_cache(s);
4003		if (ret >= 0)
4004			ret = length;
4005	}
4006	return ret;
4007}
4008SLAB_ATTR(validate);
4009
4010static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4011{
4012	return 0;
4013}
4014
4015static ssize_t shrink_store(struct kmem_cache *s,
4016			const char *buf, size_t length)
4017{
4018	if (buf[0] == '1') {
4019		int rc = kmem_cache_shrink(s);
4020
4021		if (rc)
4022			return rc;
4023	} else
4024		return -EINVAL;
4025	return length;
4026}
4027SLAB_ATTR(shrink);
4028
4029static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4030{
4031	if (!(s->flags & SLAB_STORE_USER))
4032		return -ENOSYS;
4033	return list_locations(s, buf, TRACK_ALLOC);
4034}
4035SLAB_ATTR_RO(alloc_calls);
4036
4037static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4038{
4039	if (!(s->flags & SLAB_STORE_USER))
4040		return -ENOSYS;
4041	return list_locations(s, buf, TRACK_FREE);
4042}
4043SLAB_ATTR_RO(free_calls);
4044
4045#ifdef CONFIG_NUMA
4046static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4047{
4048	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4049}
4050
4051static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4052				const char *buf, size_t length)
4053{
4054	unsigned long ratio;
4055	int err;
4056
4057	err = strict_strtoul(buf, 10, &ratio);
4058	if (err)
4059		return err;
4060
4061	if (ratio < 100)
4062		s->remote_node_defrag_ratio = ratio * 10;
4063
4064	return length;
4065}
4066SLAB_ATTR(remote_node_defrag_ratio);
4067#endif
4068
4069#ifdef CONFIG_SLUB_STATS
4070static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4071{
4072	unsigned long sum  = 0;
4073	int cpu;
4074	int len;
4075	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4076
4077	if (!data)
4078		return -ENOMEM;
4079
4080	for_each_online_cpu(cpu) {
4081		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4082
4083		data[cpu] = x;
4084		sum += x;
4085	}
4086
4087	len = sprintf(buf, "%lu", sum);
4088
4089#ifdef CONFIG_SMP
4090	for_each_online_cpu(cpu) {
4091		if (data[cpu] && len < PAGE_SIZE - 20)
4092			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4093	}
4094#endif
4095	kfree(data);
4096	return len + sprintf(buf + len, "\n");
4097}
4098
4099#define STAT_ATTR(si, text) 					\
4100static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4101{								\
4102	return show_stat(s, buf, si);				\
4103}								\
4104SLAB_ATTR_RO(text);						\
4105
4106STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4107STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4108STAT_ATTR(FREE_FASTPATH, free_fastpath);
4109STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4110STAT_ATTR(FREE_FROZEN, free_frozen);
4111STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4112STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4113STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4114STAT_ATTR(ALLOC_SLAB, alloc_slab);
4115STAT_ATTR(ALLOC_REFILL, alloc_refill);
4116STAT_ATTR(FREE_SLAB, free_slab);
4117STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4118STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4119STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4120STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4121STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4122STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4123STAT_ATTR(ORDER_FALLBACK, order_fallback);
4124#endif
4125
4126static struct attribute *slab_attrs[] = {
4127	&slab_size_attr.attr,
4128	&object_size_attr.attr,
4129	&objs_per_slab_attr.attr,
4130	&order_attr.attr,
4131	&objects_attr.attr,
4132	&objects_partial_attr.attr,
4133	&total_objects_attr.attr,
4134	&slabs_attr.attr,
4135	&partial_attr.attr,
4136	&cpu_slabs_attr.attr,
4137	&ctor_attr.attr,
4138	&aliases_attr.attr,
4139	&align_attr.attr,
4140	&sanity_checks_attr.attr,
4141	&trace_attr.attr,
4142	&hwcache_align_attr.attr,
4143	&reclaim_account_attr.attr,
4144	&destroy_by_rcu_attr.attr,
4145	&red_zone_attr.attr,
4146	&poison_attr.attr,
4147	&store_user_attr.attr,
4148	&validate_attr.attr,
4149	&shrink_attr.attr,
4150	&alloc_calls_attr.attr,
4151	&free_calls_attr.attr,
4152#ifdef CONFIG_ZONE_DMA
4153	&cache_dma_attr.attr,
4154#endif
4155#ifdef CONFIG_NUMA
4156	&remote_node_defrag_ratio_attr.attr,
4157#endif
4158#ifdef CONFIG_SLUB_STATS
4159	&alloc_fastpath_attr.attr,
4160	&alloc_slowpath_attr.attr,
4161	&free_fastpath_attr.attr,
4162	&free_slowpath_attr.attr,
4163	&free_frozen_attr.attr,
4164	&free_add_partial_attr.attr,
4165	&free_remove_partial_attr.attr,
4166	&alloc_from_partial_attr.attr,
4167	&alloc_slab_attr.attr,
4168	&alloc_refill_attr.attr,
4169	&free_slab_attr.attr,
4170	&cpuslab_flush_attr.attr,
4171	&deactivate_full_attr.attr,
4172	&deactivate_empty_attr.attr,
4173	&deactivate_to_head_attr.attr,
4174	&deactivate_to_tail_attr.attr,
4175	&deactivate_remote_frees_attr.attr,
4176	&order_fallback_attr.attr,
4177#endif
4178	NULL
4179};
4180
4181static struct attribute_group slab_attr_group = {
4182	.attrs = slab_attrs,
4183};
4184
4185static ssize_t slab_attr_show(struct kobject *kobj,
4186				struct attribute *attr,
4187				char *buf)
4188{
4189	struct slab_attribute *attribute;
4190	struct kmem_cache *s;
4191	int err;
4192
4193	attribute = to_slab_attr(attr);
4194	s = to_slab(kobj);
4195
4196	if (!attribute->show)
4197		return -EIO;
4198
4199	err = attribute->show(s, buf);
4200
4201	return err;
4202}
4203
4204static ssize_t slab_attr_store(struct kobject *kobj,
4205				struct attribute *attr,
4206				const char *buf, size_t len)
4207{
4208	struct slab_attribute *attribute;
4209	struct kmem_cache *s;
4210	int err;
4211
4212	attribute = to_slab_attr(attr);
4213	s = to_slab(kobj);
4214
4215	if (!attribute->store)
4216		return -EIO;
4217
4218	err = attribute->store(s, buf, len);
4219
4220	return err;
4221}
4222
4223static void kmem_cache_release(struct kobject *kobj)
4224{
4225	struct kmem_cache *s = to_slab(kobj);
4226
4227	kfree(s);
4228}
4229
4230static struct sysfs_ops slab_sysfs_ops = {
4231	.show = slab_attr_show,
4232	.store = slab_attr_store,
4233};
4234
4235static struct kobj_type slab_ktype = {
4236	.sysfs_ops = &slab_sysfs_ops,
4237	.release = kmem_cache_release
4238};
4239
4240static int uevent_filter(struct kset *kset, struct kobject *kobj)
4241{
4242	struct kobj_type *ktype = get_ktype(kobj);
4243
4244	if (ktype == &slab_ktype)
4245		return 1;
4246	return 0;
4247}
4248
4249static struct kset_uevent_ops slab_uevent_ops = {
4250	.filter = uevent_filter,
4251};
4252
4253static struct kset *slab_kset;
4254
4255#define ID_STR_LENGTH 64
4256
4257/* Create a unique string id for a slab cache:
4258 *
4259 * Format	:[flags-]size
4260 */
4261static char *create_unique_id(struct kmem_cache *s)
4262{
4263	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4264	char *p = name;
4265
4266	BUG_ON(!name);
4267
4268	*p++ = ':';
4269	/*
4270	 * First flags affecting slabcache operations. We will only
4271	 * get here for aliasable slabs so we do not need to support
4272	 * too many flags. The flags here must cover all flags that
4273	 * are matched during merging to guarantee that the id is
4274	 * unique.
4275	 */
4276	if (s->flags & SLAB_CACHE_DMA)
4277		*p++ = 'd';
4278	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4279		*p++ = 'a';
4280	if (s->flags & SLAB_DEBUG_FREE)
4281		*p++ = 'F';
4282	if (p != name + 1)
4283		*p++ = '-';
4284	p += sprintf(p, "%07d", s->size);
4285	BUG_ON(p > name + ID_STR_LENGTH - 1);
4286	return name;
4287}
4288
4289static int sysfs_slab_add(struct kmem_cache *s)
4290{
4291	int err;
4292	const char *name;
4293	int unmergeable;
4294
4295	if (slab_state < SYSFS)
4296		/* Defer until later */
4297		return 0;
4298
4299	unmergeable = slab_unmergeable(s);
4300	if (unmergeable) {
4301		/*
4302		 * Slabcache can never be merged so we can use the name proper.
4303		 * This is typically the case for debug situations. In that
4304		 * case we can catch duplicate names easily.
4305		 */
4306		sysfs_remove_link(&slab_kset->kobj, s->name);
4307		name = s->name;
4308	} else {
4309		/*
4310		 * Create a unique name for the slab as a target
4311		 * for the symlinks.
4312		 */
4313		name = create_unique_id(s);
4314	}
4315
4316	s->kobj.kset = slab_kset;
4317	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4318	if (err) {
4319		kobject_put(&s->kobj);
4320		return err;
4321	}
4322
4323	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4324	if (err)
4325		return err;
4326	kobject_uevent(&s->kobj, KOBJ_ADD);
4327	if (!unmergeable) {
4328		/* Setup first alias */
4329		sysfs_slab_alias(s, s->name);
4330		kfree(name);
4331	}
4332	return 0;
4333}
4334
4335static void sysfs_slab_remove(struct kmem_cache *s)
4336{
4337	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4338	kobject_del(&s->kobj);
4339	kobject_put(&s->kobj);
4340}
4341
4342/*
4343 * Need to buffer aliases during bootup until sysfs becomes
4344 * available lest we loose that information.
4345 */
4346struct saved_alias {
4347	struct kmem_cache *s;
4348	const char *name;
4349	struct saved_alias *next;
4350};
4351
4352static struct saved_alias *alias_list;
4353
4354static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4355{
4356	struct saved_alias *al;
4357
4358	if (slab_state == SYSFS) {
4359		/*
4360		 * If we have a leftover link then remove it.
4361		 */
4362		sysfs_remove_link(&slab_kset->kobj, name);
4363		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4364	}
4365
4366	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4367	if (!al)
4368		return -ENOMEM;
4369
4370	al->s = s;
4371	al->name = name;
4372	al->next = alias_list;
4373	alias_list = al;
4374	return 0;
4375}
4376
4377static int __init slab_sysfs_init(void)
4378{
4379	struct kmem_cache *s;
4380	int err;
4381
4382	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4383	if (!slab_kset) {
4384		printk(KERN_ERR "Cannot register slab subsystem.\n");
4385		return -ENOSYS;
4386	}
4387
4388	slab_state = SYSFS;
4389
4390	list_for_each_entry(s, &slab_caches, list) {
4391		err = sysfs_slab_add(s);
4392		if (err)
4393			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4394						" to sysfs\n", s->name);
4395	}
4396
4397	while (alias_list) {
4398		struct saved_alias *al = alias_list;
4399
4400		alias_list = alias_list->next;
4401		err = sysfs_slab_alias(al->s, al->name);
4402		if (err)
4403			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4404					" %s to sysfs\n", s->name);
4405		kfree(al);
4406	}
4407
4408	resiliency_test();
4409	return 0;
4410}
4411
4412__initcall(slab_sysfs_init);
4413#endif
4414
4415/*
4416 * The /proc/slabinfo ABI
4417 */
4418#ifdef CONFIG_SLABINFO
4419
4420ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4421		       size_t count, loff_t *ppos)
4422{
4423	return -EINVAL;
4424}
4425
4426
4427static void print_slabinfo_header(struct seq_file *m)
4428{
4429	seq_puts(m, "slabinfo - version: 2.1\n");
4430	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4431		 "<objperslab> <pagesperslab>");
4432	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4433	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4434	seq_putc(m, '\n');
4435}
4436
4437static void *s_start(struct seq_file *m, loff_t *pos)
4438{
4439	loff_t n = *pos;
4440
4441	down_read(&slub_lock);
4442	if (!n)
4443		print_slabinfo_header(m);
4444
4445	return seq_list_start(&slab_caches, *pos);
4446}
4447
4448static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4449{
4450	return seq_list_next(p, &slab_caches, pos);
4451}
4452
4453static void s_stop(struct seq_file *m, void *p)
4454{
4455	up_read(&slub_lock);
4456}
4457
4458static int s_show(struct seq_file *m, void *p)
4459{
4460	unsigned long nr_partials = 0;
4461	unsigned long nr_slabs = 0;
4462	unsigned long nr_inuse = 0;
4463	unsigned long nr_objs = 0;
4464	unsigned long nr_free = 0;
4465	struct kmem_cache *s;
4466	int node;
4467
4468	s = list_entry(p, struct kmem_cache, list);
4469
4470	for_each_online_node(node) {
4471		struct kmem_cache_node *n = get_node(s, node);
4472
4473		if (!n)
4474			continue;
4475
4476		nr_partials += n->nr_partial;
4477		nr_slabs += atomic_long_read(&n->nr_slabs);
4478		nr_objs += atomic_long_read(&n->total_objects);
4479		nr_free += count_partial(n, count_free);
4480	}
4481
4482	nr_inuse = nr_objs - nr_free;
4483
4484	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4485		   nr_objs, s->size, oo_objects(s->oo),
4486		   (1 << oo_order(s->oo)));
4487	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4488	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4489		   0UL);
4490	seq_putc(m, '\n');
4491	return 0;
4492}
4493
4494const struct seq_operations slabinfo_op = {
4495	.start = s_start,
4496	.next = s_next,
4497	.stop = s_stop,
4498	.show = s_show,
4499};
4500
4501#endif /* CONFIG_SLABINFO */
4502