slub.c revision 773ff60e841461cb1f9374a713ffcda029b8c317
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/proc_fs.h>
18#include <linux/seq_file.h>
19#include <linux/cpu.h>
20#include <linux/cpuset.h>
21#include <linux/mempolicy.h>
22#include <linux/ctype.h>
23#include <linux/debugobjects.h>
24#include <linux/kallsyms.h>
25#include <linux/memory.h>
26#include <linux/math64.h>
27#include <linux/fault-inject.h>
28
29/*
30 * Lock order:
31 *   1. slab_lock(page)
32 *   2. slab->list_lock
33 *
34 *   The slab_lock protects operations on the object of a particular
35 *   slab and its metadata in the page struct. If the slab lock
36 *   has been taken then no allocations nor frees can be performed
37 *   on the objects in the slab nor can the slab be added or removed
38 *   from the partial or full lists since this would mean modifying
39 *   the page_struct of the slab.
40 *
41 *   The list_lock protects the partial and full list on each node and
42 *   the partial slab counter. If taken then no new slabs may be added or
43 *   removed from the lists nor make the number of partial slabs be modified.
44 *   (Note that the total number of slabs is an atomic value that may be
45 *   modified without taking the list lock).
46 *
47 *   The list_lock is a centralized lock and thus we avoid taking it as
48 *   much as possible. As long as SLUB does not have to handle partial
49 *   slabs, operations can continue without any centralized lock. F.e.
50 *   allocating a long series of objects that fill up slabs does not require
51 *   the list lock.
52 *
53 *   The lock order is sometimes inverted when we are trying to get a slab
54 *   off a list. We take the list_lock and then look for a page on the list
55 *   to use. While we do that objects in the slabs may be freed. We can
56 *   only operate on the slab if we have also taken the slab_lock. So we use
57 *   a slab_trylock() on the slab. If trylock was successful then no frees
58 *   can occur anymore and we can use the slab for allocations etc. If the
59 *   slab_trylock() does not succeed then frees are in progress in the slab and
60 *   we must stay away from it for a while since we may cause a bouncing
61 *   cacheline if we try to acquire the lock. So go onto the next slab.
62 *   If all pages are busy then we may allocate a new slab instead of reusing
63 *   a partial slab. A new slab has noone operating on it and thus there is
64 *   no danger of cacheline contention.
65 *
66 *   Interrupts are disabled during allocation and deallocation in order to
67 *   make the slab allocator safe to use in the context of an irq. In addition
68 *   interrupts are disabled to ensure that the processor does not change
69 *   while handling per_cpu slabs, due to kernel preemption.
70 *
71 * SLUB assigns one slab for allocation to each processor.
72 * Allocations only occur from these slabs called cpu slabs.
73 *
74 * Slabs with free elements are kept on a partial list and during regular
75 * operations no list for full slabs is used. If an object in a full slab is
76 * freed then the slab will show up again on the partial lists.
77 * We track full slabs for debugging purposes though because otherwise we
78 * cannot scan all objects.
79 *
80 * Slabs are freed when they become empty. Teardown and setup is
81 * minimal so we rely on the page allocators per cpu caches for
82 * fast frees and allocs.
83 *
84 * Overloading of page flags that are otherwise used for LRU management.
85 *
86 * PageActive 		The slab is frozen and exempt from list processing.
87 * 			This means that the slab is dedicated to a purpose
88 * 			such as satisfying allocations for a specific
89 * 			processor. Objects may be freed in the slab while
90 * 			it is frozen but slab_free will then skip the usual
91 * 			list operations. It is up to the processor holding
92 * 			the slab to integrate the slab into the slab lists
93 * 			when the slab is no longer needed.
94 *
95 * 			One use of this flag is to mark slabs that are
96 * 			used for allocations. Then such a slab becomes a cpu
97 * 			slab. The cpu slab may be equipped with an additional
98 * 			freelist that allows lockless access to
99 * 			free objects in addition to the regular freelist
100 * 			that requires the slab lock.
101 *
102 * PageError		Slab requires special handling due to debug
103 * 			options set. This moves	slab handling out of
104 * 			the fast path and disables lockless freelists.
105 */
106
107#ifdef CONFIG_SLUB_DEBUG
108#define SLABDEBUG 1
109#else
110#define SLABDEBUG 0
111#endif
112
113/*
114 * Issues still to be resolved:
115 *
116 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
117 *
118 * - Variable sizing of the per node arrays
119 */
120
121/* Enable to test recovery from slab corruption on boot */
122#undef SLUB_RESILIENCY_TEST
123
124/*
125 * Mininum number of partial slabs. These will be left on the partial
126 * lists even if they are empty. kmem_cache_shrink may reclaim them.
127 */
128#define MIN_PARTIAL 5
129
130/*
131 * Maximum number of desirable partial slabs.
132 * The existence of more partial slabs makes kmem_cache_shrink
133 * sort the partial list by the number of objects in the.
134 */
135#define MAX_PARTIAL 10
136
137#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
138				SLAB_POISON | SLAB_STORE_USER)
139
140/*
141 * Set of flags that will prevent slab merging
142 */
143#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
144		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
145
146#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
147		SLAB_CACHE_DMA)
148
149#ifndef ARCH_KMALLOC_MINALIGN
150#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
151#endif
152
153#ifndef ARCH_SLAB_MINALIGN
154#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
155#endif
156
157/* Internal SLUB flags */
158#define __OBJECT_POISON		0x80000000 /* Poison object */
159#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
160
161static int kmem_size = sizeof(struct kmem_cache);
162
163#ifdef CONFIG_SMP
164static struct notifier_block slab_notifier;
165#endif
166
167static enum {
168	DOWN,		/* No slab functionality available */
169	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
170	UP,		/* Everything works but does not show up in sysfs */
171	SYSFS		/* Sysfs up */
172} slab_state = DOWN;
173
174/* A list of all slab caches on the system */
175static DECLARE_RWSEM(slub_lock);
176static LIST_HEAD(slab_caches);
177
178/*
179 * Tracking user of a slab.
180 */
181struct track {
182	void *addr;		/* Called from address */
183	int cpu;		/* Was running on cpu */
184	int pid;		/* Pid context */
185	unsigned long when;	/* When did the operation occur */
186};
187
188enum track_item { TRACK_ALLOC, TRACK_FREE };
189
190#ifdef CONFIG_SLUB_DEBUG
191static int sysfs_slab_add(struct kmem_cache *);
192static int sysfs_slab_alias(struct kmem_cache *, const char *);
193static void sysfs_slab_remove(struct kmem_cache *);
194
195#else
196static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
197static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
198							{ return 0; }
199static inline void sysfs_slab_remove(struct kmem_cache *s)
200{
201	kfree(s);
202}
203
204#endif
205
206static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
207{
208#ifdef CONFIG_SLUB_STATS
209	c->stat[si]++;
210#endif
211}
212
213/********************************************************************
214 * 			Core slab cache functions
215 *******************************************************************/
216
217int slab_is_available(void)
218{
219	return slab_state >= UP;
220}
221
222static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
223{
224#ifdef CONFIG_NUMA
225	return s->node[node];
226#else
227	return &s->local_node;
228#endif
229}
230
231static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
232{
233#ifdef CONFIG_SMP
234	return s->cpu_slab[cpu];
235#else
236	return &s->cpu_slab;
237#endif
238}
239
240/* Verify that a pointer has an address that is valid within a slab page */
241static inline int check_valid_pointer(struct kmem_cache *s,
242				struct page *page, const void *object)
243{
244	void *base;
245
246	if (!object)
247		return 1;
248
249	base = page_address(page);
250	if (object < base || object >= base + page->objects * s->size ||
251		(object - base) % s->size) {
252		return 0;
253	}
254
255	return 1;
256}
257
258/*
259 * Slow version of get and set free pointer.
260 *
261 * This version requires touching the cache lines of kmem_cache which
262 * we avoid to do in the fast alloc free paths. There we obtain the offset
263 * from the page struct.
264 */
265static inline void *get_freepointer(struct kmem_cache *s, void *object)
266{
267	return *(void **)(object + s->offset);
268}
269
270static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
271{
272	*(void **)(object + s->offset) = fp;
273}
274
275/* Loop over all objects in a slab */
276#define for_each_object(__p, __s, __addr, __objects) \
277	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
278			__p += (__s)->size)
279
280/* Scan freelist */
281#define for_each_free_object(__p, __s, __free) \
282	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
283
284/* Determine object index from a given position */
285static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
286{
287	return (p - addr) / s->size;
288}
289
290static inline struct kmem_cache_order_objects oo_make(int order,
291						unsigned long size)
292{
293	struct kmem_cache_order_objects x = {
294		(order << 16) + (PAGE_SIZE << order) / size
295	};
296
297	return x;
298}
299
300static inline int oo_order(struct kmem_cache_order_objects x)
301{
302	return x.x >> 16;
303}
304
305static inline int oo_objects(struct kmem_cache_order_objects x)
306{
307	return x.x & ((1 << 16) - 1);
308}
309
310#ifdef CONFIG_SLUB_DEBUG
311/*
312 * Debug settings:
313 */
314#ifdef CONFIG_SLUB_DEBUG_ON
315static int slub_debug = DEBUG_DEFAULT_FLAGS;
316#else
317static int slub_debug;
318#endif
319
320static char *slub_debug_slabs;
321
322/*
323 * Object debugging
324 */
325static void print_section(char *text, u8 *addr, unsigned int length)
326{
327	int i, offset;
328	int newline = 1;
329	char ascii[17];
330
331	ascii[16] = 0;
332
333	for (i = 0; i < length; i++) {
334		if (newline) {
335			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
336			newline = 0;
337		}
338		printk(KERN_CONT " %02x", addr[i]);
339		offset = i % 16;
340		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
341		if (offset == 15) {
342			printk(KERN_CONT " %s\n", ascii);
343			newline = 1;
344		}
345	}
346	if (!newline) {
347		i %= 16;
348		while (i < 16) {
349			printk(KERN_CONT "   ");
350			ascii[i] = ' ';
351			i++;
352		}
353		printk(KERN_CONT " %s\n", ascii);
354	}
355}
356
357static struct track *get_track(struct kmem_cache *s, void *object,
358	enum track_item alloc)
359{
360	struct track *p;
361
362	if (s->offset)
363		p = object + s->offset + sizeof(void *);
364	else
365		p = object + s->inuse;
366
367	return p + alloc;
368}
369
370static void set_track(struct kmem_cache *s, void *object,
371				enum track_item alloc, void *addr)
372{
373	struct track *p;
374
375	if (s->offset)
376		p = object + s->offset + sizeof(void *);
377	else
378		p = object + s->inuse;
379
380	p += alloc;
381	if (addr) {
382		p->addr = addr;
383		p->cpu = smp_processor_id();
384		p->pid = current->pid;
385		p->when = jiffies;
386	} else
387		memset(p, 0, sizeof(struct track));
388}
389
390static void init_tracking(struct kmem_cache *s, void *object)
391{
392	if (!(s->flags & SLAB_STORE_USER))
393		return;
394
395	set_track(s, object, TRACK_FREE, NULL);
396	set_track(s, object, TRACK_ALLOC, NULL);
397}
398
399static void print_track(const char *s, struct track *t)
400{
401	if (!t->addr)
402		return;
403
404	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
405		s, t->addr, jiffies - t->when, t->cpu, t->pid);
406}
407
408static void print_tracking(struct kmem_cache *s, void *object)
409{
410	if (!(s->flags & SLAB_STORE_USER))
411		return;
412
413	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
414	print_track("Freed", get_track(s, object, TRACK_FREE));
415}
416
417static void print_page_info(struct page *page)
418{
419	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
420		page, page->objects, page->inuse, page->freelist, page->flags);
421
422}
423
424static void slab_bug(struct kmem_cache *s, char *fmt, ...)
425{
426	va_list args;
427	char buf[100];
428
429	va_start(args, fmt);
430	vsnprintf(buf, sizeof(buf), fmt, args);
431	va_end(args);
432	printk(KERN_ERR "========================================"
433			"=====================================\n");
434	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
435	printk(KERN_ERR "----------------------------------------"
436			"-------------------------------------\n\n");
437}
438
439static void slab_fix(struct kmem_cache *s, char *fmt, ...)
440{
441	va_list args;
442	char buf[100];
443
444	va_start(args, fmt);
445	vsnprintf(buf, sizeof(buf), fmt, args);
446	va_end(args);
447	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
448}
449
450static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
451{
452	unsigned int off;	/* Offset of last byte */
453	u8 *addr = page_address(page);
454
455	print_tracking(s, p);
456
457	print_page_info(page);
458
459	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
460			p, p - addr, get_freepointer(s, p));
461
462	if (p > addr + 16)
463		print_section("Bytes b4", p - 16, 16);
464
465	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
466
467	if (s->flags & SLAB_RED_ZONE)
468		print_section("Redzone", p + s->objsize,
469			s->inuse - s->objsize);
470
471	if (s->offset)
472		off = s->offset + sizeof(void *);
473	else
474		off = s->inuse;
475
476	if (s->flags & SLAB_STORE_USER)
477		off += 2 * sizeof(struct track);
478
479	if (off != s->size)
480		/* Beginning of the filler is the free pointer */
481		print_section("Padding", p + off, s->size - off);
482
483	dump_stack();
484}
485
486static void object_err(struct kmem_cache *s, struct page *page,
487			u8 *object, char *reason)
488{
489	slab_bug(s, "%s", reason);
490	print_trailer(s, page, object);
491}
492
493static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
494{
495	va_list args;
496	char buf[100];
497
498	va_start(args, fmt);
499	vsnprintf(buf, sizeof(buf), fmt, args);
500	va_end(args);
501	slab_bug(s, "%s", buf);
502	print_page_info(page);
503	dump_stack();
504}
505
506static void init_object(struct kmem_cache *s, void *object, int active)
507{
508	u8 *p = object;
509
510	if (s->flags & __OBJECT_POISON) {
511		memset(p, POISON_FREE, s->objsize - 1);
512		p[s->objsize - 1] = POISON_END;
513	}
514
515	if (s->flags & SLAB_RED_ZONE)
516		memset(p + s->objsize,
517			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
518			s->inuse - s->objsize);
519}
520
521static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
522{
523	while (bytes) {
524		if (*start != (u8)value)
525			return start;
526		start++;
527		bytes--;
528	}
529	return NULL;
530}
531
532static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
533						void *from, void *to)
534{
535	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
536	memset(from, data, to - from);
537}
538
539static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
540			u8 *object, char *what,
541			u8 *start, unsigned int value, unsigned int bytes)
542{
543	u8 *fault;
544	u8 *end;
545
546	fault = check_bytes(start, value, bytes);
547	if (!fault)
548		return 1;
549
550	end = start + bytes;
551	while (end > fault && end[-1] == value)
552		end--;
553
554	slab_bug(s, "%s overwritten", what);
555	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
556					fault, end - 1, fault[0], value);
557	print_trailer(s, page, object);
558
559	restore_bytes(s, what, value, fault, end);
560	return 0;
561}
562
563/*
564 * Object layout:
565 *
566 * object address
567 * 	Bytes of the object to be managed.
568 * 	If the freepointer may overlay the object then the free
569 * 	pointer is the first word of the object.
570 *
571 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
572 * 	0xa5 (POISON_END)
573 *
574 * object + s->objsize
575 * 	Padding to reach word boundary. This is also used for Redzoning.
576 * 	Padding is extended by another word if Redzoning is enabled and
577 * 	objsize == inuse.
578 *
579 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
580 * 	0xcc (RED_ACTIVE) for objects in use.
581 *
582 * object + s->inuse
583 * 	Meta data starts here.
584 *
585 * 	A. Free pointer (if we cannot overwrite object on free)
586 * 	B. Tracking data for SLAB_STORE_USER
587 * 	C. Padding to reach required alignment boundary or at mininum
588 * 		one word if debugging is on to be able to detect writes
589 * 		before the word boundary.
590 *
591 *	Padding is done using 0x5a (POISON_INUSE)
592 *
593 * object + s->size
594 * 	Nothing is used beyond s->size.
595 *
596 * If slabcaches are merged then the objsize and inuse boundaries are mostly
597 * ignored. And therefore no slab options that rely on these boundaries
598 * may be used with merged slabcaches.
599 */
600
601static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
602{
603	unsigned long off = s->inuse;	/* The end of info */
604
605	if (s->offset)
606		/* Freepointer is placed after the object. */
607		off += sizeof(void *);
608
609	if (s->flags & SLAB_STORE_USER)
610		/* We also have user information there */
611		off += 2 * sizeof(struct track);
612
613	if (s->size == off)
614		return 1;
615
616	return check_bytes_and_report(s, page, p, "Object padding",
617				p + off, POISON_INUSE, s->size - off);
618}
619
620/* Check the pad bytes at the end of a slab page */
621static int slab_pad_check(struct kmem_cache *s, struct page *page)
622{
623	u8 *start;
624	u8 *fault;
625	u8 *end;
626	int length;
627	int remainder;
628
629	if (!(s->flags & SLAB_POISON))
630		return 1;
631
632	start = page_address(page);
633	length = (PAGE_SIZE << compound_order(page));
634	end = start + length;
635	remainder = length % s->size;
636	if (!remainder)
637		return 1;
638
639	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
640	if (!fault)
641		return 1;
642	while (end > fault && end[-1] == POISON_INUSE)
643		end--;
644
645	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
646	print_section("Padding", end - remainder, remainder);
647
648	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
649	return 0;
650}
651
652static int check_object(struct kmem_cache *s, struct page *page,
653					void *object, int active)
654{
655	u8 *p = object;
656	u8 *endobject = object + s->objsize;
657
658	if (s->flags & SLAB_RED_ZONE) {
659		unsigned int red =
660			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
661
662		if (!check_bytes_and_report(s, page, object, "Redzone",
663			endobject, red, s->inuse - s->objsize))
664			return 0;
665	} else {
666		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
667			check_bytes_and_report(s, page, p, "Alignment padding",
668				endobject, POISON_INUSE, s->inuse - s->objsize);
669		}
670	}
671
672	if (s->flags & SLAB_POISON) {
673		if (!active && (s->flags & __OBJECT_POISON) &&
674			(!check_bytes_and_report(s, page, p, "Poison", p,
675					POISON_FREE, s->objsize - 1) ||
676			 !check_bytes_and_report(s, page, p, "Poison",
677				p + s->objsize - 1, POISON_END, 1)))
678			return 0;
679		/*
680		 * check_pad_bytes cleans up on its own.
681		 */
682		check_pad_bytes(s, page, p);
683	}
684
685	if (!s->offset && active)
686		/*
687		 * Object and freepointer overlap. Cannot check
688		 * freepointer while object is allocated.
689		 */
690		return 1;
691
692	/* Check free pointer validity */
693	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
694		object_err(s, page, p, "Freepointer corrupt");
695		/*
696		 * No choice but to zap it and thus loose the remainder
697		 * of the free objects in this slab. May cause
698		 * another error because the object count is now wrong.
699		 */
700		set_freepointer(s, p, NULL);
701		return 0;
702	}
703	return 1;
704}
705
706static int check_slab(struct kmem_cache *s, struct page *page)
707{
708	int maxobj;
709
710	VM_BUG_ON(!irqs_disabled());
711
712	if (!PageSlab(page)) {
713		slab_err(s, page, "Not a valid slab page");
714		return 0;
715	}
716
717	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
718	if (page->objects > maxobj) {
719		slab_err(s, page, "objects %u > max %u",
720			s->name, page->objects, maxobj);
721		return 0;
722	}
723	if (page->inuse > page->objects) {
724		slab_err(s, page, "inuse %u > max %u",
725			s->name, page->inuse, page->objects);
726		return 0;
727	}
728	/* Slab_pad_check fixes things up after itself */
729	slab_pad_check(s, page);
730	return 1;
731}
732
733/*
734 * Determine if a certain object on a page is on the freelist. Must hold the
735 * slab lock to guarantee that the chains are in a consistent state.
736 */
737static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
738{
739	int nr = 0;
740	void *fp = page->freelist;
741	void *object = NULL;
742	unsigned long max_objects;
743
744	while (fp && nr <= page->objects) {
745		if (fp == search)
746			return 1;
747		if (!check_valid_pointer(s, page, fp)) {
748			if (object) {
749				object_err(s, page, object,
750					"Freechain corrupt");
751				set_freepointer(s, object, NULL);
752				break;
753			} else {
754				slab_err(s, page, "Freepointer corrupt");
755				page->freelist = NULL;
756				page->inuse = page->objects;
757				slab_fix(s, "Freelist cleared");
758				return 0;
759			}
760			break;
761		}
762		object = fp;
763		fp = get_freepointer(s, object);
764		nr++;
765	}
766
767	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
768	if (max_objects > 65535)
769		max_objects = 65535;
770
771	if (page->objects != max_objects) {
772		slab_err(s, page, "Wrong number of objects. Found %d but "
773			"should be %d", page->objects, max_objects);
774		page->objects = max_objects;
775		slab_fix(s, "Number of objects adjusted.");
776	}
777	if (page->inuse != page->objects - nr) {
778		slab_err(s, page, "Wrong object count. Counter is %d but "
779			"counted were %d", page->inuse, page->objects - nr);
780		page->inuse = page->objects - nr;
781		slab_fix(s, "Object count adjusted.");
782	}
783	return search == NULL;
784}
785
786static void trace(struct kmem_cache *s, struct page *page, void *object,
787								int alloc)
788{
789	if (s->flags & SLAB_TRACE) {
790		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
791			s->name,
792			alloc ? "alloc" : "free",
793			object, page->inuse,
794			page->freelist);
795
796		if (!alloc)
797			print_section("Object", (void *)object, s->objsize);
798
799		dump_stack();
800	}
801}
802
803/*
804 * Tracking of fully allocated slabs for debugging purposes.
805 */
806static void add_full(struct kmem_cache_node *n, struct page *page)
807{
808	spin_lock(&n->list_lock);
809	list_add(&page->lru, &n->full);
810	spin_unlock(&n->list_lock);
811}
812
813static void remove_full(struct kmem_cache *s, struct page *page)
814{
815	struct kmem_cache_node *n;
816
817	if (!(s->flags & SLAB_STORE_USER))
818		return;
819
820	n = get_node(s, page_to_nid(page));
821
822	spin_lock(&n->list_lock);
823	list_del(&page->lru);
824	spin_unlock(&n->list_lock);
825}
826
827/* Tracking of the number of slabs for debugging purposes */
828static inline unsigned long slabs_node(struct kmem_cache *s, int node)
829{
830	struct kmem_cache_node *n = get_node(s, node);
831
832	return atomic_long_read(&n->nr_slabs);
833}
834
835static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
836{
837	struct kmem_cache_node *n = get_node(s, node);
838
839	/*
840	 * May be called early in order to allocate a slab for the
841	 * kmem_cache_node structure. Solve the chicken-egg
842	 * dilemma by deferring the increment of the count during
843	 * bootstrap (see early_kmem_cache_node_alloc).
844	 */
845	if (!NUMA_BUILD || n) {
846		atomic_long_inc(&n->nr_slabs);
847		atomic_long_add(objects, &n->total_objects);
848	}
849}
850static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
851{
852	struct kmem_cache_node *n = get_node(s, node);
853
854	atomic_long_dec(&n->nr_slabs);
855	atomic_long_sub(objects, &n->total_objects);
856}
857
858/* Object debug checks for alloc/free paths */
859static void setup_object_debug(struct kmem_cache *s, struct page *page,
860								void *object)
861{
862	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
863		return;
864
865	init_object(s, object, 0);
866	init_tracking(s, object);
867}
868
869static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
870						void *object, void *addr)
871{
872	if (!check_slab(s, page))
873		goto bad;
874
875	if (!on_freelist(s, page, object)) {
876		object_err(s, page, object, "Object already allocated");
877		goto bad;
878	}
879
880	if (!check_valid_pointer(s, page, object)) {
881		object_err(s, page, object, "Freelist Pointer check fails");
882		goto bad;
883	}
884
885	if (!check_object(s, page, object, 0))
886		goto bad;
887
888	/* Success perform special debug activities for allocs */
889	if (s->flags & SLAB_STORE_USER)
890		set_track(s, object, TRACK_ALLOC, addr);
891	trace(s, page, object, 1);
892	init_object(s, object, 1);
893	return 1;
894
895bad:
896	if (PageSlab(page)) {
897		/*
898		 * If this is a slab page then lets do the best we can
899		 * to avoid issues in the future. Marking all objects
900		 * as used avoids touching the remaining objects.
901		 */
902		slab_fix(s, "Marking all objects used");
903		page->inuse = page->objects;
904		page->freelist = NULL;
905	}
906	return 0;
907}
908
909static int free_debug_processing(struct kmem_cache *s, struct page *page,
910						void *object, void *addr)
911{
912	if (!check_slab(s, page))
913		goto fail;
914
915	if (!check_valid_pointer(s, page, object)) {
916		slab_err(s, page, "Invalid object pointer 0x%p", object);
917		goto fail;
918	}
919
920	if (on_freelist(s, page, object)) {
921		object_err(s, page, object, "Object already free");
922		goto fail;
923	}
924
925	if (!check_object(s, page, object, 1))
926		return 0;
927
928	if (unlikely(s != page->slab)) {
929		if (!PageSlab(page)) {
930			slab_err(s, page, "Attempt to free object(0x%p) "
931				"outside of slab", object);
932		} else if (!page->slab) {
933			printk(KERN_ERR
934				"SLUB <none>: no slab for object 0x%p.\n",
935						object);
936			dump_stack();
937		} else
938			object_err(s, page, object,
939					"page slab pointer corrupt.");
940		goto fail;
941	}
942
943	/* Special debug activities for freeing objects */
944	if (!PageSlubFrozen(page) && !page->freelist)
945		remove_full(s, page);
946	if (s->flags & SLAB_STORE_USER)
947		set_track(s, object, TRACK_FREE, addr);
948	trace(s, page, object, 0);
949	init_object(s, object, 0);
950	return 1;
951
952fail:
953	slab_fix(s, "Object at 0x%p not freed", object);
954	return 0;
955}
956
957static int __init setup_slub_debug(char *str)
958{
959	slub_debug = DEBUG_DEFAULT_FLAGS;
960	if (*str++ != '=' || !*str)
961		/*
962		 * No options specified. Switch on full debugging.
963		 */
964		goto out;
965
966	if (*str == ',')
967		/*
968		 * No options but restriction on slabs. This means full
969		 * debugging for slabs matching a pattern.
970		 */
971		goto check_slabs;
972
973	slub_debug = 0;
974	if (*str == '-')
975		/*
976		 * Switch off all debugging measures.
977		 */
978		goto out;
979
980	/*
981	 * Determine which debug features should be switched on
982	 */
983	for (; *str && *str != ','; str++) {
984		switch (tolower(*str)) {
985		case 'f':
986			slub_debug |= SLAB_DEBUG_FREE;
987			break;
988		case 'z':
989			slub_debug |= SLAB_RED_ZONE;
990			break;
991		case 'p':
992			slub_debug |= SLAB_POISON;
993			break;
994		case 'u':
995			slub_debug |= SLAB_STORE_USER;
996			break;
997		case 't':
998			slub_debug |= SLAB_TRACE;
999			break;
1000		default:
1001			printk(KERN_ERR "slub_debug option '%c' "
1002				"unknown. skipped\n", *str);
1003		}
1004	}
1005
1006check_slabs:
1007	if (*str == ',')
1008		slub_debug_slabs = str + 1;
1009out:
1010	return 1;
1011}
1012
1013__setup("slub_debug", setup_slub_debug);
1014
1015static unsigned long kmem_cache_flags(unsigned long objsize,
1016	unsigned long flags, const char *name,
1017	void (*ctor)(void *))
1018{
1019	/*
1020	 * Enable debugging if selected on the kernel commandline.
1021	 */
1022	if (slub_debug && (!slub_debug_slabs ||
1023	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1024			flags |= slub_debug;
1025
1026	return flags;
1027}
1028#else
1029static inline void setup_object_debug(struct kmem_cache *s,
1030			struct page *page, void *object) {}
1031
1032static inline int alloc_debug_processing(struct kmem_cache *s,
1033	struct page *page, void *object, void *addr) { return 0; }
1034
1035static inline int free_debug_processing(struct kmem_cache *s,
1036	struct page *page, void *object, void *addr) { return 0; }
1037
1038static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1039			{ return 1; }
1040static inline int check_object(struct kmem_cache *s, struct page *page,
1041			void *object, int active) { return 1; }
1042static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1043static inline unsigned long kmem_cache_flags(unsigned long objsize,
1044	unsigned long flags, const char *name,
1045	void (*ctor)(void *))
1046{
1047	return flags;
1048}
1049#define slub_debug 0
1050
1051static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1052							{ return 0; }
1053static inline void inc_slabs_node(struct kmem_cache *s, int node,
1054							int objects) {}
1055static inline void dec_slabs_node(struct kmem_cache *s, int node,
1056							int objects) {}
1057#endif
1058
1059/*
1060 * Slab allocation and freeing
1061 */
1062static inline struct page *alloc_slab_page(gfp_t flags, int node,
1063					struct kmem_cache_order_objects oo)
1064{
1065	int order = oo_order(oo);
1066
1067	if (node == -1)
1068		return alloc_pages(flags, order);
1069	else
1070		return alloc_pages_node(node, flags, order);
1071}
1072
1073static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1074{
1075	struct page *page;
1076	struct kmem_cache_order_objects oo = s->oo;
1077
1078	flags |= s->allocflags;
1079
1080	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1081									oo);
1082	if (unlikely(!page)) {
1083		oo = s->min;
1084		/*
1085		 * Allocation may have failed due to fragmentation.
1086		 * Try a lower order alloc if possible
1087		 */
1088		page = alloc_slab_page(flags, node, oo);
1089		if (!page)
1090			return NULL;
1091
1092		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1093	}
1094	page->objects = oo_objects(oo);
1095	mod_zone_page_state(page_zone(page),
1096		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1097		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1098		1 << oo_order(oo));
1099
1100	return page;
1101}
1102
1103static void setup_object(struct kmem_cache *s, struct page *page,
1104				void *object)
1105{
1106	setup_object_debug(s, page, object);
1107	if (unlikely(s->ctor))
1108		s->ctor(object);
1109}
1110
1111static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1112{
1113	struct page *page;
1114	void *start;
1115	void *last;
1116	void *p;
1117
1118	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1119
1120	page = allocate_slab(s,
1121		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1122	if (!page)
1123		goto out;
1124
1125	inc_slabs_node(s, page_to_nid(page), page->objects);
1126	page->slab = s;
1127	page->flags |= 1 << PG_slab;
1128	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1129			SLAB_STORE_USER | SLAB_TRACE))
1130		__SetPageSlubDebug(page);
1131
1132	start = page_address(page);
1133
1134	if (unlikely(s->flags & SLAB_POISON))
1135		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1136
1137	last = start;
1138	for_each_object(p, s, start, page->objects) {
1139		setup_object(s, page, last);
1140		set_freepointer(s, last, p);
1141		last = p;
1142	}
1143	setup_object(s, page, last);
1144	set_freepointer(s, last, NULL);
1145
1146	page->freelist = start;
1147	page->inuse = 0;
1148out:
1149	return page;
1150}
1151
1152static void __free_slab(struct kmem_cache *s, struct page *page)
1153{
1154	int order = compound_order(page);
1155	int pages = 1 << order;
1156
1157	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1158		void *p;
1159
1160		slab_pad_check(s, page);
1161		for_each_object(p, s, page_address(page),
1162						page->objects)
1163			check_object(s, page, p, 0);
1164		__ClearPageSlubDebug(page);
1165	}
1166
1167	mod_zone_page_state(page_zone(page),
1168		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1169		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1170		-pages);
1171
1172	__ClearPageSlab(page);
1173	reset_page_mapcount(page);
1174	__free_pages(page, order);
1175}
1176
1177static void rcu_free_slab(struct rcu_head *h)
1178{
1179	struct page *page;
1180
1181	page = container_of((struct list_head *)h, struct page, lru);
1182	__free_slab(page->slab, page);
1183}
1184
1185static void free_slab(struct kmem_cache *s, struct page *page)
1186{
1187	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1188		/*
1189		 * RCU free overloads the RCU head over the LRU
1190		 */
1191		struct rcu_head *head = (void *)&page->lru;
1192
1193		call_rcu(head, rcu_free_slab);
1194	} else
1195		__free_slab(s, page);
1196}
1197
1198static void discard_slab(struct kmem_cache *s, struct page *page)
1199{
1200	dec_slabs_node(s, page_to_nid(page), page->objects);
1201	free_slab(s, page);
1202}
1203
1204/*
1205 * Per slab locking using the pagelock
1206 */
1207static __always_inline void slab_lock(struct page *page)
1208{
1209	bit_spin_lock(PG_locked, &page->flags);
1210}
1211
1212static __always_inline void slab_unlock(struct page *page)
1213{
1214	__bit_spin_unlock(PG_locked, &page->flags);
1215}
1216
1217static __always_inline int slab_trylock(struct page *page)
1218{
1219	int rc = 1;
1220
1221	rc = bit_spin_trylock(PG_locked, &page->flags);
1222	return rc;
1223}
1224
1225/*
1226 * Management of partially allocated slabs
1227 */
1228static void add_partial(struct kmem_cache_node *n,
1229				struct page *page, int tail)
1230{
1231	spin_lock(&n->list_lock);
1232	n->nr_partial++;
1233	if (tail)
1234		list_add_tail(&page->lru, &n->partial);
1235	else
1236		list_add(&page->lru, &n->partial);
1237	spin_unlock(&n->list_lock);
1238}
1239
1240static void remove_partial(struct kmem_cache *s, struct page *page)
1241{
1242	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1243
1244	spin_lock(&n->list_lock);
1245	list_del(&page->lru);
1246	n->nr_partial--;
1247	spin_unlock(&n->list_lock);
1248}
1249
1250/*
1251 * Lock slab and remove from the partial list.
1252 *
1253 * Must hold list_lock.
1254 */
1255static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1256							struct page *page)
1257{
1258	if (slab_trylock(page)) {
1259		list_del(&page->lru);
1260		n->nr_partial--;
1261		__SetPageSlubFrozen(page);
1262		return 1;
1263	}
1264	return 0;
1265}
1266
1267/*
1268 * Try to allocate a partial slab from a specific node.
1269 */
1270static struct page *get_partial_node(struct kmem_cache_node *n)
1271{
1272	struct page *page;
1273
1274	/*
1275	 * Racy check. If we mistakenly see no partial slabs then we
1276	 * just allocate an empty slab. If we mistakenly try to get a
1277	 * partial slab and there is none available then get_partials()
1278	 * will return NULL.
1279	 */
1280	if (!n || !n->nr_partial)
1281		return NULL;
1282
1283	spin_lock(&n->list_lock);
1284	list_for_each_entry(page, &n->partial, lru)
1285		if (lock_and_freeze_slab(n, page))
1286			goto out;
1287	page = NULL;
1288out:
1289	spin_unlock(&n->list_lock);
1290	return page;
1291}
1292
1293/*
1294 * Get a page from somewhere. Search in increasing NUMA distances.
1295 */
1296static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1297{
1298#ifdef CONFIG_NUMA
1299	struct zonelist *zonelist;
1300	struct zoneref *z;
1301	struct zone *zone;
1302	enum zone_type high_zoneidx = gfp_zone(flags);
1303	struct page *page;
1304
1305	/*
1306	 * The defrag ratio allows a configuration of the tradeoffs between
1307	 * inter node defragmentation and node local allocations. A lower
1308	 * defrag_ratio increases the tendency to do local allocations
1309	 * instead of attempting to obtain partial slabs from other nodes.
1310	 *
1311	 * If the defrag_ratio is set to 0 then kmalloc() always
1312	 * returns node local objects. If the ratio is higher then kmalloc()
1313	 * may return off node objects because partial slabs are obtained
1314	 * from other nodes and filled up.
1315	 *
1316	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1317	 * defrag_ratio = 1000) then every (well almost) allocation will
1318	 * first attempt to defrag slab caches on other nodes. This means
1319	 * scanning over all nodes to look for partial slabs which may be
1320	 * expensive if we do it every time we are trying to find a slab
1321	 * with available objects.
1322	 */
1323	if (!s->remote_node_defrag_ratio ||
1324			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1325		return NULL;
1326
1327	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1328	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1329		struct kmem_cache_node *n;
1330
1331		n = get_node(s, zone_to_nid(zone));
1332
1333		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1334				n->nr_partial > n->min_partial) {
1335			page = get_partial_node(n);
1336			if (page)
1337				return page;
1338		}
1339	}
1340#endif
1341	return NULL;
1342}
1343
1344/*
1345 * Get a partial page, lock it and return it.
1346 */
1347static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1348{
1349	struct page *page;
1350	int searchnode = (node == -1) ? numa_node_id() : node;
1351
1352	page = get_partial_node(get_node(s, searchnode));
1353	if (page || (flags & __GFP_THISNODE))
1354		return page;
1355
1356	return get_any_partial(s, flags);
1357}
1358
1359/*
1360 * Move a page back to the lists.
1361 *
1362 * Must be called with the slab lock held.
1363 *
1364 * On exit the slab lock will have been dropped.
1365 */
1366static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1367{
1368	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1369	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1370
1371	__ClearPageSlubFrozen(page);
1372	if (page->inuse) {
1373
1374		if (page->freelist) {
1375			add_partial(n, page, tail);
1376			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1377		} else {
1378			stat(c, DEACTIVATE_FULL);
1379			if (SLABDEBUG && PageSlubDebug(page) &&
1380						(s->flags & SLAB_STORE_USER))
1381				add_full(n, page);
1382		}
1383		slab_unlock(page);
1384	} else {
1385		stat(c, DEACTIVATE_EMPTY);
1386		if (n->nr_partial < n->min_partial) {
1387			/*
1388			 * Adding an empty slab to the partial slabs in order
1389			 * to avoid page allocator overhead. This slab needs
1390			 * to come after the other slabs with objects in
1391			 * so that the others get filled first. That way the
1392			 * size of the partial list stays small.
1393			 *
1394			 * kmem_cache_shrink can reclaim any empty slabs from
1395			 * the partial list.
1396			 */
1397			add_partial(n, page, 1);
1398			slab_unlock(page);
1399		} else {
1400			slab_unlock(page);
1401			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1402			discard_slab(s, page);
1403		}
1404	}
1405}
1406
1407/*
1408 * Remove the cpu slab
1409 */
1410static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1411{
1412	struct page *page = c->page;
1413	int tail = 1;
1414
1415	if (page->freelist)
1416		stat(c, DEACTIVATE_REMOTE_FREES);
1417	/*
1418	 * Merge cpu freelist into slab freelist. Typically we get here
1419	 * because both freelists are empty. So this is unlikely
1420	 * to occur.
1421	 */
1422	while (unlikely(c->freelist)) {
1423		void **object;
1424
1425		tail = 0;	/* Hot objects. Put the slab first */
1426
1427		/* Retrieve object from cpu_freelist */
1428		object = c->freelist;
1429		c->freelist = c->freelist[c->offset];
1430
1431		/* And put onto the regular freelist */
1432		object[c->offset] = page->freelist;
1433		page->freelist = object;
1434		page->inuse--;
1435	}
1436	c->page = NULL;
1437	unfreeze_slab(s, page, tail);
1438}
1439
1440static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1441{
1442	stat(c, CPUSLAB_FLUSH);
1443	slab_lock(c->page);
1444	deactivate_slab(s, c);
1445}
1446
1447/*
1448 * Flush cpu slab.
1449 *
1450 * Called from IPI handler with interrupts disabled.
1451 */
1452static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1453{
1454	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1455
1456	if (likely(c && c->page))
1457		flush_slab(s, c);
1458}
1459
1460static void flush_cpu_slab(void *d)
1461{
1462	struct kmem_cache *s = d;
1463
1464	__flush_cpu_slab(s, smp_processor_id());
1465}
1466
1467static void flush_all(struct kmem_cache *s)
1468{
1469	on_each_cpu(flush_cpu_slab, s, 1);
1470}
1471
1472/*
1473 * Check if the objects in a per cpu structure fit numa
1474 * locality expectations.
1475 */
1476static inline int node_match(struct kmem_cache_cpu *c, int node)
1477{
1478#ifdef CONFIG_NUMA
1479	if (node != -1 && c->node != node)
1480		return 0;
1481#endif
1482	return 1;
1483}
1484
1485/*
1486 * Slow path. The lockless freelist is empty or we need to perform
1487 * debugging duties.
1488 *
1489 * Interrupts are disabled.
1490 *
1491 * Processing is still very fast if new objects have been freed to the
1492 * regular freelist. In that case we simply take over the regular freelist
1493 * as the lockless freelist and zap the regular freelist.
1494 *
1495 * If that is not working then we fall back to the partial lists. We take the
1496 * first element of the freelist as the object to allocate now and move the
1497 * rest of the freelist to the lockless freelist.
1498 *
1499 * And if we were unable to get a new slab from the partial slab lists then
1500 * we need to allocate a new slab. This is the slowest path since it involves
1501 * a call to the page allocator and the setup of a new slab.
1502 */
1503static void *__slab_alloc(struct kmem_cache *s,
1504		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1505{
1506	void **object;
1507	struct page *new;
1508
1509	/* We handle __GFP_ZERO in the caller */
1510	gfpflags &= ~__GFP_ZERO;
1511
1512	if (!c->page)
1513		goto new_slab;
1514
1515	slab_lock(c->page);
1516	if (unlikely(!node_match(c, node)))
1517		goto another_slab;
1518
1519	stat(c, ALLOC_REFILL);
1520
1521load_freelist:
1522	object = c->page->freelist;
1523	if (unlikely(!object))
1524		goto another_slab;
1525	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1526		goto debug;
1527
1528	c->freelist = object[c->offset];
1529	c->page->inuse = c->page->objects;
1530	c->page->freelist = NULL;
1531	c->node = page_to_nid(c->page);
1532unlock_out:
1533	slab_unlock(c->page);
1534	stat(c, ALLOC_SLOWPATH);
1535	return object;
1536
1537another_slab:
1538	deactivate_slab(s, c);
1539
1540new_slab:
1541	new = get_partial(s, gfpflags, node);
1542	if (new) {
1543		c->page = new;
1544		stat(c, ALLOC_FROM_PARTIAL);
1545		goto load_freelist;
1546	}
1547
1548	if (gfpflags & __GFP_WAIT)
1549		local_irq_enable();
1550
1551	new = new_slab(s, gfpflags, node);
1552
1553	if (gfpflags & __GFP_WAIT)
1554		local_irq_disable();
1555
1556	if (new) {
1557		c = get_cpu_slab(s, smp_processor_id());
1558		stat(c, ALLOC_SLAB);
1559		if (c->page)
1560			flush_slab(s, c);
1561		slab_lock(new);
1562		__SetPageSlubFrozen(new);
1563		c->page = new;
1564		goto load_freelist;
1565	}
1566	return NULL;
1567debug:
1568	if (!alloc_debug_processing(s, c->page, object, addr))
1569		goto another_slab;
1570
1571	c->page->inuse++;
1572	c->page->freelist = object[c->offset];
1573	c->node = -1;
1574	goto unlock_out;
1575}
1576
1577/*
1578 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1579 * have the fastpath folded into their functions. So no function call
1580 * overhead for requests that can be satisfied on the fastpath.
1581 *
1582 * The fastpath works by first checking if the lockless freelist can be used.
1583 * If not then __slab_alloc is called for slow processing.
1584 *
1585 * Otherwise we can simply pick the next object from the lockless free list.
1586 */
1587static __always_inline void *slab_alloc(struct kmem_cache *s,
1588		gfp_t gfpflags, int node, void *addr)
1589{
1590	void **object;
1591	struct kmem_cache_cpu *c;
1592	unsigned long flags;
1593	unsigned int objsize;
1594
1595	if (should_failslab(s->objsize, gfpflags))
1596		return NULL;
1597
1598	local_irq_save(flags);
1599	c = get_cpu_slab(s, smp_processor_id());
1600	objsize = c->objsize;
1601	if (unlikely(!c->freelist || !node_match(c, node)))
1602
1603		object = __slab_alloc(s, gfpflags, node, addr, c);
1604
1605	else {
1606		object = c->freelist;
1607		c->freelist = object[c->offset];
1608		stat(c, ALLOC_FASTPATH);
1609	}
1610	local_irq_restore(flags);
1611
1612	if (unlikely((gfpflags & __GFP_ZERO) && object))
1613		memset(object, 0, objsize);
1614
1615	return object;
1616}
1617
1618void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1619{
1620	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1621}
1622EXPORT_SYMBOL(kmem_cache_alloc);
1623
1624#ifdef CONFIG_NUMA
1625void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1626{
1627	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1628}
1629EXPORT_SYMBOL(kmem_cache_alloc_node);
1630#endif
1631
1632/*
1633 * Slow patch handling. This may still be called frequently since objects
1634 * have a longer lifetime than the cpu slabs in most processing loads.
1635 *
1636 * So we still attempt to reduce cache line usage. Just take the slab
1637 * lock and free the item. If there is no additional partial page
1638 * handling required then we can return immediately.
1639 */
1640static void __slab_free(struct kmem_cache *s, struct page *page,
1641				void *x, void *addr, unsigned int offset)
1642{
1643	void *prior;
1644	void **object = (void *)x;
1645	struct kmem_cache_cpu *c;
1646
1647	c = get_cpu_slab(s, raw_smp_processor_id());
1648	stat(c, FREE_SLOWPATH);
1649	slab_lock(page);
1650
1651	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1652		goto debug;
1653
1654checks_ok:
1655	prior = object[offset] = page->freelist;
1656	page->freelist = object;
1657	page->inuse--;
1658
1659	if (unlikely(PageSlubFrozen(page))) {
1660		stat(c, FREE_FROZEN);
1661		goto out_unlock;
1662	}
1663
1664	if (unlikely(!page->inuse))
1665		goto slab_empty;
1666
1667	/*
1668	 * Objects left in the slab. If it was not on the partial list before
1669	 * then add it.
1670	 */
1671	if (unlikely(!prior)) {
1672		add_partial(get_node(s, page_to_nid(page)), page, 1);
1673		stat(c, FREE_ADD_PARTIAL);
1674	}
1675
1676out_unlock:
1677	slab_unlock(page);
1678	return;
1679
1680slab_empty:
1681	if (prior) {
1682		/*
1683		 * Slab still on the partial list.
1684		 */
1685		remove_partial(s, page);
1686		stat(c, FREE_REMOVE_PARTIAL);
1687	}
1688	slab_unlock(page);
1689	stat(c, FREE_SLAB);
1690	discard_slab(s, page);
1691	return;
1692
1693debug:
1694	if (!free_debug_processing(s, page, x, addr))
1695		goto out_unlock;
1696	goto checks_ok;
1697}
1698
1699/*
1700 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1701 * can perform fastpath freeing without additional function calls.
1702 *
1703 * The fastpath is only possible if we are freeing to the current cpu slab
1704 * of this processor. This typically the case if we have just allocated
1705 * the item before.
1706 *
1707 * If fastpath is not possible then fall back to __slab_free where we deal
1708 * with all sorts of special processing.
1709 */
1710static __always_inline void slab_free(struct kmem_cache *s,
1711			struct page *page, void *x, void *addr)
1712{
1713	void **object = (void *)x;
1714	struct kmem_cache_cpu *c;
1715	unsigned long flags;
1716
1717	local_irq_save(flags);
1718	c = get_cpu_slab(s, smp_processor_id());
1719	debug_check_no_locks_freed(object, c->objsize);
1720	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1721		debug_check_no_obj_freed(object, s->objsize);
1722	if (likely(page == c->page && c->node >= 0)) {
1723		object[c->offset] = c->freelist;
1724		c->freelist = object;
1725		stat(c, FREE_FASTPATH);
1726	} else
1727		__slab_free(s, page, x, addr, c->offset);
1728
1729	local_irq_restore(flags);
1730}
1731
1732void kmem_cache_free(struct kmem_cache *s, void *x)
1733{
1734	struct page *page;
1735
1736	page = virt_to_head_page(x);
1737
1738	slab_free(s, page, x, __builtin_return_address(0));
1739}
1740EXPORT_SYMBOL(kmem_cache_free);
1741
1742/* Figure out on which slab object the object resides */
1743static struct page *get_object_page(const void *x)
1744{
1745	struct page *page = virt_to_head_page(x);
1746
1747	if (!PageSlab(page))
1748		return NULL;
1749
1750	return page;
1751}
1752
1753/*
1754 * Object placement in a slab is made very easy because we always start at
1755 * offset 0. If we tune the size of the object to the alignment then we can
1756 * get the required alignment by putting one properly sized object after
1757 * another.
1758 *
1759 * Notice that the allocation order determines the sizes of the per cpu
1760 * caches. Each processor has always one slab available for allocations.
1761 * Increasing the allocation order reduces the number of times that slabs
1762 * must be moved on and off the partial lists and is therefore a factor in
1763 * locking overhead.
1764 */
1765
1766/*
1767 * Mininum / Maximum order of slab pages. This influences locking overhead
1768 * and slab fragmentation. A higher order reduces the number of partial slabs
1769 * and increases the number of allocations possible without having to
1770 * take the list_lock.
1771 */
1772static int slub_min_order;
1773static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1774static int slub_min_objects;
1775
1776/*
1777 * Merge control. If this is set then no merging of slab caches will occur.
1778 * (Could be removed. This was introduced to pacify the merge skeptics.)
1779 */
1780static int slub_nomerge;
1781
1782/*
1783 * Calculate the order of allocation given an slab object size.
1784 *
1785 * The order of allocation has significant impact on performance and other
1786 * system components. Generally order 0 allocations should be preferred since
1787 * order 0 does not cause fragmentation in the page allocator. Larger objects
1788 * be problematic to put into order 0 slabs because there may be too much
1789 * unused space left. We go to a higher order if more than 1/16th of the slab
1790 * would be wasted.
1791 *
1792 * In order to reach satisfactory performance we must ensure that a minimum
1793 * number of objects is in one slab. Otherwise we may generate too much
1794 * activity on the partial lists which requires taking the list_lock. This is
1795 * less a concern for large slabs though which are rarely used.
1796 *
1797 * slub_max_order specifies the order where we begin to stop considering the
1798 * number of objects in a slab as critical. If we reach slub_max_order then
1799 * we try to keep the page order as low as possible. So we accept more waste
1800 * of space in favor of a small page order.
1801 *
1802 * Higher order allocations also allow the placement of more objects in a
1803 * slab and thereby reduce object handling overhead. If the user has
1804 * requested a higher mininum order then we start with that one instead of
1805 * the smallest order which will fit the object.
1806 */
1807static inline int slab_order(int size, int min_objects,
1808				int max_order, int fract_leftover)
1809{
1810	int order;
1811	int rem;
1812	int min_order = slub_min_order;
1813
1814	if ((PAGE_SIZE << min_order) / size > 65535)
1815		return get_order(size * 65535) - 1;
1816
1817	for (order = max(min_order,
1818				fls(min_objects * size - 1) - PAGE_SHIFT);
1819			order <= max_order; order++) {
1820
1821		unsigned long slab_size = PAGE_SIZE << order;
1822
1823		if (slab_size < min_objects * size)
1824			continue;
1825
1826		rem = slab_size % size;
1827
1828		if (rem <= slab_size / fract_leftover)
1829			break;
1830
1831	}
1832
1833	return order;
1834}
1835
1836static inline int calculate_order(int size)
1837{
1838	int order;
1839	int min_objects;
1840	int fraction;
1841
1842	/*
1843	 * Attempt to find best configuration for a slab. This
1844	 * works by first attempting to generate a layout with
1845	 * the best configuration and backing off gradually.
1846	 *
1847	 * First we reduce the acceptable waste in a slab. Then
1848	 * we reduce the minimum objects required in a slab.
1849	 */
1850	min_objects = slub_min_objects;
1851	if (!min_objects)
1852		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1853	while (min_objects > 1) {
1854		fraction = 16;
1855		while (fraction >= 4) {
1856			order = slab_order(size, min_objects,
1857						slub_max_order, fraction);
1858			if (order <= slub_max_order)
1859				return order;
1860			fraction /= 2;
1861		}
1862		min_objects /= 2;
1863	}
1864
1865	/*
1866	 * We were unable to place multiple objects in a slab. Now
1867	 * lets see if we can place a single object there.
1868	 */
1869	order = slab_order(size, 1, slub_max_order, 1);
1870	if (order <= slub_max_order)
1871		return order;
1872
1873	/*
1874	 * Doh this slab cannot be placed using slub_max_order.
1875	 */
1876	order = slab_order(size, 1, MAX_ORDER, 1);
1877	if (order <= MAX_ORDER)
1878		return order;
1879	return -ENOSYS;
1880}
1881
1882/*
1883 * Figure out what the alignment of the objects will be.
1884 */
1885static unsigned long calculate_alignment(unsigned long flags,
1886		unsigned long align, unsigned long size)
1887{
1888	/*
1889	 * If the user wants hardware cache aligned objects then follow that
1890	 * suggestion if the object is sufficiently large.
1891	 *
1892	 * The hardware cache alignment cannot override the specified
1893	 * alignment though. If that is greater then use it.
1894	 */
1895	if (flags & SLAB_HWCACHE_ALIGN) {
1896		unsigned long ralign = cache_line_size();
1897		while (size <= ralign / 2)
1898			ralign /= 2;
1899		align = max(align, ralign);
1900	}
1901
1902	if (align < ARCH_SLAB_MINALIGN)
1903		align = ARCH_SLAB_MINALIGN;
1904
1905	return ALIGN(align, sizeof(void *));
1906}
1907
1908static void init_kmem_cache_cpu(struct kmem_cache *s,
1909			struct kmem_cache_cpu *c)
1910{
1911	c->page = NULL;
1912	c->freelist = NULL;
1913	c->node = 0;
1914	c->offset = s->offset / sizeof(void *);
1915	c->objsize = s->objsize;
1916#ifdef CONFIG_SLUB_STATS
1917	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1918#endif
1919}
1920
1921static void
1922init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1923{
1924	n->nr_partial = 0;
1925
1926	/*
1927	 * The larger the object size is, the more pages we want on the partial
1928	 * list to avoid pounding the page allocator excessively.
1929	 */
1930	n->min_partial = ilog2(s->size);
1931	if (n->min_partial < MIN_PARTIAL)
1932		n->min_partial = MIN_PARTIAL;
1933	else if (n->min_partial > MAX_PARTIAL)
1934		n->min_partial = MAX_PARTIAL;
1935
1936	spin_lock_init(&n->list_lock);
1937	INIT_LIST_HEAD(&n->partial);
1938#ifdef CONFIG_SLUB_DEBUG
1939	atomic_long_set(&n->nr_slabs, 0);
1940	atomic_long_set(&n->total_objects, 0);
1941	INIT_LIST_HEAD(&n->full);
1942#endif
1943}
1944
1945#ifdef CONFIG_SMP
1946/*
1947 * Per cpu array for per cpu structures.
1948 *
1949 * The per cpu array places all kmem_cache_cpu structures from one processor
1950 * close together meaning that it becomes possible that multiple per cpu
1951 * structures are contained in one cacheline. This may be particularly
1952 * beneficial for the kmalloc caches.
1953 *
1954 * A desktop system typically has around 60-80 slabs. With 100 here we are
1955 * likely able to get per cpu structures for all caches from the array defined
1956 * here. We must be able to cover all kmalloc caches during bootstrap.
1957 *
1958 * If the per cpu array is exhausted then fall back to kmalloc
1959 * of individual cachelines. No sharing is possible then.
1960 */
1961#define NR_KMEM_CACHE_CPU 100
1962
1963static DEFINE_PER_CPU(struct kmem_cache_cpu,
1964				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1965
1966static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1967static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1968
1969static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1970							int cpu, gfp_t flags)
1971{
1972	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1973
1974	if (c)
1975		per_cpu(kmem_cache_cpu_free, cpu) =
1976				(void *)c->freelist;
1977	else {
1978		/* Table overflow: So allocate ourselves */
1979		c = kmalloc_node(
1980			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1981			flags, cpu_to_node(cpu));
1982		if (!c)
1983			return NULL;
1984	}
1985
1986	init_kmem_cache_cpu(s, c);
1987	return c;
1988}
1989
1990static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1991{
1992	if (c < per_cpu(kmem_cache_cpu, cpu) ||
1993			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1994		kfree(c);
1995		return;
1996	}
1997	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1998	per_cpu(kmem_cache_cpu_free, cpu) = c;
1999}
2000
2001static void free_kmem_cache_cpus(struct kmem_cache *s)
2002{
2003	int cpu;
2004
2005	for_each_online_cpu(cpu) {
2006		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2007
2008		if (c) {
2009			s->cpu_slab[cpu] = NULL;
2010			free_kmem_cache_cpu(c, cpu);
2011		}
2012	}
2013}
2014
2015static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2016{
2017	int cpu;
2018
2019	for_each_online_cpu(cpu) {
2020		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2021
2022		if (c)
2023			continue;
2024
2025		c = alloc_kmem_cache_cpu(s, cpu, flags);
2026		if (!c) {
2027			free_kmem_cache_cpus(s);
2028			return 0;
2029		}
2030		s->cpu_slab[cpu] = c;
2031	}
2032	return 1;
2033}
2034
2035/*
2036 * Initialize the per cpu array.
2037 */
2038static void init_alloc_cpu_cpu(int cpu)
2039{
2040	int i;
2041
2042	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2043		return;
2044
2045	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2046		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2047
2048	cpu_set(cpu, kmem_cach_cpu_free_init_once);
2049}
2050
2051static void __init init_alloc_cpu(void)
2052{
2053	int cpu;
2054
2055	for_each_online_cpu(cpu)
2056		init_alloc_cpu_cpu(cpu);
2057  }
2058
2059#else
2060static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2061static inline void init_alloc_cpu(void) {}
2062
2063static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2064{
2065	init_kmem_cache_cpu(s, &s->cpu_slab);
2066	return 1;
2067}
2068#endif
2069
2070#ifdef CONFIG_NUMA
2071/*
2072 * No kmalloc_node yet so do it by hand. We know that this is the first
2073 * slab on the node for this slabcache. There are no concurrent accesses
2074 * possible.
2075 *
2076 * Note that this function only works on the kmalloc_node_cache
2077 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2078 * memory on a fresh node that has no slab structures yet.
2079 */
2080static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2081							   int node)
2082{
2083	struct page *page;
2084	struct kmem_cache_node *n;
2085	unsigned long flags;
2086
2087	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2088
2089	page = new_slab(kmalloc_caches, gfpflags, node);
2090
2091	BUG_ON(!page);
2092	if (page_to_nid(page) != node) {
2093		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2094				"node %d\n", node);
2095		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2096				"in order to be able to continue\n");
2097	}
2098
2099	n = page->freelist;
2100	BUG_ON(!n);
2101	page->freelist = get_freepointer(kmalloc_caches, n);
2102	page->inuse++;
2103	kmalloc_caches->node[node] = n;
2104#ifdef CONFIG_SLUB_DEBUG
2105	init_object(kmalloc_caches, n, 1);
2106	init_tracking(kmalloc_caches, n);
2107#endif
2108	init_kmem_cache_node(n, kmalloc_caches);
2109	inc_slabs_node(kmalloc_caches, node, page->objects);
2110
2111	/*
2112	 * lockdep requires consistent irq usage for each lock
2113	 * so even though there cannot be a race this early in
2114	 * the boot sequence, we still disable irqs.
2115	 */
2116	local_irq_save(flags);
2117	add_partial(n, page, 0);
2118	local_irq_restore(flags);
2119	return n;
2120}
2121
2122static void free_kmem_cache_nodes(struct kmem_cache *s)
2123{
2124	int node;
2125
2126	for_each_node_state(node, N_NORMAL_MEMORY) {
2127		struct kmem_cache_node *n = s->node[node];
2128		if (n && n != &s->local_node)
2129			kmem_cache_free(kmalloc_caches, n);
2130		s->node[node] = NULL;
2131	}
2132}
2133
2134static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2135{
2136	int node;
2137	int local_node;
2138
2139	if (slab_state >= UP)
2140		local_node = page_to_nid(virt_to_page(s));
2141	else
2142		local_node = 0;
2143
2144	for_each_node_state(node, N_NORMAL_MEMORY) {
2145		struct kmem_cache_node *n;
2146
2147		if (local_node == node)
2148			n = &s->local_node;
2149		else {
2150			if (slab_state == DOWN) {
2151				n = early_kmem_cache_node_alloc(gfpflags,
2152								node);
2153				continue;
2154			}
2155			n = kmem_cache_alloc_node(kmalloc_caches,
2156							gfpflags, node);
2157
2158			if (!n) {
2159				free_kmem_cache_nodes(s);
2160				return 0;
2161			}
2162
2163		}
2164		s->node[node] = n;
2165		init_kmem_cache_node(n, s);
2166	}
2167	return 1;
2168}
2169#else
2170static void free_kmem_cache_nodes(struct kmem_cache *s)
2171{
2172}
2173
2174static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2175{
2176	init_kmem_cache_node(&s->local_node, s);
2177	return 1;
2178}
2179#endif
2180
2181/*
2182 * calculate_sizes() determines the order and the distribution of data within
2183 * a slab object.
2184 */
2185static int calculate_sizes(struct kmem_cache *s, int forced_order)
2186{
2187	unsigned long flags = s->flags;
2188	unsigned long size = s->objsize;
2189	unsigned long align = s->align;
2190	int order;
2191
2192	/*
2193	 * Round up object size to the next word boundary. We can only
2194	 * place the free pointer at word boundaries and this determines
2195	 * the possible location of the free pointer.
2196	 */
2197	size = ALIGN(size, sizeof(void *));
2198
2199#ifdef CONFIG_SLUB_DEBUG
2200	/*
2201	 * Determine if we can poison the object itself. If the user of
2202	 * the slab may touch the object after free or before allocation
2203	 * then we should never poison the object itself.
2204	 */
2205	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2206			!s->ctor)
2207		s->flags |= __OBJECT_POISON;
2208	else
2209		s->flags &= ~__OBJECT_POISON;
2210
2211
2212	/*
2213	 * If we are Redzoning then check if there is some space between the
2214	 * end of the object and the free pointer. If not then add an
2215	 * additional word to have some bytes to store Redzone information.
2216	 */
2217	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2218		size += sizeof(void *);
2219#endif
2220
2221	/*
2222	 * With that we have determined the number of bytes in actual use
2223	 * by the object. This is the potential offset to the free pointer.
2224	 */
2225	s->inuse = size;
2226
2227	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2228		s->ctor)) {
2229		/*
2230		 * Relocate free pointer after the object if it is not
2231		 * permitted to overwrite the first word of the object on
2232		 * kmem_cache_free.
2233		 *
2234		 * This is the case if we do RCU, have a constructor or
2235		 * destructor or are poisoning the objects.
2236		 */
2237		s->offset = size;
2238		size += sizeof(void *);
2239	}
2240
2241#ifdef CONFIG_SLUB_DEBUG
2242	if (flags & SLAB_STORE_USER)
2243		/*
2244		 * Need to store information about allocs and frees after
2245		 * the object.
2246		 */
2247		size += 2 * sizeof(struct track);
2248
2249	if (flags & SLAB_RED_ZONE)
2250		/*
2251		 * Add some empty padding so that we can catch
2252		 * overwrites from earlier objects rather than let
2253		 * tracking information or the free pointer be
2254		 * corrupted if an user writes before the start
2255		 * of the object.
2256		 */
2257		size += sizeof(void *);
2258#endif
2259
2260	/*
2261	 * Determine the alignment based on various parameters that the
2262	 * user specified and the dynamic determination of cache line size
2263	 * on bootup.
2264	 */
2265	align = calculate_alignment(flags, align, s->objsize);
2266
2267	/*
2268	 * SLUB stores one object immediately after another beginning from
2269	 * offset 0. In order to align the objects we have to simply size
2270	 * each object to conform to the alignment.
2271	 */
2272	size = ALIGN(size, align);
2273	s->size = size;
2274	if (forced_order >= 0)
2275		order = forced_order;
2276	else
2277		order = calculate_order(size);
2278
2279	if (order < 0)
2280		return 0;
2281
2282	s->allocflags = 0;
2283	if (order)
2284		s->allocflags |= __GFP_COMP;
2285
2286	if (s->flags & SLAB_CACHE_DMA)
2287		s->allocflags |= SLUB_DMA;
2288
2289	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2290		s->allocflags |= __GFP_RECLAIMABLE;
2291
2292	/*
2293	 * Determine the number of objects per slab
2294	 */
2295	s->oo = oo_make(order, size);
2296	s->min = oo_make(get_order(size), size);
2297	if (oo_objects(s->oo) > oo_objects(s->max))
2298		s->max = s->oo;
2299
2300	return !!oo_objects(s->oo);
2301
2302}
2303
2304static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2305		const char *name, size_t size,
2306		size_t align, unsigned long flags,
2307		void (*ctor)(void *))
2308{
2309	memset(s, 0, kmem_size);
2310	s->name = name;
2311	s->ctor = ctor;
2312	s->objsize = size;
2313	s->align = align;
2314	s->flags = kmem_cache_flags(size, flags, name, ctor);
2315
2316	if (!calculate_sizes(s, -1))
2317		goto error;
2318
2319	s->refcount = 1;
2320#ifdef CONFIG_NUMA
2321	s->remote_node_defrag_ratio = 1000;
2322#endif
2323	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2324		goto error;
2325
2326	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2327		return 1;
2328	free_kmem_cache_nodes(s);
2329error:
2330	if (flags & SLAB_PANIC)
2331		panic("Cannot create slab %s size=%lu realsize=%u "
2332			"order=%u offset=%u flags=%lx\n",
2333			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2334			s->offset, flags);
2335	return 0;
2336}
2337
2338/*
2339 * Check if a given pointer is valid
2340 */
2341int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2342{
2343	struct page *page;
2344
2345	page = get_object_page(object);
2346
2347	if (!page || s != page->slab)
2348		/* No slab or wrong slab */
2349		return 0;
2350
2351	if (!check_valid_pointer(s, page, object))
2352		return 0;
2353
2354	/*
2355	 * We could also check if the object is on the slabs freelist.
2356	 * But this would be too expensive and it seems that the main
2357	 * purpose of kmem_ptr_valid() is to check if the object belongs
2358	 * to a certain slab.
2359	 */
2360	return 1;
2361}
2362EXPORT_SYMBOL(kmem_ptr_validate);
2363
2364/*
2365 * Determine the size of a slab object
2366 */
2367unsigned int kmem_cache_size(struct kmem_cache *s)
2368{
2369	return s->objsize;
2370}
2371EXPORT_SYMBOL(kmem_cache_size);
2372
2373const char *kmem_cache_name(struct kmem_cache *s)
2374{
2375	return s->name;
2376}
2377EXPORT_SYMBOL(kmem_cache_name);
2378
2379static void list_slab_objects(struct kmem_cache *s, struct page *page,
2380							const char *text)
2381{
2382#ifdef CONFIG_SLUB_DEBUG
2383	void *addr = page_address(page);
2384	void *p;
2385	DECLARE_BITMAP(map, page->objects);
2386
2387	bitmap_zero(map, page->objects);
2388	slab_err(s, page, "%s", text);
2389	slab_lock(page);
2390	for_each_free_object(p, s, page->freelist)
2391		set_bit(slab_index(p, s, addr), map);
2392
2393	for_each_object(p, s, addr, page->objects) {
2394
2395		if (!test_bit(slab_index(p, s, addr), map)) {
2396			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2397							p, p - addr);
2398			print_tracking(s, p);
2399		}
2400	}
2401	slab_unlock(page);
2402#endif
2403}
2404
2405/*
2406 * Attempt to free all partial slabs on a node.
2407 */
2408static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2409{
2410	unsigned long flags;
2411	struct page *page, *h;
2412
2413	spin_lock_irqsave(&n->list_lock, flags);
2414	list_for_each_entry_safe(page, h, &n->partial, lru) {
2415		if (!page->inuse) {
2416			list_del(&page->lru);
2417			discard_slab(s, page);
2418			n->nr_partial--;
2419		} else {
2420			list_slab_objects(s, page,
2421				"Objects remaining on kmem_cache_close()");
2422		}
2423	}
2424	spin_unlock_irqrestore(&n->list_lock, flags);
2425}
2426
2427/*
2428 * Release all resources used by a slab cache.
2429 */
2430static inline int kmem_cache_close(struct kmem_cache *s)
2431{
2432	int node;
2433
2434	flush_all(s);
2435
2436	/* Attempt to free all objects */
2437	free_kmem_cache_cpus(s);
2438	for_each_node_state(node, N_NORMAL_MEMORY) {
2439		struct kmem_cache_node *n = get_node(s, node);
2440
2441		free_partial(s, n);
2442		if (n->nr_partial || slabs_node(s, node))
2443			return 1;
2444	}
2445	free_kmem_cache_nodes(s);
2446	return 0;
2447}
2448
2449/*
2450 * Close a cache and release the kmem_cache structure
2451 * (must be used for caches created using kmem_cache_create)
2452 */
2453void kmem_cache_destroy(struct kmem_cache *s)
2454{
2455	down_write(&slub_lock);
2456	s->refcount--;
2457	if (!s->refcount) {
2458		list_del(&s->list);
2459		up_write(&slub_lock);
2460		if (kmem_cache_close(s)) {
2461			printk(KERN_ERR "SLUB %s: %s called for cache that "
2462				"still has objects.\n", s->name, __func__);
2463			dump_stack();
2464		}
2465		sysfs_slab_remove(s);
2466	} else
2467		up_write(&slub_lock);
2468}
2469EXPORT_SYMBOL(kmem_cache_destroy);
2470
2471/********************************************************************
2472 *		Kmalloc subsystem
2473 *******************************************************************/
2474
2475struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2476EXPORT_SYMBOL(kmalloc_caches);
2477
2478static int __init setup_slub_min_order(char *str)
2479{
2480	get_option(&str, &slub_min_order);
2481
2482	return 1;
2483}
2484
2485__setup("slub_min_order=", setup_slub_min_order);
2486
2487static int __init setup_slub_max_order(char *str)
2488{
2489	get_option(&str, &slub_max_order);
2490
2491	return 1;
2492}
2493
2494__setup("slub_max_order=", setup_slub_max_order);
2495
2496static int __init setup_slub_min_objects(char *str)
2497{
2498	get_option(&str, &slub_min_objects);
2499
2500	return 1;
2501}
2502
2503__setup("slub_min_objects=", setup_slub_min_objects);
2504
2505static int __init setup_slub_nomerge(char *str)
2506{
2507	slub_nomerge = 1;
2508	return 1;
2509}
2510
2511__setup("slub_nomerge", setup_slub_nomerge);
2512
2513static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2514		const char *name, int size, gfp_t gfp_flags)
2515{
2516	unsigned int flags = 0;
2517
2518	if (gfp_flags & SLUB_DMA)
2519		flags = SLAB_CACHE_DMA;
2520
2521	down_write(&slub_lock);
2522	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2523								flags, NULL))
2524		goto panic;
2525
2526	list_add(&s->list, &slab_caches);
2527	up_write(&slub_lock);
2528	if (sysfs_slab_add(s))
2529		goto panic;
2530	return s;
2531
2532panic:
2533	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2534}
2535
2536#ifdef CONFIG_ZONE_DMA
2537static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2538
2539static void sysfs_add_func(struct work_struct *w)
2540{
2541	struct kmem_cache *s;
2542
2543	down_write(&slub_lock);
2544	list_for_each_entry(s, &slab_caches, list) {
2545		if (s->flags & __SYSFS_ADD_DEFERRED) {
2546			s->flags &= ~__SYSFS_ADD_DEFERRED;
2547			sysfs_slab_add(s);
2548		}
2549	}
2550	up_write(&slub_lock);
2551}
2552
2553static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2554
2555static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2556{
2557	struct kmem_cache *s;
2558	char *text;
2559	size_t realsize;
2560
2561	s = kmalloc_caches_dma[index];
2562	if (s)
2563		return s;
2564
2565	/* Dynamically create dma cache */
2566	if (flags & __GFP_WAIT)
2567		down_write(&slub_lock);
2568	else {
2569		if (!down_write_trylock(&slub_lock))
2570			goto out;
2571	}
2572
2573	if (kmalloc_caches_dma[index])
2574		goto unlock_out;
2575
2576	realsize = kmalloc_caches[index].objsize;
2577	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2578			 (unsigned int)realsize);
2579	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2580
2581	if (!s || !text || !kmem_cache_open(s, flags, text,
2582			realsize, ARCH_KMALLOC_MINALIGN,
2583			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2584		kfree(s);
2585		kfree(text);
2586		goto unlock_out;
2587	}
2588
2589	list_add(&s->list, &slab_caches);
2590	kmalloc_caches_dma[index] = s;
2591
2592	schedule_work(&sysfs_add_work);
2593
2594unlock_out:
2595	up_write(&slub_lock);
2596out:
2597	return kmalloc_caches_dma[index];
2598}
2599#endif
2600
2601/*
2602 * Conversion table for small slabs sizes / 8 to the index in the
2603 * kmalloc array. This is necessary for slabs < 192 since we have non power
2604 * of two cache sizes there. The size of larger slabs can be determined using
2605 * fls.
2606 */
2607static s8 size_index[24] = {
2608	3,	/* 8 */
2609	4,	/* 16 */
2610	5,	/* 24 */
2611	5,	/* 32 */
2612	6,	/* 40 */
2613	6,	/* 48 */
2614	6,	/* 56 */
2615	6,	/* 64 */
2616	1,	/* 72 */
2617	1,	/* 80 */
2618	1,	/* 88 */
2619	1,	/* 96 */
2620	7,	/* 104 */
2621	7,	/* 112 */
2622	7,	/* 120 */
2623	7,	/* 128 */
2624	2,	/* 136 */
2625	2,	/* 144 */
2626	2,	/* 152 */
2627	2,	/* 160 */
2628	2,	/* 168 */
2629	2,	/* 176 */
2630	2,	/* 184 */
2631	2	/* 192 */
2632};
2633
2634static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2635{
2636	int index;
2637
2638	if (size <= 192) {
2639		if (!size)
2640			return ZERO_SIZE_PTR;
2641
2642		index = size_index[(size - 1) / 8];
2643	} else
2644		index = fls(size - 1);
2645
2646#ifdef CONFIG_ZONE_DMA
2647	if (unlikely((flags & SLUB_DMA)))
2648		return dma_kmalloc_cache(index, flags);
2649
2650#endif
2651	return &kmalloc_caches[index];
2652}
2653
2654void *__kmalloc(size_t size, gfp_t flags)
2655{
2656	struct kmem_cache *s;
2657
2658	if (unlikely(size > PAGE_SIZE))
2659		return kmalloc_large(size, flags);
2660
2661	s = get_slab(size, flags);
2662
2663	if (unlikely(ZERO_OR_NULL_PTR(s)))
2664		return s;
2665
2666	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2667}
2668EXPORT_SYMBOL(__kmalloc);
2669
2670static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2671{
2672	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2673						get_order(size));
2674
2675	if (page)
2676		return page_address(page);
2677	else
2678		return NULL;
2679}
2680
2681#ifdef CONFIG_NUMA
2682void *__kmalloc_node(size_t size, gfp_t flags, int node)
2683{
2684	struct kmem_cache *s;
2685
2686	if (unlikely(size > PAGE_SIZE))
2687		return kmalloc_large_node(size, flags, node);
2688
2689	s = get_slab(size, flags);
2690
2691	if (unlikely(ZERO_OR_NULL_PTR(s)))
2692		return s;
2693
2694	return slab_alloc(s, flags, node, __builtin_return_address(0));
2695}
2696EXPORT_SYMBOL(__kmalloc_node);
2697#endif
2698
2699size_t ksize(const void *object)
2700{
2701	struct page *page;
2702	struct kmem_cache *s;
2703
2704	if (unlikely(object == ZERO_SIZE_PTR))
2705		return 0;
2706
2707	page = virt_to_head_page(object);
2708
2709	if (unlikely(!PageSlab(page))) {
2710		WARN_ON(!PageCompound(page));
2711		return PAGE_SIZE << compound_order(page);
2712	}
2713	s = page->slab;
2714
2715#ifdef CONFIG_SLUB_DEBUG
2716	/*
2717	 * Debugging requires use of the padding between object
2718	 * and whatever may come after it.
2719	 */
2720	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2721		return s->objsize;
2722
2723#endif
2724	/*
2725	 * If we have the need to store the freelist pointer
2726	 * back there or track user information then we can
2727	 * only use the space before that information.
2728	 */
2729	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2730		return s->inuse;
2731	/*
2732	 * Else we can use all the padding etc for the allocation
2733	 */
2734	return s->size;
2735}
2736
2737void kfree(const void *x)
2738{
2739	struct page *page;
2740	void *object = (void *)x;
2741
2742	if (unlikely(ZERO_OR_NULL_PTR(x)))
2743		return;
2744
2745	page = virt_to_head_page(x);
2746	if (unlikely(!PageSlab(page))) {
2747		BUG_ON(!PageCompound(page));
2748		put_page(page);
2749		return;
2750	}
2751	slab_free(page->slab, page, object, __builtin_return_address(0));
2752}
2753EXPORT_SYMBOL(kfree);
2754
2755/*
2756 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2757 * the remaining slabs by the number of items in use. The slabs with the
2758 * most items in use come first. New allocations will then fill those up
2759 * and thus they can be removed from the partial lists.
2760 *
2761 * The slabs with the least items are placed last. This results in them
2762 * being allocated from last increasing the chance that the last objects
2763 * are freed in them.
2764 */
2765int kmem_cache_shrink(struct kmem_cache *s)
2766{
2767	int node;
2768	int i;
2769	struct kmem_cache_node *n;
2770	struct page *page;
2771	struct page *t;
2772	int objects = oo_objects(s->max);
2773	struct list_head *slabs_by_inuse =
2774		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2775	unsigned long flags;
2776
2777	if (!slabs_by_inuse)
2778		return -ENOMEM;
2779
2780	flush_all(s);
2781	for_each_node_state(node, N_NORMAL_MEMORY) {
2782		n = get_node(s, node);
2783
2784		if (!n->nr_partial)
2785			continue;
2786
2787		for (i = 0; i < objects; i++)
2788			INIT_LIST_HEAD(slabs_by_inuse + i);
2789
2790		spin_lock_irqsave(&n->list_lock, flags);
2791
2792		/*
2793		 * Build lists indexed by the items in use in each slab.
2794		 *
2795		 * Note that concurrent frees may occur while we hold the
2796		 * list_lock. page->inuse here is the upper limit.
2797		 */
2798		list_for_each_entry_safe(page, t, &n->partial, lru) {
2799			if (!page->inuse && slab_trylock(page)) {
2800				/*
2801				 * Must hold slab lock here because slab_free
2802				 * may have freed the last object and be
2803				 * waiting to release the slab.
2804				 */
2805				list_del(&page->lru);
2806				n->nr_partial--;
2807				slab_unlock(page);
2808				discard_slab(s, page);
2809			} else {
2810				list_move(&page->lru,
2811				slabs_by_inuse + page->inuse);
2812			}
2813		}
2814
2815		/*
2816		 * Rebuild the partial list with the slabs filled up most
2817		 * first and the least used slabs at the end.
2818		 */
2819		for (i = objects - 1; i >= 0; i--)
2820			list_splice(slabs_by_inuse + i, n->partial.prev);
2821
2822		spin_unlock_irqrestore(&n->list_lock, flags);
2823	}
2824
2825	kfree(slabs_by_inuse);
2826	return 0;
2827}
2828EXPORT_SYMBOL(kmem_cache_shrink);
2829
2830#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2831static int slab_mem_going_offline_callback(void *arg)
2832{
2833	struct kmem_cache *s;
2834
2835	down_read(&slub_lock);
2836	list_for_each_entry(s, &slab_caches, list)
2837		kmem_cache_shrink(s);
2838	up_read(&slub_lock);
2839
2840	return 0;
2841}
2842
2843static void slab_mem_offline_callback(void *arg)
2844{
2845	struct kmem_cache_node *n;
2846	struct kmem_cache *s;
2847	struct memory_notify *marg = arg;
2848	int offline_node;
2849
2850	offline_node = marg->status_change_nid;
2851
2852	/*
2853	 * If the node still has available memory. we need kmem_cache_node
2854	 * for it yet.
2855	 */
2856	if (offline_node < 0)
2857		return;
2858
2859	down_read(&slub_lock);
2860	list_for_each_entry(s, &slab_caches, list) {
2861		n = get_node(s, offline_node);
2862		if (n) {
2863			/*
2864			 * if n->nr_slabs > 0, slabs still exist on the node
2865			 * that is going down. We were unable to free them,
2866			 * and offline_pages() function shoudn't call this
2867			 * callback. So, we must fail.
2868			 */
2869			BUG_ON(slabs_node(s, offline_node));
2870
2871			s->node[offline_node] = NULL;
2872			kmem_cache_free(kmalloc_caches, n);
2873		}
2874	}
2875	up_read(&slub_lock);
2876}
2877
2878static int slab_mem_going_online_callback(void *arg)
2879{
2880	struct kmem_cache_node *n;
2881	struct kmem_cache *s;
2882	struct memory_notify *marg = arg;
2883	int nid = marg->status_change_nid;
2884	int ret = 0;
2885
2886	/*
2887	 * If the node's memory is already available, then kmem_cache_node is
2888	 * already created. Nothing to do.
2889	 */
2890	if (nid < 0)
2891		return 0;
2892
2893	/*
2894	 * We are bringing a node online. No memory is available yet. We must
2895	 * allocate a kmem_cache_node structure in order to bring the node
2896	 * online.
2897	 */
2898	down_read(&slub_lock);
2899	list_for_each_entry(s, &slab_caches, list) {
2900		/*
2901		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2902		 *      since memory is not yet available from the node that
2903		 *      is brought up.
2904		 */
2905		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2906		if (!n) {
2907			ret = -ENOMEM;
2908			goto out;
2909		}
2910		init_kmem_cache_node(n, s);
2911		s->node[nid] = n;
2912	}
2913out:
2914	up_read(&slub_lock);
2915	return ret;
2916}
2917
2918static int slab_memory_callback(struct notifier_block *self,
2919				unsigned long action, void *arg)
2920{
2921	int ret = 0;
2922
2923	switch (action) {
2924	case MEM_GOING_ONLINE:
2925		ret = slab_mem_going_online_callback(arg);
2926		break;
2927	case MEM_GOING_OFFLINE:
2928		ret = slab_mem_going_offline_callback(arg);
2929		break;
2930	case MEM_OFFLINE:
2931	case MEM_CANCEL_ONLINE:
2932		slab_mem_offline_callback(arg);
2933		break;
2934	case MEM_ONLINE:
2935	case MEM_CANCEL_OFFLINE:
2936		break;
2937	}
2938	if (ret)
2939		ret = notifier_from_errno(ret);
2940	else
2941		ret = NOTIFY_OK;
2942	return ret;
2943}
2944
2945#endif /* CONFIG_MEMORY_HOTPLUG */
2946
2947/********************************************************************
2948 *			Basic setup of slabs
2949 *******************************************************************/
2950
2951void __init kmem_cache_init(void)
2952{
2953	int i;
2954	int caches = 0;
2955
2956	init_alloc_cpu();
2957
2958#ifdef CONFIG_NUMA
2959	/*
2960	 * Must first have the slab cache available for the allocations of the
2961	 * struct kmem_cache_node's. There is special bootstrap code in
2962	 * kmem_cache_open for slab_state == DOWN.
2963	 */
2964	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2965		sizeof(struct kmem_cache_node), GFP_KERNEL);
2966	kmalloc_caches[0].refcount = -1;
2967	caches++;
2968
2969	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2970#endif
2971
2972	/* Able to allocate the per node structures */
2973	slab_state = PARTIAL;
2974
2975	/* Caches that are not of the two-to-the-power-of size */
2976	if (KMALLOC_MIN_SIZE <= 64) {
2977		create_kmalloc_cache(&kmalloc_caches[1],
2978				"kmalloc-96", 96, GFP_KERNEL);
2979		caches++;
2980		create_kmalloc_cache(&kmalloc_caches[2],
2981				"kmalloc-192", 192, GFP_KERNEL);
2982		caches++;
2983	}
2984
2985	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2986		create_kmalloc_cache(&kmalloc_caches[i],
2987			"kmalloc", 1 << i, GFP_KERNEL);
2988		caches++;
2989	}
2990
2991
2992	/*
2993	 * Patch up the size_index table if we have strange large alignment
2994	 * requirements for the kmalloc array. This is only the case for
2995	 * MIPS it seems. The standard arches will not generate any code here.
2996	 *
2997	 * Largest permitted alignment is 256 bytes due to the way we
2998	 * handle the index determination for the smaller caches.
2999	 *
3000	 * Make sure that nothing crazy happens if someone starts tinkering
3001	 * around with ARCH_KMALLOC_MINALIGN
3002	 */
3003	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3004		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3005
3006	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3007		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3008
3009	if (KMALLOC_MIN_SIZE == 128) {
3010		/*
3011		 * The 192 byte sized cache is not used if the alignment
3012		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3013		 * instead.
3014		 */
3015		for (i = 128 + 8; i <= 192; i += 8)
3016			size_index[(i - 1) / 8] = 8;
3017	}
3018
3019	slab_state = UP;
3020
3021	/* Provide the correct kmalloc names now that the caches are up */
3022	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3023		kmalloc_caches[i]. name =
3024			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3025
3026#ifdef CONFIG_SMP
3027	register_cpu_notifier(&slab_notifier);
3028	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3029				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3030#else
3031	kmem_size = sizeof(struct kmem_cache);
3032#endif
3033
3034	printk(KERN_INFO
3035		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3036		" CPUs=%d, Nodes=%d\n",
3037		caches, cache_line_size(),
3038		slub_min_order, slub_max_order, slub_min_objects,
3039		nr_cpu_ids, nr_node_ids);
3040}
3041
3042/*
3043 * Find a mergeable slab cache
3044 */
3045static int slab_unmergeable(struct kmem_cache *s)
3046{
3047	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3048		return 1;
3049
3050	if (s->ctor)
3051		return 1;
3052
3053	/*
3054	 * We may have set a slab to be unmergeable during bootstrap.
3055	 */
3056	if (s->refcount < 0)
3057		return 1;
3058
3059	return 0;
3060}
3061
3062static struct kmem_cache *find_mergeable(size_t size,
3063		size_t align, unsigned long flags, const char *name,
3064		void (*ctor)(void *))
3065{
3066	struct kmem_cache *s;
3067
3068	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3069		return NULL;
3070
3071	if (ctor)
3072		return NULL;
3073
3074	size = ALIGN(size, sizeof(void *));
3075	align = calculate_alignment(flags, align, size);
3076	size = ALIGN(size, align);
3077	flags = kmem_cache_flags(size, flags, name, NULL);
3078
3079	list_for_each_entry(s, &slab_caches, list) {
3080		if (slab_unmergeable(s))
3081			continue;
3082
3083		if (size > s->size)
3084			continue;
3085
3086		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3087				continue;
3088		/*
3089		 * Check if alignment is compatible.
3090		 * Courtesy of Adrian Drzewiecki
3091		 */
3092		if ((s->size & ~(align - 1)) != s->size)
3093			continue;
3094
3095		if (s->size - size >= sizeof(void *))
3096			continue;
3097
3098		return s;
3099	}
3100	return NULL;
3101}
3102
3103struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3104		size_t align, unsigned long flags, void (*ctor)(void *))
3105{
3106	struct kmem_cache *s;
3107
3108	down_write(&slub_lock);
3109	s = find_mergeable(size, align, flags, name, ctor);
3110	if (s) {
3111		int cpu;
3112
3113		s->refcount++;
3114		/*
3115		 * Adjust the object sizes so that we clear
3116		 * the complete object on kzalloc.
3117		 */
3118		s->objsize = max(s->objsize, (int)size);
3119
3120		/*
3121		 * And then we need to update the object size in the
3122		 * per cpu structures
3123		 */
3124		for_each_online_cpu(cpu)
3125			get_cpu_slab(s, cpu)->objsize = s->objsize;
3126
3127		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3128		up_write(&slub_lock);
3129
3130		if (sysfs_slab_alias(s, name))
3131			goto err;
3132		return s;
3133	}
3134
3135	s = kmalloc(kmem_size, GFP_KERNEL);
3136	if (s) {
3137		if (kmem_cache_open(s, GFP_KERNEL, name,
3138				size, align, flags, ctor)) {
3139			list_add(&s->list, &slab_caches);
3140			up_write(&slub_lock);
3141			if (sysfs_slab_add(s))
3142				goto err;
3143			return s;
3144		}
3145		kfree(s);
3146	}
3147	up_write(&slub_lock);
3148
3149err:
3150	if (flags & SLAB_PANIC)
3151		panic("Cannot create slabcache %s\n", name);
3152	else
3153		s = NULL;
3154	return s;
3155}
3156EXPORT_SYMBOL(kmem_cache_create);
3157
3158#ifdef CONFIG_SMP
3159/*
3160 * Use the cpu notifier to insure that the cpu slabs are flushed when
3161 * necessary.
3162 */
3163static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3164		unsigned long action, void *hcpu)
3165{
3166	long cpu = (long)hcpu;
3167	struct kmem_cache *s;
3168	unsigned long flags;
3169
3170	switch (action) {
3171	case CPU_UP_PREPARE:
3172	case CPU_UP_PREPARE_FROZEN:
3173		init_alloc_cpu_cpu(cpu);
3174		down_read(&slub_lock);
3175		list_for_each_entry(s, &slab_caches, list)
3176			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3177							GFP_KERNEL);
3178		up_read(&slub_lock);
3179		break;
3180
3181	case CPU_UP_CANCELED:
3182	case CPU_UP_CANCELED_FROZEN:
3183	case CPU_DEAD:
3184	case CPU_DEAD_FROZEN:
3185		down_read(&slub_lock);
3186		list_for_each_entry(s, &slab_caches, list) {
3187			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3188
3189			local_irq_save(flags);
3190			__flush_cpu_slab(s, cpu);
3191			local_irq_restore(flags);
3192			free_kmem_cache_cpu(c, cpu);
3193			s->cpu_slab[cpu] = NULL;
3194		}
3195		up_read(&slub_lock);
3196		break;
3197	default:
3198		break;
3199	}
3200	return NOTIFY_OK;
3201}
3202
3203static struct notifier_block __cpuinitdata slab_notifier = {
3204	.notifier_call = slab_cpuup_callback
3205};
3206
3207#endif
3208
3209void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3210{
3211	struct kmem_cache *s;
3212
3213	if (unlikely(size > PAGE_SIZE))
3214		return kmalloc_large(size, gfpflags);
3215
3216	s = get_slab(size, gfpflags);
3217
3218	if (unlikely(ZERO_OR_NULL_PTR(s)))
3219		return s;
3220
3221	return slab_alloc(s, gfpflags, -1, caller);
3222}
3223
3224void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3225					int node, void *caller)
3226{
3227	struct kmem_cache *s;
3228
3229	if (unlikely(size > PAGE_SIZE))
3230		return kmalloc_large_node(size, gfpflags, node);
3231
3232	s = get_slab(size, gfpflags);
3233
3234	if (unlikely(ZERO_OR_NULL_PTR(s)))
3235		return s;
3236
3237	return slab_alloc(s, gfpflags, node, caller);
3238}
3239
3240#ifdef CONFIG_SLUB_DEBUG
3241static unsigned long count_partial(struct kmem_cache_node *n,
3242					int (*get_count)(struct page *))
3243{
3244	unsigned long flags;
3245	unsigned long x = 0;
3246	struct page *page;
3247
3248	spin_lock_irqsave(&n->list_lock, flags);
3249	list_for_each_entry(page, &n->partial, lru)
3250		x += get_count(page);
3251	spin_unlock_irqrestore(&n->list_lock, flags);
3252	return x;
3253}
3254
3255static int count_inuse(struct page *page)
3256{
3257	return page->inuse;
3258}
3259
3260static int count_total(struct page *page)
3261{
3262	return page->objects;
3263}
3264
3265static int count_free(struct page *page)
3266{
3267	return page->objects - page->inuse;
3268}
3269
3270static int validate_slab(struct kmem_cache *s, struct page *page,
3271						unsigned long *map)
3272{
3273	void *p;
3274	void *addr = page_address(page);
3275
3276	if (!check_slab(s, page) ||
3277			!on_freelist(s, page, NULL))
3278		return 0;
3279
3280	/* Now we know that a valid freelist exists */
3281	bitmap_zero(map, page->objects);
3282
3283	for_each_free_object(p, s, page->freelist) {
3284		set_bit(slab_index(p, s, addr), map);
3285		if (!check_object(s, page, p, 0))
3286			return 0;
3287	}
3288
3289	for_each_object(p, s, addr, page->objects)
3290		if (!test_bit(slab_index(p, s, addr), map))
3291			if (!check_object(s, page, p, 1))
3292				return 0;
3293	return 1;
3294}
3295
3296static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3297						unsigned long *map)
3298{
3299	if (slab_trylock(page)) {
3300		validate_slab(s, page, map);
3301		slab_unlock(page);
3302	} else
3303		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3304			s->name, page);
3305
3306	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3307		if (!PageSlubDebug(page))
3308			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3309				"on slab 0x%p\n", s->name, page);
3310	} else {
3311		if (PageSlubDebug(page))
3312			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3313				"slab 0x%p\n", s->name, page);
3314	}
3315}
3316
3317static int validate_slab_node(struct kmem_cache *s,
3318		struct kmem_cache_node *n, unsigned long *map)
3319{
3320	unsigned long count = 0;
3321	struct page *page;
3322	unsigned long flags;
3323
3324	spin_lock_irqsave(&n->list_lock, flags);
3325
3326	list_for_each_entry(page, &n->partial, lru) {
3327		validate_slab_slab(s, page, map);
3328		count++;
3329	}
3330	if (count != n->nr_partial)
3331		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3332			"counter=%ld\n", s->name, count, n->nr_partial);
3333
3334	if (!(s->flags & SLAB_STORE_USER))
3335		goto out;
3336
3337	list_for_each_entry(page, &n->full, lru) {
3338		validate_slab_slab(s, page, map);
3339		count++;
3340	}
3341	if (count != atomic_long_read(&n->nr_slabs))
3342		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3343			"counter=%ld\n", s->name, count,
3344			atomic_long_read(&n->nr_slabs));
3345
3346out:
3347	spin_unlock_irqrestore(&n->list_lock, flags);
3348	return count;
3349}
3350
3351static long validate_slab_cache(struct kmem_cache *s)
3352{
3353	int node;
3354	unsigned long count = 0;
3355	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3356				sizeof(unsigned long), GFP_KERNEL);
3357
3358	if (!map)
3359		return -ENOMEM;
3360
3361	flush_all(s);
3362	for_each_node_state(node, N_NORMAL_MEMORY) {
3363		struct kmem_cache_node *n = get_node(s, node);
3364
3365		count += validate_slab_node(s, n, map);
3366	}
3367	kfree(map);
3368	return count;
3369}
3370
3371#ifdef SLUB_RESILIENCY_TEST
3372static void resiliency_test(void)
3373{
3374	u8 *p;
3375
3376	printk(KERN_ERR "SLUB resiliency testing\n");
3377	printk(KERN_ERR "-----------------------\n");
3378	printk(KERN_ERR "A. Corruption after allocation\n");
3379
3380	p = kzalloc(16, GFP_KERNEL);
3381	p[16] = 0x12;
3382	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3383			" 0x12->0x%p\n\n", p + 16);
3384
3385	validate_slab_cache(kmalloc_caches + 4);
3386
3387	/* Hmmm... The next two are dangerous */
3388	p = kzalloc(32, GFP_KERNEL);
3389	p[32 + sizeof(void *)] = 0x34;
3390	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3391			" 0x34 -> -0x%p\n", p);
3392	printk(KERN_ERR
3393		"If allocated object is overwritten then not detectable\n\n");
3394
3395	validate_slab_cache(kmalloc_caches + 5);
3396	p = kzalloc(64, GFP_KERNEL);
3397	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3398	*p = 0x56;
3399	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3400									p);
3401	printk(KERN_ERR
3402		"If allocated object is overwritten then not detectable\n\n");
3403	validate_slab_cache(kmalloc_caches + 6);
3404
3405	printk(KERN_ERR "\nB. Corruption after free\n");
3406	p = kzalloc(128, GFP_KERNEL);
3407	kfree(p);
3408	*p = 0x78;
3409	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3410	validate_slab_cache(kmalloc_caches + 7);
3411
3412	p = kzalloc(256, GFP_KERNEL);
3413	kfree(p);
3414	p[50] = 0x9a;
3415	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3416			p);
3417	validate_slab_cache(kmalloc_caches + 8);
3418
3419	p = kzalloc(512, GFP_KERNEL);
3420	kfree(p);
3421	p[512] = 0xab;
3422	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3423	validate_slab_cache(kmalloc_caches + 9);
3424}
3425#else
3426static void resiliency_test(void) {};
3427#endif
3428
3429/*
3430 * Generate lists of code addresses where slabcache objects are allocated
3431 * and freed.
3432 */
3433
3434struct location {
3435	unsigned long count;
3436	void *addr;
3437	long long sum_time;
3438	long min_time;
3439	long max_time;
3440	long min_pid;
3441	long max_pid;
3442	cpumask_t cpus;
3443	nodemask_t nodes;
3444};
3445
3446struct loc_track {
3447	unsigned long max;
3448	unsigned long count;
3449	struct location *loc;
3450};
3451
3452static void free_loc_track(struct loc_track *t)
3453{
3454	if (t->max)
3455		free_pages((unsigned long)t->loc,
3456			get_order(sizeof(struct location) * t->max));
3457}
3458
3459static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3460{
3461	struct location *l;
3462	int order;
3463
3464	order = get_order(sizeof(struct location) * max);
3465
3466	l = (void *)__get_free_pages(flags, order);
3467	if (!l)
3468		return 0;
3469
3470	if (t->count) {
3471		memcpy(l, t->loc, sizeof(struct location) * t->count);
3472		free_loc_track(t);
3473	}
3474	t->max = max;
3475	t->loc = l;
3476	return 1;
3477}
3478
3479static int add_location(struct loc_track *t, struct kmem_cache *s,
3480				const struct track *track)
3481{
3482	long start, end, pos;
3483	struct location *l;
3484	void *caddr;
3485	unsigned long age = jiffies - track->when;
3486
3487	start = -1;
3488	end = t->count;
3489
3490	for ( ; ; ) {
3491		pos = start + (end - start + 1) / 2;
3492
3493		/*
3494		 * There is nothing at "end". If we end up there
3495		 * we need to add something to before end.
3496		 */
3497		if (pos == end)
3498			break;
3499
3500		caddr = t->loc[pos].addr;
3501		if (track->addr == caddr) {
3502
3503			l = &t->loc[pos];
3504			l->count++;
3505			if (track->when) {
3506				l->sum_time += age;
3507				if (age < l->min_time)
3508					l->min_time = age;
3509				if (age > l->max_time)
3510					l->max_time = age;
3511
3512				if (track->pid < l->min_pid)
3513					l->min_pid = track->pid;
3514				if (track->pid > l->max_pid)
3515					l->max_pid = track->pid;
3516
3517				cpu_set(track->cpu, l->cpus);
3518			}
3519			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3520			return 1;
3521		}
3522
3523		if (track->addr < caddr)
3524			end = pos;
3525		else
3526			start = pos;
3527	}
3528
3529	/*
3530	 * Not found. Insert new tracking element.
3531	 */
3532	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3533		return 0;
3534
3535	l = t->loc + pos;
3536	if (pos < t->count)
3537		memmove(l + 1, l,
3538			(t->count - pos) * sizeof(struct location));
3539	t->count++;
3540	l->count = 1;
3541	l->addr = track->addr;
3542	l->sum_time = age;
3543	l->min_time = age;
3544	l->max_time = age;
3545	l->min_pid = track->pid;
3546	l->max_pid = track->pid;
3547	cpus_clear(l->cpus);
3548	cpu_set(track->cpu, l->cpus);
3549	nodes_clear(l->nodes);
3550	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3551	return 1;
3552}
3553
3554static void process_slab(struct loc_track *t, struct kmem_cache *s,
3555		struct page *page, enum track_item alloc)
3556{
3557	void *addr = page_address(page);
3558	DECLARE_BITMAP(map, page->objects);
3559	void *p;
3560
3561	bitmap_zero(map, page->objects);
3562	for_each_free_object(p, s, page->freelist)
3563		set_bit(slab_index(p, s, addr), map);
3564
3565	for_each_object(p, s, addr, page->objects)
3566		if (!test_bit(slab_index(p, s, addr), map))
3567			add_location(t, s, get_track(s, p, alloc));
3568}
3569
3570static int list_locations(struct kmem_cache *s, char *buf,
3571					enum track_item alloc)
3572{
3573	int len = 0;
3574	unsigned long i;
3575	struct loc_track t = { 0, 0, NULL };
3576	int node;
3577
3578	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3579			GFP_TEMPORARY))
3580		return sprintf(buf, "Out of memory\n");
3581
3582	/* Push back cpu slabs */
3583	flush_all(s);
3584
3585	for_each_node_state(node, N_NORMAL_MEMORY) {
3586		struct kmem_cache_node *n = get_node(s, node);
3587		unsigned long flags;
3588		struct page *page;
3589
3590		if (!atomic_long_read(&n->nr_slabs))
3591			continue;
3592
3593		spin_lock_irqsave(&n->list_lock, flags);
3594		list_for_each_entry(page, &n->partial, lru)
3595			process_slab(&t, s, page, alloc);
3596		list_for_each_entry(page, &n->full, lru)
3597			process_slab(&t, s, page, alloc);
3598		spin_unlock_irqrestore(&n->list_lock, flags);
3599	}
3600
3601	for (i = 0; i < t.count; i++) {
3602		struct location *l = &t.loc[i];
3603
3604		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3605			break;
3606		len += sprintf(buf + len, "%7ld ", l->count);
3607
3608		if (l->addr)
3609			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3610		else
3611			len += sprintf(buf + len, "<not-available>");
3612
3613		if (l->sum_time != l->min_time) {
3614			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3615				l->min_time,
3616				(long)div_u64(l->sum_time, l->count),
3617				l->max_time);
3618		} else
3619			len += sprintf(buf + len, " age=%ld",
3620				l->min_time);
3621
3622		if (l->min_pid != l->max_pid)
3623			len += sprintf(buf + len, " pid=%ld-%ld",
3624				l->min_pid, l->max_pid);
3625		else
3626			len += sprintf(buf + len, " pid=%ld",
3627				l->min_pid);
3628
3629		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3630				len < PAGE_SIZE - 60) {
3631			len += sprintf(buf + len, " cpus=");
3632			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3633					l->cpus);
3634		}
3635
3636		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3637				len < PAGE_SIZE - 60) {
3638			len += sprintf(buf + len, " nodes=");
3639			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3640					l->nodes);
3641		}
3642
3643		len += sprintf(buf + len, "\n");
3644	}
3645
3646	free_loc_track(&t);
3647	if (!t.count)
3648		len += sprintf(buf, "No data\n");
3649	return len;
3650}
3651
3652enum slab_stat_type {
3653	SL_ALL,			/* All slabs */
3654	SL_PARTIAL,		/* Only partially allocated slabs */
3655	SL_CPU,			/* Only slabs used for cpu caches */
3656	SL_OBJECTS,		/* Determine allocated objects not slabs */
3657	SL_TOTAL		/* Determine object capacity not slabs */
3658};
3659
3660#define SO_ALL		(1 << SL_ALL)
3661#define SO_PARTIAL	(1 << SL_PARTIAL)
3662#define SO_CPU		(1 << SL_CPU)
3663#define SO_OBJECTS	(1 << SL_OBJECTS)
3664#define SO_TOTAL	(1 << SL_TOTAL)
3665
3666static ssize_t show_slab_objects(struct kmem_cache *s,
3667			    char *buf, unsigned long flags)
3668{
3669	unsigned long total = 0;
3670	int node;
3671	int x;
3672	unsigned long *nodes;
3673	unsigned long *per_cpu;
3674
3675	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3676	if (!nodes)
3677		return -ENOMEM;
3678	per_cpu = nodes + nr_node_ids;
3679
3680	if (flags & SO_CPU) {
3681		int cpu;
3682
3683		for_each_possible_cpu(cpu) {
3684			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3685
3686			if (!c || c->node < 0)
3687				continue;
3688
3689			if (c->page) {
3690					if (flags & SO_TOTAL)
3691						x = c->page->objects;
3692				else if (flags & SO_OBJECTS)
3693					x = c->page->inuse;
3694				else
3695					x = 1;
3696
3697				total += x;
3698				nodes[c->node] += x;
3699			}
3700			per_cpu[c->node]++;
3701		}
3702	}
3703
3704	if (flags & SO_ALL) {
3705		for_each_node_state(node, N_NORMAL_MEMORY) {
3706			struct kmem_cache_node *n = get_node(s, node);
3707
3708		if (flags & SO_TOTAL)
3709			x = atomic_long_read(&n->total_objects);
3710		else if (flags & SO_OBJECTS)
3711			x = atomic_long_read(&n->total_objects) -
3712				count_partial(n, count_free);
3713
3714			else
3715				x = atomic_long_read(&n->nr_slabs);
3716			total += x;
3717			nodes[node] += x;
3718		}
3719
3720	} else if (flags & SO_PARTIAL) {
3721		for_each_node_state(node, N_NORMAL_MEMORY) {
3722			struct kmem_cache_node *n = get_node(s, node);
3723
3724			if (flags & SO_TOTAL)
3725				x = count_partial(n, count_total);
3726			else if (flags & SO_OBJECTS)
3727				x = count_partial(n, count_inuse);
3728			else
3729				x = n->nr_partial;
3730			total += x;
3731			nodes[node] += x;
3732		}
3733	}
3734	x = sprintf(buf, "%lu", total);
3735#ifdef CONFIG_NUMA
3736	for_each_node_state(node, N_NORMAL_MEMORY)
3737		if (nodes[node])
3738			x += sprintf(buf + x, " N%d=%lu",
3739					node, nodes[node]);
3740#endif
3741	kfree(nodes);
3742	return x + sprintf(buf + x, "\n");
3743}
3744
3745static int any_slab_objects(struct kmem_cache *s)
3746{
3747	int node;
3748
3749	for_each_online_node(node) {
3750		struct kmem_cache_node *n = get_node(s, node);
3751
3752		if (!n)
3753			continue;
3754
3755		if (atomic_long_read(&n->total_objects))
3756			return 1;
3757	}
3758	return 0;
3759}
3760
3761#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3762#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3763
3764struct slab_attribute {
3765	struct attribute attr;
3766	ssize_t (*show)(struct kmem_cache *s, char *buf);
3767	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3768};
3769
3770#define SLAB_ATTR_RO(_name) \
3771	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3772
3773#define SLAB_ATTR(_name) \
3774	static struct slab_attribute _name##_attr =  \
3775	__ATTR(_name, 0644, _name##_show, _name##_store)
3776
3777static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3778{
3779	return sprintf(buf, "%d\n", s->size);
3780}
3781SLAB_ATTR_RO(slab_size);
3782
3783static ssize_t align_show(struct kmem_cache *s, char *buf)
3784{
3785	return sprintf(buf, "%d\n", s->align);
3786}
3787SLAB_ATTR_RO(align);
3788
3789static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3790{
3791	return sprintf(buf, "%d\n", s->objsize);
3792}
3793SLAB_ATTR_RO(object_size);
3794
3795static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3796{
3797	return sprintf(buf, "%d\n", oo_objects(s->oo));
3798}
3799SLAB_ATTR_RO(objs_per_slab);
3800
3801static ssize_t order_store(struct kmem_cache *s,
3802				const char *buf, size_t length)
3803{
3804	unsigned long order;
3805	int err;
3806
3807	err = strict_strtoul(buf, 10, &order);
3808	if (err)
3809		return err;
3810
3811	if (order > slub_max_order || order < slub_min_order)
3812		return -EINVAL;
3813
3814	calculate_sizes(s, order);
3815	return length;
3816}
3817
3818static ssize_t order_show(struct kmem_cache *s, char *buf)
3819{
3820	return sprintf(buf, "%d\n", oo_order(s->oo));
3821}
3822SLAB_ATTR(order);
3823
3824static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3825{
3826	if (s->ctor) {
3827		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3828
3829		return n + sprintf(buf + n, "\n");
3830	}
3831	return 0;
3832}
3833SLAB_ATTR_RO(ctor);
3834
3835static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3836{
3837	return sprintf(buf, "%d\n", s->refcount - 1);
3838}
3839SLAB_ATTR_RO(aliases);
3840
3841static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3842{
3843	return show_slab_objects(s, buf, SO_ALL);
3844}
3845SLAB_ATTR_RO(slabs);
3846
3847static ssize_t partial_show(struct kmem_cache *s, char *buf)
3848{
3849	return show_slab_objects(s, buf, SO_PARTIAL);
3850}
3851SLAB_ATTR_RO(partial);
3852
3853static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3854{
3855	return show_slab_objects(s, buf, SO_CPU);
3856}
3857SLAB_ATTR_RO(cpu_slabs);
3858
3859static ssize_t objects_show(struct kmem_cache *s, char *buf)
3860{
3861	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3862}
3863SLAB_ATTR_RO(objects);
3864
3865static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3866{
3867	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3868}
3869SLAB_ATTR_RO(objects_partial);
3870
3871static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3872{
3873	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3874}
3875SLAB_ATTR_RO(total_objects);
3876
3877static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3878{
3879	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3880}
3881
3882static ssize_t sanity_checks_store(struct kmem_cache *s,
3883				const char *buf, size_t length)
3884{
3885	s->flags &= ~SLAB_DEBUG_FREE;
3886	if (buf[0] == '1')
3887		s->flags |= SLAB_DEBUG_FREE;
3888	return length;
3889}
3890SLAB_ATTR(sanity_checks);
3891
3892static ssize_t trace_show(struct kmem_cache *s, char *buf)
3893{
3894	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3895}
3896
3897static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3898							size_t length)
3899{
3900	s->flags &= ~SLAB_TRACE;
3901	if (buf[0] == '1')
3902		s->flags |= SLAB_TRACE;
3903	return length;
3904}
3905SLAB_ATTR(trace);
3906
3907static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3908{
3909	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3910}
3911
3912static ssize_t reclaim_account_store(struct kmem_cache *s,
3913				const char *buf, size_t length)
3914{
3915	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3916	if (buf[0] == '1')
3917		s->flags |= SLAB_RECLAIM_ACCOUNT;
3918	return length;
3919}
3920SLAB_ATTR(reclaim_account);
3921
3922static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3923{
3924	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3925}
3926SLAB_ATTR_RO(hwcache_align);
3927
3928#ifdef CONFIG_ZONE_DMA
3929static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3930{
3931	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3932}
3933SLAB_ATTR_RO(cache_dma);
3934#endif
3935
3936static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3937{
3938	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3939}
3940SLAB_ATTR_RO(destroy_by_rcu);
3941
3942static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3943{
3944	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3945}
3946
3947static ssize_t red_zone_store(struct kmem_cache *s,
3948				const char *buf, size_t length)
3949{
3950	if (any_slab_objects(s))
3951		return -EBUSY;
3952
3953	s->flags &= ~SLAB_RED_ZONE;
3954	if (buf[0] == '1')
3955		s->flags |= SLAB_RED_ZONE;
3956	calculate_sizes(s, -1);
3957	return length;
3958}
3959SLAB_ATTR(red_zone);
3960
3961static ssize_t poison_show(struct kmem_cache *s, char *buf)
3962{
3963	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3964}
3965
3966static ssize_t poison_store(struct kmem_cache *s,
3967				const char *buf, size_t length)
3968{
3969	if (any_slab_objects(s))
3970		return -EBUSY;
3971
3972	s->flags &= ~SLAB_POISON;
3973	if (buf[0] == '1')
3974		s->flags |= SLAB_POISON;
3975	calculate_sizes(s, -1);
3976	return length;
3977}
3978SLAB_ATTR(poison);
3979
3980static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3981{
3982	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3983}
3984
3985static ssize_t store_user_store(struct kmem_cache *s,
3986				const char *buf, size_t length)
3987{
3988	if (any_slab_objects(s))
3989		return -EBUSY;
3990
3991	s->flags &= ~SLAB_STORE_USER;
3992	if (buf[0] == '1')
3993		s->flags |= SLAB_STORE_USER;
3994	calculate_sizes(s, -1);
3995	return length;
3996}
3997SLAB_ATTR(store_user);
3998
3999static ssize_t validate_show(struct kmem_cache *s, char *buf)
4000{
4001	return 0;
4002}
4003
4004static ssize_t validate_store(struct kmem_cache *s,
4005			const char *buf, size_t length)
4006{
4007	int ret = -EINVAL;
4008
4009	if (buf[0] == '1') {
4010		ret = validate_slab_cache(s);
4011		if (ret >= 0)
4012			ret = length;
4013	}
4014	return ret;
4015}
4016SLAB_ATTR(validate);
4017
4018static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4019{
4020	return 0;
4021}
4022
4023static ssize_t shrink_store(struct kmem_cache *s,
4024			const char *buf, size_t length)
4025{
4026	if (buf[0] == '1') {
4027		int rc = kmem_cache_shrink(s);
4028
4029		if (rc)
4030			return rc;
4031	} else
4032		return -EINVAL;
4033	return length;
4034}
4035SLAB_ATTR(shrink);
4036
4037static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4038{
4039	if (!(s->flags & SLAB_STORE_USER))
4040		return -ENOSYS;
4041	return list_locations(s, buf, TRACK_ALLOC);
4042}
4043SLAB_ATTR_RO(alloc_calls);
4044
4045static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4046{
4047	if (!(s->flags & SLAB_STORE_USER))
4048		return -ENOSYS;
4049	return list_locations(s, buf, TRACK_FREE);
4050}
4051SLAB_ATTR_RO(free_calls);
4052
4053#ifdef CONFIG_NUMA
4054static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4055{
4056	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4057}
4058
4059static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4060				const char *buf, size_t length)
4061{
4062	unsigned long ratio;
4063	int err;
4064
4065	err = strict_strtoul(buf, 10, &ratio);
4066	if (err)
4067		return err;
4068
4069	if (ratio <= 100)
4070		s->remote_node_defrag_ratio = ratio * 10;
4071
4072	return length;
4073}
4074SLAB_ATTR(remote_node_defrag_ratio);
4075#endif
4076
4077#ifdef CONFIG_SLUB_STATS
4078static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4079{
4080	unsigned long sum  = 0;
4081	int cpu;
4082	int len;
4083	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4084
4085	if (!data)
4086		return -ENOMEM;
4087
4088	for_each_online_cpu(cpu) {
4089		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4090
4091		data[cpu] = x;
4092		sum += x;
4093	}
4094
4095	len = sprintf(buf, "%lu", sum);
4096
4097#ifdef CONFIG_SMP
4098	for_each_online_cpu(cpu) {
4099		if (data[cpu] && len < PAGE_SIZE - 20)
4100			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4101	}
4102#endif
4103	kfree(data);
4104	return len + sprintf(buf + len, "\n");
4105}
4106
4107#define STAT_ATTR(si, text) 					\
4108static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4109{								\
4110	return show_stat(s, buf, si);				\
4111}								\
4112SLAB_ATTR_RO(text);						\
4113
4114STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4115STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4116STAT_ATTR(FREE_FASTPATH, free_fastpath);
4117STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4118STAT_ATTR(FREE_FROZEN, free_frozen);
4119STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4120STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4121STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4122STAT_ATTR(ALLOC_SLAB, alloc_slab);
4123STAT_ATTR(ALLOC_REFILL, alloc_refill);
4124STAT_ATTR(FREE_SLAB, free_slab);
4125STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4126STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4127STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4128STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4129STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4130STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4131STAT_ATTR(ORDER_FALLBACK, order_fallback);
4132#endif
4133
4134static struct attribute *slab_attrs[] = {
4135	&slab_size_attr.attr,
4136	&object_size_attr.attr,
4137	&objs_per_slab_attr.attr,
4138	&order_attr.attr,
4139	&objects_attr.attr,
4140	&objects_partial_attr.attr,
4141	&total_objects_attr.attr,
4142	&slabs_attr.attr,
4143	&partial_attr.attr,
4144	&cpu_slabs_attr.attr,
4145	&ctor_attr.attr,
4146	&aliases_attr.attr,
4147	&align_attr.attr,
4148	&sanity_checks_attr.attr,
4149	&trace_attr.attr,
4150	&hwcache_align_attr.attr,
4151	&reclaim_account_attr.attr,
4152	&destroy_by_rcu_attr.attr,
4153	&red_zone_attr.attr,
4154	&poison_attr.attr,
4155	&store_user_attr.attr,
4156	&validate_attr.attr,
4157	&shrink_attr.attr,
4158	&alloc_calls_attr.attr,
4159	&free_calls_attr.attr,
4160#ifdef CONFIG_ZONE_DMA
4161	&cache_dma_attr.attr,
4162#endif
4163#ifdef CONFIG_NUMA
4164	&remote_node_defrag_ratio_attr.attr,
4165#endif
4166#ifdef CONFIG_SLUB_STATS
4167	&alloc_fastpath_attr.attr,
4168	&alloc_slowpath_attr.attr,
4169	&free_fastpath_attr.attr,
4170	&free_slowpath_attr.attr,
4171	&free_frozen_attr.attr,
4172	&free_add_partial_attr.attr,
4173	&free_remove_partial_attr.attr,
4174	&alloc_from_partial_attr.attr,
4175	&alloc_slab_attr.attr,
4176	&alloc_refill_attr.attr,
4177	&free_slab_attr.attr,
4178	&cpuslab_flush_attr.attr,
4179	&deactivate_full_attr.attr,
4180	&deactivate_empty_attr.attr,
4181	&deactivate_to_head_attr.attr,
4182	&deactivate_to_tail_attr.attr,
4183	&deactivate_remote_frees_attr.attr,
4184	&order_fallback_attr.attr,
4185#endif
4186	NULL
4187};
4188
4189static struct attribute_group slab_attr_group = {
4190	.attrs = slab_attrs,
4191};
4192
4193static ssize_t slab_attr_show(struct kobject *kobj,
4194				struct attribute *attr,
4195				char *buf)
4196{
4197	struct slab_attribute *attribute;
4198	struct kmem_cache *s;
4199	int err;
4200
4201	attribute = to_slab_attr(attr);
4202	s = to_slab(kobj);
4203
4204	if (!attribute->show)
4205		return -EIO;
4206
4207	err = attribute->show(s, buf);
4208
4209	return err;
4210}
4211
4212static ssize_t slab_attr_store(struct kobject *kobj,
4213				struct attribute *attr,
4214				const char *buf, size_t len)
4215{
4216	struct slab_attribute *attribute;
4217	struct kmem_cache *s;
4218	int err;
4219
4220	attribute = to_slab_attr(attr);
4221	s = to_slab(kobj);
4222
4223	if (!attribute->store)
4224		return -EIO;
4225
4226	err = attribute->store(s, buf, len);
4227
4228	return err;
4229}
4230
4231static void kmem_cache_release(struct kobject *kobj)
4232{
4233	struct kmem_cache *s = to_slab(kobj);
4234
4235	kfree(s);
4236}
4237
4238static struct sysfs_ops slab_sysfs_ops = {
4239	.show = slab_attr_show,
4240	.store = slab_attr_store,
4241};
4242
4243static struct kobj_type slab_ktype = {
4244	.sysfs_ops = &slab_sysfs_ops,
4245	.release = kmem_cache_release
4246};
4247
4248static int uevent_filter(struct kset *kset, struct kobject *kobj)
4249{
4250	struct kobj_type *ktype = get_ktype(kobj);
4251
4252	if (ktype == &slab_ktype)
4253		return 1;
4254	return 0;
4255}
4256
4257static struct kset_uevent_ops slab_uevent_ops = {
4258	.filter = uevent_filter,
4259};
4260
4261static struct kset *slab_kset;
4262
4263#define ID_STR_LENGTH 64
4264
4265/* Create a unique string id for a slab cache:
4266 *
4267 * Format	:[flags-]size
4268 */
4269static char *create_unique_id(struct kmem_cache *s)
4270{
4271	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4272	char *p = name;
4273
4274	BUG_ON(!name);
4275
4276	*p++ = ':';
4277	/*
4278	 * First flags affecting slabcache operations. We will only
4279	 * get here for aliasable slabs so we do not need to support
4280	 * too many flags. The flags here must cover all flags that
4281	 * are matched during merging to guarantee that the id is
4282	 * unique.
4283	 */
4284	if (s->flags & SLAB_CACHE_DMA)
4285		*p++ = 'd';
4286	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4287		*p++ = 'a';
4288	if (s->flags & SLAB_DEBUG_FREE)
4289		*p++ = 'F';
4290	if (p != name + 1)
4291		*p++ = '-';
4292	p += sprintf(p, "%07d", s->size);
4293	BUG_ON(p > name + ID_STR_LENGTH - 1);
4294	return name;
4295}
4296
4297static int sysfs_slab_add(struct kmem_cache *s)
4298{
4299	int err;
4300	const char *name;
4301	int unmergeable;
4302
4303	if (slab_state < SYSFS)
4304		/* Defer until later */
4305		return 0;
4306
4307	unmergeable = slab_unmergeable(s);
4308	if (unmergeable) {
4309		/*
4310		 * Slabcache can never be merged so we can use the name proper.
4311		 * This is typically the case for debug situations. In that
4312		 * case we can catch duplicate names easily.
4313		 */
4314		sysfs_remove_link(&slab_kset->kobj, s->name);
4315		name = s->name;
4316	} else {
4317		/*
4318		 * Create a unique name for the slab as a target
4319		 * for the symlinks.
4320		 */
4321		name = create_unique_id(s);
4322	}
4323
4324	s->kobj.kset = slab_kset;
4325	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4326	if (err) {
4327		kobject_put(&s->kobj);
4328		return err;
4329	}
4330
4331	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4332	if (err)
4333		return err;
4334	kobject_uevent(&s->kobj, KOBJ_ADD);
4335	if (!unmergeable) {
4336		/* Setup first alias */
4337		sysfs_slab_alias(s, s->name);
4338		kfree(name);
4339	}
4340	return 0;
4341}
4342
4343static void sysfs_slab_remove(struct kmem_cache *s)
4344{
4345	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4346	kobject_del(&s->kobj);
4347	kobject_put(&s->kobj);
4348}
4349
4350/*
4351 * Need to buffer aliases during bootup until sysfs becomes
4352 * available lest we loose that information.
4353 */
4354struct saved_alias {
4355	struct kmem_cache *s;
4356	const char *name;
4357	struct saved_alias *next;
4358};
4359
4360static struct saved_alias *alias_list;
4361
4362static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4363{
4364	struct saved_alias *al;
4365
4366	if (slab_state == SYSFS) {
4367		/*
4368		 * If we have a leftover link then remove it.
4369		 */
4370		sysfs_remove_link(&slab_kset->kobj, name);
4371		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4372	}
4373
4374	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4375	if (!al)
4376		return -ENOMEM;
4377
4378	al->s = s;
4379	al->name = name;
4380	al->next = alias_list;
4381	alias_list = al;
4382	return 0;
4383}
4384
4385static int __init slab_sysfs_init(void)
4386{
4387	struct kmem_cache *s;
4388	int err;
4389
4390	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4391	if (!slab_kset) {
4392		printk(KERN_ERR "Cannot register slab subsystem.\n");
4393		return -ENOSYS;
4394	}
4395
4396	slab_state = SYSFS;
4397
4398	list_for_each_entry(s, &slab_caches, list) {
4399		err = sysfs_slab_add(s);
4400		if (err)
4401			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4402						" to sysfs\n", s->name);
4403	}
4404
4405	while (alias_list) {
4406		struct saved_alias *al = alias_list;
4407
4408		alias_list = alias_list->next;
4409		err = sysfs_slab_alias(al->s, al->name);
4410		if (err)
4411			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4412					" %s to sysfs\n", s->name);
4413		kfree(al);
4414	}
4415
4416	resiliency_test();
4417	return 0;
4418}
4419
4420__initcall(slab_sysfs_init);
4421#endif
4422
4423/*
4424 * The /proc/slabinfo ABI
4425 */
4426#ifdef CONFIG_SLABINFO
4427static void print_slabinfo_header(struct seq_file *m)
4428{
4429	seq_puts(m, "slabinfo - version: 2.1\n");
4430	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4431		 "<objperslab> <pagesperslab>");
4432	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4433	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4434	seq_putc(m, '\n');
4435}
4436
4437static void *s_start(struct seq_file *m, loff_t *pos)
4438{
4439	loff_t n = *pos;
4440
4441	down_read(&slub_lock);
4442	if (!n)
4443		print_slabinfo_header(m);
4444
4445	return seq_list_start(&slab_caches, *pos);
4446}
4447
4448static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4449{
4450	return seq_list_next(p, &slab_caches, pos);
4451}
4452
4453static void s_stop(struct seq_file *m, void *p)
4454{
4455	up_read(&slub_lock);
4456}
4457
4458static int s_show(struct seq_file *m, void *p)
4459{
4460	unsigned long nr_partials = 0;
4461	unsigned long nr_slabs = 0;
4462	unsigned long nr_inuse = 0;
4463	unsigned long nr_objs = 0;
4464	unsigned long nr_free = 0;
4465	struct kmem_cache *s;
4466	int node;
4467
4468	s = list_entry(p, struct kmem_cache, list);
4469
4470	for_each_online_node(node) {
4471		struct kmem_cache_node *n = get_node(s, node);
4472
4473		if (!n)
4474			continue;
4475
4476		nr_partials += n->nr_partial;
4477		nr_slabs += atomic_long_read(&n->nr_slabs);
4478		nr_objs += atomic_long_read(&n->total_objects);
4479		nr_free += count_partial(n, count_free);
4480	}
4481
4482	nr_inuse = nr_objs - nr_free;
4483
4484	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4485		   nr_objs, s->size, oo_objects(s->oo),
4486		   (1 << oo_order(s->oo)));
4487	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4488	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4489		   0UL);
4490	seq_putc(m, '\n');
4491	return 0;
4492}
4493
4494static const struct seq_operations slabinfo_op = {
4495	.start = s_start,
4496	.next = s_next,
4497	.stop = s_stop,
4498	.show = s_show,
4499};
4500
4501static int slabinfo_open(struct inode *inode, struct file *file)
4502{
4503	return seq_open(file, &slabinfo_op);
4504}
4505
4506static const struct file_operations proc_slabinfo_operations = {
4507	.open		= slabinfo_open,
4508	.read		= seq_read,
4509	.llseek		= seq_lseek,
4510	.release	= seq_release,
4511};
4512
4513static int __init slab_proc_init(void)
4514{
4515	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4516	return 0;
4517}
4518module_init(slab_proc_init);
4519#endif /* CONFIG_SLABINFO */
4520