slub.c revision 76994412f8e824e79a593d6777ec327d85f942b2
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/debugobjects.h>
23#include <linux/kallsyms.h>
24#include <linux/memory.h>
25#include <linux/math64.h>
26
27/*
28 * Lock order:
29 *   1. slab_lock(page)
30 *   2. slab->list_lock
31 *
32 *   The slab_lock protects operations on the object of a particular
33 *   slab and its metadata in the page struct. If the slab lock
34 *   has been taken then no allocations nor frees can be performed
35 *   on the objects in the slab nor can the slab be added or removed
36 *   from the partial or full lists since this would mean modifying
37 *   the page_struct of the slab.
38 *
39 *   The list_lock protects the partial and full list on each node and
40 *   the partial slab counter. If taken then no new slabs may be added or
41 *   removed from the lists nor make the number of partial slabs be modified.
42 *   (Note that the total number of slabs is an atomic value that may be
43 *   modified without taking the list lock).
44 *
45 *   The list_lock is a centralized lock and thus we avoid taking it as
46 *   much as possible. As long as SLUB does not have to handle partial
47 *   slabs, operations can continue without any centralized lock. F.e.
48 *   allocating a long series of objects that fill up slabs does not require
49 *   the list lock.
50 *
51 *   The lock order is sometimes inverted when we are trying to get a slab
52 *   off a list. We take the list_lock and then look for a page on the list
53 *   to use. While we do that objects in the slabs may be freed. We can
54 *   only operate on the slab if we have also taken the slab_lock. So we use
55 *   a slab_trylock() on the slab. If trylock was successful then no frees
56 *   can occur anymore and we can use the slab for allocations etc. If the
57 *   slab_trylock() does not succeed then frees are in progress in the slab and
58 *   we must stay away from it for a while since we may cause a bouncing
59 *   cacheline if we try to acquire the lock. So go onto the next slab.
60 *   If all pages are busy then we may allocate a new slab instead of reusing
61 *   a partial slab. A new slab has noone operating on it and thus there is
62 *   no danger of cacheline contention.
63 *
64 *   Interrupts are disabled during allocation and deallocation in order to
65 *   make the slab allocator safe to use in the context of an irq. In addition
66 *   interrupts are disabled to ensure that the processor does not change
67 *   while handling per_cpu slabs, due to kernel preemption.
68 *
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
71 *
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
77 *
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
81 *
82 * Overloading of page flags that are otherwise used for LRU management.
83 *
84 * PageActive 		The slab is frozen and exempt from list processing.
85 * 			This means that the slab is dedicated to a purpose
86 * 			such as satisfying allocations for a specific
87 * 			processor. Objects may be freed in the slab while
88 * 			it is frozen but slab_free will then skip the usual
89 * 			list operations. It is up to the processor holding
90 * 			the slab to integrate the slab into the slab lists
91 * 			when the slab is no longer needed.
92 *
93 * 			One use of this flag is to mark slabs that are
94 * 			used for allocations. Then such a slab becomes a cpu
95 * 			slab. The cpu slab may be equipped with an additional
96 * 			freelist that allows lockless access to
97 * 			free objects in addition to the regular freelist
98 * 			that requires the slab lock.
99 *
100 * PageError		Slab requires special handling due to debug
101 * 			options set. This moves	slab handling out of
102 * 			the fast path and disables lockless freelists.
103 */
104
105#define FROZEN (1 << PG_active)
106
107#ifdef CONFIG_SLUB_DEBUG
108#define SLABDEBUG (1 << PG_error)
109#else
110#define SLABDEBUG 0
111#endif
112
113static inline int SlabFrozen(struct page *page)
114{
115	return page->flags & FROZEN;
116}
117
118static inline void SetSlabFrozen(struct page *page)
119{
120	page->flags |= FROZEN;
121}
122
123static inline void ClearSlabFrozen(struct page *page)
124{
125	page->flags &= ~FROZEN;
126}
127
128static inline int SlabDebug(struct page *page)
129{
130	return page->flags & SLABDEBUG;
131}
132
133static inline void SetSlabDebug(struct page *page)
134{
135	page->flags |= SLABDEBUG;
136}
137
138static inline void ClearSlabDebug(struct page *page)
139{
140	page->flags &= ~SLABDEBUG;
141}
142
143/*
144 * Issues still to be resolved:
145 *
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
148 * - Variable sizing of the per node arrays
149 */
150
151/* Enable to test recovery from slab corruption on boot */
152#undef SLUB_RESILIENCY_TEST
153
154/*
155 * Mininum number of partial slabs. These will be left on the partial
156 * lists even if they are empty. kmem_cache_shrink may reclaim them.
157 */
158#define MIN_PARTIAL 5
159
160/*
161 * Maximum number of desirable partial slabs.
162 * The existence of more partial slabs makes kmem_cache_shrink
163 * sort the partial list by the number of objects in the.
164 */
165#define MAX_PARTIAL 10
166
167#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
168				SLAB_POISON | SLAB_STORE_USER)
169
170/*
171 * Set of flags that will prevent slab merging
172 */
173#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
174		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
175
176#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
177		SLAB_CACHE_DMA)
178
179#ifndef ARCH_KMALLOC_MINALIGN
180#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
181#endif
182
183#ifndef ARCH_SLAB_MINALIGN
184#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
185#endif
186
187/* Internal SLUB flags */
188#define __OBJECT_POISON		0x80000000 /* Poison object */
189#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
190
191static int kmem_size = sizeof(struct kmem_cache);
192
193#ifdef CONFIG_SMP
194static struct notifier_block slab_notifier;
195#endif
196
197static enum {
198	DOWN,		/* No slab functionality available */
199	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
200	UP,		/* Everything works but does not show up in sysfs */
201	SYSFS		/* Sysfs up */
202} slab_state = DOWN;
203
204/* A list of all slab caches on the system */
205static DECLARE_RWSEM(slub_lock);
206static LIST_HEAD(slab_caches);
207
208/*
209 * Tracking user of a slab.
210 */
211struct track {
212	void *addr;		/* Called from address */
213	int cpu;		/* Was running on cpu */
214	int pid;		/* Pid context */
215	unsigned long when;	/* When did the operation occur */
216};
217
218enum track_item { TRACK_ALLOC, TRACK_FREE };
219
220#ifdef CONFIG_SLUB_DEBUG
221static int sysfs_slab_add(struct kmem_cache *);
222static int sysfs_slab_alias(struct kmem_cache *, const char *);
223static void sysfs_slab_remove(struct kmem_cache *);
224
225#else
226static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
227static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
228							{ return 0; }
229static inline void sysfs_slab_remove(struct kmem_cache *s)
230{
231	kfree(s);
232}
233
234#endif
235
236static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
237{
238#ifdef CONFIG_SLUB_STATS
239	c->stat[si]++;
240#endif
241}
242
243/********************************************************************
244 * 			Core slab cache functions
245 *******************************************************************/
246
247int slab_is_available(void)
248{
249	return slab_state >= UP;
250}
251
252static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
253{
254#ifdef CONFIG_NUMA
255	return s->node[node];
256#else
257	return &s->local_node;
258#endif
259}
260
261static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
262{
263#ifdef CONFIG_SMP
264	return s->cpu_slab[cpu];
265#else
266	return &s->cpu_slab;
267#endif
268}
269
270/* Verify that a pointer has an address that is valid within a slab page */
271static inline int check_valid_pointer(struct kmem_cache *s,
272				struct page *page, const void *object)
273{
274	void *base;
275
276	if (!object)
277		return 1;
278
279	base = page_address(page);
280	if (object < base || object >= base + page->objects * s->size ||
281		(object - base) % s->size) {
282		return 0;
283	}
284
285	return 1;
286}
287
288/*
289 * Slow version of get and set free pointer.
290 *
291 * This version requires touching the cache lines of kmem_cache which
292 * we avoid to do in the fast alloc free paths. There we obtain the offset
293 * from the page struct.
294 */
295static inline void *get_freepointer(struct kmem_cache *s, void *object)
296{
297	return *(void **)(object + s->offset);
298}
299
300static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301{
302	*(void **)(object + s->offset) = fp;
303}
304
305/* Loop over all objects in a slab */
306#define for_each_object(__p, __s, __addr, __objects) \
307	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
308			__p += (__s)->size)
309
310/* Scan freelist */
311#define for_each_free_object(__p, __s, __free) \
312	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
313
314/* Determine object index from a given position */
315static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
316{
317	return (p - addr) / s->size;
318}
319
320static inline struct kmem_cache_order_objects oo_make(int order,
321						unsigned long size)
322{
323	struct kmem_cache_order_objects x = {
324		(order << 16) + (PAGE_SIZE << order) / size
325	};
326
327	return x;
328}
329
330static inline int oo_order(struct kmem_cache_order_objects x)
331{
332	return x.x >> 16;
333}
334
335static inline int oo_objects(struct kmem_cache_order_objects x)
336{
337	return x.x & ((1 << 16) - 1);
338}
339
340#ifdef CONFIG_SLUB_DEBUG
341/*
342 * Debug settings:
343 */
344#ifdef CONFIG_SLUB_DEBUG_ON
345static int slub_debug = DEBUG_DEFAULT_FLAGS;
346#else
347static int slub_debug;
348#endif
349
350static char *slub_debug_slabs;
351
352/*
353 * Object debugging
354 */
355static void print_section(char *text, u8 *addr, unsigned int length)
356{
357	int i, offset;
358	int newline = 1;
359	char ascii[17];
360
361	ascii[16] = 0;
362
363	for (i = 0; i < length; i++) {
364		if (newline) {
365			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
366			newline = 0;
367		}
368		printk(KERN_CONT " %02x", addr[i]);
369		offset = i % 16;
370		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
371		if (offset == 15) {
372			printk(KERN_CONT " %s\n", ascii);
373			newline = 1;
374		}
375	}
376	if (!newline) {
377		i %= 16;
378		while (i < 16) {
379			printk(KERN_CONT "   ");
380			ascii[i] = ' ';
381			i++;
382		}
383		printk(KERN_CONT " %s\n", ascii);
384	}
385}
386
387static struct track *get_track(struct kmem_cache *s, void *object,
388	enum track_item alloc)
389{
390	struct track *p;
391
392	if (s->offset)
393		p = object + s->offset + sizeof(void *);
394	else
395		p = object + s->inuse;
396
397	return p + alloc;
398}
399
400static void set_track(struct kmem_cache *s, void *object,
401				enum track_item alloc, void *addr)
402{
403	struct track *p;
404
405	if (s->offset)
406		p = object + s->offset + sizeof(void *);
407	else
408		p = object + s->inuse;
409
410	p += alloc;
411	if (addr) {
412		p->addr = addr;
413		p->cpu = smp_processor_id();
414		p->pid = current ? current->pid : -1;
415		p->when = jiffies;
416	} else
417		memset(p, 0, sizeof(struct track));
418}
419
420static void init_tracking(struct kmem_cache *s, void *object)
421{
422	if (!(s->flags & SLAB_STORE_USER))
423		return;
424
425	set_track(s, object, TRACK_FREE, NULL);
426	set_track(s, object, TRACK_ALLOC, NULL);
427}
428
429static void print_track(const char *s, struct track *t)
430{
431	if (!t->addr)
432		return;
433
434	printk(KERN_ERR "INFO: %s in ", s);
435	__print_symbol("%s", (unsigned long)t->addr);
436	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
437}
438
439static void print_tracking(struct kmem_cache *s, void *object)
440{
441	if (!(s->flags & SLAB_STORE_USER))
442		return;
443
444	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
445	print_track("Freed", get_track(s, object, TRACK_FREE));
446}
447
448static void print_page_info(struct page *page)
449{
450	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
451		page, page->objects, page->inuse, page->freelist, page->flags);
452
453}
454
455static void slab_bug(struct kmem_cache *s, char *fmt, ...)
456{
457	va_list args;
458	char buf[100];
459
460	va_start(args, fmt);
461	vsnprintf(buf, sizeof(buf), fmt, args);
462	va_end(args);
463	printk(KERN_ERR "========================================"
464			"=====================================\n");
465	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
466	printk(KERN_ERR "----------------------------------------"
467			"-------------------------------------\n\n");
468}
469
470static void slab_fix(struct kmem_cache *s, char *fmt, ...)
471{
472	va_list args;
473	char buf[100];
474
475	va_start(args, fmt);
476	vsnprintf(buf, sizeof(buf), fmt, args);
477	va_end(args);
478	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
479}
480
481static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
482{
483	unsigned int off;	/* Offset of last byte */
484	u8 *addr = page_address(page);
485
486	print_tracking(s, p);
487
488	print_page_info(page);
489
490	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
491			p, p - addr, get_freepointer(s, p));
492
493	if (p > addr + 16)
494		print_section("Bytes b4", p - 16, 16);
495
496	print_section("Object", p, min(s->objsize, 128));
497
498	if (s->flags & SLAB_RED_ZONE)
499		print_section("Redzone", p + s->objsize,
500			s->inuse - s->objsize);
501
502	if (s->offset)
503		off = s->offset + sizeof(void *);
504	else
505		off = s->inuse;
506
507	if (s->flags & SLAB_STORE_USER)
508		off += 2 * sizeof(struct track);
509
510	if (off != s->size)
511		/* Beginning of the filler is the free pointer */
512		print_section("Padding", p + off, s->size - off);
513
514	dump_stack();
515}
516
517static void object_err(struct kmem_cache *s, struct page *page,
518			u8 *object, char *reason)
519{
520	slab_bug(s, "%s", reason);
521	print_trailer(s, page, object);
522}
523
524static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
525{
526	va_list args;
527	char buf[100];
528
529	va_start(args, fmt);
530	vsnprintf(buf, sizeof(buf), fmt, args);
531	va_end(args);
532	slab_bug(s, "%s", buf);
533	print_page_info(page);
534	dump_stack();
535}
536
537static void init_object(struct kmem_cache *s, void *object, int active)
538{
539	u8 *p = object;
540
541	if (s->flags & __OBJECT_POISON) {
542		memset(p, POISON_FREE, s->objsize - 1);
543		p[s->objsize - 1] = POISON_END;
544	}
545
546	if (s->flags & SLAB_RED_ZONE)
547		memset(p + s->objsize,
548			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
549			s->inuse - s->objsize);
550}
551
552static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
553{
554	while (bytes) {
555		if (*start != (u8)value)
556			return start;
557		start++;
558		bytes--;
559	}
560	return NULL;
561}
562
563static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
564						void *from, void *to)
565{
566	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
567	memset(from, data, to - from);
568}
569
570static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
571			u8 *object, char *what,
572			u8 *start, unsigned int value, unsigned int bytes)
573{
574	u8 *fault;
575	u8 *end;
576
577	fault = check_bytes(start, value, bytes);
578	if (!fault)
579		return 1;
580
581	end = start + bytes;
582	while (end > fault && end[-1] == value)
583		end--;
584
585	slab_bug(s, "%s overwritten", what);
586	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
587					fault, end - 1, fault[0], value);
588	print_trailer(s, page, object);
589
590	restore_bytes(s, what, value, fault, end);
591	return 0;
592}
593
594/*
595 * Object layout:
596 *
597 * object address
598 * 	Bytes of the object to be managed.
599 * 	If the freepointer may overlay the object then the free
600 * 	pointer is the first word of the object.
601 *
602 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
603 * 	0xa5 (POISON_END)
604 *
605 * object + s->objsize
606 * 	Padding to reach word boundary. This is also used for Redzoning.
607 * 	Padding is extended by another word if Redzoning is enabled and
608 * 	objsize == inuse.
609 *
610 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
611 * 	0xcc (RED_ACTIVE) for objects in use.
612 *
613 * object + s->inuse
614 * 	Meta data starts here.
615 *
616 * 	A. Free pointer (if we cannot overwrite object on free)
617 * 	B. Tracking data for SLAB_STORE_USER
618 * 	C. Padding to reach required alignment boundary or at mininum
619 * 		one word if debugging is on to be able to detect writes
620 * 		before the word boundary.
621 *
622 *	Padding is done using 0x5a (POISON_INUSE)
623 *
624 * object + s->size
625 * 	Nothing is used beyond s->size.
626 *
627 * If slabcaches are merged then the objsize and inuse boundaries are mostly
628 * ignored. And therefore no slab options that rely on these boundaries
629 * may be used with merged slabcaches.
630 */
631
632static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
633{
634	unsigned long off = s->inuse;	/* The end of info */
635
636	if (s->offset)
637		/* Freepointer is placed after the object. */
638		off += sizeof(void *);
639
640	if (s->flags & SLAB_STORE_USER)
641		/* We also have user information there */
642		off += 2 * sizeof(struct track);
643
644	if (s->size == off)
645		return 1;
646
647	return check_bytes_and_report(s, page, p, "Object padding",
648				p + off, POISON_INUSE, s->size - off);
649}
650
651/* Check the pad bytes at the end of a slab page */
652static int slab_pad_check(struct kmem_cache *s, struct page *page)
653{
654	u8 *start;
655	u8 *fault;
656	u8 *end;
657	int length;
658	int remainder;
659
660	if (!(s->flags & SLAB_POISON))
661		return 1;
662
663	start = page_address(page);
664	length = (PAGE_SIZE << compound_order(page));
665	end = start + length;
666	remainder = length % s->size;
667	if (!remainder)
668		return 1;
669
670	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
671	if (!fault)
672		return 1;
673	while (end > fault && end[-1] == POISON_INUSE)
674		end--;
675
676	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
677	print_section("Padding", end - remainder, remainder);
678
679	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
680	return 0;
681}
682
683static int check_object(struct kmem_cache *s, struct page *page,
684					void *object, int active)
685{
686	u8 *p = object;
687	u8 *endobject = object + s->objsize;
688
689	if (s->flags & SLAB_RED_ZONE) {
690		unsigned int red =
691			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
692
693		if (!check_bytes_and_report(s, page, object, "Redzone",
694			endobject, red, s->inuse - s->objsize))
695			return 0;
696	} else {
697		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
698			check_bytes_and_report(s, page, p, "Alignment padding",
699				endobject, POISON_INUSE, s->inuse - s->objsize);
700		}
701	}
702
703	if (s->flags & SLAB_POISON) {
704		if (!active && (s->flags & __OBJECT_POISON) &&
705			(!check_bytes_and_report(s, page, p, "Poison", p,
706					POISON_FREE, s->objsize - 1) ||
707			 !check_bytes_and_report(s, page, p, "Poison",
708				p + s->objsize - 1, POISON_END, 1)))
709			return 0;
710		/*
711		 * check_pad_bytes cleans up on its own.
712		 */
713		check_pad_bytes(s, page, p);
714	}
715
716	if (!s->offset && active)
717		/*
718		 * Object and freepointer overlap. Cannot check
719		 * freepointer while object is allocated.
720		 */
721		return 1;
722
723	/* Check free pointer validity */
724	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
725		object_err(s, page, p, "Freepointer corrupt");
726		/*
727		 * No choice but to zap it and thus loose the remainder
728		 * of the free objects in this slab. May cause
729		 * another error because the object count is now wrong.
730		 */
731		set_freepointer(s, p, NULL);
732		return 0;
733	}
734	return 1;
735}
736
737static int check_slab(struct kmem_cache *s, struct page *page)
738{
739	int maxobj;
740
741	VM_BUG_ON(!irqs_disabled());
742
743	if (!PageSlab(page)) {
744		slab_err(s, page, "Not a valid slab page");
745		return 0;
746	}
747
748	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
749	if (page->objects > maxobj) {
750		slab_err(s, page, "objects %u > max %u",
751			s->name, page->objects, maxobj);
752		return 0;
753	}
754	if (page->inuse > page->objects) {
755		slab_err(s, page, "inuse %u > max %u",
756			s->name, page->inuse, page->objects);
757		return 0;
758	}
759	/* Slab_pad_check fixes things up after itself */
760	slab_pad_check(s, page);
761	return 1;
762}
763
764/*
765 * Determine if a certain object on a page is on the freelist. Must hold the
766 * slab lock to guarantee that the chains are in a consistent state.
767 */
768static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
769{
770	int nr = 0;
771	void *fp = page->freelist;
772	void *object = NULL;
773	unsigned long max_objects;
774
775	while (fp && nr <= page->objects) {
776		if (fp == search)
777			return 1;
778		if (!check_valid_pointer(s, page, fp)) {
779			if (object) {
780				object_err(s, page, object,
781					"Freechain corrupt");
782				set_freepointer(s, object, NULL);
783				break;
784			} else {
785				slab_err(s, page, "Freepointer corrupt");
786				page->freelist = NULL;
787				page->inuse = page->objects;
788				slab_fix(s, "Freelist cleared");
789				return 0;
790			}
791			break;
792		}
793		object = fp;
794		fp = get_freepointer(s, object);
795		nr++;
796	}
797
798	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
799	if (max_objects > 65535)
800		max_objects = 65535;
801
802	if (page->objects != max_objects) {
803		slab_err(s, page, "Wrong number of objects. Found %d but "
804			"should be %d", page->objects, max_objects);
805		page->objects = max_objects;
806		slab_fix(s, "Number of objects adjusted.");
807	}
808	if (page->inuse != page->objects - nr) {
809		slab_err(s, page, "Wrong object count. Counter is %d but "
810			"counted were %d", page->inuse, page->objects - nr);
811		page->inuse = page->objects - nr;
812		slab_fix(s, "Object count adjusted.");
813	}
814	return search == NULL;
815}
816
817static void trace(struct kmem_cache *s, struct page *page, void *object,
818								int alloc)
819{
820	if (s->flags & SLAB_TRACE) {
821		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
822			s->name,
823			alloc ? "alloc" : "free",
824			object, page->inuse,
825			page->freelist);
826
827		if (!alloc)
828			print_section("Object", (void *)object, s->objsize);
829
830		dump_stack();
831	}
832}
833
834/*
835 * Tracking of fully allocated slabs for debugging purposes.
836 */
837static void add_full(struct kmem_cache_node *n, struct page *page)
838{
839	spin_lock(&n->list_lock);
840	list_add(&page->lru, &n->full);
841	spin_unlock(&n->list_lock);
842}
843
844static void remove_full(struct kmem_cache *s, struct page *page)
845{
846	struct kmem_cache_node *n;
847
848	if (!(s->flags & SLAB_STORE_USER))
849		return;
850
851	n = get_node(s, page_to_nid(page));
852
853	spin_lock(&n->list_lock);
854	list_del(&page->lru);
855	spin_unlock(&n->list_lock);
856}
857
858/* Tracking of the number of slabs for debugging purposes */
859static inline unsigned long slabs_node(struct kmem_cache *s, int node)
860{
861	struct kmem_cache_node *n = get_node(s, node);
862
863	return atomic_long_read(&n->nr_slabs);
864}
865
866static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
867{
868	struct kmem_cache_node *n = get_node(s, node);
869
870	/*
871	 * May be called early in order to allocate a slab for the
872	 * kmem_cache_node structure. Solve the chicken-egg
873	 * dilemma by deferring the increment of the count during
874	 * bootstrap (see early_kmem_cache_node_alloc).
875	 */
876	if (!NUMA_BUILD || n) {
877		atomic_long_inc(&n->nr_slabs);
878		atomic_long_add(objects, &n->total_objects);
879	}
880}
881static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
882{
883	struct kmem_cache_node *n = get_node(s, node);
884
885	atomic_long_dec(&n->nr_slabs);
886	atomic_long_sub(objects, &n->total_objects);
887}
888
889/* Object debug checks for alloc/free paths */
890static void setup_object_debug(struct kmem_cache *s, struct page *page,
891								void *object)
892{
893	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
894		return;
895
896	init_object(s, object, 0);
897	init_tracking(s, object);
898}
899
900static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
901						void *object, void *addr)
902{
903	if (!check_slab(s, page))
904		goto bad;
905
906	if (!on_freelist(s, page, object)) {
907		object_err(s, page, object, "Object already allocated");
908		goto bad;
909	}
910
911	if (!check_valid_pointer(s, page, object)) {
912		object_err(s, page, object, "Freelist Pointer check fails");
913		goto bad;
914	}
915
916	if (!check_object(s, page, object, 0))
917		goto bad;
918
919	/* Success perform special debug activities for allocs */
920	if (s->flags & SLAB_STORE_USER)
921		set_track(s, object, TRACK_ALLOC, addr);
922	trace(s, page, object, 1);
923	init_object(s, object, 1);
924	return 1;
925
926bad:
927	if (PageSlab(page)) {
928		/*
929		 * If this is a slab page then lets do the best we can
930		 * to avoid issues in the future. Marking all objects
931		 * as used avoids touching the remaining objects.
932		 */
933		slab_fix(s, "Marking all objects used");
934		page->inuse = page->objects;
935		page->freelist = NULL;
936	}
937	return 0;
938}
939
940static int free_debug_processing(struct kmem_cache *s, struct page *page,
941						void *object, void *addr)
942{
943	if (!check_slab(s, page))
944		goto fail;
945
946	if (!check_valid_pointer(s, page, object)) {
947		slab_err(s, page, "Invalid object pointer 0x%p", object);
948		goto fail;
949	}
950
951	if (on_freelist(s, page, object)) {
952		object_err(s, page, object, "Object already free");
953		goto fail;
954	}
955
956	if (!check_object(s, page, object, 1))
957		return 0;
958
959	if (unlikely(s != page->slab)) {
960		if (!PageSlab(page)) {
961			slab_err(s, page, "Attempt to free object(0x%p) "
962				"outside of slab", object);
963		} else if (!page->slab) {
964			printk(KERN_ERR
965				"SLUB <none>: no slab for object 0x%p.\n",
966						object);
967			dump_stack();
968		} else
969			object_err(s, page, object,
970					"page slab pointer corrupt.");
971		goto fail;
972	}
973
974	/* Special debug activities for freeing objects */
975	if (!SlabFrozen(page) && !page->freelist)
976		remove_full(s, page);
977	if (s->flags & SLAB_STORE_USER)
978		set_track(s, object, TRACK_FREE, addr);
979	trace(s, page, object, 0);
980	init_object(s, object, 0);
981	return 1;
982
983fail:
984	slab_fix(s, "Object at 0x%p not freed", object);
985	return 0;
986}
987
988static int __init setup_slub_debug(char *str)
989{
990	slub_debug = DEBUG_DEFAULT_FLAGS;
991	if (*str++ != '=' || !*str)
992		/*
993		 * No options specified. Switch on full debugging.
994		 */
995		goto out;
996
997	if (*str == ',')
998		/*
999		 * No options but restriction on slabs. This means full
1000		 * debugging for slabs matching a pattern.
1001		 */
1002		goto check_slabs;
1003
1004	slub_debug = 0;
1005	if (*str == '-')
1006		/*
1007		 * Switch off all debugging measures.
1008		 */
1009		goto out;
1010
1011	/*
1012	 * Determine which debug features should be switched on
1013	 */
1014	for (; *str && *str != ','; str++) {
1015		switch (tolower(*str)) {
1016		case 'f':
1017			slub_debug |= SLAB_DEBUG_FREE;
1018			break;
1019		case 'z':
1020			slub_debug |= SLAB_RED_ZONE;
1021			break;
1022		case 'p':
1023			slub_debug |= SLAB_POISON;
1024			break;
1025		case 'u':
1026			slub_debug |= SLAB_STORE_USER;
1027			break;
1028		case 't':
1029			slub_debug |= SLAB_TRACE;
1030			break;
1031		default:
1032			printk(KERN_ERR "slub_debug option '%c' "
1033				"unknown. skipped\n", *str);
1034		}
1035	}
1036
1037check_slabs:
1038	if (*str == ',')
1039		slub_debug_slabs = str + 1;
1040out:
1041	return 1;
1042}
1043
1044__setup("slub_debug", setup_slub_debug);
1045
1046static unsigned long kmem_cache_flags(unsigned long objsize,
1047	unsigned long flags, const char *name,
1048	void (*ctor)(struct kmem_cache *, void *))
1049{
1050	/*
1051	 * Enable debugging if selected on the kernel commandline.
1052	 */
1053	if (slub_debug && (!slub_debug_slabs ||
1054	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1055			flags |= slub_debug;
1056
1057	return flags;
1058}
1059#else
1060static inline void setup_object_debug(struct kmem_cache *s,
1061			struct page *page, void *object) {}
1062
1063static inline int alloc_debug_processing(struct kmem_cache *s,
1064	struct page *page, void *object, void *addr) { return 0; }
1065
1066static inline int free_debug_processing(struct kmem_cache *s,
1067	struct page *page, void *object, void *addr) { return 0; }
1068
1069static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1070			{ return 1; }
1071static inline int check_object(struct kmem_cache *s, struct page *page,
1072			void *object, int active) { return 1; }
1073static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1074static inline unsigned long kmem_cache_flags(unsigned long objsize,
1075	unsigned long flags, const char *name,
1076	void (*ctor)(struct kmem_cache *, void *))
1077{
1078	return flags;
1079}
1080#define slub_debug 0
1081
1082static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1083							{ return 0; }
1084static inline void inc_slabs_node(struct kmem_cache *s, int node,
1085							int objects) {}
1086static inline void dec_slabs_node(struct kmem_cache *s, int node,
1087							int objects) {}
1088#endif
1089
1090/*
1091 * Slab allocation and freeing
1092 */
1093static inline struct page *alloc_slab_page(gfp_t flags, int node,
1094					struct kmem_cache_order_objects oo)
1095{
1096	int order = oo_order(oo);
1097
1098	if (node == -1)
1099		return alloc_pages(flags, order);
1100	else
1101		return alloc_pages_node(node, flags, order);
1102}
1103
1104static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1105{
1106	struct page *page;
1107	struct kmem_cache_order_objects oo = s->oo;
1108
1109	flags |= s->allocflags;
1110
1111	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1112									oo);
1113	if (unlikely(!page)) {
1114		oo = s->min;
1115		/*
1116		 * Allocation may have failed due to fragmentation.
1117		 * Try a lower order alloc if possible
1118		 */
1119		page = alloc_slab_page(flags, node, oo);
1120		if (!page)
1121			return NULL;
1122
1123		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1124	}
1125	page->objects = oo_objects(oo);
1126	mod_zone_page_state(page_zone(page),
1127		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1128		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1129		1 << oo_order(oo));
1130
1131	return page;
1132}
1133
1134static void setup_object(struct kmem_cache *s, struct page *page,
1135				void *object)
1136{
1137	setup_object_debug(s, page, object);
1138	if (unlikely(s->ctor))
1139		s->ctor(s, object);
1140}
1141
1142static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1143{
1144	struct page *page;
1145	void *start;
1146	void *last;
1147	void *p;
1148
1149	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1150
1151	page = allocate_slab(s,
1152		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1153	if (!page)
1154		goto out;
1155
1156	inc_slabs_node(s, page_to_nid(page), page->objects);
1157	page->slab = s;
1158	page->flags |= 1 << PG_slab;
1159	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1160			SLAB_STORE_USER | SLAB_TRACE))
1161		SetSlabDebug(page);
1162
1163	start = page_address(page);
1164
1165	if (unlikely(s->flags & SLAB_POISON))
1166		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1167
1168	last = start;
1169	for_each_object(p, s, start, page->objects) {
1170		setup_object(s, page, last);
1171		set_freepointer(s, last, p);
1172		last = p;
1173	}
1174	setup_object(s, page, last);
1175	set_freepointer(s, last, NULL);
1176
1177	page->freelist = start;
1178	page->inuse = 0;
1179out:
1180	return page;
1181}
1182
1183static void __free_slab(struct kmem_cache *s, struct page *page)
1184{
1185	int order = compound_order(page);
1186	int pages = 1 << order;
1187
1188	if (unlikely(SlabDebug(page))) {
1189		void *p;
1190
1191		slab_pad_check(s, page);
1192		for_each_object(p, s, page_address(page),
1193						page->objects)
1194			check_object(s, page, p, 0);
1195		ClearSlabDebug(page);
1196	}
1197
1198	mod_zone_page_state(page_zone(page),
1199		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1200		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1201		-pages);
1202
1203	__ClearPageSlab(page);
1204	reset_page_mapcount(page);
1205	__free_pages(page, order);
1206}
1207
1208static void rcu_free_slab(struct rcu_head *h)
1209{
1210	struct page *page;
1211
1212	page = container_of((struct list_head *)h, struct page, lru);
1213	__free_slab(page->slab, page);
1214}
1215
1216static void free_slab(struct kmem_cache *s, struct page *page)
1217{
1218	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1219		/*
1220		 * RCU free overloads the RCU head over the LRU
1221		 */
1222		struct rcu_head *head = (void *)&page->lru;
1223
1224		call_rcu(head, rcu_free_slab);
1225	} else
1226		__free_slab(s, page);
1227}
1228
1229static void discard_slab(struct kmem_cache *s, struct page *page)
1230{
1231	dec_slabs_node(s, page_to_nid(page), page->objects);
1232	free_slab(s, page);
1233}
1234
1235/*
1236 * Per slab locking using the pagelock
1237 */
1238static __always_inline void slab_lock(struct page *page)
1239{
1240	bit_spin_lock(PG_locked, &page->flags);
1241}
1242
1243static __always_inline void slab_unlock(struct page *page)
1244{
1245	__bit_spin_unlock(PG_locked, &page->flags);
1246}
1247
1248static __always_inline int slab_trylock(struct page *page)
1249{
1250	int rc = 1;
1251
1252	rc = bit_spin_trylock(PG_locked, &page->flags);
1253	return rc;
1254}
1255
1256/*
1257 * Management of partially allocated slabs
1258 */
1259static void add_partial(struct kmem_cache_node *n,
1260				struct page *page, int tail)
1261{
1262	spin_lock(&n->list_lock);
1263	n->nr_partial++;
1264	if (tail)
1265		list_add_tail(&page->lru, &n->partial);
1266	else
1267		list_add(&page->lru, &n->partial);
1268	spin_unlock(&n->list_lock);
1269}
1270
1271static void remove_partial(struct kmem_cache *s, struct page *page)
1272{
1273	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1274
1275	spin_lock(&n->list_lock);
1276	list_del(&page->lru);
1277	n->nr_partial--;
1278	spin_unlock(&n->list_lock);
1279}
1280
1281/*
1282 * Lock slab and remove from the partial list.
1283 *
1284 * Must hold list_lock.
1285 */
1286static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1287							struct page *page)
1288{
1289	if (slab_trylock(page)) {
1290		list_del(&page->lru);
1291		n->nr_partial--;
1292		SetSlabFrozen(page);
1293		return 1;
1294	}
1295	return 0;
1296}
1297
1298/*
1299 * Try to allocate a partial slab from a specific node.
1300 */
1301static struct page *get_partial_node(struct kmem_cache_node *n)
1302{
1303	struct page *page;
1304
1305	/*
1306	 * Racy check. If we mistakenly see no partial slabs then we
1307	 * just allocate an empty slab. If we mistakenly try to get a
1308	 * partial slab and there is none available then get_partials()
1309	 * will return NULL.
1310	 */
1311	if (!n || !n->nr_partial)
1312		return NULL;
1313
1314	spin_lock(&n->list_lock);
1315	list_for_each_entry(page, &n->partial, lru)
1316		if (lock_and_freeze_slab(n, page))
1317			goto out;
1318	page = NULL;
1319out:
1320	spin_unlock(&n->list_lock);
1321	return page;
1322}
1323
1324/*
1325 * Get a page from somewhere. Search in increasing NUMA distances.
1326 */
1327static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1328{
1329#ifdef CONFIG_NUMA
1330	struct zonelist *zonelist;
1331	struct zoneref *z;
1332	struct zone *zone;
1333	enum zone_type high_zoneidx = gfp_zone(flags);
1334	struct page *page;
1335
1336	/*
1337	 * The defrag ratio allows a configuration of the tradeoffs between
1338	 * inter node defragmentation and node local allocations. A lower
1339	 * defrag_ratio increases the tendency to do local allocations
1340	 * instead of attempting to obtain partial slabs from other nodes.
1341	 *
1342	 * If the defrag_ratio is set to 0 then kmalloc() always
1343	 * returns node local objects. If the ratio is higher then kmalloc()
1344	 * may return off node objects because partial slabs are obtained
1345	 * from other nodes and filled up.
1346	 *
1347	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1348	 * defrag_ratio = 1000) then every (well almost) allocation will
1349	 * first attempt to defrag slab caches on other nodes. This means
1350	 * scanning over all nodes to look for partial slabs which may be
1351	 * expensive if we do it every time we are trying to find a slab
1352	 * with available objects.
1353	 */
1354	if (!s->remote_node_defrag_ratio ||
1355			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1356		return NULL;
1357
1358	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1359	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1360		struct kmem_cache_node *n;
1361
1362		n = get_node(s, zone_to_nid(zone));
1363
1364		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1365				n->nr_partial > MIN_PARTIAL) {
1366			page = get_partial_node(n);
1367			if (page)
1368				return page;
1369		}
1370	}
1371#endif
1372	return NULL;
1373}
1374
1375/*
1376 * Get a partial page, lock it and return it.
1377 */
1378static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1379{
1380	struct page *page;
1381	int searchnode = (node == -1) ? numa_node_id() : node;
1382
1383	page = get_partial_node(get_node(s, searchnode));
1384	if (page || (flags & __GFP_THISNODE))
1385		return page;
1386
1387	return get_any_partial(s, flags);
1388}
1389
1390/*
1391 * Move a page back to the lists.
1392 *
1393 * Must be called with the slab lock held.
1394 *
1395 * On exit the slab lock will have been dropped.
1396 */
1397static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1398{
1399	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1400	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1401
1402	ClearSlabFrozen(page);
1403	if (page->inuse) {
1404
1405		if (page->freelist) {
1406			add_partial(n, page, tail);
1407			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1408		} else {
1409			stat(c, DEACTIVATE_FULL);
1410			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1411				add_full(n, page);
1412		}
1413		slab_unlock(page);
1414	} else {
1415		stat(c, DEACTIVATE_EMPTY);
1416		if (n->nr_partial < MIN_PARTIAL) {
1417			/*
1418			 * Adding an empty slab to the partial slabs in order
1419			 * to avoid page allocator overhead. This slab needs
1420			 * to come after the other slabs with objects in
1421			 * so that the others get filled first. That way the
1422			 * size of the partial list stays small.
1423			 *
1424			 * kmem_cache_shrink can reclaim any empty slabs from
1425			 * the partial list.
1426			 */
1427			add_partial(n, page, 1);
1428			slab_unlock(page);
1429		} else {
1430			slab_unlock(page);
1431			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1432			discard_slab(s, page);
1433		}
1434	}
1435}
1436
1437/*
1438 * Remove the cpu slab
1439 */
1440static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1441{
1442	struct page *page = c->page;
1443	int tail = 1;
1444
1445	if (page->freelist)
1446		stat(c, DEACTIVATE_REMOTE_FREES);
1447	/*
1448	 * Merge cpu freelist into slab freelist. Typically we get here
1449	 * because both freelists are empty. So this is unlikely
1450	 * to occur.
1451	 */
1452	while (unlikely(c->freelist)) {
1453		void **object;
1454
1455		tail = 0;	/* Hot objects. Put the slab first */
1456
1457		/* Retrieve object from cpu_freelist */
1458		object = c->freelist;
1459		c->freelist = c->freelist[c->offset];
1460
1461		/* And put onto the regular freelist */
1462		object[c->offset] = page->freelist;
1463		page->freelist = object;
1464		page->inuse--;
1465	}
1466	c->page = NULL;
1467	unfreeze_slab(s, page, tail);
1468}
1469
1470static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1471{
1472	stat(c, CPUSLAB_FLUSH);
1473	slab_lock(c->page);
1474	deactivate_slab(s, c);
1475}
1476
1477/*
1478 * Flush cpu slab.
1479 *
1480 * Called from IPI handler with interrupts disabled.
1481 */
1482static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1483{
1484	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1485
1486	if (likely(c && c->page))
1487		flush_slab(s, c);
1488}
1489
1490static void flush_cpu_slab(void *d)
1491{
1492	struct kmem_cache *s = d;
1493
1494	__flush_cpu_slab(s, smp_processor_id());
1495}
1496
1497static void flush_all(struct kmem_cache *s)
1498{
1499#ifdef CONFIG_SMP
1500	on_each_cpu(flush_cpu_slab, s, 1, 1);
1501#else
1502	unsigned long flags;
1503
1504	local_irq_save(flags);
1505	flush_cpu_slab(s);
1506	local_irq_restore(flags);
1507#endif
1508}
1509
1510/*
1511 * Check if the objects in a per cpu structure fit numa
1512 * locality expectations.
1513 */
1514static inline int node_match(struct kmem_cache_cpu *c, int node)
1515{
1516#ifdef CONFIG_NUMA
1517	if (node != -1 && c->node != node)
1518		return 0;
1519#endif
1520	return 1;
1521}
1522
1523/*
1524 * Slow path. The lockless freelist is empty or we need to perform
1525 * debugging duties.
1526 *
1527 * Interrupts are disabled.
1528 *
1529 * Processing is still very fast if new objects have been freed to the
1530 * regular freelist. In that case we simply take over the regular freelist
1531 * as the lockless freelist and zap the regular freelist.
1532 *
1533 * If that is not working then we fall back to the partial lists. We take the
1534 * first element of the freelist as the object to allocate now and move the
1535 * rest of the freelist to the lockless freelist.
1536 *
1537 * And if we were unable to get a new slab from the partial slab lists then
1538 * we need to allocate a new slab. This is the slowest path since it involves
1539 * a call to the page allocator and the setup of a new slab.
1540 */
1541static void *__slab_alloc(struct kmem_cache *s,
1542		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1543{
1544	void **object;
1545	struct page *new;
1546
1547	/* We handle __GFP_ZERO in the caller */
1548	gfpflags &= ~__GFP_ZERO;
1549
1550	if (!c->page)
1551		goto new_slab;
1552
1553	slab_lock(c->page);
1554	if (unlikely(!node_match(c, node)))
1555		goto another_slab;
1556
1557	stat(c, ALLOC_REFILL);
1558
1559load_freelist:
1560	object = c->page->freelist;
1561	if (unlikely(!object))
1562		goto another_slab;
1563	if (unlikely(SlabDebug(c->page)))
1564		goto debug;
1565
1566	c->freelist = object[c->offset];
1567	c->page->inuse = c->page->objects;
1568	c->page->freelist = NULL;
1569	c->node = page_to_nid(c->page);
1570unlock_out:
1571	slab_unlock(c->page);
1572	stat(c, ALLOC_SLOWPATH);
1573	return object;
1574
1575another_slab:
1576	deactivate_slab(s, c);
1577
1578new_slab:
1579	new = get_partial(s, gfpflags, node);
1580	if (new) {
1581		c->page = new;
1582		stat(c, ALLOC_FROM_PARTIAL);
1583		goto load_freelist;
1584	}
1585
1586	if (gfpflags & __GFP_WAIT)
1587		local_irq_enable();
1588
1589	new = new_slab(s, gfpflags, node);
1590
1591	if (gfpflags & __GFP_WAIT)
1592		local_irq_disable();
1593
1594	if (new) {
1595		c = get_cpu_slab(s, smp_processor_id());
1596		stat(c, ALLOC_SLAB);
1597		if (c->page)
1598			flush_slab(s, c);
1599		slab_lock(new);
1600		SetSlabFrozen(new);
1601		c->page = new;
1602		goto load_freelist;
1603	}
1604	return NULL;
1605debug:
1606	if (!alloc_debug_processing(s, c->page, object, addr))
1607		goto another_slab;
1608
1609	c->page->inuse++;
1610	c->page->freelist = object[c->offset];
1611	c->node = -1;
1612	goto unlock_out;
1613}
1614
1615/*
1616 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1617 * have the fastpath folded into their functions. So no function call
1618 * overhead for requests that can be satisfied on the fastpath.
1619 *
1620 * The fastpath works by first checking if the lockless freelist can be used.
1621 * If not then __slab_alloc is called for slow processing.
1622 *
1623 * Otherwise we can simply pick the next object from the lockless free list.
1624 */
1625static __always_inline void *slab_alloc(struct kmem_cache *s,
1626		gfp_t gfpflags, int node, void *addr)
1627{
1628	void **object;
1629	struct kmem_cache_cpu *c;
1630	unsigned long flags;
1631
1632	local_irq_save(flags);
1633	c = get_cpu_slab(s, smp_processor_id());
1634	if (unlikely(!c->freelist || !node_match(c, node)))
1635
1636		object = __slab_alloc(s, gfpflags, node, addr, c);
1637
1638	else {
1639		object = c->freelist;
1640		c->freelist = object[c->offset];
1641		stat(c, ALLOC_FASTPATH);
1642	}
1643	local_irq_restore(flags);
1644
1645	if (unlikely((gfpflags & __GFP_ZERO) && object))
1646		memset(object, 0, c->objsize);
1647
1648	return object;
1649}
1650
1651void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1652{
1653	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1654}
1655EXPORT_SYMBOL(kmem_cache_alloc);
1656
1657#ifdef CONFIG_NUMA
1658void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1659{
1660	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1661}
1662EXPORT_SYMBOL(kmem_cache_alloc_node);
1663#endif
1664
1665/*
1666 * Slow patch handling. This may still be called frequently since objects
1667 * have a longer lifetime than the cpu slabs in most processing loads.
1668 *
1669 * So we still attempt to reduce cache line usage. Just take the slab
1670 * lock and free the item. If there is no additional partial page
1671 * handling required then we can return immediately.
1672 */
1673static void __slab_free(struct kmem_cache *s, struct page *page,
1674				void *x, void *addr, unsigned int offset)
1675{
1676	void *prior;
1677	void **object = (void *)x;
1678	struct kmem_cache_cpu *c;
1679
1680	c = get_cpu_slab(s, raw_smp_processor_id());
1681	stat(c, FREE_SLOWPATH);
1682	slab_lock(page);
1683
1684	if (unlikely(SlabDebug(page)))
1685		goto debug;
1686
1687checks_ok:
1688	prior = object[offset] = page->freelist;
1689	page->freelist = object;
1690	page->inuse--;
1691
1692	if (unlikely(SlabFrozen(page))) {
1693		stat(c, FREE_FROZEN);
1694		goto out_unlock;
1695	}
1696
1697	if (unlikely(!page->inuse))
1698		goto slab_empty;
1699
1700	/*
1701	 * Objects left in the slab. If it was not on the partial list before
1702	 * then add it.
1703	 */
1704	if (unlikely(!prior)) {
1705		add_partial(get_node(s, page_to_nid(page)), page, 1);
1706		stat(c, FREE_ADD_PARTIAL);
1707	}
1708
1709out_unlock:
1710	slab_unlock(page);
1711	return;
1712
1713slab_empty:
1714	if (prior) {
1715		/*
1716		 * Slab still on the partial list.
1717		 */
1718		remove_partial(s, page);
1719		stat(c, FREE_REMOVE_PARTIAL);
1720	}
1721	slab_unlock(page);
1722	stat(c, FREE_SLAB);
1723	discard_slab(s, page);
1724	return;
1725
1726debug:
1727	if (!free_debug_processing(s, page, x, addr))
1728		goto out_unlock;
1729	goto checks_ok;
1730}
1731
1732/*
1733 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1734 * can perform fastpath freeing without additional function calls.
1735 *
1736 * The fastpath is only possible if we are freeing to the current cpu slab
1737 * of this processor. This typically the case if we have just allocated
1738 * the item before.
1739 *
1740 * If fastpath is not possible then fall back to __slab_free where we deal
1741 * with all sorts of special processing.
1742 */
1743static __always_inline void slab_free(struct kmem_cache *s,
1744			struct page *page, void *x, void *addr)
1745{
1746	void **object = (void *)x;
1747	struct kmem_cache_cpu *c;
1748	unsigned long flags;
1749
1750	local_irq_save(flags);
1751	c = get_cpu_slab(s, smp_processor_id());
1752	debug_check_no_locks_freed(object, c->objsize);
1753	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1754		debug_check_no_obj_freed(object, s->objsize);
1755	if (likely(page == c->page && c->node >= 0)) {
1756		object[c->offset] = c->freelist;
1757		c->freelist = object;
1758		stat(c, FREE_FASTPATH);
1759	} else
1760		__slab_free(s, page, x, addr, c->offset);
1761
1762	local_irq_restore(flags);
1763}
1764
1765void kmem_cache_free(struct kmem_cache *s, void *x)
1766{
1767	struct page *page;
1768
1769	page = virt_to_head_page(x);
1770
1771	slab_free(s, page, x, __builtin_return_address(0));
1772}
1773EXPORT_SYMBOL(kmem_cache_free);
1774
1775/* Figure out on which slab object the object resides */
1776static struct page *get_object_page(const void *x)
1777{
1778	struct page *page = virt_to_head_page(x);
1779
1780	if (!PageSlab(page))
1781		return NULL;
1782
1783	return page;
1784}
1785
1786/*
1787 * Object placement in a slab is made very easy because we always start at
1788 * offset 0. If we tune the size of the object to the alignment then we can
1789 * get the required alignment by putting one properly sized object after
1790 * another.
1791 *
1792 * Notice that the allocation order determines the sizes of the per cpu
1793 * caches. Each processor has always one slab available for allocations.
1794 * Increasing the allocation order reduces the number of times that slabs
1795 * must be moved on and off the partial lists and is therefore a factor in
1796 * locking overhead.
1797 */
1798
1799/*
1800 * Mininum / Maximum order of slab pages. This influences locking overhead
1801 * and slab fragmentation. A higher order reduces the number of partial slabs
1802 * and increases the number of allocations possible without having to
1803 * take the list_lock.
1804 */
1805static int slub_min_order;
1806static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1807static int slub_min_objects;
1808
1809/*
1810 * Merge control. If this is set then no merging of slab caches will occur.
1811 * (Could be removed. This was introduced to pacify the merge skeptics.)
1812 */
1813static int slub_nomerge;
1814
1815/*
1816 * Calculate the order of allocation given an slab object size.
1817 *
1818 * The order of allocation has significant impact on performance and other
1819 * system components. Generally order 0 allocations should be preferred since
1820 * order 0 does not cause fragmentation in the page allocator. Larger objects
1821 * be problematic to put into order 0 slabs because there may be too much
1822 * unused space left. We go to a higher order if more than 1/16th of the slab
1823 * would be wasted.
1824 *
1825 * In order to reach satisfactory performance we must ensure that a minimum
1826 * number of objects is in one slab. Otherwise we may generate too much
1827 * activity on the partial lists which requires taking the list_lock. This is
1828 * less a concern for large slabs though which are rarely used.
1829 *
1830 * slub_max_order specifies the order where we begin to stop considering the
1831 * number of objects in a slab as critical. If we reach slub_max_order then
1832 * we try to keep the page order as low as possible. So we accept more waste
1833 * of space in favor of a small page order.
1834 *
1835 * Higher order allocations also allow the placement of more objects in a
1836 * slab and thereby reduce object handling overhead. If the user has
1837 * requested a higher mininum order then we start with that one instead of
1838 * the smallest order which will fit the object.
1839 */
1840static inline int slab_order(int size, int min_objects,
1841				int max_order, int fract_leftover)
1842{
1843	int order;
1844	int rem;
1845	int min_order = slub_min_order;
1846
1847	if ((PAGE_SIZE << min_order) / size > 65535)
1848		return get_order(size * 65535) - 1;
1849
1850	for (order = max(min_order,
1851				fls(min_objects * size - 1) - PAGE_SHIFT);
1852			order <= max_order; order++) {
1853
1854		unsigned long slab_size = PAGE_SIZE << order;
1855
1856		if (slab_size < min_objects * size)
1857			continue;
1858
1859		rem = slab_size % size;
1860
1861		if (rem <= slab_size / fract_leftover)
1862			break;
1863
1864	}
1865
1866	return order;
1867}
1868
1869static inline int calculate_order(int size)
1870{
1871	int order;
1872	int min_objects;
1873	int fraction;
1874
1875	/*
1876	 * Attempt to find best configuration for a slab. This
1877	 * works by first attempting to generate a layout with
1878	 * the best configuration and backing off gradually.
1879	 *
1880	 * First we reduce the acceptable waste in a slab. Then
1881	 * we reduce the minimum objects required in a slab.
1882	 */
1883	min_objects = slub_min_objects;
1884	if (!min_objects)
1885		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1886	while (min_objects > 1) {
1887		fraction = 16;
1888		while (fraction >= 4) {
1889			order = slab_order(size, min_objects,
1890						slub_max_order, fraction);
1891			if (order <= slub_max_order)
1892				return order;
1893			fraction /= 2;
1894		}
1895		min_objects /= 2;
1896	}
1897
1898	/*
1899	 * We were unable to place multiple objects in a slab. Now
1900	 * lets see if we can place a single object there.
1901	 */
1902	order = slab_order(size, 1, slub_max_order, 1);
1903	if (order <= slub_max_order)
1904		return order;
1905
1906	/*
1907	 * Doh this slab cannot be placed using slub_max_order.
1908	 */
1909	order = slab_order(size, 1, MAX_ORDER, 1);
1910	if (order <= MAX_ORDER)
1911		return order;
1912	return -ENOSYS;
1913}
1914
1915/*
1916 * Figure out what the alignment of the objects will be.
1917 */
1918static unsigned long calculate_alignment(unsigned long flags,
1919		unsigned long align, unsigned long size)
1920{
1921	/*
1922	 * If the user wants hardware cache aligned objects then follow that
1923	 * suggestion if the object is sufficiently large.
1924	 *
1925	 * The hardware cache alignment cannot override the specified
1926	 * alignment though. If that is greater then use it.
1927	 */
1928	if (flags & SLAB_HWCACHE_ALIGN) {
1929		unsigned long ralign = cache_line_size();
1930		while (size <= ralign / 2)
1931			ralign /= 2;
1932		align = max(align, ralign);
1933	}
1934
1935	if (align < ARCH_SLAB_MINALIGN)
1936		align = ARCH_SLAB_MINALIGN;
1937
1938	return ALIGN(align, sizeof(void *));
1939}
1940
1941static void init_kmem_cache_cpu(struct kmem_cache *s,
1942			struct kmem_cache_cpu *c)
1943{
1944	c->page = NULL;
1945	c->freelist = NULL;
1946	c->node = 0;
1947	c->offset = s->offset / sizeof(void *);
1948	c->objsize = s->objsize;
1949#ifdef CONFIG_SLUB_STATS
1950	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1951#endif
1952}
1953
1954static void init_kmem_cache_node(struct kmem_cache_node *n)
1955{
1956	n->nr_partial = 0;
1957	spin_lock_init(&n->list_lock);
1958	INIT_LIST_HEAD(&n->partial);
1959#ifdef CONFIG_SLUB_DEBUG
1960	atomic_long_set(&n->nr_slabs, 0);
1961	INIT_LIST_HEAD(&n->full);
1962#endif
1963}
1964
1965#ifdef CONFIG_SMP
1966/*
1967 * Per cpu array for per cpu structures.
1968 *
1969 * The per cpu array places all kmem_cache_cpu structures from one processor
1970 * close together meaning that it becomes possible that multiple per cpu
1971 * structures are contained in one cacheline. This may be particularly
1972 * beneficial for the kmalloc caches.
1973 *
1974 * A desktop system typically has around 60-80 slabs. With 100 here we are
1975 * likely able to get per cpu structures for all caches from the array defined
1976 * here. We must be able to cover all kmalloc caches during bootstrap.
1977 *
1978 * If the per cpu array is exhausted then fall back to kmalloc
1979 * of individual cachelines. No sharing is possible then.
1980 */
1981#define NR_KMEM_CACHE_CPU 100
1982
1983static DEFINE_PER_CPU(struct kmem_cache_cpu,
1984				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1985
1986static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1987static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1988
1989static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1990							int cpu, gfp_t flags)
1991{
1992	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1993
1994	if (c)
1995		per_cpu(kmem_cache_cpu_free, cpu) =
1996				(void *)c->freelist;
1997	else {
1998		/* Table overflow: So allocate ourselves */
1999		c = kmalloc_node(
2000			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2001			flags, cpu_to_node(cpu));
2002		if (!c)
2003			return NULL;
2004	}
2005
2006	init_kmem_cache_cpu(s, c);
2007	return c;
2008}
2009
2010static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2011{
2012	if (c < per_cpu(kmem_cache_cpu, cpu) ||
2013			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2014		kfree(c);
2015		return;
2016	}
2017	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2018	per_cpu(kmem_cache_cpu_free, cpu) = c;
2019}
2020
2021static void free_kmem_cache_cpus(struct kmem_cache *s)
2022{
2023	int cpu;
2024
2025	for_each_online_cpu(cpu) {
2026		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2027
2028		if (c) {
2029			s->cpu_slab[cpu] = NULL;
2030			free_kmem_cache_cpu(c, cpu);
2031		}
2032	}
2033}
2034
2035static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2036{
2037	int cpu;
2038
2039	for_each_online_cpu(cpu) {
2040		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2041
2042		if (c)
2043			continue;
2044
2045		c = alloc_kmem_cache_cpu(s, cpu, flags);
2046		if (!c) {
2047			free_kmem_cache_cpus(s);
2048			return 0;
2049		}
2050		s->cpu_slab[cpu] = c;
2051	}
2052	return 1;
2053}
2054
2055/*
2056 * Initialize the per cpu array.
2057 */
2058static void init_alloc_cpu_cpu(int cpu)
2059{
2060	int i;
2061
2062	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2063		return;
2064
2065	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2066		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2067
2068	cpu_set(cpu, kmem_cach_cpu_free_init_once);
2069}
2070
2071static void __init init_alloc_cpu(void)
2072{
2073	int cpu;
2074
2075	for_each_online_cpu(cpu)
2076		init_alloc_cpu_cpu(cpu);
2077  }
2078
2079#else
2080static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2081static inline void init_alloc_cpu(void) {}
2082
2083static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2084{
2085	init_kmem_cache_cpu(s, &s->cpu_slab);
2086	return 1;
2087}
2088#endif
2089
2090#ifdef CONFIG_NUMA
2091/*
2092 * No kmalloc_node yet so do it by hand. We know that this is the first
2093 * slab on the node for this slabcache. There are no concurrent accesses
2094 * possible.
2095 *
2096 * Note that this function only works on the kmalloc_node_cache
2097 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2098 * memory on a fresh node that has no slab structures yet.
2099 */
2100static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2101							   int node)
2102{
2103	struct page *page;
2104	struct kmem_cache_node *n;
2105	unsigned long flags;
2106
2107	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2108
2109	page = new_slab(kmalloc_caches, gfpflags, node);
2110
2111	BUG_ON(!page);
2112	if (page_to_nid(page) != node) {
2113		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2114				"node %d\n", node);
2115		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2116				"in order to be able to continue\n");
2117	}
2118
2119	n = page->freelist;
2120	BUG_ON(!n);
2121	page->freelist = get_freepointer(kmalloc_caches, n);
2122	page->inuse++;
2123	kmalloc_caches->node[node] = n;
2124#ifdef CONFIG_SLUB_DEBUG
2125	init_object(kmalloc_caches, n, 1);
2126	init_tracking(kmalloc_caches, n);
2127#endif
2128	init_kmem_cache_node(n);
2129	inc_slabs_node(kmalloc_caches, node, page->objects);
2130
2131	/*
2132	 * lockdep requires consistent irq usage for each lock
2133	 * so even though there cannot be a race this early in
2134	 * the boot sequence, we still disable irqs.
2135	 */
2136	local_irq_save(flags);
2137	add_partial(n, page, 0);
2138	local_irq_restore(flags);
2139	return n;
2140}
2141
2142static void free_kmem_cache_nodes(struct kmem_cache *s)
2143{
2144	int node;
2145
2146	for_each_node_state(node, N_NORMAL_MEMORY) {
2147		struct kmem_cache_node *n = s->node[node];
2148		if (n && n != &s->local_node)
2149			kmem_cache_free(kmalloc_caches, n);
2150		s->node[node] = NULL;
2151	}
2152}
2153
2154static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2155{
2156	int node;
2157	int local_node;
2158
2159	if (slab_state >= UP)
2160		local_node = page_to_nid(virt_to_page(s));
2161	else
2162		local_node = 0;
2163
2164	for_each_node_state(node, N_NORMAL_MEMORY) {
2165		struct kmem_cache_node *n;
2166
2167		if (local_node == node)
2168			n = &s->local_node;
2169		else {
2170			if (slab_state == DOWN) {
2171				n = early_kmem_cache_node_alloc(gfpflags,
2172								node);
2173				continue;
2174			}
2175			n = kmem_cache_alloc_node(kmalloc_caches,
2176							gfpflags, node);
2177
2178			if (!n) {
2179				free_kmem_cache_nodes(s);
2180				return 0;
2181			}
2182
2183		}
2184		s->node[node] = n;
2185		init_kmem_cache_node(n);
2186	}
2187	return 1;
2188}
2189#else
2190static void free_kmem_cache_nodes(struct kmem_cache *s)
2191{
2192}
2193
2194static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2195{
2196	init_kmem_cache_node(&s->local_node);
2197	return 1;
2198}
2199#endif
2200
2201/*
2202 * calculate_sizes() determines the order and the distribution of data within
2203 * a slab object.
2204 */
2205static int calculate_sizes(struct kmem_cache *s, int forced_order)
2206{
2207	unsigned long flags = s->flags;
2208	unsigned long size = s->objsize;
2209	unsigned long align = s->align;
2210	int order;
2211
2212	/*
2213	 * Round up object size to the next word boundary. We can only
2214	 * place the free pointer at word boundaries and this determines
2215	 * the possible location of the free pointer.
2216	 */
2217	size = ALIGN(size, sizeof(void *));
2218
2219#ifdef CONFIG_SLUB_DEBUG
2220	/*
2221	 * Determine if we can poison the object itself. If the user of
2222	 * the slab may touch the object after free or before allocation
2223	 * then we should never poison the object itself.
2224	 */
2225	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2226			!s->ctor)
2227		s->flags |= __OBJECT_POISON;
2228	else
2229		s->flags &= ~__OBJECT_POISON;
2230
2231
2232	/*
2233	 * If we are Redzoning then check if there is some space between the
2234	 * end of the object and the free pointer. If not then add an
2235	 * additional word to have some bytes to store Redzone information.
2236	 */
2237	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2238		size += sizeof(void *);
2239#endif
2240
2241	/*
2242	 * With that we have determined the number of bytes in actual use
2243	 * by the object. This is the potential offset to the free pointer.
2244	 */
2245	s->inuse = size;
2246
2247	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2248		s->ctor)) {
2249		/*
2250		 * Relocate free pointer after the object if it is not
2251		 * permitted to overwrite the first word of the object on
2252		 * kmem_cache_free.
2253		 *
2254		 * This is the case if we do RCU, have a constructor or
2255		 * destructor or are poisoning the objects.
2256		 */
2257		s->offset = size;
2258		size += sizeof(void *);
2259	}
2260
2261#ifdef CONFIG_SLUB_DEBUG
2262	if (flags & SLAB_STORE_USER)
2263		/*
2264		 * Need to store information about allocs and frees after
2265		 * the object.
2266		 */
2267		size += 2 * sizeof(struct track);
2268
2269	if (flags & SLAB_RED_ZONE)
2270		/*
2271		 * Add some empty padding so that we can catch
2272		 * overwrites from earlier objects rather than let
2273		 * tracking information or the free pointer be
2274		 * corrupted if an user writes before the start
2275		 * of the object.
2276		 */
2277		size += sizeof(void *);
2278#endif
2279
2280	/*
2281	 * Determine the alignment based on various parameters that the
2282	 * user specified and the dynamic determination of cache line size
2283	 * on bootup.
2284	 */
2285	align = calculate_alignment(flags, align, s->objsize);
2286
2287	/*
2288	 * SLUB stores one object immediately after another beginning from
2289	 * offset 0. In order to align the objects we have to simply size
2290	 * each object to conform to the alignment.
2291	 */
2292	size = ALIGN(size, align);
2293	s->size = size;
2294	if (forced_order >= 0)
2295		order = forced_order;
2296	else
2297		order = calculate_order(size);
2298
2299	if (order < 0)
2300		return 0;
2301
2302	s->allocflags = 0;
2303	if (order)
2304		s->allocflags |= __GFP_COMP;
2305
2306	if (s->flags & SLAB_CACHE_DMA)
2307		s->allocflags |= SLUB_DMA;
2308
2309	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2310		s->allocflags |= __GFP_RECLAIMABLE;
2311
2312	/*
2313	 * Determine the number of objects per slab
2314	 */
2315	s->oo = oo_make(order, size);
2316	s->min = oo_make(get_order(size), size);
2317	if (oo_objects(s->oo) > oo_objects(s->max))
2318		s->max = s->oo;
2319
2320	return !!oo_objects(s->oo);
2321
2322}
2323
2324static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2325		const char *name, size_t size,
2326		size_t align, unsigned long flags,
2327		void (*ctor)(struct kmem_cache *, void *))
2328{
2329	memset(s, 0, kmem_size);
2330	s->name = name;
2331	s->ctor = ctor;
2332	s->objsize = size;
2333	s->align = align;
2334	s->flags = kmem_cache_flags(size, flags, name, ctor);
2335
2336	if (!calculate_sizes(s, -1))
2337		goto error;
2338
2339	s->refcount = 1;
2340#ifdef CONFIG_NUMA
2341	s->remote_node_defrag_ratio = 100;
2342#endif
2343	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2344		goto error;
2345
2346	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2347		return 1;
2348	free_kmem_cache_nodes(s);
2349error:
2350	if (flags & SLAB_PANIC)
2351		panic("Cannot create slab %s size=%lu realsize=%u "
2352			"order=%u offset=%u flags=%lx\n",
2353			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2354			s->offset, flags);
2355	return 0;
2356}
2357
2358/*
2359 * Check if a given pointer is valid
2360 */
2361int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2362{
2363	struct page *page;
2364
2365	page = get_object_page(object);
2366
2367	if (!page || s != page->slab)
2368		/* No slab or wrong slab */
2369		return 0;
2370
2371	if (!check_valid_pointer(s, page, object))
2372		return 0;
2373
2374	/*
2375	 * We could also check if the object is on the slabs freelist.
2376	 * But this would be too expensive and it seems that the main
2377	 * purpose of kmem_ptr_valid() is to check if the object belongs
2378	 * to a certain slab.
2379	 */
2380	return 1;
2381}
2382EXPORT_SYMBOL(kmem_ptr_validate);
2383
2384/*
2385 * Determine the size of a slab object
2386 */
2387unsigned int kmem_cache_size(struct kmem_cache *s)
2388{
2389	return s->objsize;
2390}
2391EXPORT_SYMBOL(kmem_cache_size);
2392
2393const char *kmem_cache_name(struct kmem_cache *s)
2394{
2395	return s->name;
2396}
2397EXPORT_SYMBOL(kmem_cache_name);
2398
2399static void list_slab_objects(struct kmem_cache *s, struct page *page,
2400							const char *text)
2401{
2402#ifdef CONFIG_SLUB_DEBUG
2403	void *addr = page_address(page);
2404	void *p;
2405	DECLARE_BITMAP(map, page->objects);
2406
2407	bitmap_zero(map, page->objects);
2408	slab_err(s, page, "%s", text);
2409	slab_lock(page);
2410	for_each_free_object(p, s, page->freelist)
2411		set_bit(slab_index(p, s, addr), map);
2412
2413	for_each_object(p, s, addr, page->objects) {
2414
2415		if (!test_bit(slab_index(p, s, addr), map)) {
2416			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2417							p, p - addr);
2418			print_tracking(s, p);
2419		}
2420	}
2421	slab_unlock(page);
2422#endif
2423}
2424
2425/*
2426 * Attempt to free all partial slabs on a node.
2427 */
2428static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2429{
2430	unsigned long flags;
2431	struct page *page, *h;
2432
2433	spin_lock_irqsave(&n->list_lock, flags);
2434	list_for_each_entry_safe(page, h, &n->partial, lru) {
2435		if (!page->inuse) {
2436			list_del(&page->lru);
2437			discard_slab(s, page);
2438			n->nr_partial--;
2439		} else {
2440			list_slab_objects(s, page,
2441				"Objects remaining on kmem_cache_close()");
2442		}
2443	}
2444	spin_unlock_irqrestore(&n->list_lock, flags);
2445}
2446
2447/*
2448 * Release all resources used by a slab cache.
2449 */
2450static inline int kmem_cache_close(struct kmem_cache *s)
2451{
2452	int node;
2453
2454	flush_all(s);
2455
2456	/* Attempt to free all objects */
2457	free_kmem_cache_cpus(s);
2458	for_each_node_state(node, N_NORMAL_MEMORY) {
2459		struct kmem_cache_node *n = get_node(s, node);
2460
2461		free_partial(s, n);
2462		if (n->nr_partial || slabs_node(s, node))
2463			return 1;
2464	}
2465	free_kmem_cache_nodes(s);
2466	return 0;
2467}
2468
2469/*
2470 * Close a cache and release the kmem_cache structure
2471 * (must be used for caches created using kmem_cache_create)
2472 */
2473void kmem_cache_destroy(struct kmem_cache *s)
2474{
2475	down_write(&slub_lock);
2476	s->refcount--;
2477	if (!s->refcount) {
2478		list_del(&s->list);
2479		up_write(&slub_lock);
2480		if (kmem_cache_close(s)) {
2481			printk(KERN_ERR "SLUB %s: %s called for cache that "
2482				"still has objects.\n", s->name, __func__);
2483			dump_stack();
2484		}
2485		sysfs_slab_remove(s);
2486	} else
2487		up_write(&slub_lock);
2488}
2489EXPORT_SYMBOL(kmem_cache_destroy);
2490
2491/********************************************************************
2492 *		Kmalloc subsystem
2493 *******************************************************************/
2494
2495struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2496EXPORT_SYMBOL(kmalloc_caches);
2497
2498static int __init setup_slub_min_order(char *str)
2499{
2500	get_option(&str, &slub_min_order);
2501
2502	return 1;
2503}
2504
2505__setup("slub_min_order=", setup_slub_min_order);
2506
2507static int __init setup_slub_max_order(char *str)
2508{
2509	get_option(&str, &slub_max_order);
2510
2511	return 1;
2512}
2513
2514__setup("slub_max_order=", setup_slub_max_order);
2515
2516static int __init setup_slub_min_objects(char *str)
2517{
2518	get_option(&str, &slub_min_objects);
2519
2520	return 1;
2521}
2522
2523__setup("slub_min_objects=", setup_slub_min_objects);
2524
2525static int __init setup_slub_nomerge(char *str)
2526{
2527	slub_nomerge = 1;
2528	return 1;
2529}
2530
2531__setup("slub_nomerge", setup_slub_nomerge);
2532
2533static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2534		const char *name, int size, gfp_t gfp_flags)
2535{
2536	unsigned int flags = 0;
2537
2538	if (gfp_flags & SLUB_DMA)
2539		flags = SLAB_CACHE_DMA;
2540
2541	down_write(&slub_lock);
2542	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2543								flags, NULL))
2544		goto panic;
2545
2546	list_add(&s->list, &slab_caches);
2547	up_write(&slub_lock);
2548	if (sysfs_slab_add(s))
2549		goto panic;
2550	return s;
2551
2552panic:
2553	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2554}
2555
2556#ifdef CONFIG_ZONE_DMA
2557static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2558
2559static void sysfs_add_func(struct work_struct *w)
2560{
2561	struct kmem_cache *s;
2562
2563	down_write(&slub_lock);
2564	list_for_each_entry(s, &slab_caches, list) {
2565		if (s->flags & __SYSFS_ADD_DEFERRED) {
2566			s->flags &= ~__SYSFS_ADD_DEFERRED;
2567			sysfs_slab_add(s);
2568		}
2569	}
2570	up_write(&slub_lock);
2571}
2572
2573static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2574
2575static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2576{
2577	struct kmem_cache *s;
2578	char *text;
2579	size_t realsize;
2580
2581	s = kmalloc_caches_dma[index];
2582	if (s)
2583		return s;
2584
2585	/* Dynamically create dma cache */
2586	if (flags & __GFP_WAIT)
2587		down_write(&slub_lock);
2588	else {
2589		if (!down_write_trylock(&slub_lock))
2590			goto out;
2591	}
2592
2593	if (kmalloc_caches_dma[index])
2594		goto unlock_out;
2595
2596	realsize = kmalloc_caches[index].objsize;
2597	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2598			 (unsigned int)realsize);
2599	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2600
2601	if (!s || !text || !kmem_cache_open(s, flags, text,
2602			realsize, ARCH_KMALLOC_MINALIGN,
2603			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2604		kfree(s);
2605		kfree(text);
2606		goto unlock_out;
2607	}
2608
2609	list_add(&s->list, &slab_caches);
2610	kmalloc_caches_dma[index] = s;
2611
2612	schedule_work(&sysfs_add_work);
2613
2614unlock_out:
2615	up_write(&slub_lock);
2616out:
2617	return kmalloc_caches_dma[index];
2618}
2619#endif
2620
2621/*
2622 * Conversion table for small slabs sizes / 8 to the index in the
2623 * kmalloc array. This is necessary for slabs < 192 since we have non power
2624 * of two cache sizes there. The size of larger slabs can be determined using
2625 * fls.
2626 */
2627static s8 size_index[24] = {
2628	3,	/* 8 */
2629	4,	/* 16 */
2630	5,	/* 24 */
2631	5,	/* 32 */
2632	6,	/* 40 */
2633	6,	/* 48 */
2634	6,	/* 56 */
2635	6,	/* 64 */
2636	1,	/* 72 */
2637	1,	/* 80 */
2638	1,	/* 88 */
2639	1,	/* 96 */
2640	7,	/* 104 */
2641	7,	/* 112 */
2642	7,	/* 120 */
2643	7,	/* 128 */
2644	2,	/* 136 */
2645	2,	/* 144 */
2646	2,	/* 152 */
2647	2,	/* 160 */
2648	2,	/* 168 */
2649	2,	/* 176 */
2650	2,	/* 184 */
2651	2	/* 192 */
2652};
2653
2654static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2655{
2656	int index;
2657
2658	if (size <= 192) {
2659		if (!size)
2660			return ZERO_SIZE_PTR;
2661
2662		index = size_index[(size - 1) / 8];
2663	} else
2664		index = fls(size - 1);
2665
2666#ifdef CONFIG_ZONE_DMA
2667	if (unlikely((flags & SLUB_DMA)))
2668		return dma_kmalloc_cache(index, flags);
2669
2670#endif
2671	return &kmalloc_caches[index];
2672}
2673
2674void *__kmalloc(size_t size, gfp_t flags)
2675{
2676	struct kmem_cache *s;
2677
2678	if (unlikely(size > PAGE_SIZE))
2679		return kmalloc_large(size, flags);
2680
2681	s = get_slab(size, flags);
2682
2683	if (unlikely(ZERO_OR_NULL_PTR(s)))
2684		return s;
2685
2686	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2687}
2688EXPORT_SYMBOL(__kmalloc);
2689
2690static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2691{
2692	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2693						get_order(size));
2694
2695	if (page)
2696		return page_address(page);
2697	else
2698		return NULL;
2699}
2700
2701#ifdef CONFIG_NUMA
2702void *__kmalloc_node(size_t size, gfp_t flags, int node)
2703{
2704	struct kmem_cache *s;
2705
2706	if (unlikely(size > PAGE_SIZE))
2707		return kmalloc_large_node(size, flags, node);
2708
2709	s = get_slab(size, flags);
2710
2711	if (unlikely(ZERO_OR_NULL_PTR(s)))
2712		return s;
2713
2714	return slab_alloc(s, flags, node, __builtin_return_address(0));
2715}
2716EXPORT_SYMBOL(__kmalloc_node);
2717#endif
2718
2719size_t ksize(const void *object)
2720{
2721	struct page *page;
2722	struct kmem_cache *s;
2723
2724	if (unlikely(object == ZERO_SIZE_PTR))
2725		return 0;
2726
2727	page = virt_to_head_page(object);
2728
2729	if (unlikely(!PageSlab(page))) {
2730		WARN_ON(!PageCompound(page));
2731		return PAGE_SIZE << compound_order(page);
2732	}
2733	s = page->slab;
2734
2735#ifdef CONFIG_SLUB_DEBUG
2736	/*
2737	 * Debugging requires use of the padding between object
2738	 * and whatever may come after it.
2739	 */
2740	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2741		return s->objsize;
2742
2743#endif
2744	/*
2745	 * If we have the need to store the freelist pointer
2746	 * back there or track user information then we can
2747	 * only use the space before that information.
2748	 */
2749	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2750		return s->inuse;
2751	/*
2752	 * Else we can use all the padding etc for the allocation
2753	 */
2754	return s->size;
2755}
2756EXPORT_SYMBOL(ksize);
2757
2758void kfree(const void *x)
2759{
2760	struct page *page;
2761	void *object = (void *)x;
2762
2763	if (unlikely(ZERO_OR_NULL_PTR(x)))
2764		return;
2765
2766	page = virt_to_head_page(x);
2767	if (unlikely(!PageSlab(page))) {
2768		put_page(page);
2769		return;
2770	}
2771	slab_free(page->slab, page, object, __builtin_return_address(0));
2772}
2773EXPORT_SYMBOL(kfree);
2774
2775/*
2776 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2777 * the remaining slabs by the number of items in use. The slabs with the
2778 * most items in use come first. New allocations will then fill those up
2779 * and thus they can be removed from the partial lists.
2780 *
2781 * The slabs with the least items are placed last. This results in them
2782 * being allocated from last increasing the chance that the last objects
2783 * are freed in them.
2784 */
2785int kmem_cache_shrink(struct kmem_cache *s)
2786{
2787	int node;
2788	int i;
2789	struct kmem_cache_node *n;
2790	struct page *page;
2791	struct page *t;
2792	int objects = oo_objects(s->max);
2793	struct list_head *slabs_by_inuse =
2794		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2795	unsigned long flags;
2796
2797	if (!slabs_by_inuse)
2798		return -ENOMEM;
2799
2800	flush_all(s);
2801	for_each_node_state(node, N_NORMAL_MEMORY) {
2802		n = get_node(s, node);
2803
2804		if (!n->nr_partial)
2805			continue;
2806
2807		for (i = 0; i < objects; i++)
2808			INIT_LIST_HEAD(slabs_by_inuse + i);
2809
2810		spin_lock_irqsave(&n->list_lock, flags);
2811
2812		/*
2813		 * Build lists indexed by the items in use in each slab.
2814		 *
2815		 * Note that concurrent frees may occur while we hold the
2816		 * list_lock. page->inuse here is the upper limit.
2817		 */
2818		list_for_each_entry_safe(page, t, &n->partial, lru) {
2819			if (!page->inuse && slab_trylock(page)) {
2820				/*
2821				 * Must hold slab lock here because slab_free
2822				 * may have freed the last object and be
2823				 * waiting to release the slab.
2824				 */
2825				list_del(&page->lru);
2826				n->nr_partial--;
2827				slab_unlock(page);
2828				discard_slab(s, page);
2829			} else {
2830				list_move(&page->lru,
2831				slabs_by_inuse + page->inuse);
2832			}
2833		}
2834
2835		/*
2836		 * Rebuild the partial list with the slabs filled up most
2837		 * first and the least used slabs at the end.
2838		 */
2839		for (i = objects - 1; i >= 0; i--)
2840			list_splice(slabs_by_inuse + i, n->partial.prev);
2841
2842		spin_unlock_irqrestore(&n->list_lock, flags);
2843	}
2844
2845	kfree(slabs_by_inuse);
2846	return 0;
2847}
2848EXPORT_SYMBOL(kmem_cache_shrink);
2849
2850#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2851static int slab_mem_going_offline_callback(void *arg)
2852{
2853	struct kmem_cache *s;
2854
2855	down_read(&slub_lock);
2856	list_for_each_entry(s, &slab_caches, list)
2857		kmem_cache_shrink(s);
2858	up_read(&slub_lock);
2859
2860	return 0;
2861}
2862
2863static void slab_mem_offline_callback(void *arg)
2864{
2865	struct kmem_cache_node *n;
2866	struct kmem_cache *s;
2867	struct memory_notify *marg = arg;
2868	int offline_node;
2869
2870	offline_node = marg->status_change_nid;
2871
2872	/*
2873	 * If the node still has available memory. we need kmem_cache_node
2874	 * for it yet.
2875	 */
2876	if (offline_node < 0)
2877		return;
2878
2879	down_read(&slub_lock);
2880	list_for_each_entry(s, &slab_caches, list) {
2881		n = get_node(s, offline_node);
2882		if (n) {
2883			/*
2884			 * if n->nr_slabs > 0, slabs still exist on the node
2885			 * that is going down. We were unable to free them,
2886			 * and offline_pages() function shoudn't call this
2887			 * callback. So, we must fail.
2888			 */
2889			BUG_ON(slabs_node(s, offline_node));
2890
2891			s->node[offline_node] = NULL;
2892			kmem_cache_free(kmalloc_caches, n);
2893		}
2894	}
2895	up_read(&slub_lock);
2896}
2897
2898static int slab_mem_going_online_callback(void *arg)
2899{
2900	struct kmem_cache_node *n;
2901	struct kmem_cache *s;
2902	struct memory_notify *marg = arg;
2903	int nid = marg->status_change_nid;
2904	int ret = 0;
2905
2906	/*
2907	 * If the node's memory is already available, then kmem_cache_node is
2908	 * already created. Nothing to do.
2909	 */
2910	if (nid < 0)
2911		return 0;
2912
2913	/*
2914	 * We are bringing a node online. No memory is available yet. We must
2915	 * allocate a kmem_cache_node structure in order to bring the node
2916	 * online.
2917	 */
2918	down_read(&slub_lock);
2919	list_for_each_entry(s, &slab_caches, list) {
2920		/*
2921		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2922		 *      since memory is not yet available from the node that
2923		 *      is brought up.
2924		 */
2925		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2926		if (!n) {
2927			ret = -ENOMEM;
2928			goto out;
2929		}
2930		init_kmem_cache_node(n);
2931		s->node[nid] = n;
2932	}
2933out:
2934	up_read(&slub_lock);
2935	return ret;
2936}
2937
2938static int slab_memory_callback(struct notifier_block *self,
2939				unsigned long action, void *arg)
2940{
2941	int ret = 0;
2942
2943	switch (action) {
2944	case MEM_GOING_ONLINE:
2945		ret = slab_mem_going_online_callback(arg);
2946		break;
2947	case MEM_GOING_OFFLINE:
2948		ret = slab_mem_going_offline_callback(arg);
2949		break;
2950	case MEM_OFFLINE:
2951	case MEM_CANCEL_ONLINE:
2952		slab_mem_offline_callback(arg);
2953		break;
2954	case MEM_ONLINE:
2955	case MEM_CANCEL_OFFLINE:
2956		break;
2957	}
2958
2959	ret = notifier_from_errno(ret);
2960	return ret;
2961}
2962
2963#endif /* CONFIG_MEMORY_HOTPLUG */
2964
2965/********************************************************************
2966 *			Basic setup of slabs
2967 *******************************************************************/
2968
2969void __init kmem_cache_init(void)
2970{
2971	int i;
2972	int caches = 0;
2973
2974	init_alloc_cpu();
2975
2976#ifdef CONFIG_NUMA
2977	/*
2978	 * Must first have the slab cache available for the allocations of the
2979	 * struct kmem_cache_node's. There is special bootstrap code in
2980	 * kmem_cache_open for slab_state == DOWN.
2981	 */
2982	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2983		sizeof(struct kmem_cache_node), GFP_KERNEL);
2984	kmalloc_caches[0].refcount = -1;
2985	caches++;
2986
2987	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2988#endif
2989
2990	/* Able to allocate the per node structures */
2991	slab_state = PARTIAL;
2992
2993	/* Caches that are not of the two-to-the-power-of size */
2994	if (KMALLOC_MIN_SIZE <= 64) {
2995		create_kmalloc_cache(&kmalloc_caches[1],
2996				"kmalloc-96", 96, GFP_KERNEL);
2997		caches++;
2998	}
2999	if (KMALLOC_MIN_SIZE <= 128) {
3000		create_kmalloc_cache(&kmalloc_caches[2],
3001				"kmalloc-192", 192, GFP_KERNEL);
3002		caches++;
3003	}
3004
3005	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
3006		create_kmalloc_cache(&kmalloc_caches[i],
3007			"kmalloc", 1 << i, GFP_KERNEL);
3008		caches++;
3009	}
3010
3011
3012	/*
3013	 * Patch up the size_index table if we have strange large alignment
3014	 * requirements for the kmalloc array. This is only the case for
3015	 * MIPS it seems. The standard arches will not generate any code here.
3016	 *
3017	 * Largest permitted alignment is 256 bytes due to the way we
3018	 * handle the index determination for the smaller caches.
3019	 *
3020	 * Make sure that nothing crazy happens if someone starts tinkering
3021	 * around with ARCH_KMALLOC_MINALIGN
3022	 */
3023	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3024		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3025
3026	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3027		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3028
3029	slab_state = UP;
3030
3031	/* Provide the correct kmalloc names now that the caches are up */
3032	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3033		kmalloc_caches[i]. name =
3034			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3035
3036#ifdef CONFIG_SMP
3037	register_cpu_notifier(&slab_notifier);
3038	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3039				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3040#else
3041	kmem_size = sizeof(struct kmem_cache);
3042#endif
3043
3044	printk(KERN_INFO
3045		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3046		" CPUs=%d, Nodes=%d\n",
3047		caches, cache_line_size(),
3048		slub_min_order, slub_max_order, slub_min_objects,
3049		nr_cpu_ids, nr_node_ids);
3050}
3051
3052/*
3053 * Find a mergeable slab cache
3054 */
3055static int slab_unmergeable(struct kmem_cache *s)
3056{
3057	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3058		return 1;
3059
3060	if (s->ctor)
3061		return 1;
3062
3063	/*
3064	 * We may have set a slab to be unmergeable during bootstrap.
3065	 */
3066	if (s->refcount < 0)
3067		return 1;
3068
3069	return 0;
3070}
3071
3072static struct kmem_cache *find_mergeable(size_t size,
3073		size_t align, unsigned long flags, const char *name,
3074		void (*ctor)(struct kmem_cache *, void *))
3075{
3076	struct kmem_cache *s;
3077
3078	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3079		return NULL;
3080
3081	if (ctor)
3082		return NULL;
3083
3084	size = ALIGN(size, sizeof(void *));
3085	align = calculate_alignment(flags, align, size);
3086	size = ALIGN(size, align);
3087	flags = kmem_cache_flags(size, flags, name, NULL);
3088
3089	list_for_each_entry(s, &slab_caches, list) {
3090		if (slab_unmergeable(s))
3091			continue;
3092
3093		if (size > s->size)
3094			continue;
3095
3096		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3097				continue;
3098		/*
3099		 * Check if alignment is compatible.
3100		 * Courtesy of Adrian Drzewiecki
3101		 */
3102		if ((s->size & ~(align - 1)) != s->size)
3103			continue;
3104
3105		if (s->size - size >= sizeof(void *))
3106			continue;
3107
3108		return s;
3109	}
3110	return NULL;
3111}
3112
3113struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3114		size_t align, unsigned long flags,
3115		void (*ctor)(struct kmem_cache *, void *))
3116{
3117	struct kmem_cache *s;
3118
3119	down_write(&slub_lock);
3120	s = find_mergeable(size, align, flags, name, ctor);
3121	if (s) {
3122		int cpu;
3123
3124		s->refcount++;
3125		/*
3126		 * Adjust the object sizes so that we clear
3127		 * the complete object on kzalloc.
3128		 */
3129		s->objsize = max(s->objsize, (int)size);
3130
3131		/*
3132		 * And then we need to update the object size in the
3133		 * per cpu structures
3134		 */
3135		for_each_online_cpu(cpu)
3136			get_cpu_slab(s, cpu)->objsize = s->objsize;
3137
3138		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3139		up_write(&slub_lock);
3140
3141		if (sysfs_slab_alias(s, name))
3142			goto err;
3143		return s;
3144	}
3145
3146	s = kmalloc(kmem_size, GFP_KERNEL);
3147	if (s) {
3148		if (kmem_cache_open(s, GFP_KERNEL, name,
3149				size, align, flags, ctor)) {
3150			list_add(&s->list, &slab_caches);
3151			up_write(&slub_lock);
3152			if (sysfs_slab_add(s))
3153				goto err;
3154			return s;
3155		}
3156		kfree(s);
3157	}
3158	up_write(&slub_lock);
3159
3160err:
3161	if (flags & SLAB_PANIC)
3162		panic("Cannot create slabcache %s\n", name);
3163	else
3164		s = NULL;
3165	return s;
3166}
3167EXPORT_SYMBOL(kmem_cache_create);
3168
3169#ifdef CONFIG_SMP
3170/*
3171 * Use the cpu notifier to insure that the cpu slabs are flushed when
3172 * necessary.
3173 */
3174static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3175		unsigned long action, void *hcpu)
3176{
3177	long cpu = (long)hcpu;
3178	struct kmem_cache *s;
3179	unsigned long flags;
3180
3181	switch (action) {
3182	case CPU_UP_PREPARE:
3183	case CPU_UP_PREPARE_FROZEN:
3184		init_alloc_cpu_cpu(cpu);
3185		down_read(&slub_lock);
3186		list_for_each_entry(s, &slab_caches, list)
3187			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3188							GFP_KERNEL);
3189		up_read(&slub_lock);
3190		break;
3191
3192	case CPU_UP_CANCELED:
3193	case CPU_UP_CANCELED_FROZEN:
3194	case CPU_DEAD:
3195	case CPU_DEAD_FROZEN:
3196		down_read(&slub_lock);
3197		list_for_each_entry(s, &slab_caches, list) {
3198			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3199
3200			local_irq_save(flags);
3201			__flush_cpu_slab(s, cpu);
3202			local_irq_restore(flags);
3203			free_kmem_cache_cpu(c, cpu);
3204			s->cpu_slab[cpu] = NULL;
3205		}
3206		up_read(&slub_lock);
3207		break;
3208	default:
3209		break;
3210	}
3211	return NOTIFY_OK;
3212}
3213
3214static struct notifier_block __cpuinitdata slab_notifier = {
3215	.notifier_call = slab_cpuup_callback
3216};
3217
3218#endif
3219
3220void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3221{
3222	struct kmem_cache *s;
3223
3224	if (unlikely(size > PAGE_SIZE))
3225		return kmalloc_large(size, gfpflags);
3226
3227	s = get_slab(size, gfpflags);
3228
3229	if (unlikely(ZERO_OR_NULL_PTR(s)))
3230		return s;
3231
3232	return slab_alloc(s, gfpflags, -1, caller);
3233}
3234
3235void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3236					int node, void *caller)
3237{
3238	struct kmem_cache *s;
3239
3240	if (unlikely(size > PAGE_SIZE))
3241		return kmalloc_large_node(size, gfpflags, node);
3242
3243	s = get_slab(size, gfpflags);
3244
3245	if (unlikely(ZERO_OR_NULL_PTR(s)))
3246		return s;
3247
3248	return slab_alloc(s, gfpflags, node, caller);
3249}
3250
3251#ifdef CONFIG_SLUB_DEBUG
3252static unsigned long count_partial(struct kmem_cache_node *n,
3253					int (*get_count)(struct page *))
3254{
3255	unsigned long flags;
3256	unsigned long x = 0;
3257	struct page *page;
3258
3259	spin_lock_irqsave(&n->list_lock, flags);
3260	list_for_each_entry(page, &n->partial, lru)
3261		x += get_count(page);
3262	spin_unlock_irqrestore(&n->list_lock, flags);
3263	return x;
3264}
3265
3266static int count_inuse(struct page *page)
3267{
3268	return page->inuse;
3269}
3270
3271static int count_total(struct page *page)
3272{
3273	return page->objects;
3274}
3275
3276static int count_free(struct page *page)
3277{
3278	return page->objects - page->inuse;
3279}
3280
3281static int validate_slab(struct kmem_cache *s, struct page *page,
3282						unsigned long *map)
3283{
3284	void *p;
3285	void *addr = page_address(page);
3286
3287	if (!check_slab(s, page) ||
3288			!on_freelist(s, page, NULL))
3289		return 0;
3290
3291	/* Now we know that a valid freelist exists */
3292	bitmap_zero(map, page->objects);
3293
3294	for_each_free_object(p, s, page->freelist) {
3295		set_bit(slab_index(p, s, addr), map);
3296		if (!check_object(s, page, p, 0))
3297			return 0;
3298	}
3299
3300	for_each_object(p, s, addr, page->objects)
3301		if (!test_bit(slab_index(p, s, addr), map))
3302			if (!check_object(s, page, p, 1))
3303				return 0;
3304	return 1;
3305}
3306
3307static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3308						unsigned long *map)
3309{
3310	if (slab_trylock(page)) {
3311		validate_slab(s, page, map);
3312		slab_unlock(page);
3313	} else
3314		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3315			s->name, page);
3316
3317	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3318		if (!SlabDebug(page))
3319			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3320				"on slab 0x%p\n", s->name, page);
3321	} else {
3322		if (SlabDebug(page))
3323			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3324				"slab 0x%p\n", s->name, page);
3325	}
3326}
3327
3328static int validate_slab_node(struct kmem_cache *s,
3329		struct kmem_cache_node *n, unsigned long *map)
3330{
3331	unsigned long count = 0;
3332	struct page *page;
3333	unsigned long flags;
3334
3335	spin_lock_irqsave(&n->list_lock, flags);
3336
3337	list_for_each_entry(page, &n->partial, lru) {
3338		validate_slab_slab(s, page, map);
3339		count++;
3340	}
3341	if (count != n->nr_partial)
3342		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3343			"counter=%ld\n", s->name, count, n->nr_partial);
3344
3345	if (!(s->flags & SLAB_STORE_USER))
3346		goto out;
3347
3348	list_for_each_entry(page, &n->full, lru) {
3349		validate_slab_slab(s, page, map);
3350		count++;
3351	}
3352	if (count != atomic_long_read(&n->nr_slabs))
3353		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3354			"counter=%ld\n", s->name, count,
3355			atomic_long_read(&n->nr_slabs));
3356
3357out:
3358	spin_unlock_irqrestore(&n->list_lock, flags);
3359	return count;
3360}
3361
3362static long validate_slab_cache(struct kmem_cache *s)
3363{
3364	int node;
3365	unsigned long count = 0;
3366	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3367				sizeof(unsigned long), GFP_KERNEL);
3368
3369	if (!map)
3370		return -ENOMEM;
3371
3372	flush_all(s);
3373	for_each_node_state(node, N_NORMAL_MEMORY) {
3374		struct kmem_cache_node *n = get_node(s, node);
3375
3376		count += validate_slab_node(s, n, map);
3377	}
3378	kfree(map);
3379	return count;
3380}
3381
3382#ifdef SLUB_RESILIENCY_TEST
3383static void resiliency_test(void)
3384{
3385	u8 *p;
3386
3387	printk(KERN_ERR "SLUB resiliency testing\n");
3388	printk(KERN_ERR "-----------------------\n");
3389	printk(KERN_ERR "A. Corruption after allocation\n");
3390
3391	p = kzalloc(16, GFP_KERNEL);
3392	p[16] = 0x12;
3393	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3394			" 0x12->0x%p\n\n", p + 16);
3395
3396	validate_slab_cache(kmalloc_caches + 4);
3397
3398	/* Hmmm... The next two are dangerous */
3399	p = kzalloc(32, GFP_KERNEL);
3400	p[32 + sizeof(void *)] = 0x34;
3401	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3402			" 0x34 -> -0x%p\n", p);
3403	printk(KERN_ERR
3404		"If allocated object is overwritten then not detectable\n\n");
3405
3406	validate_slab_cache(kmalloc_caches + 5);
3407	p = kzalloc(64, GFP_KERNEL);
3408	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3409	*p = 0x56;
3410	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3411									p);
3412	printk(KERN_ERR
3413		"If allocated object is overwritten then not detectable\n\n");
3414	validate_slab_cache(kmalloc_caches + 6);
3415
3416	printk(KERN_ERR "\nB. Corruption after free\n");
3417	p = kzalloc(128, GFP_KERNEL);
3418	kfree(p);
3419	*p = 0x78;
3420	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3421	validate_slab_cache(kmalloc_caches + 7);
3422
3423	p = kzalloc(256, GFP_KERNEL);
3424	kfree(p);
3425	p[50] = 0x9a;
3426	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3427			p);
3428	validate_slab_cache(kmalloc_caches + 8);
3429
3430	p = kzalloc(512, GFP_KERNEL);
3431	kfree(p);
3432	p[512] = 0xab;
3433	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3434	validate_slab_cache(kmalloc_caches + 9);
3435}
3436#else
3437static void resiliency_test(void) {};
3438#endif
3439
3440/*
3441 * Generate lists of code addresses where slabcache objects are allocated
3442 * and freed.
3443 */
3444
3445struct location {
3446	unsigned long count;
3447	void *addr;
3448	long long sum_time;
3449	long min_time;
3450	long max_time;
3451	long min_pid;
3452	long max_pid;
3453	cpumask_t cpus;
3454	nodemask_t nodes;
3455};
3456
3457struct loc_track {
3458	unsigned long max;
3459	unsigned long count;
3460	struct location *loc;
3461};
3462
3463static void free_loc_track(struct loc_track *t)
3464{
3465	if (t->max)
3466		free_pages((unsigned long)t->loc,
3467			get_order(sizeof(struct location) * t->max));
3468}
3469
3470static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3471{
3472	struct location *l;
3473	int order;
3474
3475	order = get_order(sizeof(struct location) * max);
3476
3477	l = (void *)__get_free_pages(flags, order);
3478	if (!l)
3479		return 0;
3480
3481	if (t->count) {
3482		memcpy(l, t->loc, sizeof(struct location) * t->count);
3483		free_loc_track(t);
3484	}
3485	t->max = max;
3486	t->loc = l;
3487	return 1;
3488}
3489
3490static int add_location(struct loc_track *t, struct kmem_cache *s,
3491				const struct track *track)
3492{
3493	long start, end, pos;
3494	struct location *l;
3495	void *caddr;
3496	unsigned long age = jiffies - track->when;
3497
3498	start = -1;
3499	end = t->count;
3500
3501	for ( ; ; ) {
3502		pos = start + (end - start + 1) / 2;
3503
3504		/*
3505		 * There is nothing at "end". If we end up there
3506		 * we need to add something to before end.
3507		 */
3508		if (pos == end)
3509			break;
3510
3511		caddr = t->loc[pos].addr;
3512		if (track->addr == caddr) {
3513
3514			l = &t->loc[pos];
3515			l->count++;
3516			if (track->when) {
3517				l->sum_time += age;
3518				if (age < l->min_time)
3519					l->min_time = age;
3520				if (age > l->max_time)
3521					l->max_time = age;
3522
3523				if (track->pid < l->min_pid)
3524					l->min_pid = track->pid;
3525				if (track->pid > l->max_pid)
3526					l->max_pid = track->pid;
3527
3528				cpu_set(track->cpu, l->cpus);
3529			}
3530			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3531			return 1;
3532		}
3533
3534		if (track->addr < caddr)
3535			end = pos;
3536		else
3537			start = pos;
3538	}
3539
3540	/*
3541	 * Not found. Insert new tracking element.
3542	 */
3543	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3544		return 0;
3545
3546	l = t->loc + pos;
3547	if (pos < t->count)
3548		memmove(l + 1, l,
3549			(t->count - pos) * sizeof(struct location));
3550	t->count++;
3551	l->count = 1;
3552	l->addr = track->addr;
3553	l->sum_time = age;
3554	l->min_time = age;
3555	l->max_time = age;
3556	l->min_pid = track->pid;
3557	l->max_pid = track->pid;
3558	cpus_clear(l->cpus);
3559	cpu_set(track->cpu, l->cpus);
3560	nodes_clear(l->nodes);
3561	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3562	return 1;
3563}
3564
3565static void process_slab(struct loc_track *t, struct kmem_cache *s,
3566		struct page *page, enum track_item alloc)
3567{
3568	void *addr = page_address(page);
3569	DECLARE_BITMAP(map, page->objects);
3570	void *p;
3571
3572	bitmap_zero(map, page->objects);
3573	for_each_free_object(p, s, page->freelist)
3574		set_bit(slab_index(p, s, addr), map);
3575
3576	for_each_object(p, s, addr, page->objects)
3577		if (!test_bit(slab_index(p, s, addr), map))
3578			add_location(t, s, get_track(s, p, alloc));
3579}
3580
3581static int list_locations(struct kmem_cache *s, char *buf,
3582					enum track_item alloc)
3583{
3584	int len = 0;
3585	unsigned long i;
3586	struct loc_track t = { 0, 0, NULL };
3587	int node;
3588
3589	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3590			GFP_TEMPORARY))
3591		return sprintf(buf, "Out of memory\n");
3592
3593	/* Push back cpu slabs */
3594	flush_all(s);
3595
3596	for_each_node_state(node, N_NORMAL_MEMORY) {
3597		struct kmem_cache_node *n = get_node(s, node);
3598		unsigned long flags;
3599		struct page *page;
3600
3601		if (!atomic_long_read(&n->nr_slabs))
3602			continue;
3603
3604		spin_lock_irqsave(&n->list_lock, flags);
3605		list_for_each_entry(page, &n->partial, lru)
3606			process_slab(&t, s, page, alloc);
3607		list_for_each_entry(page, &n->full, lru)
3608			process_slab(&t, s, page, alloc);
3609		spin_unlock_irqrestore(&n->list_lock, flags);
3610	}
3611
3612	for (i = 0; i < t.count; i++) {
3613		struct location *l = &t.loc[i];
3614
3615		if (len > PAGE_SIZE - 100)
3616			break;
3617		len += sprintf(buf + len, "%7ld ", l->count);
3618
3619		if (l->addr)
3620			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3621		else
3622			len += sprintf(buf + len, "<not-available>");
3623
3624		if (l->sum_time != l->min_time) {
3625			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3626				l->min_time,
3627				(long)div_u64(l->sum_time, l->count),
3628				l->max_time);
3629		} else
3630			len += sprintf(buf + len, " age=%ld",
3631				l->min_time);
3632
3633		if (l->min_pid != l->max_pid)
3634			len += sprintf(buf + len, " pid=%ld-%ld",
3635				l->min_pid, l->max_pid);
3636		else
3637			len += sprintf(buf + len, " pid=%ld",
3638				l->min_pid);
3639
3640		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3641				len < PAGE_SIZE - 60) {
3642			len += sprintf(buf + len, " cpus=");
3643			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3644					l->cpus);
3645		}
3646
3647		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3648				len < PAGE_SIZE - 60) {
3649			len += sprintf(buf + len, " nodes=");
3650			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3651					l->nodes);
3652		}
3653
3654		len += sprintf(buf + len, "\n");
3655	}
3656
3657	free_loc_track(&t);
3658	if (!t.count)
3659		len += sprintf(buf, "No data\n");
3660	return len;
3661}
3662
3663enum slab_stat_type {
3664	SL_ALL,			/* All slabs */
3665	SL_PARTIAL,		/* Only partially allocated slabs */
3666	SL_CPU,			/* Only slabs used for cpu caches */
3667	SL_OBJECTS,		/* Determine allocated objects not slabs */
3668	SL_TOTAL		/* Determine object capacity not slabs */
3669};
3670
3671#define SO_ALL		(1 << SL_ALL)
3672#define SO_PARTIAL	(1 << SL_PARTIAL)
3673#define SO_CPU		(1 << SL_CPU)
3674#define SO_OBJECTS	(1 << SL_OBJECTS)
3675#define SO_TOTAL	(1 << SL_TOTAL)
3676
3677static ssize_t show_slab_objects(struct kmem_cache *s,
3678			    char *buf, unsigned long flags)
3679{
3680	unsigned long total = 0;
3681	int node;
3682	int x;
3683	unsigned long *nodes;
3684	unsigned long *per_cpu;
3685
3686	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3687	if (!nodes)
3688		return -ENOMEM;
3689	per_cpu = nodes + nr_node_ids;
3690
3691	if (flags & SO_CPU) {
3692		int cpu;
3693
3694		for_each_possible_cpu(cpu) {
3695			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3696
3697			if (!c || c->node < 0)
3698				continue;
3699
3700			if (c->page) {
3701					if (flags & SO_TOTAL)
3702						x = c->page->objects;
3703				else if (flags & SO_OBJECTS)
3704					x = c->page->inuse;
3705				else
3706					x = 1;
3707
3708				total += x;
3709				nodes[c->node] += x;
3710			}
3711			per_cpu[c->node]++;
3712		}
3713	}
3714
3715	if (flags & SO_ALL) {
3716		for_each_node_state(node, N_NORMAL_MEMORY) {
3717			struct kmem_cache_node *n = get_node(s, node);
3718
3719		if (flags & SO_TOTAL)
3720			x = atomic_long_read(&n->total_objects);
3721		else if (flags & SO_OBJECTS)
3722			x = atomic_long_read(&n->total_objects) -
3723				count_partial(n, count_free);
3724
3725			else
3726				x = atomic_long_read(&n->nr_slabs);
3727			total += x;
3728			nodes[node] += x;
3729		}
3730
3731	} else if (flags & SO_PARTIAL) {
3732		for_each_node_state(node, N_NORMAL_MEMORY) {
3733			struct kmem_cache_node *n = get_node(s, node);
3734
3735			if (flags & SO_TOTAL)
3736				x = count_partial(n, count_total);
3737			else if (flags & SO_OBJECTS)
3738				x = count_partial(n, count_inuse);
3739			else
3740				x = n->nr_partial;
3741			total += x;
3742			nodes[node] += x;
3743		}
3744	}
3745	x = sprintf(buf, "%lu", total);
3746#ifdef CONFIG_NUMA
3747	for_each_node_state(node, N_NORMAL_MEMORY)
3748		if (nodes[node])
3749			x += sprintf(buf + x, " N%d=%lu",
3750					node, nodes[node]);
3751#endif
3752	kfree(nodes);
3753	return x + sprintf(buf + x, "\n");
3754}
3755
3756static int any_slab_objects(struct kmem_cache *s)
3757{
3758	int node;
3759
3760	for_each_online_node(node) {
3761		struct kmem_cache_node *n = get_node(s, node);
3762
3763		if (!n)
3764			continue;
3765
3766		if (atomic_long_read(&n->total_objects))
3767			return 1;
3768	}
3769	return 0;
3770}
3771
3772#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3773#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3774
3775struct slab_attribute {
3776	struct attribute attr;
3777	ssize_t (*show)(struct kmem_cache *s, char *buf);
3778	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3779};
3780
3781#define SLAB_ATTR_RO(_name) \
3782	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3783
3784#define SLAB_ATTR(_name) \
3785	static struct slab_attribute _name##_attr =  \
3786	__ATTR(_name, 0644, _name##_show, _name##_store)
3787
3788static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3789{
3790	return sprintf(buf, "%d\n", s->size);
3791}
3792SLAB_ATTR_RO(slab_size);
3793
3794static ssize_t align_show(struct kmem_cache *s, char *buf)
3795{
3796	return sprintf(buf, "%d\n", s->align);
3797}
3798SLAB_ATTR_RO(align);
3799
3800static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3801{
3802	return sprintf(buf, "%d\n", s->objsize);
3803}
3804SLAB_ATTR_RO(object_size);
3805
3806static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3807{
3808	return sprintf(buf, "%d\n", oo_objects(s->oo));
3809}
3810SLAB_ATTR_RO(objs_per_slab);
3811
3812static ssize_t order_store(struct kmem_cache *s,
3813				const char *buf, size_t length)
3814{
3815	unsigned long order;
3816	int err;
3817
3818	err = strict_strtoul(buf, 10, &order);
3819	if (err)
3820		return err;
3821
3822	if (order > slub_max_order || order < slub_min_order)
3823		return -EINVAL;
3824
3825	calculate_sizes(s, order);
3826	return length;
3827}
3828
3829static ssize_t order_show(struct kmem_cache *s, char *buf)
3830{
3831	return sprintf(buf, "%d\n", oo_order(s->oo));
3832}
3833SLAB_ATTR(order);
3834
3835static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3836{
3837	if (s->ctor) {
3838		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3839
3840		return n + sprintf(buf + n, "\n");
3841	}
3842	return 0;
3843}
3844SLAB_ATTR_RO(ctor);
3845
3846static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3847{
3848	return sprintf(buf, "%d\n", s->refcount - 1);
3849}
3850SLAB_ATTR_RO(aliases);
3851
3852static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3853{
3854	return show_slab_objects(s, buf, SO_ALL);
3855}
3856SLAB_ATTR_RO(slabs);
3857
3858static ssize_t partial_show(struct kmem_cache *s, char *buf)
3859{
3860	return show_slab_objects(s, buf, SO_PARTIAL);
3861}
3862SLAB_ATTR_RO(partial);
3863
3864static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3865{
3866	return show_slab_objects(s, buf, SO_CPU);
3867}
3868SLAB_ATTR_RO(cpu_slabs);
3869
3870static ssize_t objects_show(struct kmem_cache *s, char *buf)
3871{
3872	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3873}
3874SLAB_ATTR_RO(objects);
3875
3876static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3877{
3878	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3879}
3880SLAB_ATTR_RO(objects_partial);
3881
3882static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3883{
3884	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3885}
3886SLAB_ATTR_RO(total_objects);
3887
3888static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3889{
3890	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3891}
3892
3893static ssize_t sanity_checks_store(struct kmem_cache *s,
3894				const char *buf, size_t length)
3895{
3896	s->flags &= ~SLAB_DEBUG_FREE;
3897	if (buf[0] == '1')
3898		s->flags |= SLAB_DEBUG_FREE;
3899	return length;
3900}
3901SLAB_ATTR(sanity_checks);
3902
3903static ssize_t trace_show(struct kmem_cache *s, char *buf)
3904{
3905	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3906}
3907
3908static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3909							size_t length)
3910{
3911	s->flags &= ~SLAB_TRACE;
3912	if (buf[0] == '1')
3913		s->flags |= SLAB_TRACE;
3914	return length;
3915}
3916SLAB_ATTR(trace);
3917
3918static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3919{
3920	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3921}
3922
3923static ssize_t reclaim_account_store(struct kmem_cache *s,
3924				const char *buf, size_t length)
3925{
3926	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3927	if (buf[0] == '1')
3928		s->flags |= SLAB_RECLAIM_ACCOUNT;
3929	return length;
3930}
3931SLAB_ATTR(reclaim_account);
3932
3933static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3934{
3935	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3936}
3937SLAB_ATTR_RO(hwcache_align);
3938
3939#ifdef CONFIG_ZONE_DMA
3940static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3941{
3942	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3943}
3944SLAB_ATTR_RO(cache_dma);
3945#endif
3946
3947static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3948{
3949	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3950}
3951SLAB_ATTR_RO(destroy_by_rcu);
3952
3953static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3954{
3955	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3956}
3957
3958static ssize_t red_zone_store(struct kmem_cache *s,
3959				const char *buf, size_t length)
3960{
3961	if (any_slab_objects(s))
3962		return -EBUSY;
3963
3964	s->flags &= ~SLAB_RED_ZONE;
3965	if (buf[0] == '1')
3966		s->flags |= SLAB_RED_ZONE;
3967	calculate_sizes(s, -1);
3968	return length;
3969}
3970SLAB_ATTR(red_zone);
3971
3972static ssize_t poison_show(struct kmem_cache *s, char *buf)
3973{
3974	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3975}
3976
3977static ssize_t poison_store(struct kmem_cache *s,
3978				const char *buf, size_t length)
3979{
3980	if (any_slab_objects(s))
3981		return -EBUSY;
3982
3983	s->flags &= ~SLAB_POISON;
3984	if (buf[0] == '1')
3985		s->flags |= SLAB_POISON;
3986	calculate_sizes(s, -1);
3987	return length;
3988}
3989SLAB_ATTR(poison);
3990
3991static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3992{
3993	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3994}
3995
3996static ssize_t store_user_store(struct kmem_cache *s,
3997				const char *buf, size_t length)
3998{
3999	if (any_slab_objects(s))
4000		return -EBUSY;
4001
4002	s->flags &= ~SLAB_STORE_USER;
4003	if (buf[0] == '1')
4004		s->flags |= SLAB_STORE_USER;
4005	calculate_sizes(s, -1);
4006	return length;
4007}
4008SLAB_ATTR(store_user);
4009
4010static ssize_t validate_show(struct kmem_cache *s, char *buf)
4011{
4012	return 0;
4013}
4014
4015static ssize_t validate_store(struct kmem_cache *s,
4016			const char *buf, size_t length)
4017{
4018	int ret = -EINVAL;
4019
4020	if (buf[0] == '1') {
4021		ret = validate_slab_cache(s);
4022		if (ret >= 0)
4023			ret = length;
4024	}
4025	return ret;
4026}
4027SLAB_ATTR(validate);
4028
4029static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4030{
4031	return 0;
4032}
4033
4034static ssize_t shrink_store(struct kmem_cache *s,
4035			const char *buf, size_t length)
4036{
4037	if (buf[0] == '1') {
4038		int rc = kmem_cache_shrink(s);
4039
4040		if (rc)
4041			return rc;
4042	} else
4043		return -EINVAL;
4044	return length;
4045}
4046SLAB_ATTR(shrink);
4047
4048static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4049{
4050	if (!(s->flags & SLAB_STORE_USER))
4051		return -ENOSYS;
4052	return list_locations(s, buf, TRACK_ALLOC);
4053}
4054SLAB_ATTR_RO(alloc_calls);
4055
4056static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4057{
4058	if (!(s->flags & SLAB_STORE_USER))
4059		return -ENOSYS;
4060	return list_locations(s, buf, TRACK_FREE);
4061}
4062SLAB_ATTR_RO(free_calls);
4063
4064#ifdef CONFIG_NUMA
4065static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4066{
4067	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4068}
4069
4070static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4071				const char *buf, size_t length)
4072{
4073	unsigned long ratio;
4074	int err;
4075
4076	err = strict_strtoul(buf, 10, &ratio);
4077	if (err)
4078		return err;
4079
4080	if (ratio < 100)
4081		s->remote_node_defrag_ratio = ratio * 10;
4082
4083	return length;
4084}
4085SLAB_ATTR(remote_node_defrag_ratio);
4086#endif
4087
4088#ifdef CONFIG_SLUB_STATS
4089static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4090{
4091	unsigned long sum  = 0;
4092	int cpu;
4093	int len;
4094	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4095
4096	if (!data)
4097		return -ENOMEM;
4098
4099	for_each_online_cpu(cpu) {
4100		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4101
4102		data[cpu] = x;
4103		sum += x;
4104	}
4105
4106	len = sprintf(buf, "%lu", sum);
4107
4108#ifdef CONFIG_SMP
4109	for_each_online_cpu(cpu) {
4110		if (data[cpu] && len < PAGE_SIZE - 20)
4111			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4112	}
4113#endif
4114	kfree(data);
4115	return len + sprintf(buf + len, "\n");
4116}
4117
4118#define STAT_ATTR(si, text) 					\
4119static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4120{								\
4121	return show_stat(s, buf, si);				\
4122}								\
4123SLAB_ATTR_RO(text);						\
4124
4125STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4126STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4127STAT_ATTR(FREE_FASTPATH, free_fastpath);
4128STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4129STAT_ATTR(FREE_FROZEN, free_frozen);
4130STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4131STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4132STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4133STAT_ATTR(ALLOC_SLAB, alloc_slab);
4134STAT_ATTR(ALLOC_REFILL, alloc_refill);
4135STAT_ATTR(FREE_SLAB, free_slab);
4136STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4137STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4138STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4139STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4140STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4141STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4142STAT_ATTR(ORDER_FALLBACK, order_fallback);
4143#endif
4144
4145static struct attribute *slab_attrs[] = {
4146	&slab_size_attr.attr,
4147	&object_size_attr.attr,
4148	&objs_per_slab_attr.attr,
4149	&order_attr.attr,
4150	&objects_attr.attr,
4151	&objects_partial_attr.attr,
4152	&total_objects_attr.attr,
4153	&slabs_attr.attr,
4154	&partial_attr.attr,
4155	&cpu_slabs_attr.attr,
4156	&ctor_attr.attr,
4157	&aliases_attr.attr,
4158	&align_attr.attr,
4159	&sanity_checks_attr.attr,
4160	&trace_attr.attr,
4161	&hwcache_align_attr.attr,
4162	&reclaim_account_attr.attr,
4163	&destroy_by_rcu_attr.attr,
4164	&red_zone_attr.attr,
4165	&poison_attr.attr,
4166	&store_user_attr.attr,
4167	&validate_attr.attr,
4168	&shrink_attr.attr,
4169	&alloc_calls_attr.attr,
4170	&free_calls_attr.attr,
4171#ifdef CONFIG_ZONE_DMA
4172	&cache_dma_attr.attr,
4173#endif
4174#ifdef CONFIG_NUMA
4175	&remote_node_defrag_ratio_attr.attr,
4176#endif
4177#ifdef CONFIG_SLUB_STATS
4178	&alloc_fastpath_attr.attr,
4179	&alloc_slowpath_attr.attr,
4180	&free_fastpath_attr.attr,
4181	&free_slowpath_attr.attr,
4182	&free_frozen_attr.attr,
4183	&free_add_partial_attr.attr,
4184	&free_remove_partial_attr.attr,
4185	&alloc_from_partial_attr.attr,
4186	&alloc_slab_attr.attr,
4187	&alloc_refill_attr.attr,
4188	&free_slab_attr.attr,
4189	&cpuslab_flush_attr.attr,
4190	&deactivate_full_attr.attr,
4191	&deactivate_empty_attr.attr,
4192	&deactivate_to_head_attr.attr,
4193	&deactivate_to_tail_attr.attr,
4194	&deactivate_remote_frees_attr.attr,
4195	&order_fallback_attr.attr,
4196#endif
4197	NULL
4198};
4199
4200static struct attribute_group slab_attr_group = {
4201	.attrs = slab_attrs,
4202};
4203
4204static ssize_t slab_attr_show(struct kobject *kobj,
4205				struct attribute *attr,
4206				char *buf)
4207{
4208	struct slab_attribute *attribute;
4209	struct kmem_cache *s;
4210	int err;
4211
4212	attribute = to_slab_attr(attr);
4213	s = to_slab(kobj);
4214
4215	if (!attribute->show)
4216		return -EIO;
4217
4218	err = attribute->show(s, buf);
4219
4220	return err;
4221}
4222
4223static ssize_t slab_attr_store(struct kobject *kobj,
4224				struct attribute *attr,
4225				const char *buf, size_t len)
4226{
4227	struct slab_attribute *attribute;
4228	struct kmem_cache *s;
4229	int err;
4230
4231	attribute = to_slab_attr(attr);
4232	s = to_slab(kobj);
4233
4234	if (!attribute->store)
4235		return -EIO;
4236
4237	err = attribute->store(s, buf, len);
4238
4239	return err;
4240}
4241
4242static void kmem_cache_release(struct kobject *kobj)
4243{
4244	struct kmem_cache *s = to_slab(kobj);
4245
4246	kfree(s);
4247}
4248
4249static struct sysfs_ops slab_sysfs_ops = {
4250	.show = slab_attr_show,
4251	.store = slab_attr_store,
4252};
4253
4254static struct kobj_type slab_ktype = {
4255	.sysfs_ops = &slab_sysfs_ops,
4256	.release = kmem_cache_release
4257};
4258
4259static int uevent_filter(struct kset *kset, struct kobject *kobj)
4260{
4261	struct kobj_type *ktype = get_ktype(kobj);
4262
4263	if (ktype == &slab_ktype)
4264		return 1;
4265	return 0;
4266}
4267
4268static struct kset_uevent_ops slab_uevent_ops = {
4269	.filter = uevent_filter,
4270};
4271
4272static struct kset *slab_kset;
4273
4274#define ID_STR_LENGTH 64
4275
4276/* Create a unique string id for a slab cache:
4277 *
4278 * Format	:[flags-]size
4279 */
4280static char *create_unique_id(struct kmem_cache *s)
4281{
4282	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4283	char *p = name;
4284
4285	BUG_ON(!name);
4286
4287	*p++ = ':';
4288	/*
4289	 * First flags affecting slabcache operations. We will only
4290	 * get here for aliasable slabs so we do not need to support
4291	 * too many flags. The flags here must cover all flags that
4292	 * are matched during merging to guarantee that the id is
4293	 * unique.
4294	 */
4295	if (s->flags & SLAB_CACHE_DMA)
4296		*p++ = 'd';
4297	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4298		*p++ = 'a';
4299	if (s->flags & SLAB_DEBUG_FREE)
4300		*p++ = 'F';
4301	if (p != name + 1)
4302		*p++ = '-';
4303	p += sprintf(p, "%07d", s->size);
4304	BUG_ON(p > name + ID_STR_LENGTH - 1);
4305	return name;
4306}
4307
4308static int sysfs_slab_add(struct kmem_cache *s)
4309{
4310	int err;
4311	const char *name;
4312	int unmergeable;
4313
4314	if (slab_state < SYSFS)
4315		/* Defer until later */
4316		return 0;
4317
4318	unmergeable = slab_unmergeable(s);
4319	if (unmergeable) {
4320		/*
4321		 * Slabcache can never be merged so we can use the name proper.
4322		 * This is typically the case for debug situations. In that
4323		 * case we can catch duplicate names easily.
4324		 */
4325		sysfs_remove_link(&slab_kset->kobj, s->name);
4326		name = s->name;
4327	} else {
4328		/*
4329		 * Create a unique name for the slab as a target
4330		 * for the symlinks.
4331		 */
4332		name = create_unique_id(s);
4333	}
4334
4335	s->kobj.kset = slab_kset;
4336	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4337	if (err) {
4338		kobject_put(&s->kobj);
4339		return err;
4340	}
4341
4342	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4343	if (err)
4344		return err;
4345	kobject_uevent(&s->kobj, KOBJ_ADD);
4346	if (!unmergeable) {
4347		/* Setup first alias */
4348		sysfs_slab_alias(s, s->name);
4349		kfree(name);
4350	}
4351	return 0;
4352}
4353
4354static void sysfs_slab_remove(struct kmem_cache *s)
4355{
4356	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4357	kobject_del(&s->kobj);
4358	kobject_put(&s->kobj);
4359}
4360
4361/*
4362 * Need to buffer aliases during bootup until sysfs becomes
4363 * available lest we loose that information.
4364 */
4365struct saved_alias {
4366	struct kmem_cache *s;
4367	const char *name;
4368	struct saved_alias *next;
4369};
4370
4371static struct saved_alias *alias_list;
4372
4373static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4374{
4375	struct saved_alias *al;
4376
4377	if (slab_state == SYSFS) {
4378		/*
4379		 * If we have a leftover link then remove it.
4380		 */
4381		sysfs_remove_link(&slab_kset->kobj, name);
4382		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4383	}
4384
4385	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4386	if (!al)
4387		return -ENOMEM;
4388
4389	al->s = s;
4390	al->name = name;
4391	al->next = alias_list;
4392	alias_list = al;
4393	return 0;
4394}
4395
4396static int __init slab_sysfs_init(void)
4397{
4398	struct kmem_cache *s;
4399	int err;
4400
4401	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4402	if (!slab_kset) {
4403		printk(KERN_ERR "Cannot register slab subsystem.\n");
4404		return -ENOSYS;
4405	}
4406
4407	slab_state = SYSFS;
4408
4409	list_for_each_entry(s, &slab_caches, list) {
4410		err = sysfs_slab_add(s);
4411		if (err)
4412			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4413						" to sysfs\n", s->name);
4414	}
4415
4416	while (alias_list) {
4417		struct saved_alias *al = alias_list;
4418
4419		alias_list = alias_list->next;
4420		err = sysfs_slab_alias(al->s, al->name);
4421		if (err)
4422			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4423					" %s to sysfs\n", s->name);
4424		kfree(al);
4425	}
4426
4427	resiliency_test();
4428	return 0;
4429}
4430
4431__initcall(slab_sysfs_init);
4432#endif
4433
4434/*
4435 * The /proc/slabinfo ABI
4436 */
4437#ifdef CONFIG_SLABINFO
4438
4439ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4440		       size_t count, loff_t *ppos)
4441{
4442	return -EINVAL;
4443}
4444
4445
4446static void print_slabinfo_header(struct seq_file *m)
4447{
4448	seq_puts(m, "slabinfo - version: 2.1\n");
4449	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4450		 "<objperslab> <pagesperslab>");
4451	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4452	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4453	seq_putc(m, '\n');
4454}
4455
4456static void *s_start(struct seq_file *m, loff_t *pos)
4457{
4458	loff_t n = *pos;
4459
4460	down_read(&slub_lock);
4461	if (!n)
4462		print_slabinfo_header(m);
4463
4464	return seq_list_start(&slab_caches, *pos);
4465}
4466
4467static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4468{
4469	return seq_list_next(p, &slab_caches, pos);
4470}
4471
4472static void s_stop(struct seq_file *m, void *p)
4473{
4474	up_read(&slub_lock);
4475}
4476
4477static int s_show(struct seq_file *m, void *p)
4478{
4479	unsigned long nr_partials = 0;
4480	unsigned long nr_slabs = 0;
4481	unsigned long nr_inuse = 0;
4482	unsigned long nr_objs = 0;
4483	unsigned long nr_free = 0;
4484	struct kmem_cache *s;
4485	int node;
4486
4487	s = list_entry(p, struct kmem_cache, list);
4488
4489	for_each_online_node(node) {
4490		struct kmem_cache_node *n = get_node(s, node);
4491
4492		if (!n)
4493			continue;
4494
4495		nr_partials += n->nr_partial;
4496		nr_slabs += atomic_long_read(&n->nr_slabs);
4497		nr_objs += atomic_long_read(&n->total_objects);
4498		nr_free += count_partial(n, count_free);
4499	}
4500
4501	nr_inuse = nr_objs - nr_free;
4502
4503	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4504		   nr_objs, s->size, oo_objects(s->oo),
4505		   (1 << oo_order(s->oo)));
4506	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4507	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4508		   0UL);
4509	seq_putc(m, '\n');
4510	return 0;
4511}
4512
4513const struct seq_operations slabinfo_op = {
4514	.start = s_start,
4515	.next = s_next,
4516	.stop = s_stop,
4517	.show = s_show,
4518};
4519
4520#endif /* CONFIG_SLABINFO */
4521