slub.c revision 8ff12cfc009a2a38d87fa7058226fe197bb2696f
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23#include <linux/memory.h>
24
25/*
26 * Lock order:
27 *   1. slab_lock(page)
28 *   2. slab->list_lock
29 *
30 *   The slab_lock protects operations on the object of a particular
31 *   slab and its metadata in the page struct. If the slab lock
32 *   has been taken then no allocations nor frees can be performed
33 *   on the objects in the slab nor can the slab be added or removed
34 *   from the partial or full lists since this would mean modifying
35 *   the page_struct of the slab.
36 *
37 *   The list_lock protects the partial and full list on each node and
38 *   the partial slab counter. If taken then no new slabs may be added or
39 *   removed from the lists nor make the number of partial slabs be modified.
40 *   (Note that the total number of slabs is an atomic value that may be
41 *   modified without taking the list lock).
42 *
43 *   The list_lock is a centralized lock and thus we avoid taking it as
44 *   much as possible. As long as SLUB does not have to handle partial
45 *   slabs, operations can continue without any centralized lock. F.e.
46 *   allocating a long series of objects that fill up slabs does not require
47 *   the list lock.
48 *
49 *   The lock order is sometimes inverted when we are trying to get a slab
50 *   off a list. We take the list_lock and then look for a page on the list
51 *   to use. While we do that objects in the slabs may be freed. We can
52 *   only operate on the slab if we have also taken the slab_lock. So we use
53 *   a slab_trylock() on the slab. If trylock was successful then no frees
54 *   can occur anymore and we can use the slab for allocations etc. If the
55 *   slab_trylock() does not succeed then frees are in progress in the slab and
56 *   we must stay away from it for a while since we may cause a bouncing
57 *   cacheline if we try to acquire the lock. So go onto the next slab.
58 *   If all pages are busy then we may allocate a new slab instead of reusing
59 *   a partial slab. A new slab has noone operating on it and thus there is
60 *   no danger of cacheline contention.
61 *
62 *   Interrupts are disabled during allocation and deallocation in order to
63 *   make the slab allocator safe to use in the context of an irq. In addition
64 *   interrupts are disabled to ensure that the processor does not change
65 *   while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
82 * PageActive 		The slab is frozen and exempt from list processing.
83 * 			This means that the slab is dedicated to a purpose
84 * 			such as satisfying allocations for a specific
85 * 			processor. Objects may be freed in the slab while
86 * 			it is frozen but slab_free will then skip the usual
87 * 			list operations. It is up to the processor holding
88 * 			the slab to integrate the slab into the slab lists
89 * 			when the slab is no longer needed.
90 *
91 * 			One use of this flag is to mark slabs that are
92 * 			used for allocations. Then such a slab becomes a cpu
93 * 			slab. The cpu slab may be equipped with an additional
94 * 			freelist that allows lockless access to
95 * 			free objects in addition to the regular freelist
96 * 			that requires the slab lock.
97 *
98 * PageError		Slab requires special handling due to debug
99 * 			options set. This moves	slab handling out of
100 * 			the fast path and disables lockless freelists.
101 */
102
103#define FROZEN (1 << PG_active)
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG (1 << PG_error)
107#else
108#define SLABDEBUG 0
109#endif
110
111static inline int SlabFrozen(struct page *page)
112{
113	return page->flags & FROZEN;
114}
115
116static inline void SetSlabFrozen(struct page *page)
117{
118	page->flags |= FROZEN;
119}
120
121static inline void ClearSlabFrozen(struct page *page)
122{
123	page->flags &= ~FROZEN;
124}
125
126static inline int SlabDebug(struct page *page)
127{
128	return page->flags & SLABDEBUG;
129}
130
131static inline void SetSlabDebug(struct page *page)
132{
133	page->flags |= SLABDEBUG;
134}
135
136static inline void ClearSlabDebug(struct page *page)
137{
138	page->flags &= ~SLABDEBUG;
139}
140
141/*
142 * Issues still to be resolved:
143 *
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
146 * - Variable sizing of the per node arrays
147 */
148
149/* Enable to test recovery from slab corruption on boot */
150#undef SLUB_RESILIENCY_TEST
151
152/*
153 * Currently fastpath is not supported if preemption is enabled.
154 */
155#if defined(CONFIG_FAST_CMPXCHG_LOCAL) && !defined(CONFIG_PREEMPT)
156#define SLUB_FASTPATH
157#endif
158
159#if PAGE_SHIFT <= 12
160
161/*
162 * Small page size. Make sure that we do not fragment memory
163 */
164#define DEFAULT_MAX_ORDER 1
165#define DEFAULT_MIN_OBJECTS 4
166
167#else
168
169/*
170 * Large page machines are customarily able to handle larger
171 * page orders.
172 */
173#define DEFAULT_MAX_ORDER 2
174#define DEFAULT_MIN_OBJECTS 8
175
176#endif
177
178/*
179 * Mininum number of partial slabs. These will be left on the partial
180 * lists even if they are empty. kmem_cache_shrink may reclaim them.
181 */
182#define MIN_PARTIAL 5
183
184/*
185 * Maximum number of desirable partial slabs.
186 * The existence of more partial slabs makes kmem_cache_shrink
187 * sort the partial list by the number of objects in the.
188 */
189#define MAX_PARTIAL 10
190
191#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
192				SLAB_POISON | SLAB_STORE_USER)
193
194/*
195 * Set of flags that will prevent slab merging
196 */
197#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
198		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
199
200#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
201		SLAB_CACHE_DMA)
202
203#ifndef ARCH_KMALLOC_MINALIGN
204#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
205#endif
206
207#ifndef ARCH_SLAB_MINALIGN
208#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
209#endif
210
211/* Internal SLUB flags */
212#define __OBJECT_POISON		0x80000000 /* Poison object */
213#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
214
215/* Not all arches define cache_line_size */
216#ifndef cache_line_size
217#define cache_line_size()	L1_CACHE_BYTES
218#endif
219
220static int kmem_size = sizeof(struct kmem_cache);
221
222#ifdef CONFIG_SMP
223static struct notifier_block slab_notifier;
224#endif
225
226static enum {
227	DOWN,		/* No slab functionality available */
228	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
229	UP,		/* Everything works but does not show up in sysfs */
230	SYSFS		/* Sysfs up */
231} slab_state = DOWN;
232
233/* A list of all slab caches on the system */
234static DECLARE_RWSEM(slub_lock);
235static LIST_HEAD(slab_caches);
236
237/*
238 * Tracking user of a slab.
239 */
240struct track {
241	void *addr;		/* Called from address */
242	int cpu;		/* Was running on cpu */
243	int pid;		/* Pid context */
244	unsigned long when;	/* When did the operation occur */
245};
246
247enum track_item { TRACK_ALLOC, TRACK_FREE };
248
249#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
250static int sysfs_slab_add(struct kmem_cache *);
251static int sysfs_slab_alias(struct kmem_cache *, const char *);
252static void sysfs_slab_remove(struct kmem_cache *);
253
254#else
255static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
256static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
257							{ return 0; }
258static inline void sysfs_slab_remove(struct kmem_cache *s)
259{
260	kfree(s);
261}
262
263#endif
264
265static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
266{
267#ifdef CONFIG_SLUB_STATS
268	c->stat[si]++;
269#endif
270}
271
272/********************************************************************
273 * 			Core slab cache functions
274 *******************************************************************/
275
276int slab_is_available(void)
277{
278	return slab_state >= UP;
279}
280
281static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
282{
283#ifdef CONFIG_NUMA
284	return s->node[node];
285#else
286	return &s->local_node;
287#endif
288}
289
290static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
291{
292#ifdef CONFIG_SMP
293	return s->cpu_slab[cpu];
294#else
295	return &s->cpu_slab;
296#endif
297}
298
299/*
300 * The end pointer in a slab is special. It points to the first object in the
301 * slab but has bit 0 set to mark it.
302 *
303 * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
304 * in the mapping set.
305 */
306static inline int is_end(void *addr)
307{
308	return (unsigned long)addr & PAGE_MAPPING_ANON;
309}
310
311void *slab_address(struct page *page)
312{
313	return page->end - PAGE_MAPPING_ANON;
314}
315
316static inline int check_valid_pointer(struct kmem_cache *s,
317				struct page *page, const void *object)
318{
319	void *base;
320
321	if (object == page->end)
322		return 1;
323
324	base = slab_address(page);
325	if (object < base || object >= base + s->objects * s->size ||
326		(object - base) % s->size) {
327		return 0;
328	}
329
330	return 1;
331}
332
333/*
334 * Slow version of get and set free pointer.
335 *
336 * This version requires touching the cache lines of kmem_cache which
337 * we avoid to do in the fast alloc free paths. There we obtain the offset
338 * from the page struct.
339 */
340static inline void *get_freepointer(struct kmem_cache *s, void *object)
341{
342	return *(void **)(object + s->offset);
343}
344
345static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
346{
347	*(void **)(object + s->offset) = fp;
348}
349
350/* Loop over all objects in a slab */
351#define for_each_object(__p, __s, __addr) \
352	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
353			__p += (__s)->size)
354
355/* Scan freelist */
356#define for_each_free_object(__p, __s, __free) \
357	for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
358		__p))
359
360/* Determine object index from a given position */
361static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
362{
363	return (p - addr) / s->size;
364}
365
366#ifdef CONFIG_SLUB_DEBUG
367/*
368 * Debug settings:
369 */
370#ifdef CONFIG_SLUB_DEBUG_ON
371static int slub_debug = DEBUG_DEFAULT_FLAGS;
372#else
373static int slub_debug;
374#endif
375
376static char *slub_debug_slabs;
377
378/*
379 * Object debugging
380 */
381static void print_section(char *text, u8 *addr, unsigned int length)
382{
383	int i, offset;
384	int newline = 1;
385	char ascii[17];
386
387	ascii[16] = 0;
388
389	for (i = 0; i < length; i++) {
390		if (newline) {
391			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
392			newline = 0;
393		}
394		printk(KERN_CONT " %02x", addr[i]);
395		offset = i % 16;
396		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
397		if (offset == 15) {
398			printk(KERN_CONT " %s\n", ascii);
399			newline = 1;
400		}
401	}
402	if (!newline) {
403		i %= 16;
404		while (i < 16) {
405			printk(KERN_CONT "   ");
406			ascii[i] = ' ';
407			i++;
408		}
409		printk(KERN_CONT " %s\n", ascii);
410	}
411}
412
413static struct track *get_track(struct kmem_cache *s, void *object,
414	enum track_item alloc)
415{
416	struct track *p;
417
418	if (s->offset)
419		p = object + s->offset + sizeof(void *);
420	else
421		p = object + s->inuse;
422
423	return p + alloc;
424}
425
426static void set_track(struct kmem_cache *s, void *object,
427				enum track_item alloc, void *addr)
428{
429	struct track *p;
430
431	if (s->offset)
432		p = object + s->offset + sizeof(void *);
433	else
434		p = object + s->inuse;
435
436	p += alloc;
437	if (addr) {
438		p->addr = addr;
439		p->cpu = smp_processor_id();
440		p->pid = current ? current->pid : -1;
441		p->when = jiffies;
442	} else
443		memset(p, 0, sizeof(struct track));
444}
445
446static void init_tracking(struct kmem_cache *s, void *object)
447{
448	if (!(s->flags & SLAB_STORE_USER))
449		return;
450
451	set_track(s, object, TRACK_FREE, NULL);
452	set_track(s, object, TRACK_ALLOC, NULL);
453}
454
455static void print_track(const char *s, struct track *t)
456{
457	if (!t->addr)
458		return;
459
460	printk(KERN_ERR "INFO: %s in ", s);
461	__print_symbol("%s", (unsigned long)t->addr);
462	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
463}
464
465static void print_tracking(struct kmem_cache *s, void *object)
466{
467	if (!(s->flags & SLAB_STORE_USER))
468		return;
469
470	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
471	print_track("Freed", get_track(s, object, TRACK_FREE));
472}
473
474static void print_page_info(struct page *page)
475{
476	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
477		page, page->inuse, page->freelist, page->flags);
478
479}
480
481static void slab_bug(struct kmem_cache *s, char *fmt, ...)
482{
483	va_list args;
484	char buf[100];
485
486	va_start(args, fmt);
487	vsnprintf(buf, sizeof(buf), fmt, args);
488	va_end(args);
489	printk(KERN_ERR "========================================"
490			"=====================================\n");
491	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
492	printk(KERN_ERR "----------------------------------------"
493			"-------------------------------------\n\n");
494}
495
496static void slab_fix(struct kmem_cache *s, char *fmt, ...)
497{
498	va_list args;
499	char buf[100];
500
501	va_start(args, fmt);
502	vsnprintf(buf, sizeof(buf), fmt, args);
503	va_end(args);
504	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
505}
506
507static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
508{
509	unsigned int off;	/* Offset of last byte */
510	u8 *addr = slab_address(page);
511
512	print_tracking(s, p);
513
514	print_page_info(page);
515
516	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
517			p, p - addr, get_freepointer(s, p));
518
519	if (p > addr + 16)
520		print_section("Bytes b4", p - 16, 16);
521
522	print_section("Object", p, min(s->objsize, 128));
523
524	if (s->flags & SLAB_RED_ZONE)
525		print_section("Redzone", p + s->objsize,
526			s->inuse - s->objsize);
527
528	if (s->offset)
529		off = s->offset + sizeof(void *);
530	else
531		off = s->inuse;
532
533	if (s->flags & SLAB_STORE_USER)
534		off += 2 * sizeof(struct track);
535
536	if (off != s->size)
537		/* Beginning of the filler is the free pointer */
538		print_section("Padding", p + off, s->size - off);
539
540	dump_stack();
541}
542
543static void object_err(struct kmem_cache *s, struct page *page,
544			u8 *object, char *reason)
545{
546	slab_bug(s, reason);
547	print_trailer(s, page, object);
548}
549
550static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
551{
552	va_list args;
553	char buf[100];
554
555	va_start(args, fmt);
556	vsnprintf(buf, sizeof(buf), fmt, args);
557	va_end(args);
558	slab_bug(s, fmt);
559	print_page_info(page);
560	dump_stack();
561}
562
563static void init_object(struct kmem_cache *s, void *object, int active)
564{
565	u8 *p = object;
566
567	if (s->flags & __OBJECT_POISON) {
568		memset(p, POISON_FREE, s->objsize - 1);
569		p[s->objsize - 1] = POISON_END;
570	}
571
572	if (s->flags & SLAB_RED_ZONE)
573		memset(p + s->objsize,
574			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
575			s->inuse - s->objsize);
576}
577
578static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
579{
580	while (bytes) {
581		if (*start != (u8)value)
582			return start;
583		start++;
584		bytes--;
585	}
586	return NULL;
587}
588
589static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
590						void *from, void *to)
591{
592	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
593	memset(from, data, to - from);
594}
595
596static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
597			u8 *object, char *what,
598			u8 *start, unsigned int value, unsigned int bytes)
599{
600	u8 *fault;
601	u8 *end;
602
603	fault = check_bytes(start, value, bytes);
604	if (!fault)
605		return 1;
606
607	end = start + bytes;
608	while (end > fault && end[-1] == value)
609		end--;
610
611	slab_bug(s, "%s overwritten", what);
612	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
613					fault, end - 1, fault[0], value);
614	print_trailer(s, page, object);
615
616	restore_bytes(s, what, value, fault, end);
617	return 0;
618}
619
620/*
621 * Object layout:
622 *
623 * object address
624 * 	Bytes of the object to be managed.
625 * 	If the freepointer may overlay the object then the free
626 * 	pointer is the first word of the object.
627 *
628 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
629 * 	0xa5 (POISON_END)
630 *
631 * object + s->objsize
632 * 	Padding to reach word boundary. This is also used for Redzoning.
633 * 	Padding is extended by another word if Redzoning is enabled and
634 * 	objsize == inuse.
635 *
636 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
637 * 	0xcc (RED_ACTIVE) for objects in use.
638 *
639 * object + s->inuse
640 * 	Meta data starts here.
641 *
642 * 	A. Free pointer (if we cannot overwrite object on free)
643 * 	B. Tracking data for SLAB_STORE_USER
644 * 	C. Padding to reach required alignment boundary or at mininum
645 * 		one word if debuggin is on to be able to detect writes
646 * 		before the word boundary.
647 *
648 *	Padding is done using 0x5a (POISON_INUSE)
649 *
650 * object + s->size
651 * 	Nothing is used beyond s->size.
652 *
653 * If slabcaches are merged then the objsize and inuse boundaries are mostly
654 * ignored. And therefore no slab options that rely on these boundaries
655 * may be used with merged slabcaches.
656 */
657
658static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
659{
660	unsigned long off = s->inuse;	/* The end of info */
661
662	if (s->offset)
663		/* Freepointer is placed after the object. */
664		off += sizeof(void *);
665
666	if (s->flags & SLAB_STORE_USER)
667		/* We also have user information there */
668		off += 2 * sizeof(struct track);
669
670	if (s->size == off)
671		return 1;
672
673	return check_bytes_and_report(s, page, p, "Object padding",
674				p + off, POISON_INUSE, s->size - off);
675}
676
677static int slab_pad_check(struct kmem_cache *s, struct page *page)
678{
679	u8 *start;
680	u8 *fault;
681	u8 *end;
682	int length;
683	int remainder;
684
685	if (!(s->flags & SLAB_POISON))
686		return 1;
687
688	start = slab_address(page);
689	end = start + (PAGE_SIZE << s->order);
690	length = s->objects * s->size;
691	remainder = end - (start + length);
692	if (!remainder)
693		return 1;
694
695	fault = check_bytes(start + length, POISON_INUSE, remainder);
696	if (!fault)
697		return 1;
698	while (end > fault && end[-1] == POISON_INUSE)
699		end--;
700
701	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
702	print_section("Padding", start, length);
703
704	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
705	return 0;
706}
707
708static int check_object(struct kmem_cache *s, struct page *page,
709					void *object, int active)
710{
711	u8 *p = object;
712	u8 *endobject = object + s->objsize;
713
714	if (s->flags & SLAB_RED_ZONE) {
715		unsigned int red =
716			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
717
718		if (!check_bytes_and_report(s, page, object, "Redzone",
719			endobject, red, s->inuse - s->objsize))
720			return 0;
721	} else {
722		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
723			check_bytes_and_report(s, page, p, "Alignment padding", endobject,
724				POISON_INUSE, s->inuse - s->objsize);
725	}
726
727	if (s->flags & SLAB_POISON) {
728		if (!active && (s->flags & __OBJECT_POISON) &&
729			(!check_bytes_and_report(s, page, p, "Poison", p,
730					POISON_FREE, s->objsize - 1) ||
731			 !check_bytes_and_report(s, page, p, "Poison",
732				p + s->objsize - 1, POISON_END, 1)))
733			return 0;
734		/*
735		 * check_pad_bytes cleans up on its own.
736		 */
737		check_pad_bytes(s, page, p);
738	}
739
740	if (!s->offset && active)
741		/*
742		 * Object and freepointer overlap. Cannot check
743		 * freepointer while object is allocated.
744		 */
745		return 1;
746
747	/* Check free pointer validity */
748	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
749		object_err(s, page, p, "Freepointer corrupt");
750		/*
751		 * No choice but to zap it and thus loose the remainder
752		 * of the free objects in this slab. May cause
753		 * another error because the object count is now wrong.
754		 */
755		set_freepointer(s, p, page->end);
756		return 0;
757	}
758	return 1;
759}
760
761static int check_slab(struct kmem_cache *s, struct page *page)
762{
763	VM_BUG_ON(!irqs_disabled());
764
765	if (!PageSlab(page)) {
766		slab_err(s, page, "Not a valid slab page");
767		return 0;
768	}
769	if (page->inuse > s->objects) {
770		slab_err(s, page, "inuse %u > max %u",
771			s->name, page->inuse, s->objects);
772		return 0;
773	}
774	/* Slab_pad_check fixes things up after itself */
775	slab_pad_check(s, page);
776	return 1;
777}
778
779/*
780 * Determine if a certain object on a page is on the freelist. Must hold the
781 * slab lock to guarantee that the chains are in a consistent state.
782 */
783static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
784{
785	int nr = 0;
786	void *fp = page->freelist;
787	void *object = NULL;
788
789	while (fp != page->end && nr <= s->objects) {
790		if (fp == search)
791			return 1;
792		if (!check_valid_pointer(s, page, fp)) {
793			if (object) {
794				object_err(s, page, object,
795					"Freechain corrupt");
796				set_freepointer(s, object, page->end);
797				break;
798			} else {
799				slab_err(s, page, "Freepointer corrupt");
800				page->freelist = page->end;
801				page->inuse = s->objects;
802				slab_fix(s, "Freelist cleared");
803				return 0;
804			}
805			break;
806		}
807		object = fp;
808		fp = get_freepointer(s, object);
809		nr++;
810	}
811
812	if (page->inuse != s->objects - nr) {
813		slab_err(s, page, "Wrong object count. Counter is %d but "
814			"counted were %d", page->inuse, s->objects - nr);
815		page->inuse = s->objects - nr;
816		slab_fix(s, "Object count adjusted.");
817	}
818	return search == NULL;
819}
820
821static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
822{
823	if (s->flags & SLAB_TRACE) {
824		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
825			s->name,
826			alloc ? "alloc" : "free",
827			object, page->inuse,
828			page->freelist);
829
830		if (!alloc)
831			print_section("Object", (void *)object, s->objsize);
832
833		dump_stack();
834	}
835}
836
837/*
838 * Tracking of fully allocated slabs for debugging purposes.
839 */
840static void add_full(struct kmem_cache_node *n, struct page *page)
841{
842	spin_lock(&n->list_lock);
843	list_add(&page->lru, &n->full);
844	spin_unlock(&n->list_lock);
845}
846
847static void remove_full(struct kmem_cache *s, struct page *page)
848{
849	struct kmem_cache_node *n;
850
851	if (!(s->flags & SLAB_STORE_USER))
852		return;
853
854	n = get_node(s, page_to_nid(page));
855
856	spin_lock(&n->list_lock);
857	list_del(&page->lru);
858	spin_unlock(&n->list_lock);
859}
860
861static void setup_object_debug(struct kmem_cache *s, struct page *page,
862								void *object)
863{
864	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
865		return;
866
867	init_object(s, object, 0);
868	init_tracking(s, object);
869}
870
871static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
872						void *object, void *addr)
873{
874	if (!check_slab(s, page))
875		goto bad;
876
877	if (object && !on_freelist(s, page, object)) {
878		object_err(s, page, object, "Object already allocated");
879		goto bad;
880	}
881
882	if (!check_valid_pointer(s, page, object)) {
883		object_err(s, page, object, "Freelist Pointer check fails");
884		goto bad;
885	}
886
887	if (object && !check_object(s, page, object, 0))
888		goto bad;
889
890	/* Success perform special debug activities for allocs */
891	if (s->flags & SLAB_STORE_USER)
892		set_track(s, object, TRACK_ALLOC, addr);
893	trace(s, page, object, 1);
894	init_object(s, object, 1);
895	return 1;
896
897bad:
898	if (PageSlab(page)) {
899		/*
900		 * If this is a slab page then lets do the best we can
901		 * to avoid issues in the future. Marking all objects
902		 * as used avoids touching the remaining objects.
903		 */
904		slab_fix(s, "Marking all objects used");
905		page->inuse = s->objects;
906		page->freelist = page->end;
907	}
908	return 0;
909}
910
911static int free_debug_processing(struct kmem_cache *s, struct page *page,
912						void *object, void *addr)
913{
914	if (!check_slab(s, page))
915		goto fail;
916
917	if (!check_valid_pointer(s, page, object)) {
918		slab_err(s, page, "Invalid object pointer 0x%p", object);
919		goto fail;
920	}
921
922	if (on_freelist(s, page, object)) {
923		object_err(s, page, object, "Object already free");
924		goto fail;
925	}
926
927	if (!check_object(s, page, object, 1))
928		return 0;
929
930	if (unlikely(s != page->slab)) {
931		if (!PageSlab(page))
932			slab_err(s, page, "Attempt to free object(0x%p) "
933				"outside of slab", object);
934		else
935		if (!page->slab) {
936			printk(KERN_ERR
937				"SLUB <none>: no slab for object 0x%p.\n",
938						object);
939			dump_stack();
940		} else
941			object_err(s, page, object,
942					"page slab pointer corrupt.");
943		goto fail;
944	}
945
946	/* Special debug activities for freeing objects */
947	if (!SlabFrozen(page) && page->freelist == page->end)
948		remove_full(s, page);
949	if (s->flags & SLAB_STORE_USER)
950		set_track(s, object, TRACK_FREE, addr);
951	trace(s, page, object, 0);
952	init_object(s, object, 0);
953	return 1;
954
955fail:
956	slab_fix(s, "Object at 0x%p not freed", object);
957	return 0;
958}
959
960static int __init setup_slub_debug(char *str)
961{
962	slub_debug = DEBUG_DEFAULT_FLAGS;
963	if (*str++ != '=' || !*str)
964		/*
965		 * No options specified. Switch on full debugging.
966		 */
967		goto out;
968
969	if (*str == ',')
970		/*
971		 * No options but restriction on slabs. This means full
972		 * debugging for slabs matching a pattern.
973		 */
974		goto check_slabs;
975
976	slub_debug = 0;
977	if (*str == '-')
978		/*
979		 * Switch off all debugging measures.
980		 */
981		goto out;
982
983	/*
984	 * Determine which debug features should be switched on
985	 */
986	for (; *str && *str != ','; str++) {
987		switch (tolower(*str)) {
988		case 'f':
989			slub_debug |= SLAB_DEBUG_FREE;
990			break;
991		case 'z':
992			slub_debug |= SLAB_RED_ZONE;
993			break;
994		case 'p':
995			slub_debug |= SLAB_POISON;
996			break;
997		case 'u':
998			slub_debug |= SLAB_STORE_USER;
999			break;
1000		case 't':
1001			slub_debug |= SLAB_TRACE;
1002			break;
1003		default:
1004			printk(KERN_ERR "slub_debug option '%c' "
1005				"unknown. skipped\n", *str);
1006		}
1007	}
1008
1009check_slabs:
1010	if (*str == ',')
1011		slub_debug_slabs = str + 1;
1012out:
1013	return 1;
1014}
1015
1016__setup("slub_debug", setup_slub_debug);
1017
1018static unsigned long kmem_cache_flags(unsigned long objsize,
1019	unsigned long flags, const char *name,
1020	void (*ctor)(struct kmem_cache *, void *))
1021{
1022	/*
1023	 * The page->offset field is only 16 bit wide. This is an offset
1024	 * in units of words from the beginning of an object. If the slab
1025	 * size is bigger then we cannot move the free pointer behind the
1026	 * object anymore.
1027	 *
1028	 * On 32 bit platforms the limit is 256k. On 64bit platforms
1029	 * the limit is 512k.
1030	 *
1031	 * Debugging or ctor may create a need to move the free
1032	 * pointer. Fail if this happens.
1033	 */
1034	if (objsize >= 65535 * sizeof(void *)) {
1035		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1036				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1037		BUG_ON(ctor);
1038	} else {
1039		/*
1040		 * Enable debugging if selected on the kernel commandline.
1041		 */
1042		if (slub_debug && (!slub_debug_slabs ||
1043		    strncmp(slub_debug_slabs, name,
1044		    	strlen(slub_debug_slabs)) == 0))
1045				flags |= slub_debug;
1046	}
1047
1048	return flags;
1049}
1050#else
1051static inline void setup_object_debug(struct kmem_cache *s,
1052			struct page *page, void *object) {}
1053
1054static inline int alloc_debug_processing(struct kmem_cache *s,
1055	struct page *page, void *object, void *addr) { return 0; }
1056
1057static inline int free_debug_processing(struct kmem_cache *s,
1058	struct page *page, void *object, void *addr) { return 0; }
1059
1060static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1061			{ return 1; }
1062static inline int check_object(struct kmem_cache *s, struct page *page,
1063			void *object, int active) { return 1; }
1064static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1065static inline unsigned long kmem_cache_flags(unsigned long objsize,
1066	unsigned long flags, const char *name,
1067	void (*ctor)(struct kmem_cache *, void *))
1068{
1069	return flags;
1070}
1071#define slub_debug 0
1072#endif
1073/*
1074 * Slab allocation and freeing
1075 */
1076static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1077{
1078	struct page *page;
1079	int pages = 1 << s->order;
1080
1081	if (s->order)
1082		flags |= __GFP_COMP;
1083
1084	if (s->flags & SLAB_CACHE_DMA)
1085		flags |= SLUB_DMA;
1086
1087	if (s->flags & SLAB_RECLAIM_ACCOUNT)
1088		flags |= __GFP_RECLAIMABLE;
1089
1090	if (node == -1)
1091		page = alloc_pages(flags, s->order);
1092	else
1093		page = alloc_pages_node(node, flags, s->order);
1094
1095	if (!page)
1096		return NULL;
1097
1098	mod_zone_page_state(page_zone(page),
1099		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1100		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1101		pages);
1102
1103	return page;
1104}
1105
1106static void setup_object(struct kmem_cache *s, struct page *page,
1107				void *object)
1108{
1109	setup_object_debug(s, page, object);
1110	if (unlikely(s->ctor))
1111		s->ctor(s, object);
1112}
1113
1114static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1115{
1116	struct page *page;
1117	struct kmem_cache_node *n;
1118	void *start;
1119	void *last;
1120	void *p;
1121
1122	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1123
1124	page = allocate_slab(s,
1125		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1126	if (!page)
1127		goto out;
1128
1129	n = get_node(s, page_to_nid(page));
1130	if (n)
1131		atomic_long_inc(&n->nr_slabs);
1132	page->slab = s;
1133	page->flags |= 1 << PG_slab;
1134	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1135			SLAB_STORE_USER | SLAB_TRACE))
1136		SetSlabDebug(page);
1137
1138	start = page_address(page);
1139	page->end = start + 1;
1140
1141	if (unlikely(s->flags & SLAB_POISON))
1142		memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1143
1144	last = start;
1145	for_each_object(p, s, start) {
1146		setup_object(s, page, last);
1147		set_freepointer(s, last, p);
1148		last = p;
1149	}
1150	setup_object(s, page, last);
1151	set_freepointer(s, last, page->end);
1152
1153	page->freelist = start;
1154	page->inuse = 0;
1155out:
1156	return page;
1157}
1158
1159static void __free_slab(struct kmem_cache *s, struct page *page)
1160{
1161	int pages = 1 << s->order;
1162
1163	if (unlikely(SlabDebug(page))) {
1164		void *p;
1165
1166		slab_pad_check(s, page);
1167		for_each_object(p, s, slab_address(page))
1168			check_object(s, page, p, 0);
1169		ClearSlabDebug(page);
1170	}
1171
1172	mod_zone_page_state(page_zone(page),
1173		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1174		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1175		-pages);
1176
1177	page->mapping = NULL;
1178	__free_pages(page, s->order);
1179}
1180
1181static void rcu_free_slab(struct rcu_head *h)
1182{
1183	struct page *page;
1184
1185	page = container_of((struct list_head *)h, struct page, lru);
1186	__free_slab(page->slab, page);
1187}
1188
1189static void free_slab(struct kmem_cache *s, struct page *page)
1190{
1191	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1192		/*
1193		 * RCU free overloads the RCU head over the LRU
1194		 */
1195		struct rcu_head *head = (void *)&page->lru;
1196
1197		call_rcu(head, rcu_free_slab);
1198	} else
1199		__free_slab(s, page);
1200}
1201
1202static void discard_slab(struct kmem_cache *s, struct page *page)
1203{
1204	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1205
1206	atomic_long_dec(&n->nr_slabs);
1207	reset_page_mapcount(page);
1208	__ClearPageSlab(page);
1209	free_slab(s, page);
1210}
1211
1212/*
1213 * Per slab locking using the pagelock
1214 */
1215static __always_inline void slab_lock(struct page *page)
1216{
1217	bit_spin_lock(PG_locked, &page->flags);
1218}
1219
1220static __always_inline void slab_unlock(struct page *page)
1221{
1222	bit_spin_unlock(PG_locked, &page->flags);
1223}
1224
1225static __always_inline int slab_trylock(struct page *page)
1226{
1227	int rc = 1;
1228
1229	rc = bit_spin_trylock(PG_locked, &page->flags);
1230	return rc;
1231}
1232
1233/*
1234 * Management of partially allocated slabs
1235 */
1236static void add_partial(struct kmem_cache_node *n,
1237				struct page *page, int tail)
1238{
1239	spin_lock(&n->list_lock);
1240	n->nr_partial++;
1241	if (tail)
1242		list_add_tail(&page->lru, &n->partial);
1243	else
1244		list_add(&page->lru, &n->partial);
1245	spin_unlock(&n->list_lock);
1246}
1247
1248static void remove_partial(struct kmem_cache *s,
1249						struct page *page)
1250{
1251	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1252
1253	spin_lock(&n->list_lock);
1254	list_del(&page->lru);
1255	n->nr_partial--;
1256	spin_unlock(&n->list_lock);
1257}
1258
1259/*
1260 * Lock slab and remove from the partial list.
1261 *
1262 * Must hold list_lock.
1263 */
1264static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1265{
1266	if (slab_trylock(page)) {
1267		list_del(&page->lru);
1268		n->nr_partial--;
1269		SetSlabFrozen(page);
1270		return 1;
1271	}
1272	return 0;
1273}
1274
1275/*
1276 * Try to allocate a partial slab from a specific node.
1277 */
1278static struct page *get_partial_node(struct kmem_cache_node *n)
1279{
1280	struct page *page;
1281
1282	/*
1283	 * Racy check. If we mistakenly see no partial slabs then we
1284	 * just allocate an empty slab. If we mistakenly try to get a
1285	 * partial slab and there is none available then get_partials()
1286	 * will return NULL.
1287	 */
1288	if (!n || !n->nr_partial)
1289		return NULL;
1290
1291	spin_lock(&n->list_lock);
1292	list_for_each_entry(page, &n->partial, lru)
1293		if (lock_and_freeze_slab(n, page))
1294			goto out;
1295	page = NULL;
1296out:
1297	spin_unlock(&n->list_lock);
1298	return page;
1299}
1300
1301/*
1302 * Get a page from somewhere. Search in increasing NUMA distances.
1303 */
1304static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1305{
1306#ifdef CONFIG_NUMA
1307	struct zonelist *zonelist;
1308	struct zone **z;
1309	struct page *page;
1310
1311	/*
1312	 * The defrag ratio allows a configuration of the tradeoffs between
1313	 * inter node defragmentation and node local allocations. A lower
1314	 * defrag_ratio increases the tendency to do local allocations
1315	 * instead of attempting to obtain partial slabs from other nodes.
1316	 *
1317	 * If the defrag_ratio is set to 0 then kmalloc() always
1318	 * returns node local objects. If the ratio is higher then kmalloc()
1319	 * may return off node objects because partial slabs are obtained
1320	 * from other nodes and filled up.
1321	 *
1322	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1323	 * defrag_ratio = 1000) then every (well almost) allocation will
1324	 * first attempt to defrag slab caches on other nodes. This means
1325	 * scanning over all nodes to look for partial slabs which may be
1326	 * expensive if we do it every time we are trying to find a slab
1327	 * with available objects.
1328	 */
1329	if (!s->remote_node_defrag_ratio ||
1330			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1331		return NULL;
1332
1333	zonelist = &NODE_DATA(slab_node(current->mempolicy))
1334					->node_zonelists[gfp_zone(flags)];
1335	for (z = zonelist->zones; *z; z++) {
1336		struct kmem_cache_node *n;
1337
1338		n = get_node(s, zone_to_nid(*z));
1339
1340		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1341				n->nr_partial > MIN_PARTIAL) {
1342			page = get_partial_node(n);
1343			if (page)
1344				return page;
1345		}
1346	}
1347#endif
1348	return NULL;
1349}
1350
1351/*
1352 * Get a partial page, lock it and return it.
1353 */
1354static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1355{
1356	struct page *page;
1357	int searchnode = (node == -1) ? numa_node_id() : node;
1358
1359	page = get_partial_node(get_node(s, searchnode));
1360	if (page || (flags & __GFP_THISNODE))
1361		return page;
1362
1363	return get_any_partial(s, flags);
1364}
1365
1366/*
1367 * Move a page back to the lists.
1368 *
1369 * Must be called with the slab lock held.
1370 *
1371 * On exit the slab lock will have been dropped.
1372 */
1373static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1374{
1375	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1376	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1377
1378	ClearSlabFrozen(page);
1379	if (page->inuse) {
1380
1381		if (page->freelist != page->end) {
1382			add_partial(n, page, tail);
1383			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1384		} else {
1385			stat(c, DEACTIVATE_FULL);
1386			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1387				add_full(n, page);
1388		}
1389		slab_unlock(page);
1390	} else {
1391		stat(c, DEACTIVATE_EMPTY);
1392		if (n->nr_partial < MIN_PARTIAL) {
1393			/*
1394			 * Adding an empty slab to the partial slabs in order
1395			 * to avoid page allocator overhead. This slab needs
1396			 * to come after the other slabs with objects in
1397			 * order to fill them up. That way the size of the
1398			 * partial list stays small. kmem_cache_shrink can
1399			 * reclaim empty slabs from the partial list.
1400			 */
1401			add_partial(n, page, 1);
1402			slab_unlock(page);
1403		} else {
1404			slab_unlock(page);
1405			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1406			discard_slab(s, page);
1407		}
1408	}
1409}
1410
1411/*
1412 * Remove the cpu slab
1413 */
1414static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1415{
1416	struct page *page = c->page;
1417	int tail = 1;
1418
1419	if (c->freelist)
1420		stat(c, DEACTIVATE_REMOTE_FREES);
1421	/*
1422	 * Merge cpu freelist into freelist. Typically we get here
1423	 * because both freelists are empty. So this is unlikely
1424	 * to occur.
1425	 *
1426	 * We need to use _is_end here because deactivate slab may
1427	 * be called for a debug slab. Then c->freelist may contain
1428	 * a dummy pointer.
1429	 */
1430	while (unlikely(!is_end(c->freelist))) {
1431		void **object;
1432
1433		tail = 0;	/* Hot objects. Put the slab first */
1434
1435		/* Retrieve object from cpu_freelist */
1436		object = c->freelist;
1437		c->freelist = c->freelist[c->offset];
1438
1439		/* And put onto the regular freelist */
1440		object[c->offset] = page->freelist;
1441		page->freelist = object;
1442		page->inuse--;
1443	}
1444	c->page = NULL;
1445	unfreeze_slab(s, page, tail);
1446}
1447
1448static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1449{
1450	stat(c, CPUSLAB_FLUSH);
1451	slab_lock(c->page);
1452	deactivate_slab(s, c);
1453}
1454
1455/*
1456 * Flush cpu slab.
1457 * Called from IPI handler with interrupts disabled.
1458 */
1459static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1460{
1461	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1462
1463	if (likely(c && c->page))
1464		flush_slab(s, c);
1465}
1466
1467static void flush_cpu_slab(void *d)
1468{
1469	struct kmem_cache *s = d;
1470
1471	__flush_cpu_slab(s, smp_processor_id());
1472}
1473
1474static void flush_all(struct kmem_cache *s)
1475{
1476#ifdef CONFIG_SMP
1477	on_each_cpu(flush_cpu_slab, s, 1, 1);
1478#else
1479	unsigned long flags;
1480
1481	local_irq_save(flags);
1482	flush_cpu_slab(s);
1483	local_irq_restore(flags);
1484#endif
1485}
1486
1487/*
1488 * Check if the objects in a per cpu structure fit numa
1489 * locality expectations.
1490 */
1491static inline int node_match(struct kmem_cache_cpu *c, int node)
1492{
1493#ifdef CONFIG_NUMA
1494	if (node != -1 && c->node != node)
1495		return 0;
1496#endif
1497	return 1;
1498}
1499
1500/*
1501 * Slow path. The lockless freelist is empty or we need to perform
1502 * debugging duties.
1503 *
1504 * Interrupts are disabled.
1505 *
1506 * Processing is still very fast if new objects have been freed to the
1507 * regular freelist. In that case we simply take over the regular freelist
1508 * as the lockless freelist and zap the regular freelist.
1509 *
1510 * If that is not working then we fall back to the partial lists. We take the
1511 * first element of the freelist as the object to allocate now and move the
1512 * rest of the freelist to the lockless freelist.
1513 *
1514 * And if we were unable to get a new slab from the partial slab lists then
1515 * we need to allocate a new slab. This is slowest path since we may sleep.
1516 */
1517static void *__slab_alloc(struct kmem_cache *s,
1518		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1519{
1520	void **object;
1521	struct page *new;
1522#ifdef SLUB_FASTPATH
1523	unsigned long flags;
1524
1525	local_irq_save(flags);
1526#endif
1527	if (!c->page)
1528		goto new_slab;
1529
1530	slab_lock(c->page);
1531	if (unlikely(!node_match(c, node)))
1532		goto another_slab;
1533	stat(c, ALLOC_REFILL);
1534load_freelist:
1535	object = c->page->freelist;
1536	if (unlikely(object == c->page->end))
1537		goto another_slab;
1538	if (unlikely(SlabDebug(c->page)))
1539		goto debug;
1540
1541	object = c->page->freelist;
1542	c->freelist = object[c->offset];
1543	c->page->inuse = s->objects;
1544	c->page->freelist = c->page->end;
1545	c->node = page_to_nid(c->page);
1546unlock_out:
1547	slab_unlock(c->page);
1548	stat(c, ALLOC_SLOWPATH);
1549out:
1550#ifdef SLUB_FASTPATH
1551	local_irq_restore(flags);
1552#endif
1553	return object;
1554
1555another_slab:
1556	deactivate_slab(s, c);
1557
1558new_slab:
1559	new = get_partial(s, gfpflags, node);
1560	if (new) {
1561		c->page = new;
1562		stat(c, ALLOC_FROM_PARTIAL);
1563		goto load_freelist;
1564	}
1565
1566	if (gfpflags & __GFP_WAIT)
1567		local_irq_enable();
1568
1569	new = new_slab(s, gfpflags, node);
1570
1571	if (gfpflags & __GFP_WAIT)
1572		local_irq_disable();
1573
1574	if (new) {
1575		c = get_cpu_slab(s, smp_processor_id());
1576		stat(c, ALLOC_SLAB);
1577		if (c->page)
1578			flush_slab(s, c);
1579		slab_lock(new);
1580		SetSlabFrozen(new);
1581		c->page = new;
1582		goto load_freelist;
1583	}
1584	object = NULL;
1585	goto out;
1586debug:
1587	object = c->page->freelist;
1588	if (!alloc_debug_processing(s, c->page, object, addr))
1589		goto another_slab;
1590
1591	c->page->inuse++;
1592	c->page->freelist = object[c->offset];
1593	c->node = -1;
1594	goto unlock_out;
1595}
1596
1597/*
1598 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1599 * have the fastpath folded into their functions. So no function call
1600 * overhead for requests that can be satisfied on the fastpath.
1601 *
1602 * The fastpath works by first checking if the lockless freelist can be used.
1603 * If not then __slab_alloc is called for slow processing.
1604 *
1605 * Otherwise we can simply pick the next object from the lockless free list.
1606 */
1607static __always_inline void *slab_alloc(struct kmem_cache *s,
1608		gfp_t gfpflags, int node, void *addr)
1609{
1610	void **object;
1611	struct kmem_cache_cpu *c;
1612
1613/*
1614 * The SLUB_FASTPATH path is provisional and is currently disabled if the
1615 * kernel is compiled with preemption or if the arch does not support
1616 * fast cmpxchg operations. There are a couple of coming changes that will
1617 * simplify matters and allow preemption. Ultimately we may end up making
1618 * SLUB_FASTPATH the default.
1619 *
1620 * 1. The introduction of the per cpu allocator will avoid array lookups
1621 *    through get_cpu_slab(). A special register can be used instead.
1622 *
1623 * 2. The introduction of per cpu atomic operations (cpu_ops) means that
1624 *    we can realize the logic here entirely with per cpu atomics. The
1625 *    per cpu atomic ops will take care of the preemption issues.
1626 */
1627
1628#ifdef SLUB_FASTPATH
1629	c = get_cpu_slab(s, raw_smp_processor_id());
1630	do {
1631		object = c->freelist;
1632		if (unlikely(is_end(object) || !node_match(c, node))) {
1633			object = __slab_alloc(s, gfpflags, node, addr, c);
1634			break;
1635		}
1636		stat(c, ALLOC_FASTPATH);
1637	} while (cmpxchg_local(&c->freelist, object, object[c->offset])
1638								!= object);
1639#else
1640	unsigned long flags;
1641
1642	local_irq_save(flags);
1643	c = get_cpu_slab(s, smp_processor_id());
1644	if (unlikely(is_end(c->freelist) || !node_match(c, node)))
1645
1646		object = __slab_alloc(s, gfpflags, node, addr, c);
1647
1648	else {
1649		object = c->freelist;
1650		c->freelist = object[c->offset];
1651		stat(c, ALLOC_FASTPATH);
1652	}
1653	local_irq_restore(flags);
1654#endif
1655
1656	if (unlikely((gfpflags & __GFP_ZERO) && object))
1657		memset(object, 0, c->objsize);
1658
1659	return object;
1660}
1661
1662void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1663{
1664	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1665}
1666EXPORT_SYMBOL(kmem_cache_alloc);
1667
1668#ifdef CONFIG_NUMA
1669void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1670{
1671	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1672}
1673EXPORT_SYMBOL(kmem_cache_alloc_node);
1674#endif
1675
1676/*
1677 * Slow patch handling. This may still be called frequently since objects
1678 * have a longer lifetime than the cpu slabs in most processing loads.
1679 *
1680 * So we still attempt to reduce cache line usage. Just take the slab
1681 * lock and free the item. If there is no additional partial page
1682 * handling required then we can return immediately.
1683 */
1684static void __slab_free(struct kmem_cache *s, struct page *page,
1685				void *x, void *addr, unsigned int offset)
1686{
1687	void *prior;
1688	void **object = (void *)x;
1689	struct kmem_cache_cpu *c;
1690
1691#ifdef SLUB_FASTPATH
1692	unsigned long flags;
1693
1694	local_irq_save(flags);
1695#endif
1696	c = get_cpu_slab(s, raw_smp_processor_id());
1697	stat(c, FREE_SLOWPATH);
1698	slab_lock(page);
1699
1700	if (unlikely(SlabDebug(page)))
1701		goto debug;
1702checks_ok:
1703	prior = object[offset] = page->freelist;
1704	page->freelist = object;
1705	page->inuse--;
1706
1707	if (unlikely(SlabFrozen(page))) {
1708		stat(c, FREE_FROZEN);
1709		goto out_unlock;
1710	}
1711
1712	if (unlikely(!page->inuse))
1713		goto slab_empty;
1714
1715	/*
1716	 * Objects left in the slab. If it
1717	 * was not on the partial list before
1718	 * then add it.
1719	 */
1720	if (unlikely(prior == page->end)) {
1721		add_partial(get_node(s, page_to_nid(page)), page, 1);
1722		stat(c, FREE_ADD_PARTIAL);
1723	}
1724
1725out_unlock:
1726	slab_unlock(page);
1727#ifdef SLUB_FASTPATH
1728	local_irq_restore(flags);
1729#endif
1730	return;
1731
1732slab_empty:
1733	if (prior != page->end) {
1734		/*
1735		 * Slab still on the partial list.
1736		 */
1737		remove_partial(s, page);
1738		stat(c, FREE_REMOVE_PARTIAL);
1739	}
1740	slab_unlock(page);
1741	stat(c, FREE_SLAB);
1742#ifdef SLUB_FASTPATH
1743	local_irq_restore(flags);
1744#endif
1745	discard_slab(s, page);
1746	return;
1747
1748debug:
1749	if (!free_debug_processing(s, page, x, addr))
1750		goto out_unlock;
1751	goto checks_ok;
1752}
1753
1754/*
1755 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1756 * can perform fastpath freeing without additional function calls.
1757 *
1758 * The fastpath is only possible if we are freeing to the current cpu slab
1759 * of this processor. This typically the case if we have just allocated
1760 * the item before.
1761 *
1762 * If fastpath is not possible then fall back to __slab_free where we deal
1763 * with all sorts of special processing.
1764 */
1765static __always_inline void slab_free(struct kmem_cache *s,
1766			struct page *page, void *x, void *addr)
1767{
1768	void **object = (void *)x;
1769	struct kmem_cache_cpu *c;
1770
1771#ifdef SLUB_FASTPATH
1772	void **freelist;
1773
1774	c = get_cpu_slab(s, raw_smp_processor_id());
1775	debug_check_no_locks_freed(object, s->objsize);
1776	do {
1777		freelist = c->freelist;
1778		barrier();
1779		/*
1780		 * If the compiler would reorder the retrieval of c->page to
1781		 * come before c->freelist then an interrupt could
1782		 * change the cpu slab before we retrieve c->freelist. We
1783		 * could be matching on a page no longer active and put the
1784		 * object onto the freelist of the wrong slab.
1785		 *
1786		 * On the other hand: If we already have the freelist pointer
1787		 * then any change of cpu_slab will cause the cmpxchg to fail
1788		 * since the freelist pointers are unique per slab.
1789		 */
1790		if (unlikely(page != c->page || c->node < 0)) {
1791			__slab_free(s, page, x, addr, c->offset);
1792			break;
1793		}
1794		object[c->offset] = freelist;
1795		stat(c, FREE_FASTPATH);
1796	} while (cmpxchg_local(&c->freelist, freelist, object) != freelist);
1797#else
1798	unsigned long flags;
1799
1800	local_irq_save(flags);
1801	debug_check_no_locks_freed(object, s->objsize);
1802	c = get_cpu_slab(s, smp_processor_id());
1803	if (likely(page == c->page && c->node >= 0)) {
1804		object[c->offset] = c->freelist;
1805		c->freelist = object;
1806		stat(c, FREE_FASTPATH);
1807	} else
1808		__slab_free(s, page, x, addr, c->offset);
1809
1810	local_irq_restore(flags);
1811#endif
1812}
1813
1814void kmem_cache_free(struct kmem_cache *s, void *x)
1815{
1816	struct page *page;
1817
1818	page = virt_to_head_page(x);
1819
1820	slab_free(s, page, x, __builtin_return_address(0));
1821}
1822EXPORT_SYMBOL(kmem_cache_free);
1823
1824/* Figure out on which slab object the object resides */
1825static struct page *get_object_page(const void *x)
1826{
1827	struct page *page = virt_to_head_page(x);
1828
1829	if (!PageSlab(page))
1830		return NULL;
1831
1832	return page;
1833}
1834
1835/*
1836 * Object placement in a slab is made very easy because we always start at
1837 * offset 0. If we tune the size of the object to the alignment then we can
1838 * get the required alignment by putting one properly sized object after
1839 * another.
1840 *
1841 * Notice that the allocation order determines the sizes of the per cpu
1842 * caches. Each processor has always one slab available for allocations.
1843 * Increasing the allocation order reduces the number of times that slabs
1844 * must be moved on and off the partial lists and is therefore a factor in
1845 * locking overhead.
1846 */
1847
1848/*
1849 * Mininum / Maximum order of slab pages. This influences locking overhead
1850 * and slab fragmentation. A higher order reduces the number of partial slabs
1851 * and increases the number of allocations possible without having to
1852 * take the list_lock.
1853 */
1854static int slub_min_order;
1855static int slub_max_order = DEFAULT_MAX_ORDER;
1856static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1857
1858/*
1859 * Merge control. If this is set then no merging of slab caches will occur.
1860 * (Could be removed. This was introduced to pacify the merge skeptics.)
1861 */
1862static int slub_nomerge;
1863
1864/*
1865 * Calculate the order of allocation given an slab object size.
1866 *
1867 * The order of allocation has significant impact on performance and other
1868 * system components. Generally order 0 allocations should be preferred since
1869 * order 0 does not cause fragmentation in the page allocator. Larger objects
1870 * be problematic to put into order 0 slabs because there may be too much
1871 * unused space left. We go to a higher order if more than 1/8th of the slab
1872 * would be wasted.
1873 *
1874 * In order to reach satisfactory performance we must ensure that a minimum
1875 * number of objects is in one slab. Otherwise we may generate too much
1876 * activity on the partial lists which requires taking the list_lock. This is
1877 * less a concern for large slabs though which are rarely used.
1878 *
1879 * slub_max_order specifies the order where we begin to stop considering the
1880 * number of objects in a slab as critical. If we reach slub_max_order then
1881 * we try to keep the page order as low as possible. So we accept more waste
1882 * of space in favor of a small page order.
1883 *
1884 * Higher order allocations also allow the placement of more objects in a
1885 * slab and thereby reduce object handling overhead. If the user has
1886 * requested a higher mininum order then we start with that one instead of
1887 * the smallest order which will fit the object.
1888 */
1889static inline int slab_order(int size, int min_objects,
1890				int max_order, int fract_leftover)
1891{
1892	int order;
1893	int rem;
1894	int min_order = slub_min_order;
1895
1896	for (order = max(min_order,
1897				fls(min_objects * size - 1) - PAGE_SHIFT);
1898			order <= max_order; order++) {
1899
1900		unsigned long slab_size = PAGE_SIZE << order;
1901
1902		if (slab_size < min_objects * size)
1903			continue;
1904
1905		rem = slab_size % size;
1906
1907		if (rem <= slab_size / fract_leftover)
1908			break;
1909
1910	}
1911
1912	return order;
1913}
1914
1915static inline int calculate_order(int size)
1916{
1917	int order;
1918	int min_objects;
1919	int fraction;
1920
1921	/*
1922	 * Attempt to find best configuration for a slab. This
1923	 * works by first attempting to generate a layout with
1924	 * the best configuration and backing off gradually.
1925	 *
1926	 * First we reduce the acceptable waste in a slab. Then
1927	 * we reduce the minimum objects required in a slab.
1928	 */
1929	min_objects = slub_min_objects;
1930	while (min_objects > 1) {
1931		fraction = 8;
1932		while (fraction >= 4) {
1933			order = slab_order(size, min_objects,
1934						slub_max_order, fraction);
1935			if (order <= slub_max_order)
1936				return order;
1937			fraction /= 2;
1938		}
1939		min_objects /= 2;
1940	}
1941
1942	/*
1943	 * We were unable to place multiple objects in a slab. Now
1944	 * lets see if we can place a single object there.
1945	 */
1946	order = slab_order(size, 1, slub_max_order, 1);
1947	if (order <= slub_max_order)
1948		return order;
1949
1950	/*
1951	 * Doh this slab cannot be placed using slub_max_order.
1952	 */
1953	order = slab_order(size, 1, MAX_ORDER, 1);
1954	if (order <= MAX_ORDER)
1955		return order;
1956	return -ENOSYS;
1957}
1958
1959/*
1960 * Figure out what the alignment of the objects will be.
1961 */
1962static unsigned long calculate_alignment(unsigned long flags,
1963		unsigned long align, unsigned long size)
1964{
1965	/*
1966	 * If the user wants hardware cache aligned objects then
1967	 * follow that suggestion if the object is sufficiently
1968	 * large.
1969	 *
1970	 * The hardware cache alignment cannot override the
1971	 * specified alignment though. If that is greater
1972	 * then use it.
1973	 */
1974	if ((flags & SLAB_HWCACHE_ALIGN) &&
1975			size > cache_line_size() / 2)
1976		return max_t(unsigned long, align, cache_line_size());
1977
1978	if (align < ARCH_SLAB_MINALIGN)
1979		return ARCH_SLAB_MINALIGN;
1980
1981	return ALIGN(align, sizeof(void *));
1982}
1983
1984static void init_kmem_cache_cpu(struct kmem_cache *s,
1985			struct kmem_cache_cpu *c)
1986{
1987	c->page = NULL;
1988	c->freelist = (void *)PAGE_MAPPING_ANON;
1989	c->node = 0;
1990	c->offset = s->offset / sizeof(void *);
1991	c->objsize = s->objsize;
1992}
1993
1994static void init_kmem_cache_node(struct kmem_cache_node *n)
1995{
1996	n->nr_partial = 0;
1997	atomic_long_set(&n->nr_slabs, 0);
1998	spin_lock_init(&n->list_lock);
1999	INIT_LIST_HEAD(&n->partial);
2000#ifdef CONFIG_SLUB_DEBUG
2001	INIT_LIST_HEAD(&n->full);
2002#endif
2003}
2004
2005#ifdef CONFIG_SMP
2006/*
2007 * Per cpu array for per cpu structures.
2008 *
2009 * The per cpu array places all kmem_cache_cpu structures from one processor
2010 * close together meaning that it becomes possible that multiple per cpu
2011 * structures are contained in one cacheline. This may be particularly
2012 * beneficial for the kmalloc caches.
2013 *
2014 * A desktop system typically has around 60-80 slabs. With 100 here we are
2015 * likely able to get per cpu structures for all caches from the array defined
2016 * here. We must be able to cover all kmalloc caches during bootstrap.
2017 *
2018 * If the per cpu array is exhausted then fall back to kmalloc
2019 * of individual cachelines. No sharing is possible then.
2020 */
2021#define NR_KMEM_CACHE_CPU 100
2022
2023static DEFINE_PER_CPU(struct kmem_cache_cpu,
2024				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2025
2026static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2027static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
2028
2029static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2030							int cpu, gfp_t flags)
2031{
2032	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2033
2034	if (c)
2035		per_cpu(kmem_cache_cpu_free, cpu) =
2036				(void *)c->freelist;
2037	else {
2038		/* Table overflow: So allocate ourselves */
2039		c = kmalloc_node(
2040			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2041			flags, cpu_to_node(cpu));
2042		if (!c)
2043			return NULL;
2044	}
2045
2046	init_kmem_cache_cpu(s, c);
2047	return c;
2048}
2049
2050static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2051{
2052	if (c < per_cpu(kmem_cache_cpu, cpu) ||
2053			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2054		kfree(c);
2055		return;
2056	}
2057	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2058	per_cpu(kmem_cache_cpu_free, cpu) = c;
2059}
2060
2061static void free_kmem_cache_cpus(struct kmem_cache *s)
2062{
2063	int cpu;
2064
2065	for_each_online_cpu(cpu) {
2066		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2067
2068		if (c) {
2069			s->cpu_slab[cpu] = NULL;
2070			free_kmem_cache_cpu(c, cpu);
2071		}
2072	}
2073}
2074
2075static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2076{
2077	int cpu;
2078
2079	for_each_online_cpu(cpu) {
2080		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2081
2082		if (c)
2083			continue;
2084
2085		c = alloc_kmem_cache_cpu(s, cpu, flags);
2086		if (!c) {
2087			free_kmem_cache_cpus(s);
2088			return 0;
2089		}
2090		s->cpu_slab[cpu] = c;
2091	}
2092	return 1;
2093}
2094
2095/*
2096 * Initialize the per cpu array.
2097 */
2098static void init_alloc_cpu_cpu(int cpu)
2099{
2100	int i;
2101
2102	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2103		return;
2104
2105	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2106		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2107
2108	cpu_set(cpu, kmem_cach_cpu_free_init_once);
2109}
2110
2111static void __init init_alloc_cpu(void)
2112{
2113	int cpu;
2114
2115	for_each_online_cpu(cpu)
2116		init_alloc_cpu_cpu(cpu);
2117  }
2118
2119#else
2120static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2121static inline void init_alloc_cpu(void) {}
2122
2123static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2124{
2125	init_kmem_cache_cpu(s, &s->cpu_slab);
2126	return 1;
2127}
2128#endif
2129
2130#ifdef CONFIG_NUMA
2131/*
2132 * No kmalloc_node yet so do it by hand. We know that this is the first
2133 * slab on the node for this slabcache. There are no concurrent accesses
2134 * possible.
2135 *
2136 * Note that this function only works on the kmalloc_node_cache
2137 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2138 * memory on a fresh node that has no slab structures yet.
2139 */
2140static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2141							   int node)
2142{
2143	struct page *page;
2144	struct kmem_cache_node *n;
2145	unsigned long flags;
2146
2147	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2148
2149	page = new_slab(kmalloc_caches, gfpflags, node);
2150
2151	BUG_ON(!page);
2152	if (page_to_nid(page) != node) {
2153		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2154				"node %d\n", node);
2155		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2156				"in order to be able to continue\n");
2157	}
2158
2159	n = page->freelist;
2160	BUG_ON(!n);
2161	page->freelist = get_freepointer(kmalloc_caches, n);
2162	page->inuse++;
2163	kmalloc_caches->node[node] = n;
2164#ifdef CONFIG_SLUB_DEBUG
2165	init_object(kmalloc_caches, n, 1);
2166	init_tracking(kmalloc_caches, n);
2167#endif
2168	init_kmem_cache_node(n);
2169	atomic_long_inc(&n->nr_slabs);
2170	/*
2171	 * lockdep requires consistent irq usage for each lock
2172	 * so even though there cannot be a race this early in
2173	 * the boot sequence, we still disable irqs.
2174	 */
2175	local_irq_save(flags);
2176	add_partial(n, page, 0);
2177	local_irq_restore(flags);
2178	return n;
2179}
2180
2181static void free_kmem_cache_nodes(struct kmem_cache *s)
2182{
2183	int node;
2184
2185	for_each_node_state(node, N_NORMAL_MEMORY) {
2186		struct kmem_cache_node *n = s->node[node];
2187		if (n && n != &s->local_node)
2188			kmem_cache_free(kmalloc_caches, n);
2189		s->node[node] = NULL;
2190	}
2191}
2192
2193static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2194{
2195	int node;
2196	int local_node;
2197
2198	if (slab_state >= UP)
2199		local_node = page_to_nid(virt_to_page(s));
2200	else
2201		local_node = 0;
2202
2203	for_each_node_state(node, N_NORMAL_MEMORY) {
2204		struct kmem_cache_node *n;
2205
2206		if (local_node == node)
2207			n = &s->local_node;
2208		else {
2209			if (slab_state == DOWN) {
2210				n = early_kmem_cache_node_alloc(gfpflags,
2211								node);
2212				continue;
2213			}
2214			n = kmem_cache_alloc_node(kmalloc_caches,
2215							gfpflags, node);
2216
2217			if (!n) {
2218				free_kmem_cache_nodes(s);
2219				return 0;
2220			}
2221
2222		}
2223		s->node[node] = n;
2224		init_kmem_cache_node(n);
2225	}
2226	return 1;
2227}
2228#else
2229static void free_kmem_cache_nodes(struct kmem_cache *s)
2230{
2231}
2232
2233static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2234{
2235	init_kmem_cache_node(&s->local_node);
2236	return 1;
2237}
2238#endif
2239
2240/*
2241 * calculate_sizes() determines the order and the distribution of data within
2242 * a slab object.
2243 */
2244static int calculate_sizes(struct kmem_cache *s)
2245{
2246	unsigned long flags = s->flags;
2247	unsigned long size = s->objsize;
2248	unsigned long align = s->align;
2249
2250	/*
2251	 * Determine if we can poison the object itself. If the user of
2252	 * the slab may touch the object after free or before allocation
2253	 * then we should never poison the object itself.
2254	 */
2255	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2256			!s->ctor)
2257		s->flags |= __OBJECT_POISON;
2258	else
2259		s->flags &= ~__OBJECT_POISON;
2260
2261	/*
2262	 * Round up object size to the next word boundary. We can only
2263	 * place the free pointer at word boundaries and this determines
2264	 * the possible location of the free pointer.
2265	 */
2266	size = ALIGN(size, sizeof(void *));
2267
2268#ifdef CONFIG_SLUB_DEBUG
2269	/*
2270	 * If we are Redzoning then check if there is some space between the
2271	 * end of the object and the free pointer. If not then add an
2272	 * additional word to have some bytes to store Redzone information.
2273	 */
2274	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2275		size += sizeof(void *);
2276#endif
2277
2278	/*
2279	 * With that we have determined the number of bytes in actual use
2280	 * by the object. This is the potential offset to the free pointer.
2281	 */
2282	s->inuse = size;
2283
2284	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2285		s->ctor)) {
2286		/*
2287		 * Relocate free pointer after the object if it is not
2288		 * permitted to overwrite the first word of the object on
2289		 * kmem_cache_free.
2290		 *
2291		 * This is the case if we do RCU, have a constructor or
2292		 * destructor or are poisoning the objects.
2293		 */
2294		s->offset = size;
2295		size += sizeof(void *);
2296	}
2297
2298#ifdef CONFIG_SLUB_DEBUG
2299	if (flags & SLAB_STORE_USER)
2300		/*
2301		 * Need to store information about allocs and frees after
2302		 * the object.
2303		 */
2304		size += 2 * sizeof(struct track);
2305
2306	if (flags & SLAB_RED_ZONE)
2307		/*
2308		 * Add some empty padding so that we can catch
2309		 * overwrites from earlier objects rather than let
2310		 * tracking information or the free pointer be
2311		 * corrupted if an user writes before the start
2312		 * of the object.
2313		 */
2314		size += sizeof(void *);
2315#endif
2316
2317	/*
2318	 * Determine the alignment based on various parameters that the
2319	 * user specified and the dynamic determination of cache line size
2320	 * on bootup.
2321	 */
2322	align = calculate_alignment(flags, align, s->objsize);
2323
2324	/*
2325	 * SLUB stores one object immediately after another beginning from
2326	 * offset 0. In order to align the objects we have to simply size
2327	 * each object to conform to the alignment.
2328	 */
2329	size = ALIGN(size, align);
2330	s->size = size;
2331
2332	s->order = calculate_order(size);
2333	if (s->order < 0)
2334		return 0;
2335
2336	/*
2337	 * Determine the number of objects per slab
2338	 */
2339	s->objects = (PAGE_SIZE << s->order) / size;
2340
2341	return !!s->objects;
2342
2343}
2344
2345static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2346		const char *name, size_t size,
2347		size_t align, unsigned long flags,
2348		void (*ctor)(struct kmem_cache *, void *))
2349{
2350	memset(s, 0, kmem_size);
2351	s->name = name;
2352	s->ctor = ctor;
2353	s->objsize = size;
2354	s->align = align;
2355	s->flags = kmem_cache_flags(size, flags, name, ctor);
2356
2357	if (!calculate_sizes(s))
2358		goto error;
2359
2360	s->refcount = 1;
2361#ifdef CONFIG_NUMA
2362	s->remote_node_defrag_ratio = 100;
2363#endif
2364	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2365		goto error;
2366
2367	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2368		return 1;
2369	free_kmem_cache_nodes(s);
2370error:
2371	if (flags & SLAB_PANIC)
2372		panic("Cannot create slab %s size=%lu realsize=%u "
2373			"order=%u offset=%u flags=%lx\n",
2374			s->name, (unsigned long)size, s->size, s->order,
2375			s->offset, flags);
2376	return 0;
2377}
2378
2379/*
2380 * Check if a given pointer is valid
2381 */
2382int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2383{
2384	struct page *page;
2385
2386	page = get_object_page(object);
2387
2388	if (!page || s != page->slab)
2389		/* No slab or wrong slab */
2390		return 0;
2391
2392	if (!check_valid_pointer(s, page, object))
2393		return 0;
2394
2395	/*
2396	 * We could also check if the object is on the slabs freelist.
2397	 * But this would be too expensive and it seems that the main
2398	 * purpose of kmem_ptr_valid is to check if the object belongs
2399	 * to a certain slab.
2400	 */
2401	return 1;
2402}
2403EXPORT_SYMBOL(kmem_ptr_validate);
2404
2405/*
2406 * Determine the size of a slab object
2407 */
2408unsigned int kmem_cache_size(struct kmem_cache *s)
2409{
2410	return s->objsize;
2411}
2412EXPORT_SYMBOL(kmem_cache_size);
2413
2414const char *kmem_cache_name(struct kmem_cache *s)
2415{
2416	return s->name;
2417}
2418EXPORT_SYMBOL(kmem_cache_name);
2419
2420/*
2421 * Attempt to free all slabs on a node. Return the number of slabs we
2422 * were unable to free.
2423 */
2424static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2425			struct list_head *list)
2426{
2427	int slabs_inuse = 0;
2428	unsigned long flags;
2429	struct page *page, *h;
2430
2431	spin_lock_irqsave(&n->list_lock, flags);
2432	list_for_each_entry_safe(page, h, list, lru)
2433		if (!page->inuse) {
2434			list_del(&page->lru);
2435			discard_slab(s, page);
2436		} else
2437			slabs_inuse++;
2438	spin_unlock_irqrestore(&n->list_lock, flags);
2439	return slabs_inuse;
2440}
2441
2442/*
2443 * Release all resources used by a slab cache.
2444 */
2445static inline int kmem_cache_close(struct kmem_cache *s)
2446{
2447	int node;
2448
2449	flush_all(s);
2450
2451	/* Attempt to free all objects */
2452	free_kmem_cache_cpus(s);
2453	for_each_node_state(node, N_NORMAL_MEMORY) {
2454		struct kmem_cache_node *n = get_node(s, node);
2455
2456		n->nr_partial -= free_list(s, n, &n->partial);
2457		if (atomic_long_read(&n->nr_slabs))
2458			return 1;
2459	}
2460	free_kmem_cache_nodes(s);
2461	return 0;
2462}
2463
2464/*
2465 * Close a cache and release the kmem_cache structure
2466 * (must be used for caches created using kmem_cache_create)
2467 */
2468void kmem_cache_destroy(struct kmem_cache *s)
2469{
2470	down_write(&slub_lock);
2471	s->refcount--;
2472	if (!s->refcount) {
2473		list_del(&s->list);
2474		up_write(&slub_lock);
2475		if (kmem_cache_close(s))
2476			WARN_ON(1);
2477		sysfs_slab_remove(s);
2478	} else
2479		up_write(&slub_lock);
2480}
2481EXPORT_SYMBOL(kmem_cache_destroy);
2482
2483/********************************************************************
2484 *		Kmalloc subsystem
2485 *******************************************************************/
2486
2487struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2488EXPORT_SYMBOL(kmalloc_caches);
2489
2490#ifdef CONFIG_ZONE_DMA
2491static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2492#endif
2493
2494static int __init setup_slub_min_order(char *str)
2495{
2496	get_option(&str, &slub_min_order);
2497
2498	return 1;
2499}
2500
2501__setup("slub_min_order=", setup_slub_min_order);
2502
2503static int __init setup_slub_max_order(char *str)
2504{
2505	get_option(&str, &slub_max_order);
2506
2507	return 1;
2508}
2509
2510__setup("slub_max_order=", setup_slub_max_order);
2511
2512static int __init setup_slub_min_objects(char *str)
2513{
2514	get_option(&str, &slub_min_objects);
2515
2516	return 1;
2517}
2518
2519__setup("slub_min_objects=", setup_slub_min_objects);
2520
2521static int __init setup_slub_nomerge(char *str)
2522{
2523	slub_nomerge = 1;
2524	return 1;
2525}
2526
2527__setup("slub_nomerge", setup_slub_nomerge);
2528
2529static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2530		const char *name, int size, gfp_t gfp_flags)
2531{
2532	unsigned int flags = 0;
2533
2534	if (gfp_flags & SLUB_DMA)
2535		flags = SLAB_CACHE_DMA;
2536
2537	down_write(&slub_lock);
2538	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2539			flags, NULL))
2540		goto panic;
2541
2542	list_add(&s->list, &slab_caches);
2543	up_write(&slub_lock);
2544	if (sysfs_slab_add(s))
2545		goto panic;
2546	return s;
2547
2548panic:
2549	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2550}
2551
2552#ifdef CONFIG_ZONE_DMA
2553
2554static void sysfs_add_func(struct work_struct *w)
2555{
2556	struct kmem_cache *s;
2557
2558	down_write(&slub_lock);
2559	list_for_each_entry(s, &slab_caches, list) {
2560		if (s->flags & __SYSFS_ADD_DEFERRED) {
2561			s->flags &= ~__SYSFS_ADD_DEFERRED;
2562			sysfs_slab_add(s);
2563		}
2564	}
2565	up_write(&slub_lock);
2566}
2567
2568static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2569
2570static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2571{
2572	struct kmem_cache *s;
2573	char *text;
2574	size_t realsize;
2575
2576	s = kmalloc_caches_dma[index];
2577	if (s)
2578		return s;
2579
2580	/* Dynamically create dma cache */
2581	if (flags & __GFP_WAIT)
2582		down_write(&slub_lock);
2583	else {
2584		if (!down_write_trylock(&slub_lock))
2585			goto out;
2586	}
2587
2588	if (kmalloc_caches_dma[index])
2589		goto unlock_out;
2590
2591	realsize = kmalloc_caches[index].objsize;
2592	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2593	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2594
2595	if (!s || !text || !kmem_cache_open(s, flags, text,
2596			realsize, ARCH_KMALLOC_MINALIGN,
2597			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2598		kfree(s);
2599		kfree(text);
2600		goto unlock_out;
2601	}
2602
2603	list_add(&s->list, &slab_caches);
2604	kmalloc_caches_dma[index] = s;
2605
2606	schedule_work(&sysfs_add_work);
2607
2608unlock_out:
2609	up_write(&slub_lock);
2610out:
2611	return kmalloc_caches_dma[index];
2612}
2613#endif
2614
2615/*
2616 * Conversion table for small slabs sizes / 8 to the index in the
2617 * kmalloc array. This is necessary for slabs < 192 since we have non power
2618 * of two cache sizes there. The size of larger slabs can be determined using
2619 * fls.
2620 */
2621static s8 size_index[24] = {
2622	3,	/* 8 */
2623	4,	/* 16 */
2624	5,	/* 24 */
2625	5,	/* 32 */
2626	6,	/* 40 */
2627	6,	/* 48 */
2628	6,	/* 56 */
2629	6,	/* 64 */
2630	1,	/* 72 */
2631	1,	/* 80 */
2632	1,	/* 88 */
2633	1,	/* 96 */
2634	7,	/* 104 */
2635	7,	/* 112 */
2636	7,	/* 120 */
2637	7,	/* 128 */
2638	2,	/* 136 */
2639	2,	/* 144 */
2640	2,	/* 152 */
2641	2,	/* 160 */
2642	2,	/* 168 */
2643	2,	/* 176 */
2644	2,	/* 184 */
2645	2	/* 192 */
2646};
2647
2648static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2649{
2650	int index;
2651
2652	if (size <= 192) {
2653		if (!size)
2654			return ZERO_SIZE_PTR;
2655
2656		index = size_index[(size - 1) / 8];
2657	} else
2658		index = fls(size - 1);
2659
2660#ifdef CONFIG_ZONE_DMA
2661	if (unlikely((flags & SLUB_DMA)))
2662		return dma_kmalloc_cache(index, flags);
2663
2664#endif
2665	return &kmalloc_caches[index];
2666}
2667
2668void *__kmalloc(size_t size, gfp_t flags)
2669{
2670	struct kmem_cache *s;
2671
2672	if (unlikely(size > PAGE_SIZE / 2))
2673		return (void *)__get_free_pages(flags | __GFP_COMP,
2674							get_order(size));
2675
2676	s = get_slab(size, flags);
2677
2678	if (unlikely(ZERO_OR_NULL_PTR(s)))
2679		return s;
2680
2681	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2682}
2683EXPORT_SYMBOL(__kmalloc);
2684
2685#ifdef CONFIG_NUMA
2686void *__kmalloc_node(size_t size, gfp_t flags, int node)
2687{
2688	struct kmem_cache *s;
2689
2690	if (unlikely(size > PAGE_SIZE / 2))
2691		return (void *)__get_free_pages(flags | __GFP_COMP,
2692							get_order(size));
2693
2694	s = get_slab(size, flags);
2695
2696	if (unlikely(ZERO_OR_NULL_PTR(s)))
2697		return s;
2698
2699	return slab_alloc(s, flags, node, __builtin_return_address(0));
2700}
2701EXPORT_SYMBOL(__kmalloc_node);
2702#endif
2703
2704size_t ksize(const void *object)
2705{
2706	struct page *page;
2707	struct kmem_cache *s;
2708
2709	BUG_ON(!object);
2710	if (unlikely(object == ZERO_SIZE_PTR))
2711		return 0;
2712
2713	page = virt_to_head_page(object);
2714	BUG_ON(!page);
2715
2716	if (unlikely(!PageSlab(page)))
2717		return PAGE_SIZE << compound_order(page);
2718
2719	s = page->slab;
2720	BUG_ON(!s);
2721
2722	/*
2723	 * Debugging requires use of the padding between object
2724	 * and whatever may come after it.
2725	 */
2726	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2727		return s->objsize;
2728
2729	/*
2730	 * If we have the need to store the freelist pointer
2731	 * back there or track user information then we can
2732	 * only use the space before that information.
2733	 */
2734	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2735		return s->inuse;
2736
2737	/*
2738	 * Else we can use all the padding etc for the allocation
2739	 */
2740	return s->size;
2741}
2742EXPORT_SYMBOL(ksize);
2743
2744void kfree(const void *x)
2745{
2746	struct page *page;
2747	void *object = (void *)x;
2748
2749	if (unlikely(ZERO_OR_NULL_PTR(x)))
2750		return;
2751
2752	page = virt_to_head_page(x);
2753	if (unlikely(!PageSlab(page))) {
2754		put_page(page);
2755		return;
2756	}
2757	slab_free(page->slab, page, object, __builtin_return_address(0));
2758}
2759EXPORT_SYMBOL(kfree);
2760
2761static unsigned long count_partial(struct kmem_cache_node *n)
2762{
2763	unsigned long flags;
2764	unsigned long x = 0;
2765	struct page *page;
2766
2767	spin_lock_irqsave(&n->list_lock, flags);
2768	list_for_each_entry(page, &n->partial, lru)
2769		x += page->inuse;
2770	spin_unlock_irqrestore(&n->list_lock, flags);
2771	return x;
2772}
2773
2774/*
2775 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2776 * the remaining slabs by the number of items in use. The slabs with the
2777 * most items in use come first. New allocations will then fill those up
2778 * and thus they can be removed from the partial lists.
2779 *
2780 * The slabs with the least items are placed last. This results in them
2781 * being allocated from last increasing the chance that the last objects
2782 * are freed in them.
2783 */
2784int kmem_cache_shrink(struct kmem_cache *s)
2785{
2786	int node;
2787	int i;
2788	struct kmem_cache_node *n;
2789	struct page *page;
2790	struct page *t;
2791	struct list_head *slabs_by_inuse =
2792		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2793	unsigned long flags;
2794
2795	if (!slabs_by_inuse)
2796		return -ENOMEM;
2797
2798	flush_all(s);
2799	for_each_node_state(node, N_NORMAL_MEMORY) {
2800		n = get_node(s, node);
2801
2802		if (!n->nr_partial)
2803			continue;
2804
2805		for (i = 0; i < s->objects; i++)
2806			INIT_LIST_HEAD(slabs_by_inuse + i);
2807
2808		spin_lock_irqsave(&n->list_lock, flags);
2809
2810		/*
2811		 * Build lists indexed by the items in use in each slab.
2812		 *
2813		 * Note that concurrent frees may occur while we hold the
2814		 * list_lock. page->inuse here is the upper limit.
2815		 */
2816		list_for_each_entry_safe(page, t, &n->partial, lru) {
2817			if (!page->inuse && slab_trylock(page)) {
2818				/*
2819				 * Must hold slab lock here because slab_free
2820				 * may have freed the last object and be
2821				 * waiting to release the slab.
2822				 */
2823				list_del(&page->lru);
2824				n->nr_partial--;
2825				slab_unlock(page);
2826				discard_slab(s, page);
2827			} else {
2828				list_move(&page->lru,
2829				slabs_by_inuse + page->inuse);
2830			}
2831		}
2832
2833		/*
2834		 * Rebuild the partial list with the slabs filled up most
2835		 * first and the least used slabs at the end.
2836		 */
2837		for (i = s->objects - 1; i >= 0; i--)
2838			list_splice(slabs_by_inuse + i, n->partial.prev);
2839
2840		spin_unlock_irqrestore(&n->list_lock, flags);
2841	}
2842
2843	kfree(slabs_by_inuse);
2844	return 0;
2845}
2846EXPORT_SYMBOL(kmem_cache_shrink);
2847
2848#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2849static int slab_mem_going_offline_callback(void *arg)
2850{
2851	struct kmem_cache *s;
2852
2853	down_read(&slub_lock);
2854	list_for_each_entry(s, &slab_caches, list)
2855		kmem_cache_shrink(s);
2856	up_read(&slub_lock);
2857
2858	return 0;
2859}
2860
2861static void slab_mem_offline_callback(void *arg)
2862{
2863	struct kmem_cache_node *n;
2864	struct kmem_cache *s;
2865	struct memory_notify *marg = arg;
2866	int offline_node;
2867
2868	offline_node = marg->status_change_nid;
2869
2870	/*
2871	 * If the node still has available memory. we need kmem_cache_node
2872	 * for it yet.
2873	 */
2874	if (offline_node < 0)
2875		return;
2876
2877	down_read(&slub_lock);
2878	list_for_each_entry(s, &slab_caches, list) {
2879		n = get_node(s, offline_node);
2880		if (n) {
2881			/*
2882			 * if n->nr_slabs > 0, slabs still exist on the node
2883			 * that is going down. We were unable to free them,
2884			 * and offline_pages() function shoudn't call this
2885			 * callback. So, we must fail.
2886			 */
2887			BUG_ON(atomic_long_read(&n->nr_slabs));
2888
2889			s->node[offline_node] = NULL;
2890			kmem_cache_free(kmalloc_caches, n);
2891		}
2892	}
2893	up_read(&slub_lock);
2894}
2895
2896static int slab_mem_going_online_callback(void *arg)
2897{
2898	struct kmem_cache_node *n;
2899	struct kmem_cache *s;
2900	struct memory_notify *marg = arg;
2901	int nid = marg->status_change_nid;
2902	int ret = 0;
2903
2904	/*
2905	 * If the node's memory is already available, then kmem_cache_node is
2906	 * already created. Nothing to do.
2907	 */
2908	if (nid < 0)
2909		return 0;
2910
2911	/*
2912	 * We are bringing a node online. No memory is availabe yet. We must
2913	 * allocate a kmem_cache_node structure in order to bring the node
2914	 * online.
2915	 */
2916	down_read(&slub_lock);
2917	list_for_each_entry(s, &slab_caches, list) {
2918		/*
2919		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2920		 *      since memory is not yet available from the node that
2921		 *      is brought up.
2922		 */
2923		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2924		if (!n) {
2925			ret = -ENOMEM;
2926			goto out;
2927		}
2928		init_kmem_cache_node(n);
2929		s->node[nid] = n;
2930	}
2931out:
2932	up_read(&slub_lock);
2933	return ret;
2934}
2935
2936static int slab_memory_callback(struct notifier_block *self,
2937				unsigned long action, void *arg)
2938{
2939	int ret = 0;
2940
2941	switch (action) {
2942	case MEM_GOING_ONLINE:
2943		ret = slab_mem_going_online_callback(arg);
2944		break;
2945	case MEM_GOING_OFFLINE:
2946		ret = slab_mem_going_offline_callback(arg);
2947		break;
2948	case MEM_OFFLINE:
2949	case MEM_CANCEL_ONLINE:
2950		slab_mem_offline_callback(arg);
2951		break;
2952	case MEM_ONLINE:
2953	case MEM_CANCEL_OFFLINE:
2954		break;
2955	}
2956
2957	ret = notifier_from_errno(ret);
2958	return ret;
2959}
2960
2961#endif /* CONFIG_MEMORY_HOTPLUG */
2962
2963/********************************************************************
2964 *			Basic setup of slabs
2965 *******************************************************************/
2966
2967void __init kmem_cache_init(void)
2968{
2969	int i;
2970	int caches = 0;
2971
2972	init_alloc_cpu();
2973
2974#ifdef CONFIG_NUMA
2975	/*
2976	 * Must first have the slab cache available for the allocations of the
2977	 * struct kmem_cache_node's. There is special bootstrap code in
2978	 * kmem_cache_open for slab_state == DOWN.
2979	 */
2980	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2981		sizeof(struct kmem_cache_node), GFP_KERNEL);
2982	kmalloc_caches[0].refcount = -1;
2983	caches++;
2984
2985	hotplug_memory_notifier(slab_memory_callback, 1);
2986#endif
2987
2988	/* Able to allocate the per node structures */
2989	slab_state = PARTIAL;
2990
2991	/* Caches that are not of the two-to-the-power-of size */
2992	if (KMALLOC_MIN_SIZE <= 64) {
2993		create_kmalloc_cache(&kmalloc_caches[1],
2994				"kmalloc-96", 96, GFP_KERNEL);
2995		caches++;
2996	}
2997	if (KMALLOC_MIN_SIZE <= 128) {
2998		create_kmalloc_cache(&kmalloc_caches[2],
2999				"kmalloc-192", 192, GFP_KERNEL);
3000		caches++;
3001	}
3002
3003	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
3004		create_kmalloc_cache(&kmalloc_caches[i],
3005			"kmalloc", 1 << i, GFP_KERNEL);
3006		caches++;
3007	}
3008
3009
3010	/*
3011	 * Patch up the size_index table if we have strange large alignment
3012	 * requirements for the kmalloc array. This is only the case for
3013	 * mips it seems. The standard arches will not generate any code here.
3014	 *
3015	 * Largest permitted alignment is 256 bytes due to the way we
3016	 * handle the index determination for the smaller caches.
3017	 *
3018	 * Make sure that nothing crazy happens if someone starts tinkering
3019	 * around with ARCH_KMALLOC_MINALIGN
3020	 */
3021	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3022		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3023
3024	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3025		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3026
3027	slab_state = UP;
3028
3029	/* Provide the correct kmalloc names now that the caches are up */
3030	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
3031		kmalloc_caches[i]. name =
3032			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3033
3034#ifdef CONFIG_SMP
3035	register_cpu_notifier(&slab_notifier);
3036	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3037				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3038#else
3039	kmem_size = sizeof(struct kmem_cache);
3040#endif
3041
3042
3043	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3044		" CPUs=%d, Nodes=%d\n",
3045		caches, cache_line_size(),
3046		slub_min_order, slub_max_order, slub_min_objects,
3047		nr_cpu_ids, nr_node_ids);
3048}
3049
3050/*
3051 * Find a mergeable slab cache
3052 */
3053static int slab_unmergeable(struct kmem_cache *s)
3054{
3055	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3056		return 1;
3057
3058	if (s->ctor)
3059		return 1;
3060
3061	/*
3062	 * We may have set a slab to be unmergeable during bootstrap.
3063	 */
3064	if (s->refcount < 0)
3065		return 1;
3066
3067	return 0;
3068}
3069
3070static struct kmem_cache *find_mergeable(size_t size,
3071		size_t align, unsigned long flags, const char *name,
3072		void (*ctor)(struct kmem_cache *, void *))
3073{
3074	struct kmem_cache *s;
3075
3076	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3077		return NULL;
3078
3079	if (ctor)
3080		return NULL;
3081
3082	size = ALIGN(size, sizeof(void *));
3083	align = calculate_alignment(flags, align, size);
3084	size = ALIGN(size, align);
3085	flags = kmem_cache_flags(size, flags, name, NULL);
3086
3087	list_for_each_entry(s, &slab_caches, list) {
3088		if (slab_unmergeable(s))
3089			continue;
3090
3091		if (size > s->size)
3092			continue;
3093
3094		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3095				continue;
3096		/*
3097		 * Check if alignment is compatible.
3098		 * Courtesy of Adrian Drzewiecki
3099		 */
3100		if ((s->size & ~(align - 1)) != s->size)
3101			continue;
3102
3103		if (s->size - size >= sizeof(void *))
3104			continue;
3105
3106		return s;
3107	}
3108	return NULL;
3109}
3110
3111struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3112		size_t align, unsigned long flags,
3113		void (*ctor)(struct kmem_cache *, void *))
3114{
3115	struct kmem_cache *s;
3116
3117	down_write(&slub_lock);
3118	s = find_mergeable(size, align, flags, name, ctor);
3119	if (s) {
3120		int cpu;
3121
3122		s->refcount++;
3123		/*
3124		 * Adjust the object sizes so that we clear
3125		 * the complete object on kzalloc.
3126		 */
3127		s->objsize = max(s->objsize, (int)size);
3128
3129		/*
3130		 * And then we need to update the object size in the
3131		 * per cpu structures
3132		 */
3133		for_each_online_cpu(cpu)
3134			get_cpu_slab(s, cpu)->objsize = s->objsize;
3135		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3136		up_write(&slub_lock);
3137		if (sysfs_slab_alias(s, name))
3138			goto err;
3139		return s;
3140	}
3141	s = kmalloc(kmem_size, GFP_KERNEL);
3142	if (s) {
3143		if (kmem_cache_open(s, GFP_KERNEL, name,
3144				size, align, flags, ctor)) {
3145			list_add(&s->list, &slab_caches);
3146			up_write(&slub_lock);
3147			if (sysfs_slab_add(s))
3148				goto err;
3149			return s;
3150		}
3151		kfree(s);
3152	}
3153	up_write(&slub_lock);
3154
3155err:
3156	if (flags & SLAB_PANIC)
3157		panic("Cannot create slabcache %s\n", name);
3158	else
3159		s = NULL;
3160	return s;
3161}
3162EXPORT_SYMBOL(kmem_cache_create);
3163
3164#ifdef CONFIG_SMP
3165/*
3166 * Use the cpu notifier to insure that the cpu slabs are flushed when
3167 * necessary.
3168 */
3169static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3170		unsigned long action, void *hcpu)
3171{
3172	long cpu = (long)hcpu;
3173	struct kmem_cache *s;
3174	unsigned long flags;
3175
3176	switch (action) {
3177	case CPU_UP_PREPARE:
3178	case CPU_UP_PREPARE_FROZEN:
3179		init_alloc_cpu_cpu(cpu);
3180		down_read(&slub_lock);
3181		list_for_each_entry(s, &slab_caches, list)
3182			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3183							GFP_KERNEL);
3184		up_read(&slub_lock);
3185		break;
3186
3187	case CPU_UP_CANCELED:
3188	case CPU_UP_CANCELED_FROZEN:
3189	case CPU_DEAD:
3190	case CPU_DEAD_FROZEN:
3191		down_read(&slub_lock);
3192		list_for_each_entry(s, &slab_caches, list) {
3193			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3194
3195			local_irq_save(flags);
3196			__flush_cpu_slab(s, cpu);
3197			local_irq_restore(flags);
3198			free_kmem_cache_cpu(c, cpu);
3199			s->cpu_slab[cpu] = NULL;
3200		}
3201		up_read(&slub_lock);
3202		break;
3203	default:
3204		break;
3205	}
3206	return NOTIFY_OK;
3207}
3208
3209static struct notifier_block __cpuinitdata slab_notifier = {
3210	&slab_cpuup_callback, NULL, 0
3211};
3212
3213#endif
3214
3215void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3216{
3217	struct kmem_cache *s;
3218
3219	if (unlikely(size > PAGE_SIZE / 2))
3220		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3221							get_order(size));
3222	s = get_slab(size, gfpflags);
3223
3224	if (unlikely(ZERO_OR_NULL_PTR(s)))
3225		return s;
3226
3227	return slab_alloc(s, gfpflags, -1, caller);
3228}
3229
3230void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3231					int node, void *caller)
3232{
3233	struct kmem_cache *s;
3234
3235	if (unlikely(size > PAGE_SIZE / 2))
3236		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3237							get_order(size));
3238	s = get_slab(size, gfpflags);
3239
3240	if (unlikely(ZERO_OR_NULL_PTR(s)))
3241		return s;
3242
3243	return slab_alloc(s, gfpflags, node, caller);
3244}
3245
3246#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3247static int validate_slab(struct kmem_cache *s, struct page *page,
3248						unsigned long *map)
3249{
3250	void *p;
3251	void *addr = slab_address(page);
3252
3253	if (!check_slab(s, page) ||
3254			!on_freelist(s, page, NULL))
3255		return 0;
3256
3257	/* Now we know that a valid freelist exists */
3258	bitmap_zero(map, s->objects);
3259
3260	for_each_free_object(p, s, page->freelist) {
3261		set_bit(slab_index(p, s, addr), map);
3262		if (!check_object(s, page, p, 0))
3263			return 0;
3264	}
3265
3266	for_each_object(p, s, addr)
3267		if (!test_bit(slab_index(p, s, addr), map))
3268			if (!check_object(s, page, p, 1))
3269				return 0;
3270	return 1;
3271}
3272
3273static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3274						unsigned long *map)
3275{
3276	if (slab_trylock(page)) {
3277		validate_slab(s, page, map);
3278		slab_unlock(page);
3279	} else
3280		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3281			s->name, page);
3282
3283	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3284		if (!SlabDebug(page))
3285			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3286				"on slab 0x%p\n", s->name, page);
3287	} else {
3288		if (SlabDebug(page))
3289			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3290				"slab 0x%p\n", s->name, page);
3291	}
3292}
3293
3294static int validate_slab_node(struct kmem_cache *s,
3295		struct kmem_cache_node *n, unsigned long *map)
3296{
3297	unsigned long count = 0;
3298	struct page *page;
3299	unsigned long flags;
3300
3301	spin_lock_irqsave(&n->list_lock, flags);
3302
3303	list_for_each_entry(page, &n->partial, lru) {
3304		validate_slab_slab(s, page, map);
3305		count++;
3306	}
3307	if (count != n->nr_partial)
3308		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3309			"counter=%ld\n", s->name, count, n->nr_partial);
3310
3311	if (!(s->flags & SLAB_STORE_USER))
3312		goto out;
3313
3314	list_for_each_entry(page, &n->full, lru) {
3315		validate_slab_slab(s, page, map);
3316		count++;
3317	}
3318	if (count != atomic_long_read(&n->nr_slabs))
3319		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3320			"counter=%ld\n", s->name, count,
3321			atomic_long_read(&n->nr_slabs));
3322
3323out:
3324	spin_unlock_irqrestore(&n->list_lock, flags);
3325	return count;
3326}
3327
3328static long validate_slab_cache(struct kmem_cache *s)
3329{
3330	int node;
3331	unsigned long count = 0;
3332	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3333				sizeof(unsigned long), GFP_KERNEL);
3334
3335	if (!map)
3336		return -ENOMEM;
3337
3338	flush_all(s);
3339	for_each_node_state(node, N_NORMAL_MEMORY) {
3340		struct kmem_cache_node *n = get_node(s, node);
3341
3342		count += validate_slab_node(s, n, map);
3343	}
3344	kfree(map);
3345	return count;
3346}
3347
3348#ifdef SLUB_RESILIENCY_TEST
3349static void resiliency_test(void)
3350{
3351	u8 *p;
3352
3353	printk(KERN_ERR "SLUB resiliency testing\n");
3354	printk(KERN_ERR "-----------------------\n");
3355	printk(KERN_ERR "A. Corruption after allocation\n");
3356
3357	p = kzalloc(16, GFP_KERNEL);
3358	p[16] = 0x12;
3359	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3360			" 0x12->0x%p\n\n", p + 16);
3361
3362	validate_slab_cache(kmalloc_caches + 4);
3363
3364	/* Hmmm... The next two are dangerous */
3365	p = kzalloc(32, GFP_KERNEL);
3366	p[32 + sizeof(void *)] = 0x34;
3367	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3368		 	" 0x34 -> -0x%p\n", p);
3369	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3370
3371	validate_slab_cache(kmalloc_caches + 5);
3372	p = kzalloc(64, GFP_KERNEL);
3373	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3374	*p = 0x56;
3375	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3376									p);
3377	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3378	validate_slab_cache(kmalloc_caches + 6);
3379
3380	printk(KERN_ERR "\nB. Corruption after free\n");
3381	p = kzalloc(128, GFP_KERNEL);
3382	kfree(p);
3383	*p = 0x78;
3384	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3385	validate_slab_cache(kmalloc_caches + 7);
3386
3387	p = kzalloc(256, GFP_KERNEL);
3388	kfree(p);
3389	p[50] = 0x9a;
3390	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3391	validate_slab_cache(kmalloc_caches + 8);
3392
3393	p = kzalloc(512, GFP_KERNEL);
3394	kfree(p);
3395	p[512] = 0xab;
3396	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3397	validate_slab_cache(kmalloc_caches + 9);
3398}
3399#else
3400static void resiliency_test(void) {};
3401#endif
3402
3403/*
3404 * Generate lists of code addresses where slabcache objects are allocated
3405 * and freed.
3406 */
3407
3408struct location {
3409	unsigned long count;
3410	void *addr;
3411	long long sum_time;
3412	long min_time;
3413	long max_time;
3414	long min_pid;
3415	long max_pid;
3416	cpumask_t cpus;
3417	nodemask_t nodes;
3418};
3419
3420struct loc_track {
3421	unsigned long max;
3422	unsigned long count;
3423	struct location *loc;
3424};
3425
3426static void free_loc_track(struct loc_track *t)
3427{
3428	if (t->max)
3429		free_pages((unsigned long)t->loc,
3430			get_order(sizeof(struct location) * t->max));
3431}
3432
3433static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3434{
3435	struct location *l;
3436	int order;
3437
3438	order = get_order(sizeof(struct location) * max);
3439
3440	l = (void *)__get_free_pages(flags, order);
3441	if (!l)
3442		return 0;
3443
3444	if (t->count) {
3445		memcpy(l, t->loc, sizeof(struct location) * t->count);
3446		free_loc_track(t);
3447	}
3448	t->max = max;
3449	t->loc = l;
3450	return 1;
3451}
3452
3453static int add_location(struct loc_track *t, struct kmem_cache *s,
3454				const struct track *track)
3455{
3456	long start, end, pos;
3457	struct location *l;
3458	void *caddr;
3459	unsigned long age = jiffies - track->when;
3460
3461	start = -1;
3462	end = t->count;
3463
3464	for ( ; ; ) {
3465		pos = start + (end - start + 1) / 2;
3466
3467		/*
3468		 * There is nothing at "end". If we end up there
3469		 * we need to add something to before end.
3470		 */
3471		if (pos == end)
3472			break;
3473
3474		caddr = t->loc[pos].addr;
3475		if (track->addr == caddr) {
3476
3477			l = &t->loc[pos];
3478			l->count++;
3479			if (track->when) {
3480				l->sum_time += age;
3481				if (age < l->min_time)
3482					l->min_time = age;
3483				if (age > l->max_time)
3484					l->max_time = age;
3485
3486				if (track->pid < l->min_pid)
3487					l->min_pid = track->pid;
3488				if (track->pid > l->max_pid)
3489					l->max_pid = track->pid;
3490
3491				cpu_set(track->cpu, l->cpus);
3492			}
3493			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3494			return 1;
3495		}
3496
3497		if (track->addr < caddr)
3498			end = pos;
3499		else
3500			start = pos;
3501	}
3502
3503	/*
3504	 * Not found. Insert new tracking element.
3505	 */
3506	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3507		return 0;
3508
3509	l = t->loc + pos;
3510	if (pos < t->count)
3511		memmove(l + 1, l,
3512			(t->count - pos) * sizeof(struct location));
3513	t->count++;
3514	l->count = 1;
3515	l->addr = track->addr;
3516	l->sum_time = age;
3517	l->min_time = age;
3518	l->max_time = age;
3519	l->min_pid = track->pid;
3520	l->max_pid = track->pid;
3521	cpus_clear(l->cpus);
3522	cpu_set(track->cpu, l->cpus);
3523	nodes_clear(l->nodes);
3524	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3525	return 1;
3526}
3527
3528static void process_slab(struct loc_track *t, struct kmem_cache *s,
3529		struct page *page, enum track_item alloc)
3530{
3531	void *addr = slab_address(page);
3532	DECLARE_BITMAP(map, s->objects);
3533	void *p;
3534
3535	bitmap_zero(map, s->objects);
3536	for_each_free_object(p, s, page->freelist)
3537		set_bit(slab_index(p, s, addr), map);
3538
3539	for_each_object(p, s, addr)
3540		if (!test_bit(slab_index(p, s, addr), map))
3541			add_location(t, s, get_track(s, p, alloc));
3542}
3543
3544static int list_locations(struct kmem_cache *s, char *buf,
3545					enum track_item alloc)
3546{
3547	int len = 0;
3548	unsigned long i;
3549	struct loc_track t = { 0, 0, NULL };
3550	int node;
3551
3552	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3553			GFP_TEMPORARY))
3554		return sprintf(buf, "Out of memory\n");
3555
3556	/* Push back cpu slabs */
3557	flush_all(s);
3558
3559	for_each_node_state(node, N_NORMAL_MEMORY) {
3560		struct kmem_cache_node *n = get_node(s, node);
3561		unsigned long flags;
3562		struct page *page;
3563
3564		if (!atomic_long_read(&n->nr_slabs))
3565			continue;
3566
3567		spin_lock_irqsave(&n->list_lock, flags);
3568		list_for_each_entry(page, &n->partial, lru)
3569			process_slab(&t, s, page, alloc);
3570		list_for_each_entry(page, &n->full, lru)
3571			process_slab(&t, s, page, alloc);
3572		spin_unlock_irqrestore(&n->list_lock, flags);
3573	}
3574
3575	for (i = 0; i < t.count; i++) {
3576		struct location *l = &t.loc[i];
3577
3578		if (len > PAGE_SIZE - 100)
3579			break;
3580		len += sprintf(buf + len, "%7ld ", l->count);
3581
3582		if (l->addr)
3583			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3584		else
3585			len += sprintf(buf + len, "<not-available>");
3586
3587		if (l->sum_time != l->min_time) {
3588			unsigned long remainder;
3589
3590			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3591			l->min_time,
3592			div_long_long_rem(l->sum_time, l->count, &remainder),
3593			l->max_time);
3594		} else
3595			len += sprintf(buf + len, " age=%ld",
3596				l->min_time);
3597
3598		if (l->min_pid != l->max_pid)
3599			len += sprintf(buf + len, " pid=%ld-%ld",
3600				l->min_pid, l->max_pid);
3601		else
3602			len += sprintf(buf + len, " pid=%ld",
3603				l->min_pid);
3604
3605		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3606				len < PAGE_SIZE - 60) {
3607			len += sprintf(buf + len, " cpus=");
3608			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3609					l->cpus);
3610		}
3611
3612		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3613				len < PAGE_SIZE - 60) {
3614			len += sprintf(buf + len, " nodes=");
3615			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3616					l->nodes);
3617		}
3618
3619		len += sprintf(buf + len, "\n");
3620	}
3621
3622	free_loc_track(&t);
3623	if (!t.count)
3624		len += sprintf(buf, "No data\n");
3625	return len;
3626}
3627
3628enum slab_stat_type {
3629	SL_FULL,
3630	SL_PARTIAL,
3631	SL_CPU,
3632	SL_OBJECTS
3633};
3634
3635#define SO_FULL		(1 << SL_FULL)
3636#define SO_PARTIAL	(1 << SL_PARTIAL)
3637#define SO_CPU		(1 << SL_CPU)
3638#define SO_OBJECTS	(1 << SL_OBJECTS)
3639
3640static unsigned long slab_objects(struct kmem_cache *s,
3641			char *buf, unsigned long flags)
3642{
3643	unsigned long total = 0;
3644	int cpu;
3645	int node;
3646	int x;
3647	unsigned long *nodes;
3648	unsigned long *per_cpu;
3649
3650	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3651	per_cpu = nodes + nr_node_ids;
3652
3653	for_each_possible_cpu(cpu) {
3654		struct page *page;
3655		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3656
3657		if (!c)
3658			continue;
3659
3660		page = c->page;
3661		node = c->node;
3662		if (node < 0)
3663			continue;
3664		if (page) {
3665			if (flags & SO_CPU) {
3666				if (flags & SO_OBJECTS)
3667					x = page->inuse;
3668				else
3669					x = 1;
3670				total += x;
3671				nodes[node] += x;
3672			}
3673			per_cpu[node]++;
3674		}
3675	}
3676
3677	for_each_node_state(node, N_NORMAL_MEMORY) {
3678		struct kmem_cache_node *n = get_node(s, node);
3679
3680		if (flags & SO_PARTIAL) {
3681			if (flags & SO_OBJECTS)
3682				x = count_partial(n);
3683			else
3684				x = n->nr_partial;
3685			total += x;
3686			nodes[node] += x;
3687		}
3688
3689		if (flags & SO_FULL) {
3690			int full_slabs = atomic_long_read(&n->nr_slabs)
3691					- per_cpu[node]
3692					- n->nr_partial;
3693
3694			if (flags & SO_OBJECTS)
3695				x = full_slabs * s->objects;
3696			else
3697				x = full_slabs;
3698			total += x;
3699			nodes[node] += x;
3700		}
3701	}
3702
3703	x = sprintf(buf, "%lu", total);
3704#ifdef CONFIG_NUMA
3705	for_each_node_state(node, N_NORMAL_MEMORY)
3706		if (nodes[node])
3707			x += sprintf(buf + x, " N%d=%lu",
3708					node, nodes[node]);
3709#endif
3710	kfree(nodes);
3711	return x + sprintf(buf + x, "\n");
3712}
3713
3714static int any_slab_objects(struct kmem_cache *s)
3715{
3716	int node;
3717	int cpu;
3718
3719	for_each_possible_cpu(cpu) {
3720		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3721
3722		if (c && c->page)
3723			return 1;
3724	}
3725
3726	for_each_online_node(node) {
3727		struct kmem_cache_node *n = get_node(s, node);
3728
3729		if (!n)
3730			continue;
3731
3732		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3733			return 1;
3734	}
3735	return 0;
3736}
3737
3738#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3739#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3740
3741struct slab_attribute {
3742	struct attribute attr;
3743	ssize_t (*show)(struct kmem_cache *s, char *buf);
3744	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3745};
3746
3747#define SLAB_ATTR_RO(_name) \
3748	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3749
3750#define SLAB_ATTR(_name) \
3751	static struct slab_attribute _name##_attr =  \
3752	__ATTR(_name, 0644, _name##_show, _name##_store)
3753
3754static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3755{
3756	return sprintf(buf, "%d\n", s->size);
3757}
3758SLAB_ATTR_RO(slab_size);
3759
3760static ssize_t align_show(struct kmem_cache *s, char *buf)
3761{
3762	return sprintf(buf, "%d\n", s->align);
3763}
3764SLAB_ATTR_RO(align);
3765
3766static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3767{
3768	return sprintf(buf, "%d\n", s->objsize);
3769}
3770SLAB_ATTR_RO(object_size);
3771
3772static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3773{
3774	return sprintf(buf, "%d\n", s->objects);
3775}
3776SLAB_ATTR_RO(objs_per_slab);
3777
3778static ssize_t order_show(struct kmem_cache *s, char *buf)
3779{
3780	return sprintf(buf, "%d\n", s->order);
3781}
3782SLAB_ATTR_RO(order);
3783
3784static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3785{
3786	if (s->ctor) {
3787		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3788
3789		return n + sprintf(buf + n, "\n");
3790	}
3791	return 0;
3792}
3793SLAB_ATTR_RO(ctor);
3794
3795static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3796{
3797	return sprintf(buf, "%d\n", s->refcount - 1);
3798}
3799SLAB_ATTR_RO(aliases);
3800
3801static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3802{
3803	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3804}
3805SLAB_ATTR_RO(slabs);
3806
3807static ssize_t partial_show(struct kmem_cache *s, char *buf)
3808{
3809	return slab_objects(s, buf, SO_PARTIAL);
3810}
3811SLAB_ATTR_RO(partial);
3812
3813static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3814{
3815	return slab_objects(s, buf, SO_CPU);
3816}
3817SLAB_ATTR_RO(cpu_slabs);
3818
3819static ssize_t objects_show(struct kmem_cache *s, char *buf)
3820{
3821	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3822}
3823SLAB_ATTR_RO(objects);
3824
3825static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3826{
3827	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3828}
3829
3830static ssize_t sanity_checks_store(struct kmem_cache *s,
3831				const char *buf, size_t length)
3832{
3833	s->flags &= ~SLAB_DEBUG_FREE;
3834	if (buf[0] == '1')
3835		s->flags |= SLAB_DEBUG_FREE;
3836	return length;
3837}
3838SLAB_ATTR(sanity_checks);
3839
3840static ssize_t trace_show(struct kmem_cache *s, char *buf)
3841{
3842	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3843}
3844
3845static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3846							size_t length)
3847{
3848	s->flags &= ~SLAB_TRACE;
3849	if (buf[0] == '1')
3850		s->flags |= SLAB_TRACE;
3851	return length;
3852}
3853SLAB_ATTR(trace);
3854
3855static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3856{
3857	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3858}
3859
3860static ssize_t reclaim_account_store(struct kmem_cache *s,
3861				const char *buf, size_t length)
3862{
3863	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3864	if (buf[0] == '1')
3865		s->flags |= SLAB_RECLAIM_ACCOUNT;
3866	return length;
3867}
3868SLAB_ATTR(reclaim_account);
3869
3870static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3871{
3872	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3873}
3874SLAB_ATTR_RO(hwcache_align);
3875
3876#ifdef CONFIG_ZONE_DMA
3877static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3878{
3879	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3880}
3881SLAB_ATTR_RO(cache_dma);
3882#endif
3883
3884static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3885{
3886	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3887}
3888SLAB_ATTR_RO(destroy_by_rcu);
3889
3890static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3891{
3892	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3893}
3894
3895static ssize_t red_zone_store(struct kmem_cache *s,
3896				const char *buf, size_t length)
3897{
3898	if (any_slab_objects(s))
3899		return -EBUSY;
3900
3901	s->flags &= ~SLAB_RED_ZONE;
3902	if (buf[0] == '1')
3903		s->flags |= SLAB_RED_ZONE;
3904	calculate_sizes(s);
3905	return length;
3906}
3907SLAB_ATTR(red_zone);
3908
3909static ssize_t poison_show(struct kmem_cache *s, char *buf)
3910{
3911	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3912}
3913
3914static ssize_t poison_store(struct kmem_cache *s,
3915				const char *buf, size_t length)
3916{
3917	if (any_slab_objects(s))
3918		return -EBUSY;
3919
3920	s->flags &= ~SLAB_POISON;
3921	if (buf[0] == '1')
3922		s->flags |= SLAB_POISON;
3923	calculate_sizes(s);
3924	return length;
3925}
3926SLAB_ATTR(poison);
3927
3928static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3929{
3930	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3931}
3932
3933static ssize_t store_user_store(struct kmem_cache *s,
3934				const char *buf, size_t length)
3935{
3936	if (any_slab_objects(s))
3937		return -EBUSY;
3938
3939	s->flags &= ~SLAB_STORE_USER;
3940	if (buf[0] == '1')
3941		s->flags |= SLAB_STORE_USER;
3942	calculate_sizes(s);
3943	return length;
3944}
3945SLAB_ATTR(store_user);
3946
3947static ssize_t validate_show(struct kmem_cache *s, char *buf)
3948{
3949	return 0;
3950}
3951
3952static ssize_t validate_store(struct kmem_cache *s,
3953			const char *buf, size_t length)
3954{
3955	int ret = -EINVAL;
3956
3957	if (buf[0] == '1') {
3958		ret = validate_slab_cache(s);
3959		if (ret >= 0)
3960			ret = length;
3961	}
3962	return ret;
3963}
3964SLAB_ATTR(validate);
3965
3966static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3967{
3968	return 0;
3969}
3970
3971static ssize_t shrink_store(struct kmem_cache *s,
3972			const char *buf, size_t length)
3973{
3974	if (buf[0] == '1') {
3975		int rc = kmem_cache_shrink(s);
3976
3977		if (rc)
3978			return rc;
3979	} else
3980		return -EINVAL;
3981	return length;
3982}
3983SLAB_ATTR(shrink);
3984
3985static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3986{
3987	if (!(s->flags & SLAB_STORE_USER))
3988		return -ENOSYS;
3989	return list_locations(s, buf, TRACK_ALLOC);
3990}
3991SLAB_ATTR_RO(alloc_calls);
3992
3993static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3994{
3995	if (!(s->flags & SLAB_STORE_USER))
3996		return -ENOSYS;
3997	return list_locations(s, buf, TRACK_FREE);
3998}
3999SLAB_ATTR_RO(free_calls);
4000
4001#ifdef CONFIG_NUMA
4002static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4003{
4004	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4005}
4006
4007static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4008				const char *buf, size_t length)
4009{
4010	int n = simple_strtoul(buf, NULL, 10);
4011
4012	if (n < 100)
4013		s->remote_node_defrag_ratio = n * 10;
4014	return length;
4015}
4016SLAB_ATTR(remote_node_defrag_ratio);
4017#endif
4018
4019#ifdef CONFIG_SLUB_STATS
4020
4021static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4022{
4023	unsigned long sum  = 0;
4024	int cpu;
4025	int len;
4026	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4027
4028	if (!data)
4029		return -ENOMEM;
4030
4031	for_each_online_cpu(cpu) {
4032		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4033
4034		data[cpu] = x;
4035		sum += x;
4036	}
4037
4038	len = sprintf(buf, "%lu", sum);
4039
4040	for_each_online_cpu(cpu) {
4041		if (data[cpu] && len < PAGE_SIZE - 20)
4042			len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
4043	}
4044	kfree(data);
4045	return len + sprintf(buf + len, "\n");
4046}
4047
4048#define STAT_ATTR(si, text) 					\
4049static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4050{								\
4051	return show_stat(s, buf, si);				\
4052}								\
4053SLAB_ATTR_RO(text);						\
4054
4055STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4056STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4057STAT_ATTR(FREE_FASTPATH, free_fastpath);
4058STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4059STAT_ATTR(FREE_FROZEN, free_frozen);
4060STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4061STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4062STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4063STAT_ATTR(ALLOC_SLAB, alloc_slab);
4064STAT_ATTR(ALLOC_REFILL, alloc_refill);
4065STAT_ATTR(FREE_SLAB, free_slab);
4066STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4067STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4068STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4069STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4070STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4071STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4072
4073#endif
4074
4075static struct attribute *slab_attrs[] = {
4076	&slab_size_attr.attr,
4077	&object_size_attr.attr,
4078	&objs_per_slab_attr.attr,
4079	&order_attr.attr,
4080	&objects_attr.attr,
4081	&slabs_attr.attr,
4082	&partial_attr.attr,
4083	&cpu_slabs_attr.attr,
4084	&ctor_attr.attr,
4085	&aliases_attr.attr,
4086	&align_attr.attr,
4087	&sanity_checks_attr.attr,
4088	&trace_attr.attr,
4089	&hwcache_align_attr.attr,
4090	&reclaim_account_attr.attr,
4091	&destroy_by_rcu_attr.attr,
4092	&red_zone_attr.attr,
4093	&poison_attr.attr,
4094	&store_user_attr.attr,
4095	&validate_attr.attr,
4096	&shrink_attr.attr,
4097	&alloc_calls_attr.attr,
4098	&free_calls_attr.attr,
4099#ifdef CONFIG_ZONE_DMA
4100	&cache_dma_attr.attr,
4101#endif
4102#ifdef CONFIG_NUMA
4103	&remote_node_defrag_ratio_attr.attr,
4104#endif
4105#ifdef CONFIG_SLUB_STATS
4106	&alloc_fastpath_attr.attr,
4107	&alloc_slowpath_attr.attr,
4108	&free_fastpath_attr.attr,
4109	&free_slowpath_attr.attr,
4110	&free_frozen_attr.attr,
4111	&free_add_partial_attr.attr,
4112	&free_remove_partial_attr.attr,
4113	&alloc_from_partial_attr.attr,
4114	&alloc_slab_attr.attr,
4115	&alloc_refill_attr.attr,
4116	&free_slab_attr.attr,
4117	&cpuslab_flush_attr.attr,
4118	&deactivate_full_attr.attr,
4119	&deactivate_empty_attr.attr,
4120	&deactivate_to_head_attr.attr,
4121	&deactivate_to_tail_attr.attr,
4122	&deactivate_remote_frees_attr.attr,
4123#endif
4124	NULL
4125};
4126
4127static struct attribute_group slab_attr_group = {
4128	.attrs = slab_attrs,
4129};
4130
4131static ssize_t slab_attr_show(struct kobject *kobj,
4132				struct attribute *attr,
4133				char *buf)
4134{
4135	struct slab_attribute *attribute;
4136	struct kmem_cache *s;
4137	int err;
4138
4139	attribute = to_slab_attr(attr);
4140	s = to_slab(kobj);
4141
4142	if (!attribute->show)
4143		return -EIO;
4144
4145	err = attribute->show(s, buf);
4146
4147	return err;
4148}
4149
4150static ssize_t slab_attr_store(struct kobject *kobj,
4151				struct attribute *attr,
4152				const char *buf, size_t len)
4153{
4154	struct slab_attribute *attribute;
4155	struct kmem_cache *s;
4156	int err;
4157
4158	attribute = to_slab_attr(attr);
4159	s = to_slab(kobj);
4160
4161	if (!attribute->store)
4162		return -EIO;
4163
4164	err = attribute->store(s, buf, len);
4165
4166	return err;
4167}
4168
4169static void kmem_cache_release(struct kobject *kobj)
4170{
4171	struct kmem_cache *s = to_slab(kobj);
4172
4173	kfree(s);
4174}
4175
4176static struct sysfs_ops slab_sysfs_ops = {
4177	.show = slab_attr_show,
4178	.store = slab_attr_store,
4179};
4180
4181static struct kobj_type slab_ktype = {
4182	.sysfs_ops = &slab_sysfs_ops,
4183	.release = kmem_cache_release
4184};
4185
4186static int uevent_filter(struct kset *kset, struct kobject *kobj)
4187{
4188	struct kobj_type *ktype = get_ktype(kobj);
4189
4190	if (ktype == &slab_ktype)
4191		return 1;
4192	return 0;
4193}
4194
4195static struct kset_uevent_ops slab_uevent_ops = {
4196	.filter = uevent_filter,
4197};
4198
4199static struct kset *slab_kset;
4200
4201#define ID_STR_LENGTH 64
4202
4203/* Create a unique string id for a slab cache:
4204 * format
4205 * :[flags-]size:[memory address of kmemcache]
4206 */
4207static char *create_unique_id(struct kmem_cache *s)
4208{
4209	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4210	char *p = name;
4211
4212	BUG_ON(!name);
4213
4214	*p++ = ':';
4215	/*
4216	 * First flags affecting slabcache operations. We will only
4217	 * get here for aliasable slabs so we do not need to support
4218	 * too many flags. The flags here must cover all flags that
4219	 * are matched during merging to guarantee that the id is
4220	 * unique.
4221	 */
4222	if (s->flags & SLAB_CACHE_DMA)
4223		*p++ = 'd';
4224	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4225		*p++ = 'a';
4226	if (s->flags & SLAB_DEBUG_FREE)
4227		*p++ = 'F';
4228	if (p != name + 1)
4229		*p++ = '-';
4230	p += sprintf(p, "%07d", s->size);
4231	BUG_ON(p > name + ID_STR_LENGTH - 1);
4232	return name;
4233}
4234
4235static int sysfs_slab_add(struct kmem_cache *s)
4236{
4237	int err;
4238	const char *name;
4239	int unmergeable;
4240
4241	if (slab_state < SYSFS)
4242		/* Defer until later */
4243		return 0;
4244
4245	unmergeable = slab_unmergeable(s);
4246	if (unmergeable) {
4247		/*
4248		 * Slabcache can never be merged so we can use the name proper.
4249		 * This is typically the case for debug situations. In that
4250		 * case we can catch duplicate names easily.
4251		 */
4252		sysfs_remove_link(&slab_kset->kobj, s->name);
4253		name = s->name;
4254	} else {
4255		/*
4256		 * Create a unique name for the slab as a target
4257		 * for the symlinks.
4258		 */
4259		name = create_unique_id(s);
4260	}
4261
4262	s->kobj.kset = slab_kset;
4263	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4264	if (err) {
4265		kobject_put(&s->kobj);
4266		return err;
4267	}
4268
4269	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4270	if (err)
4271		return err;
4272	kobject_uevent(&s->kobj, KOBJ_ADD);
4273	if (!unmergeable) {
4274		/* Setup first alias */
4275		sysfs_slab_alias(s, s->name);
4276		kfree(name);
4277	}
4278	return 0;
4279}
4280
4281static void sysfs_slab_remove(struct kmem_cache *s)
4282{
4283	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4284	kobject_del(&s->kobj);
4285	kobject_put(&s->kobj);
4286}
4287
4288/*
4289 * Need to buffer aliases during bootup until sysfs becomes
4290 * available lest we loose that information.
4291 */
4292struct saved_alias {
4293	struct kmem_cache *s;
4294	const char *name;
4295	struct saved_alias *next;
4296};
4297
4298static struct saved_alias *alias_list;
4299
4300static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4301{
4302	struct saved_alias *al;
4303
4304	if (slab_state == SYSFS) {
4305		/*
4306		 * If we have a leftover link then remove it.
4307		 */
4308		sysfs_remove_link(&slab_kset->kobj, name);
4309		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4310	}
4311
4312	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4313	if (!al)
4314		return -ENOMEM;
4315
4316	al->s = s;
4317	al->name = name;
4318	al->next = alias_list;
4319	alias_list = al;
4320	return 0;
4321}
4322
4323static int __init slab_sysfs_init(void)
4324{
4325	struct kmem_cache *s;
4326	int err;
4327
4328	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4329	if (!slab_kset) {
4330		printk(KERN_ERR "Cannot register slab subsystem.\n");
4331		return -ENOSYS;
4332	}
4333
4334	slab_state = SYSFS;
4335
4336	list_for_each_entry(s, &slab_caches, list) {
4337		err = sysfs_slab_add(s);
4338		if (err)
4339			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4340						" to sysfs\n", s->name);
4341	}
4342
4343	while (alias_list) {
4344		struct saved_alias *al = alias_list;
4345
4346		alias_list = alias_list->next;
4347		err = sysfs_slab_alias(al->s, al->name);
4348		if (err)
4349			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4350					" %s to sysfs\n", s->name);
4351		kfree(al);
4352	}
4353
4354	resiliency_test();
4355	return 0;
4356}
4357
4358__initcall(slab_sysfs_init);
4359#endif
4360
4361/*
4362 * The /proc/slabinfo ABI
4363 */
4364#ifdef CONFIG_SLABINFO
4365
4366ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4367                       size_t count, loff_t *ppos)
4368{
4369	return -EINVAL;
4370}
4371
4372
4373static void print_slabinfo_header(struct seq_file *m)
4374{
4375	seq_puts(m, "slabinfo - version: 2.1\n");
4376	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4377		 "<objperslab> <pagesperslab>");
4378	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4379	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4380	seq_putc(m, '\n');
4381}
4382
4383static void *s_start(struct seq_file *m, loff_t *pos)
4384{
4385	loff_t n = *pos;
4386
4387	down_read(&slub_lock);
4388	if (!n)
4389		print_slabinfo_header(m);
4390
4391	return seq_list_start(&slab_caches, *pos);
4392}
4393
4394static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4395{
4396	return seq_list_next(p, &slab_caches, pos);
4397}
4398
4399static void s_stop(struct seq_file *m, void *p)
4400{
4401	up_read(&slub_lock);
4402}
4403
4404static int s_show(struct seq_file *m, void *p)
4405{
4406	unsigned long nr_partials = 0;
4407	unsigned long nr_slabs = 0;
4408	unsigned long nr_inuse = 0;
4409	unsigned long nr_objs;
4410	struct kmem_cache *s;
4411	int node;
4412
4413	s = list_entry(p, struct kmem_cache, list);
4414
4415	for_each_online_node(node) {
4416		struct kmem_cache_node *n = get_node(s, node);
4417
4418		if (!n)
4419			continue;
4420
4421		nr_partials += n->nr_partial;
4422		nr_slabs += atomic_long_read(&n->nr_slabs);
4423		nr_inuse += count_partial(n);
4424	}
4425
4426	nr_objs = nr_slabs * s->objects;
4427	nr_inuse += (nr_slabs - nr_partials) * s->objects;
4428
4429	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4430		   nr_objs, s->size, s->objects, (1 << s->order));
4431	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4432	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4433		   0UL);
4434	seq_putc(m, '\n');
4435	return 0;
4436}
4437
4438const struct seq_operations slabinfo_op = {
4439	.start = s_start,
4440	.next = s_next,
4441	.stop = s_stop,
4442	.show = s_show,
4443};
4444
4445#endif /* CONFIG_SLABINFO */
4446