slub.c revision a5dd5c117cbf620378d693963ffc42239297fac4
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/swap.h> /* struct reclaim_state */
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
18#include <linux/proc_fs.h>
19#include <linux/seq_file.h>
20#include <linux/kmemcheck.h>
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
25#include <linux/debugobjects.h>
26#include <linux/kallsyms.h>
27#include <linux/memory.h>
28#include <linux/math64.h>
29#include <linux/fault-inject.h>
30
31/*
32 * Lock order:
33 *   1. slab_lock(page)
34 *   2. slab->list_lock
35 *
36 *   The slab_lock protects operations on the object of a particular
37 *   slab and its metadata in the page struct. If the slab lock
38 *   has been taken then no allocations nor frees can be performed
39 *   on the objects in the slab nor can the slab be added or removed
40 *   from the partial or full lists since this would mean modifying
41 *   the page_struct of the slab.
42 *
43 *   The list_lock protects the partial and full list on each node and
44 *   the partial slab counter. If taken then no new slabs may be added or
45 *   removed from the lists nor make the number of partial slabs be modified.
46 *   (Note that the total number of slabs is an atomic value that may be
47 *   modified without taking the list lock).
48 *
49 *   The list_lock is a centralized lock and thus we avoid taking it as
50 *   much as possible. As long as SLUB does not have to handle partial
51 *   slabs, operations can continue without any centralized lock. F.e.
52 *   allocating a long series of objects that fill up slabs does not require
53 *   the list lock.
54 *
55 *   The lock order is sometimes inverted when we are trying to get a slab
56 *   off a list. We take the list_lock and then look for a page on the list
57 *   to use. While we do that objects in the slabs may be freed. We can
58 *   only operate on the slab if we have also taken the slab_lock. So we use
59 *   a slab_trylock() on the slab. If trylock was successful then no frees
60 *   can occur anymore and we can use the slab for allocations etc. If the
61 *   slab_trylock() does not succeed then frees are in progress in the slab and
62 *   we must stay away from it for a while since we may cause a bouncing
63 *   cacheline if we try to acquire the lock. So go onto the next slab.
64 *   If all pages are busy then we may allocate a new slab instead of reusing
65 *   a partial slab. A new slab has noone operating on it and thus there is
66 *   no danger of cacheline contention.
67 *
68 *   Interrupts are disabled during allocation and deallocation in order to
69 *   make the slab allocator safe to use in the context of an irq. In addition
70 *   interrupts are disabled to ensure that the processor does not change
71 *   while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
88 * PageActive 		The slab is frozen and exempt from list processing.
89 * 			This means that the slab is dedicated to a purpose
90 * 			such as satisfying allocations for a specific
91 * 			processor. Objects may be freed in the slab while
92 * 			it is frozen but slab_free will then skip the usual
93 * 			list operations. It is up to the processor holding
94 * 			the slab to integrate the slab into the slab lists
95 * 			when the slab is no longer needed.
96 *
97 * 			One use of this flag is to mark slabs that are
98 * 			used for allocations. Then such a slab becomes a cpu
99 * 			slab. The cpu slab may be equipped with an additional
100 * 			freelist that allows lockless access to
101 * 			free objects in addition to the regular freelist
102 * 			that requires the slab lock.
103 *
104 * PageError		Slab requires special handling due to debug
105 * 			options set. This moves	slab handling out of
106 * 			the fast path and disables lockless freelists.
107 */
108
109#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110		SLAB_TRACE | SLAB_DEBUG_FREE)
111
112static inline int kmem_cache_debug(struct kmem_cache *s)
113{
114#ifdef CONFIG_SLUB_DEBUG
115	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
116#else
117	return 0;
118#endif
119}
120
121/*
122 * Issues still to be resolved:
123 *
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
125 *
126 * - Variable sizing of the per node arrays
127 */
128
129/* Enable to test recovery from slab corruption on boot */
130#undef SLUB_RESILIENCY_TEST
131
132/*
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
135 */
136#define MIN_PARTIAL 5
137
138/*
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
142 */
143#define MAX_PARTIAL 10
144
145#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146				SLAB_POISON | SLAB_STORE_USER)
147
148/*
149 * Debugging flags that require metadata to be stored in the slab.  These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
152 */
153#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
154
155/*
156 * Set of flags that will prevent slab merging
157 */
158#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
159		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160		SLAB_FAILSLAB)
161
162#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
163		SLAB_CACHE_DMA | SLAB_NOTRACK)
164
165#define OO_SHIFT	16
166#define OO_MASK		((1 << OO_SHIFT) - 1)
167#define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
168
169/* Internal SLUB flags */
170#define __OBJECT_POISON		0x80000000UL /* Poison object */
171
172static int kmem_size = sizeof(struct kmem_cache);
173
174#ifdef CONFIG_SMP
175static struct notifier_block slab_notifier;
176#endif
177
178static enum {
179	DOWN,		/* No slab functionality available */
180	PARTIAL,	/* Kmem_cache_node works */
181	UP,		/* Everything works but does not show up in sysfs */
182	SYSFS		/* Sysfs up */
183} slab_state = DOWN;
184
185/* A list of all slab caches on the system */
186static DECLARE_RWSEM(slub_lock);
187static LIST_HEAD(slab_caches);
188
189/*
190 * Tracking user of a slab.
191 */
192struct track {
193	unsigned long addr;	/* Called from address */
194	int cpu;		/* Was running on cpu */
195	int pid;		/* Pid context */
196	unsigned long when;	/* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
201#ifdef CONFIG_SLUB_DEBUG
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
204static void sysfs_slab_remove(struct kmem_cache *);
205
206#else
207static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209							{ return 0; }
210static inline void sysfs_slab_remove(struct kmem_cache *s)
211{
212	kfree(s->name);
213	kfree(s);
214}
215
216#endif
217
218static inline void stat(struct kmem_cache *s, enum stat_item si)
219{
220#ifdef CONFIG_SLUB_STATS
221	__this_cpu_inc(s->cpu_slab->stat[si]);
222#endif
223}
224
225/********************************************************************
226 * 			Core slab cache functions
227 *******************************************************************/
228
229int slab_is_available(void)
230{
231	return slab_state >= UP;
232}
233
234static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
235{
236	return s->node[node];
237}
238
239/* Verify that a pointer has an address that is valid within a slab page */
240static inline int check_valid_pointer(struct kmem_cache *s,
241				struct page *page, const void *object)
242{
243	void *base;
244
245	if (!object)
246		return 1;
247
248	base = page_address(page);
249	if (object < base || object >= base + page->objects * s->size ||
250		(object - base) % s->size) {
251		return 0;
252	}
253
254	return 1;
255}
256
257static inline void *get_freepointer(struct kmem_cache *s, void *object)
258{
259	return *(void **)(object + s->offset);
260}
261
262static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263{
264	*(void **)(object + s->offset) = fp;
265}
266
267/* Loop over all objects in a slab */
268#define for_each_object(__p, __s, __addr, __objects) \
269	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
270			__p += (__s)->size)
271
272/* Scan freelist */
273#define for_each_free_object(__p, __s, __free) \
274	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
275
276/* Determine object index from a given position */
277static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
278{
279	return (p - addr) / s->size;
280}
281
282static inline struct kmem_cache_order_objects oo_make(int order,
283						unsigned long size)
284{
285	struct kmem_cache_order_objects x = {
286		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
287	};
288
289	return x;
290}
291
292static inline int oo_order(struct kmem_cache_order_objects x)
293{
294	return x.x >> OO_SHIFT;
295}
296
297static inline int oo_objects(struct kmem_cache_order_objects x)
298{
299	return x.x & OO_MASK;
300}
301
302#ifdef CONFIG_SLUB_DEBUG
303/*
304 * Debug settings:
305 */
306#ifdef CONFIG_SLUB_DEBUG_ON
307static int slub_debug = DEBUG_DEFAULT_FLAGS;
308#else
309static int slub_debug;
310#endif
311
312static char *slub_debug_slabs;
313static int disable_higher_order_debug;
314
315/*
316 * Object debugging
317 */
318static void print_section(char *text, u8 *addr, unsigned int length)
319{
320	int i, offset;
321	int newline = 1;
322	char ascii[17];
323
324	ascii[16] = 0;
325
326	for (i = 0; i < length; i++) {
327		if (newline) {
328			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
329			newline = 0;
330		}
331		printk(KERN_CONT " %02x", addr[i]);
332		offset = i % 16;
333		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
334		if (offset == 15) {
335			printk(KERN_CONT " %s\n", ascii);
336			newline = 1;
337		}
338	}
339	if (!newline) {
340		i %= 16;
341		while (i < 16) {
342			printk(KERN_CONT "   ");
343			ascii[i] = ' ';
344			i++;
345		}
346		printk(KERN_CONT " %s\n", ascii);
347	}
348}
349
350static struct track *get_track(struct kmem_cache *s, void *object,
351	enum track_item alloc)
352{
353	struct track *p;
354
355	if (s->offset)
356		p = object + s->offset + sizeof(void *);
357	else
358		p = object + s->inuse;
359
360	return p + alloc;
361}
362
363static void set_track(struct kmem_cache *s, void *object,
364			enum track_item alloc, unsigned long addr)
365{
366	struct track *p = get_track(s, object, alloc);
367
368	if (addr) {
369		p->addr = addr;
370		p->cpu = smp_processor_id();
371		p->pid = current->pid;
372		p->when = jiffies;
373	} else
374		memset(p, 0, sizeof(struct track));
375}
376
377static void init_tracking(struct kmem_cache *s, void *object)
378{
379	if (!(s->flags & SLAB_STORE_USER))
380		return;
381
382	set_track(s, object, TRACK_FREE, 0UL);
383	set_track(s, object, TRACK_ALLOC, 0UL);
384}
385
386static void print_track(const char *s, struct track *t)
387{
388	if (!t->addr)
389		return;
390
391	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
392		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
393}
394
395static void print_tracking(struct kmem_cache *s, void *object)
396{
397	if (!(s->flags & SLAB_STORE_USER))
398		return;
399
400	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
401	print_track("Freed", get_track(s, object, TRACK_FREE));
402}
403
404static void print_page_info(struct page *page)
405{
406	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
407		page, page->objects, page->inuse, page->freelist, page->flags);
408
409}
410
411static void slab_bug(struct kmem_cache *s, char *fmt, ...)
412{
413	va_list args;
414	char buf[100];
415
416	va_start(args, fmt);
417	vsnprintf(buf, sizeof(buf), fmt, args);
418	va_end(args);
419	printk(KERN_ERR "========================================"
420			"=====================================\n");
421	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
422	printk(KERN_ERR "----------------------------------------"
423			"-------------------------------------\n\n");
424}
425
426static void slab_fix(struct kmem_cache *s, char *fmt, ...)
427{
428	va_list args;
429	char buf[100];
430
431	va_start(args, fmt);
432	vsnprintf(buf, sizeof(buf), fmt, args);
433	va_end(args);
434	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
435}
436
437static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
438{
439	unsigned int off;	/* Offset of last byte */
440	u8 *addr = page_address(page);
441
442	print_tracking(s, p);
443
444	print_page_info(page);
445
446	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
447			p, p - addr, get_freepointer(s, p));
448
449	if (p > addr + 16)
450		print_section("Bytes b4", p - 16, 16);
451
452	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
453
454	if (s->flags & SLAB_RED_ZONE)
455		print_section("Redzone", p + s->objsize,
456			s->inuse - s->objsize);
457
458	if (s->offset)
459		off = s->offset + sizeof(void *);
460	else
461		off = s->inuse;
462
463	if (s->flags & SLAB_STORE_USER)
464		off += 2 * sizeof(struct track);
465
466	if (off != s->size)
467		/* Beginning of the filler is the free pointer */
468		print_section("Padding", p + off, s->size - off);
469
470	dump_stack();
471}
472
473static void object_err(struct kmem_cache *s, struct page *page,
474			u8 *object, char *reason)
475{
476	slab_bug(s, "%s", reason);
477	print_trailer(s, page, object);
478}
479
480static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
481{
482	va_list args;
483	char buf[100];
484
485	va_start(args, fmt);
486	vsnprintf(buf, sizeof(buf), fmt, args);
487	va_end(args);
488	slab_bug(s, "%s", buf);
489	print_page_info(page);
490	dump_stack();
491}
492
493static void init_object(struct kmem_cache *s, void *object, u8 val)
494{
495	u8 *p = object;
496
497	if (s->flags & __OBJECT_POISON) {
498		memset(p, POISON_FREE, s->objsize - 1);
499		p[s->objsize - 1] = POISON_END;
500	}
501
502	if (s->flags & SLAB_RED_ZONE)
503		memset(p + s->objsize, val, s->inuse - s->objsize);
504}
505
506static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
507{
508	while (bytes) {
509		if (*start != (u8)value)
510			return start;
511		start++;
512		bytes--;
513	}
514	return NULL;
515}
516
517static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
518						void *from, void *to)
519{
520	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
521	memset(from, data, to - from);
522}
523
524static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
525			u8 *object, char *what,
526			u8 *start, unsigned int value, unsigned int bytes)
527{
528	u8 *fault;
529	u8 *end;
530
531	fault = check_bytes(start, value, bytes);
532	if (!fault)
533		return 1;
534
535	end = start + bytes;
536	while (end > fault && end[-1] == value)
537		end--;
538
539	slab_bug(s, "%s overwritten", what);
540	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
541					fault, end - 1, fault[0], value);
542	print_trailer(s, page, object);
543
544	restore_bytes(s, what, value, fault, end);
545	return 0;
546}
547
548/*
549 * Object layout:
550 *
551 * object address
552 * 	Bytes of the object to be managed.
553 * 	If the freepointer may overlay the object then the free
554 * 	pointer is the first word of the object.
555 *
556 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
557 * 	0xa5 (POISON_END)
558 *
559 * object + s->objsize
560 * 	Padding to reach word boundary. This is also used for Redzoning.
561 * 	Padding is extended by another word if Redzoning is enabled and
562 * 	objsize == inuse.
563 *
564 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
565 * 	0xcc (RED_ACTIVE) for objects in use.
566 *
567 * object + s->inuse
568 * 	Meta data starts here.
569 *
570 * 	A. Free pointer (if we cannot overwrite object on free)
571 * 	B. Tracking data for SLAB_STORE_USER
572 * 	C. Padding to reach required alignment boundary or at mininum
573 * 		one word if debugging is on to be able to detect writes
574 * 		before the word boundary.
575 *
576 *	Padding is done using 0x5a (POISON_INUSE)
577 *
578 * object + s->size
579 * 	Nothing is used beyond s->size.
580 *
581 * If slabcaches are merged then the objsize and inuse boundaries are mostly
582 * ignored. And therefore no slab options that rely on these boundaries
583 * may be used with merged slabcaches.
584 */
585
586static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
587{
588	unsigned long off = s->inuse;	/* The end of info */
589
590	if (s->offset)
591		/* Freepointer is placed after the object. */
592		off += sizeof(void *);
593
594	if (s->flags & SLAB_STORE_USER)
595		/* We also have user information there */
596		off += 2 * sizeof(struct track);
597
598	if (s->size == off)
599		return 1;
600
601	return check_bytes_and_report(s, page, p, "Object padding",
602				p + off, POISON_INUSE, s->size - off);
603}
604
605/* Check the pad bytes at the end of a slab page */
606static int slab_pad_check(struct kmem_cache *s, struct page *page)
607{
608	u8 *start;
609	u8 *fault;
610	u8 *end;
611	int length;
612	int remainder;
613
614	if (!(s->flags & SLAB_POISON))
615		return 1;
616
617	start = page_address(page);
618	length = (PAGE_SIZE << compound_order(page));
619	end = start + length;
620	remainder = length % s->size;
621	if (!remainder)
622		return 1;
623
624	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
625	if (!fault)
626		return 1;
627	while (end > fault && end[-1] == POISON_INUSE)
628		end--;
629
630	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
631	print_section("Padding", end - remainder, remainder);
632
633	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
634	return 0;
635}
636
637static int check_object(struct kmem_cache *s, struct page *page,
638					void *object, u8 val)
639{
640	u8 *p = object;
641	u8 *endobject = object + s->objsize;
642
643	if (s->flags & SLAB_RED_ZONE) {
644		if (!check_bytes_and_report(s, page, object, "Redzone",
645			endobject, val, s->inuse - s->objsize))
646			return 0;
647	} else {
648		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
649			check_bytes_and_report(s, page, p, "Alignment padding",
650				endobject, POISON_INUSE, s->inuse - s->objsize);
651		}
652	}
653
654	if (s->flags & SLAB_POISON) {
655		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
656			(!check_bytes_and_report(s, page, p, "Poison", p,
657					POISON_FREE, s->objsize - 1) ||
658			 !check_bytes_and_report(s, page, p, "Poison",
659				p + s->objsize - 1, POISON_END, 1)))
660			return 0;
661		/*
662		 * check_pad_bytes cleans up on its own.
663		 */
664		check_pad_bytes(s, page, p);
665	}
666
667	if (!s->offset && val == SLUB_RED_ACTIVE)
668		/*
669		 * Object and freepointer overlap. Cannot check
670		 * freepointer while object is allocated.
671		 */
672		return 1;
673
674	/* Check free pointer validity */
675	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
676		object_err(s, page, p, "Freepointer corrupt");
677		/*
678		 * No choice but to zap it and thus lose the remainder
679		 * of the free objects in this slab. May cause
680		 * another error because the object count is now wrong.
681		 */
682		set_freepointer(s, p, NULL);
683		return 0;
684	}
685	return 1;
686}
687
688static int check_slab(struct kmem_cache *s, struct page *page)
689{
690	int maxobj;
691
692	VM_BUG_ON(!irqs_disabled());
693
694	if (!PageSlab(page)) {
695		slab_err(s, page, "Not a valid slab page");
696		return 0;
697	}
698
699	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
700	if (page->objects > maxobj) {
701		slab_err(s, page, "objects %u > max %u",
702			s->name, page->objects, maxobj);
703		return 0;
704	}
705	if (page->inuse > page->objects) {
706		slab_err(s, page, "inuse %u > max %u",
707			s->name, page->inuse, page->objects);
708		return 0;
709	}
710	/* Slab_pad_check fixes things up after itself */
711	slab_pad_check(s, page);
712	return 1;
713}
714
715/*
716 * Determine if a certain object on a page is on the freelist. Must hold the
717 * slab lock to guarantee that the chains are in a consistent state.
718 */
719static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
720{
721	int nr = 0;
722	void *fp = page->freelist;
723	void *object = NULL;
724	unsigned long max_objects;
725
726	while (fp && nr <= page->objects) {
727		if (fp == search)
728			return 1;
729		if (!check_valid_pointer(s, page, fp)) {
730			if (object) {
731				object_err(s, page, object,
732					"Freechain corrupt");
733				set_freepointer(s, object, NULL);
734				break;
735			} else {
736				slab_err(s, page, "Freepointer corrupt");
737				page->freelist = NULL;
738				page->inuse = page->objects;
739				slab_fix(s, "Freelist cleared");
740				return 0;
741			}
742			break;
743		}
744		object = fp;
745		fp = get_freepointer(s, object);
746		nr++;
747	}
748
749	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
750	if (max_objects > MAX_OBJS_PER_PAGE)
751		max_objects = MAX_OBJS_PER_PAGE;
752
753	if (page->objects != max_objects) {
754		slab_err(s, page, "Wrong number of objects. Found %d but "
755			"should be %d", page->objects, max_objects);
756		page->objects = max_objects;
757		slab_fix(s, "Number of objects adjusted.");
758	}
759	if (page->inuse != page->objects - nr) {
760		slab_err(s, page, "Wrong object count. Counter is %d but "
761			"counted were %d", page->inuse, page->objects - nr);
762		page->inuse = page->objects - nr;
763		slab_fix(s, "Object count adjusted.");
764	}
765	return search == NULL;
766}
767
768static void trace(struct kmem_cache *s, struct page *page, void *object,
769								int alloc)
770{
771	if (s->flags & SLAB_TRACE) {
772		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
773			s->name,
774			alloc ? "alloc" : "free",
775			object, page->inuse,
776			page->freelist);
777
778		if (!alloc)
779			print_section("Object", (void *)object, s->objsize);
780
781		dump_stack();
782	}
783}
784
785/*
786 * Hooks for other subsystems that check memory allocations. In a typical
787 * production configuration these hooks all should produce no code at all.
788 */
789static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
790{
791	flags &= gfp_allowed_mask;
792	lockdep_trace_alloc(flags);
793	might_sleep_if(flags & __GFP_WAIT);
794
795	return should_failslab(s->objsize, flags, s->flags);
796}
797
798static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
799{
800	flags &= gfp_allowed_mask;
801	kmemcheck_slab_alloc(s, flags, object, s->objsize);
802	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
803}
804
805static inline void slab_free_hook(struct kmem_cache *s, void *x)
806{
807	kmemleak_free_recursive(x, s->flags);
808}
809
810static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
811{
812	kmemcheck_slab_free(s, object, s->objsize);
813	debug_check_no_locks_freed(object, s->objsize);
814	if (!(s->flags & SLAB_DEBUG_OBJECTS))
815		debug_check_no_obj_freed(object, s->objsize);
816}
817
818/*
819 * Tracking of fully allocated slabs for debugging purposes.
820 */
821static void add_full(struct kmem_cache_node *n, struct page *page)
822{
823	spin_lock(&n->list_lock);
824	list_add(&page->lru, &n->full);
825	spin_unlock(&n->list_lock);
826}
827
828static void remove_full(struct kmem_cache *s, struct page *page)
829{
830	struct kmem_cache_node *n;
831
832	if (!(s->flags & SLAB_STORE_USER))
833		return;
834
835	n = get_node(s, page_to_nid(page));
836
837	spin_lock(&n->list_lock);
838	list_del(&page->lru);
839	spin_unlock(&n->list_lock);
840}
841
842/* Tracking of the number of slabs for debugging purposes */
843static inline unsigned long slabs_node(struct kmem_cache *s, int node)
844{
845	struct kmem_cache_node *n = get_node(s, node);
846
847	return atomic_long_read(&n->nr_slabs);
848}
849
850static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
851{
852	return atomic_long_read(&n->nr_slabs);
853}
854
855static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
856{
857	struct kmem_cache_node *n = get_node(s, node);
858
859	/*
860	 * May be called early in order to allocate a slab for the
861	 * kmem_cache_node structure. Solve the chicken-egg
862	 * dilemma by deferring the increment of the count during
863	 * bootstrap (see early_kmem_cache_node_alloc).
864	 */
865	if (n) {
866		atomic_long_inc(&n->nr_slabs);
867		atomic_long_add(objects, &n->total_objects);
868	}
869}
870static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
871{
872	struct kmem_cache_node *n = get_node(s, node);
873
874	atomic_long_dec(&n->nr_slabs);
875	atomic_long_sub(objects, &n->total_objects);
876}
877
878/* Object debug checks for alloc/free paths */
879static void setup_object_debug(struct kmem_cache *s, struct page *page,
880								void *object)
881{
882	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
883		return;
884
885	init_object(s, object, SLUB_RED_INACTIVE);
886	init_tracking(s, object);
887}
888
889static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
890					void *object, unsigned long addr)
891{
892	if (!check_slab(s, page))
893		goto bad;
894
895	if (!on_freelist(s, page, object)) {
896		object_err(s, page, object, "Object already allocated");
897		goto bad;
898	}
899
900	if (!check_valid_pointer(s, page, object)) {
901		object_err(s, page, object, "Freelist Pointer check fails");
902		goto bad;
903	}
904
905	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
906		goto bad;
907
908	/* Success perform special debug activities for allocs */
909	if (s->flags & SLAB_STORE_USER)
910		set_track(s, object, TRACK_ALLOC, addr);
911	trace(s, page, object, 1);
912	init_object(s, object, SLUB_RED_ACTIVE);
913	return 1;
914
915bad:
916	if (PageSlab(page)) {
917		/*
918		 * If this is a slab page then lets do the best we can
919		 * to avoid issues in the future. Marking all objects
920		 * as used avoids touching the remaining objects.
921		 */
922		slab_fix(s, "Marking all objects used");
923		page->inuse = page->objects;
924		page->freelist = NULL;
925	}
926	return 0;
927}
928
929static noinline int free_debug_processing(struct kmem_cache *s,
930		 struct page *page, void *object, unsigned long addr)
931{
932	if (!check_slab(s, page))
933		goto fail;
934
935	if (!check_valid_pointer(s, page, object)) {
936		slab_err(s, page, "Invalid object pointer 0x%p", object);
937		goto fail;
938	}
939
940	if (on_freelist(s, page, object)) {
941		object_err(s, page, object, "Object already free");
942		goto fail;
943	}
944
945	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
946		return 0;
947
948	if (unlikely(s != page->slab)) {
949		if (!PageSlab(page)) {
950			slab_err(s, page, "Attempt to free object(0x%p) "
951				"outside of slab", object);
952		} else if (!page->slab) {
953			printk(KERN_ERR
954				"SLUB <none>: no slab for object 0x%p.\n",
955						object);
956			dump_stack();
957		} else
958			object_err(s, page, object,
959					"page slab pointer corrupt.");
960		goto fail;
961	}
962
963	/* Special debug activities for freeing objects */
964	if (!PageSlubFrozen(page) && !page->freelist)
965		remove_full(s, page);
966	if (s->flags & SLAB_STORE_USER)
967		set_track(s, object, TRACK_FREE, addr);
968	trace(s, page, object, 0);
969	init_object(s, object, SLUB_RED_INACTIVE);
970	return 1;
971
972fail:
973	slab_fix(s, "Object at 0x%p not freed", object);
974	return 0;
975}
976
977static int __init setup_slub_debug(char *str)
978{
979	slub_debug = DEBUG_DEFAULT_FLAGS;
980	if (*str++ != '=' || !*str)
981		/*
982		 * No options specified. Switch on full debugging.
983		 */
984		goto out;
985
986	if (*str == ',')
987		/*
988		 * No options but restriction on slabs. This means full
989		 * debugging for slabs matching a pattern.
990		 */
991		goto check_slabs;
992
993	if (tolower(*str) == 'o') {
994		/*
995		 * Avoid enabling debugging on caches if its minimum order
996		 * would increase as a result.
997		 */
998		disable_higher_order_debug = 1;
999		goto out;
1000	}
1001
1002	slub_debug = 0;
1003	if (*str == '-')
1004		/*
1005		 * Switch off all debugging measures.
1006		 */
1007		goto out;
1008
1009	/*
1010	 * Determine which debug features should be switched on
1011	 */
1012	for (; *str && *str != ','; str++) {
1013		switch (tolower(*str)) {
1014		case 'f':
1015			slub_debug |= SLAB_DEBUG_FREE;
1016			break;
1017		case 'z':
1018			slub_debug |= SLAB_RED_ZONE;
1019			break;
1020		case 'p':
1021			slub_debug |= SLAB_POISON;
1022			break;
1023		case 'u':
1024			slub_debug |= SLAB_STORE_USER;
1025			break;
1026		case 't':
1027			slub_debug |= SLAB_TRACE;
1028			break;
1029		case 'a':
1030			slub_debug |= SLAB_FAILSLAB;
1031			break;
1032		default:
1033			printk(KERN_ERR "slub_debug option '%c' "
1034				"unknown. skipped\n", *str);
1035		}
1036	}
1037
1038check_slabs:
1039	if (*str == ',')
1040		slub_debug_slabs = str + 1;
1041out:
1042	return 1;
1043}
1044
1045__setup("slub_debug", setup_slub_debug);
1046
1047static unsigned long kmem_cache_flags(unsigned long objsize,
1048	unsigned long flags, const char *name,
1049	void (*ctor)(void *))
1050{
1051	/*
1052	 * Enable debugging if selected on the kernel commandline.
1053	 */
1054	if (slub_debug && (!slub_debug_slabs ||
1055		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1056		flags |= slub_debug;
1057
1058	return flags;
1059}
1060#else
1061static inline void setup_object_debug(struct kmem_cache *s,
1062			struct page *page, void *object) {}
1063
1064static inline int alloc_debug_processing(struct kmem_cache *s,
1065	struct page *page, void *object, unsigned long addr) { return 0; }
1066
1067static inline int free_debug_processing(struct kmem_cache *s,
1068	struct page *page, void *object, unsigned long addr) { return 0; }
1069
1070static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1071			{ return 1; }
1072static inline int check_object(struct kmem_cache *s, struct page *page,
1073			void *object, u8 val) { return 1; }
1074static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1075static inline unsigned long kmem_cache_flags(unsigned long objsize,
1076	unsigned long flags, const char *name,
1077	void (*ctor)(void *))
1078{
1079	return flags;
1080}
1081#define slub_debug 0
1082
1083#define disable_higher_order_debug 0
1084
1085static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1086							{ return 0; }
1087static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1088							{ return 0; }
1089static inline void inc_slabs_node(struct kmem_cache *s, int node,
1090							int objects) {}
1091static inline void dec_slabs_node(struct kmem_cache *s, int node,
1092							int objects) {}
1093
1094static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1095							{ return 0; }
1096
1097static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1098		void *object) {}
1099
1100static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1101
1102static inline void slab_free_hook_irq(struct kmem_cache *s,
1103		void *object) {}
1104
1105#endif
1106
1107/*
1108 * Slab allocation and freeing
1109 */
1110static inline struct page *alloc_slab_page(gfp_t flags, int node,
1111					struct kmem_cache_order_objects oo)
1112{
1113	int order = oo_order(oo);
1114
1115	flags |= __GFP_NOTRACK;
1116
1117	if (node == NUMA_NO_NODE)
1118		return alloc_pages(flags, order);
1119	else
1120		return alloc_pages_exact_node(node, flags, order);
1121}
1122
1123static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1124{
1125	struct page *page;
1126	struct kmem_cache_order_objects oo = s->oo;
1127	gfp_t alloc_gfp;
1128
1129	flags |= s->allocflags;
1130
1131	/*
1132	 * Let the initial higher-order allocation fail under memory pressure
1133	 * so we fall-back to the minimum order allocation.
1134	 */
1135	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1136
1137	page = alloc_slab_page(alloc_gfp, node, oo);
1138	if (unlikely(!page)) {
1139		oo = s->min;
1140		/*
1141		 * Allocation may have failed due to fragmentation.
1142		 * Try a lower order alloc if possible
1143		 */
1144		page = alloc_slab_page(flags, node, oo);
1145		if (!page)
1146			return NULL;
1147
1148		stat(s, ORDER_FALLBACK);
1149	}
1150
1151	if (kmemcheck_enabled
1152		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1153		int pages = 1 << oo_order(oo);
1154
1155		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1156
1157		/*
1158		 * Objects from caches that have a constructor don't get
1159		 * cleared when they're allocated, so we need to do it here.
1160		 */
1161		if (s->ctor)
1162			kmemcheck_mark_uninitialized_pages(page, pages);
1163		else
1164			kmemcheck_mark_unallocated_pages(page, pages);
1165	}
1166
1167	page->objects = oo_objects(oo);
1168	mod_zone_page_state(page_zone(page),
1169		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1170		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1171		1 << oo_order(oo));
1172
1173	return page;
1174}
1175
1176static void setup_object(struct kmem_cache *s, struct page *page,
1177				void *object)
1178{
1179	setup_object_debug(s, page, object);
1180	if (unlikely(s->ctor))
1181		s->ctor(object);
1182}
1183
1184static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1185{
1186	struct page *page;
1187	void *start;
1188	void *last;
1189	void *p;
1190
1191	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1192
1193	page = allocate_slab(s,
1194		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1195	if (!page)
1196		goto out;
1197
1198	inc_slabs_node(s, page_to_nid(page), page->objects);
1199	page->slab = s;
1200	page->flags |= 1 << PG_slab;
1201
1202	start = page_address(page);
1203
1204	if (unlikely(s->flags & SLAB_POISON))
1205		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1206
1207	last = start;
1208	for_each_object(p, s, start, page->objects) {
1209		setup_object(s, page, last);
1210		set_freepointer(s, last, p);
1211		last = p;
1212	}
1213	setup_object(s, page, last);
1214	set_freepointer(s, last, NULL);
1215
1216	page->freelist = start;
1217	page->inuse = 0;
1218out:
1219	return page;
1220}
1221
1222static void __free_slab(struct kmem_cache *s, struct page *page)
1223{
1224	int order = compound_order(page);
1225	int pages = 1 << order;
1226
1227	if (kmem_cache_debug(s)) {
1228		void *p;
1229
1230		slab_pad_check(s, page);
1231		for_each_object(p, s, page_address(page),
1232						page->objects)
1233			check_object(s, page, p, SLUB_RED_INACTIVE);
1234	}
1235
1236	kmemcheck_free_shadow(page, compound_order(page));
1237
1238	mod_zone_page_state(page_zone(page),
1239		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1240		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1241		-pages);
1242
1243	__ClearPageSlab(page);
1244	reset_page_mapcount(page);
1245	if (current->reclaim_state)
1246		current->reclaim_state->reclaimed_slab += pages;
1247	__free_pages(page, order);
1248}
1249
1250static void rcu_free_slab(struct rcu_head *h)
1251{
1252	struct page *page;
1253
1254	page = container_of((struct list_head *)h, struct page, lru);
1255	__free_slab(page->slab, page);
1256}
1257
1258static void free_slab(struct kmem_cache *s, struct page *page)
1259{
1260	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1261		/*
1262		 * RCU free overloads the RCU head over the LRU
1263		 */
1264		struct rcu_head *head = (void *)&page->lru;
1265
1266		call_rcu(head, rcu_free_slab);
1267	} else
1268		__free_slab(s, page);
1269}
1270
1271static void discard_slab(struct kmem_cache *s, struct page *page)
1272{
1273	dec_slabs_node(s, page_to_nid(page), page->objects);
1274	free_slab(s, page);
1275}
1276
1277/*
1278 * Per slab locking using the pagelock
1279 */
1280static __always_inline void slab_lock(struct page *page)
1281{
1282	bit_spin_lock(PG_locked, &page->flags);
1283}
1284
1285static __always_inline void slab_unlock(struct page *page)
1286{
1287	__bit_spin_unlock(PG_locked, &page->flags);
1288}
1289
1290static __always_inline int slab_trylock(struct page *page)
1291{
1292	int rc = 1;
1293
1294	rc = bit_spin_trylock(PG_locked, &page->flags);
1295	return rc;
1296}
1297
1298/*
1299 * Management of partially allocated slabs
1300 */
1301static void add_partial(struct kmem_cache_node *n,
1302				struct page *page, int tail)
1303{
1304	spin_lock(&n->list_lock);
1305	n->nr_partial++;
1306	if (tail)
1307		list_add_tail(&page->lru, &n->partial);
1308	else
1309		list_add(&page->lru, &n->partial);
1310	spin_unlock(&n->list_lock);
1311}
1312
1313static inline void __remove_partial(struct kmem_cache_node *n,
1314					struct page *page)
1315{
1316	list_del(&page->lru);
1317	n->nr_partial--;
1318}
1319
1320static void remove_partial(struct kmem_cache *s, struct page *page)
1321{
1322	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1323
1324	spin_lock(&n->list_lock);
1325	__remove_partial(n, page);
1326	spin_unlock(&n->list_lock);
1327}
1328
1329/*
1330 * Lock slab and remove from the partial list.
1331 *
1332 * Must hold list_lock.
1333 */
1334static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1335							struct page *page)
1336{
1337	if (slab_trylock(page)) {
1338		__remove_partial(n, page);
1339		__SetPageSlubFrozen(page);
1340		return 1;
1341	}
1342	return 0;
1343}
1344
1345/*
1346 * Try to allocate a partial slab from a specific node.
1347 */
1348static struct page *get_partial_node(struct kmem_cache_node *n)
1349{
1350	struct page *page;
1351
1352	/*
1353	 * Racy check. If we mistakenly see no partial slabs then we
1354	 * just allocate an empty slab. If we mistakenly try to get a
1355	 * partial slab and there is none available then get_partials()
1356	 * will return NULL.
1357	 */
1358	if (!n || !n->nr_partial)
1359		return NULL;
1360
1361	spin_lock(&n->list_lock);
1362	list_for_each_entry(page, &n->partial, lru)
1363		if (lock_and_freeze_slab(n, page))
1364			goto out;
1365	page = NULL;
1366out:
1367	spin_unlock(&n->list_lock);
1368	return page;
1369}
1370
1371/*
1372 * Get a page from somewhere. Search in increasing NUMA distances.
1373 */
1374static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1375{
1376#ifdef CONFIG_NUMA
1377	struct zonelist *zonelist;
1378	struct zoneref *z;
1379	struct zone *zone;
1380	enum zone_type high_zoneidx = gfp_zone(flags);
1381	struct page *page;
1382
1383	/*
1384	 * The defrag ratio allows a configuration of the tradeoffs between
1385	 * inter node defragmentation and node local allocations. A lower
1386	 * defrag_ratio increases the tendency to do local allocations
1387	 * instead of attempting to obtain partial slabs from other nodes.
1388	 *
1389	 * If the defrag_ratio is set to 0 then kmalloc() always
1390	 * returns node local objects. If the ratio is higher then kmalloc()
1391	 * may return off node objects because partial slabs are obtained
1392	 * from other nodes and filled up.
1393	 *
1394	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1395	 * defrag_ratio = 1000) then every (well almost) allocation will
1396	 * first attempt to defrag slab caches on other nodes. This means
1397	 * scanning over all nodes to look for partial slabs which may be
1398	 * expensive if we do it every time we are trying to find a slab
1399	 * with available objects.
1400	 */
1401	if (!s->remote_node_defrag_ratio ||
1402			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1403		return NULL;
1404
1405	get_mems_allowed();
1406	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1407	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1408		struct kmem_cache_node *n;
1409
1410		n = get_node(s, zone_to_nid(zone));
1411
1412		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1413				n->nr_partial > s->min_partial) {
1414			page = get_partial_node(n);
1415			if (page) {
1416				put_mems_allowed();
1417				return page;
1418			}
1419		}
1420	}
1421	put_mems_allowed();
1422#endif
1423	return NULL;
1424}
1425
1426/*
1427 * Get a partial page, lock it and return it.
1428 */
1429static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1430{
1431	struct page *page;
1432	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1433
1434	page = get_partial_node(get_node(s, searchnode));
1435	if (page || node != -1)
1436		return page;
1437
1438	return get_any_partial(s, flags);
1439}
1440
1441/*
1442 * Move a page back to the lists.
1443 *
1444 * Must be called with the slab lock held.
1445 *
1446 * On exit the slab lock will have been dropped.
1447 */
1448static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1449{
1450	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1451
1452	__ClearPageSlubFrozen(page);
1453	if (page->inuse) {
1454
1455		if (page->freelist) {
1456			add_partial(n, page, tail);
1457			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1458		} else {
1459			stat(s, DEACTIVATE_FULL);
1460			if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1461				add_full(n, page);
1462		}
1463		slab_unlock(page);
1464	} else {
1465		stat(s, DEACTIVATE_EMPTY);
1466		if (n->nr_partial < s->min_partial) {
1467			/*
1468			 * Adding an empty slab to the partial slabs in order
1469			 * to avoid page allocator overhead. This slab needs
1470			 * to come after the other slabs with objects in
1471			 * so that the others get filled first. That way the
1472			 * size of the partial list stays small.
1473			 *
1474			 * kmem_cache_shrink can reclaim any empty slabs from
1475			 * the partial list.
1476			 */
1477			add_partial(n, page, 1);
1478			slab_unlock(page);
1479		} else {
1480			slab_unlock(page);
1481			stat(s, FREE_SLAB);
1482			discard_slab(s, page);
1483		}
1484	}
1485}
1486
1487/*
1488 * Remove the cpu slab
1489 */
1490static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1491{
1492	struct page *page = c->page;
1493	int tail = 1;
1494
1495	if (page->freelist)
1496		stat(s, DEACTIVATE_REMOTE_FREES);
1497	/*
1498	 * Merge cpu freelist into slab freelist. Typically we get here
1499	 * because both freelists are empty. So this is unlikely
1500	 * to occur.
1501	 */
1502	while (unlikely(c->freelist)) {
1503		void **object;
1504
1505		tail = 0;	/* Hot objects. Put the slab first */
1506
1507		/* Retrieve object from cpu_freelist */
1508		object = c->freelist;
1509		c->freelist = get_freepointer(s, c->freelist);
1510
1511		/* And put onto the regular freelist */
1512		set_freepointer(s, object, page->freelist);
1513		page->freelist = object;
1514		page->inuse--;
1515	}
1516	c->page = NULL;
1517	unfreeze_slab(s, page, tail);
1518}
1519
1520static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1521{
1522	stat(s, CPUSLAB_FLUSH);
1523	slab_lock(c->page);
1524	deactivate_slab(s, c);
1525}
1526
1527/*
1528 * Flush cpu slab.
1529 *
1530 * Called from IPI handler with interrupts disabled.
1531 */
1532static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1533{
1534	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1535
1536	if (likely(c && c->page))
1537		flush_slab(s, c);
1538}
1539
1540static void flush_cpu_slab(void *d)
1541{
1542	struct kmem_cache *s = d;
1543
1544	__flush_cpu_slab(s, smp_processor_id());
1545}
1546
1547static void flush_all(struct kmem_cache *s)
1548{
1549	on_each_cpu(flush_cpu_slab, s, 1);
1550}
1551
1552/*
1553 * Check if the objects in a per cpu structure fit numa
1554 * locality expectations.
1555 */
1556static inline int node_match(struct kmem_cache_cpu *c, int node)
1557{
1558#ifdef CONFIG_NUMA
1559	if (node != NUMA_NO_NODE && c->node != node)
1560		return 0;
1561#endif
1562	return 1;
1563}
1564
1565static int count_free(struct page *page)
1566{
1567	return page->objects - page->inuse;
1568}
1569
1570static unsigned long count_partial(struct kmem_cache_node *n,
1571					int (*get_count)(struct page *))
1572{
1573	unsigned long flags;
1574	unsigned long x = 0;
1575	struct page *page;
1576
1577	spin_lock_irqsave(&n->list_lock, flags);
1578	list_for_each_entry(page, &n->partial, lru)
1579		x += get_count(page);
1580	spin_unlock_irqrestore(&n->list_lock, flags);
1581	return x;
1582}
1583
1584static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1585{
1586#ifdef CONFIG_SLUB_DEBUG
1587	return atomic_long_read(&n->total_objects);
1588#else
1589	return 0;
1590#endif
1591}
1592
1593static noinline void
1594slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1595{
1596	int node;
1597
1598	printk(KERN_WARNING
1599		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1600		nid, gfpflags);
1601	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1602		"default order: %d, min order: %d\n", s->name, s->objsize,
1603		s->size, oo_order(s->oo), oo_order(s->min));
1604
1605	if (oo_order(s->min) > get_order(s->objsize))
1606		printk(KERN_WARNING "  %s debugging increased min order, use "
1607		       "slub_debug=O to disable.\n", s->name);
1608
1609	for_each_online_node(node) {
1610		struct kmem_cache_node *n = get_node(s, node);
1611		unsigned long nr_slabs;
1612		unsigned long nr_objs;
1613		unsigned long nr_free;
1614
1615		if (!n)
1616			continue;
1617
1618		nr_free  = count_partial(n, count_free);
1619		nr_slabs = node_nr_slabs(n);
1620		nr_objs  = node_nr_objs(n);
1621
1622		printk(KERN_WARNING
1623			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1624			node, nr_slabs, nr_objs, nr_free);
1625	}
1626}
1627
1628/*
1629 * Slow path. The lockless freelist is empty or we need to perform
1630 * debugging duties.
1631 *
1632 * Interrupts are disabled.
1633 *
1634 * Processing is still very fast if new objects have been freed to the
1635 * regular freelist. In that case we simply take over the regular freelist
1636 * as the lockless freelist and zap the regular freelist.
1637 *
1638 * If that is not working then we fall back to the partial lists. We take the
1639 * first element of the freelist as the object to allocate now and move the
1640 * rest of the freelist to the lockless freelist.
1641 *
1642 * And if we were unable to get a new slab from the partial slab lists then
1643 * we need to allocate a new slab. This is the slowest path since it involves
1644 * a call to the page allocator and the setup of a new slab.
1645 */
1646static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1647			  unsigned long addr, struct kmem_cache_cpu *c)
1648{
1649	void **object;
1650	struct page *new;
1651
1652	/* We handle __GFP_ZERO in the caller */
1653	gfpflags &= ~__GFP_ZERO;
1654
1655	if (!c->page)
1656		goto new_slab;
1657
1658	slab_lock(c->page);
1659	if (unlikely(!node_match(c, node)))
1660		goto another_slab;
1661
1662	stat(s, ALLOC_REFILL);
1663
1664load_freelist:
1665	object = c->page->freelist;
1666	if (unlikely(!object))
1667		goto another_slab;
1668	if (kmem_cache_debug(s))
1669		goto debug;
1670
1671	c->freelist = get_freepointer(s, object);
1672	c->page->inuse = c->page->objects;
1673	c->page->freelist = NULL;
1674	c->node = page_to_nid(c->page);
1675unlock_out:
1676	slab_unlock(c->page);
1677	stat(s, ALLOC_SLOWPATH);
1678	return object;
1679
1680another_slab:
1681	deactivate_slab(s, c);
1682
1683new_slab:
1684	new = get_partial(s, gfpflags, node);
1685	if (new) {
1686		c->page = new;
1687		stat(s, ALLOC_FROM_PARTIAL);
1688		goto load_freelist;
1689	}
1690
1691	gfpflags &= gfp_allowed_mask;
1692	if (gfpflags & __GFP_WAIT)
1693		local_irq_enable();
1694
1695	new = new_slab(s, gfpflags, node);
1696
1697	if (gfpflags & __GFP_WAIT)
1698		local_irq_disable();
1699
1700	if (new) {
1701		c = __this_cpu_ptr(s->cpu_slab);
1702		stat(s, ALLOC_SLAB);
1703		if (c->page)
1704			flush_slab(s, c);
1705		slab_lock(new);
1706		__SetPageSlubFrozen(new);
1707		c->page = new;
1708		goto load_freelist;
1709	}
1710	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1711		slab_out_of_memory(s, gfpflags, node);
1712	return NULL;
1713debug:
1714	if (!alloc_debug_processing(s, c->page, object, addr))
1715		goto another_slab;
1716
1717	c->page->inuse++;
1718	c->page->freelist = get_freepointer(s, object);
1719	c->node = -1;
1720	goto unlock_out;
1721}
1722
1723/*
1724 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1725 * have the fastpath folded into their functions. So no function call
1726 * overhead for requests that can be satisfied on the fastpath.
1727 *
1728 * The fastpath works by first checking if the lockless freelist can be used.
1729 * If not then __slab_alloc is called for slow processing.
1730 *
1731 * Otherwise we can simply pick the next object from the lockless free list.
1732 */
1733static __always_inline void *slab_alloc(struct kmem_cache *s,
1734		gfp_t gfpflags, int node, unsigned long addr)
1735{
1736	void **object;
1737	struct kmem_cache_cpu *c;
1738	unsigned long flags;
1739
1740	if (slab_pre_alloc_hook(s, gfpflags))
1741		return NULL;
1742
1743	local_irq_save(flags);
1744	c = __this_cpu_ptr(s->cpu_slab);
1745	object = c->freelist;
1746	if (unlikely(!object || !node_match(c, node)))
1747
1748		object = __slab_alloc(s, gfpflags, node, addr, c);
1749
1750	else {
1751		c->freelist = get_freepointer(s, object);
1752		stat(s, ALLOC_FASTPATH);
1753	}
1754	local_irq_restore(flags);
1755
1756	if (unlikely(gfpflags & __GFP_ZERO) && object)
1757		memset(object, 0, s->objsize);
1758
1759	slab_post_alloc_hook(s, gfpflags, object);
1760
1761	return object;
1762}
1763
1764void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1765{
1766	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1767
1768	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1769
1770	return ret;
1771}
1772EXPORT_SYMBOL(kmem_cache_alloc);
1773
1774#ifdef CONFIG_TRACING
1775void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1776{
1777	return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1778}
1779EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1780#endif
1781
1782#ifdef CONFIG_NUMA
1783void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1784{
1785	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1786
1787	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1788				    s->objsize, s->size, gfpflags, node);
1789
1790	return ret;
1791}
1792EXPORT_SYMBOL(kmem_cache_alloc_node);
1793#endif
1794
1795#ifdef CONFIG_TRACING
1796void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1797				    gfp_t gfpflags,
1798				    int node)
1799{
1800	return slab_alloc(s, gfpflags, node, _RET_IP_);
1801}
1802EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1803#endif
1804
1805/*
1806 * Slow patch handling. This may still be called frequently since objects
1807 * have a longer lifetime than the cpu slabs in most processing loads.
1808 *
1809 * So we still attempt to reduce cache line usage. Just take the slab
1810 * lock and free the item. If there is no additional partial page
1811 * handling required then we can return immediately.
1812 */
1813static void __slab_free(struct kmem_cache *s, struct page *page,
1814			void *x, unsigned long addr)
1815{
1816	void *prior;
1817	void **object = (void *)x;
1818
1819	stat(s, FREE_SLOWPATH);
1820	slab_lock(page);
1821
1822	if (kmem_cache_debug(s))
1823		goto debug;
1824
1825checks_ok:
1826	prior = page->freelist;
1827	set_freepointer(s, object, prior);
1828	page->freelist = object;
1829	page->inuse--;
1830
1831	if (unlikely(PageSlubFrozen(page))) {
1832		stat(s, FREE_FROZEN);
1833		goto out_unlock;
1834	}
1835
1836	if (unlikely(!page->inuse))
1837		goto slab_empty;
1838
1839	/*
1840	 * Objects left in the slab. If it was not on the partial list before
1841	 * then add it.
1842	 */
1843	if (unlikely(!prior)) {
1844		add_partial(get_node(s, page_to_nid(page)), page, 1);
1845		stat(s, FREE_ADD_PARTIAL);
1846	}
1847
1848out_unlock:
1849	slab_unlock(page);
1850	return;
1851
1852slab_empty:
1853	if (prior) {
1854		/*
1855		 * Slab still on the partial list.
1856		 */
1857		remove_partial(s, page);
1858		stat(s, FREE_REMOVE_PARTIAL);
1859	}
1860	slab_unlock(page);
1861	stat(s, FREE_SLAB);
1862	discard_slab(s, page);
1863	return;
1864
1865debug:
1866	if (!free_debug_processing(s, page, x, addr))
1867		goto out_unlock;
1868	goto checks_ok;
1869}
1870
1871/*
1872 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1873 * can perform fastpath freeing without additional function calls.
1874 *
1875 * The fastpath is only possible if we are freeing to the current cpu slab
1876 * of this processor. This typically the case if we have just allocated
1877 * the item before.
1878 *
1879 * If fastpath is not possible then fall back to __slab_free where we deal
1880 * with all sorts of special processing.
1881 */
1882static __always_inline void slab_free(struct kmem_cache *s,
1883			struct page *page, void *x, unsigned long addr)
1884{
1885	void **object = (void *)x;
1886	struct kmem_cache_cpu *c;
1887	unsigned long flags;
1888
1889	slab_free_hook(s, x);
1890
1891	local_irq_save(flags);
1892	c = __this_cpu_ptr(s->cpu_slab);
1893
1894	slab_free_hook_irq(s, x);
1895
1896	if (likely(page == c->page && c->node >= 0)) {
1897		set_freepointer(s, object, c->freelist);
1898		c->freelist = object;
1899		stat(s, FREE_FASTPATH);
1900	} else
1901		__slab_free(s, page, x, addr);
1902
1903	local_irq_restore(flags);
1904}
1905
1906void kmem_cache_free(struct kmem_cache *s, void *x)
1907{
1908	struct page *page;
1909
1910	page = virt_to_head_page(x);
1911
1912	slab_free(s, page, x, _RET_IP_);
1913
1914	trace_kmem_cache_free(_RET_IP_, x);
1915}
1916EXPORT_SYMBOL(kmem_cache_free);
1917
1918/* Figure out on which slab page the object resides */
1919static struct page *get_object_page(const void *x)
1920{
1921	struct page *page = virt_to_head_page(x);
1922
1923	if (!PageSlab(page))
1924		return NULL;
1925
1926	return page;
1927}
1928
1929/*
1930 * Object placement in a slab is made very easy because we always start at
1931 * offset 0. If we tune the size of the object to the alignment then we can
1932 * get the required alignment by putting one properly sized object after
1933 * another.
1934 *
1935 * Notice that the allocation order determines the sizes of the per cpu
1936 * caches. Each processor has always one slab available for allocations.
1937 * Increasing the allocation order reduces the number of times that slabs
1938 * must be moved on and off the partial lists and is therefore a factor in
1939 * locking overhead.
1940 */
1941
1942/*
1943 * Mininum / Maximum order of slab pages. This influences locking overhead
1944 * and slab fragmentation. A higher order reduces the number of partial slabs
1945 * and increases the number of allocations possible without having to
1946 * take the list_lock.
1947 */
1948static int slub_min_order;
1949static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1950static int slub_min_objects;
1951
1952/*
1953 * Merge control. If this is set then no merging of slab caches will occur.
1954 * (Could be removed. This was introduced to pacify the merge skeptics.)
1955 */
1956static int slub_nomerge;
1957
1958/*
1959 * Calculate the order of allocation given an slab object size.
1960 *
1961 * The order of allocation has significant impact on performance and other
1962 * system components. Generally order 0 allocations should be preferred since
1963 * order 0 does not cause fragmentation in the page allocator. Larger objects
1964 * be problematic to put into order 0 slabs because there may be too much
1965 * unused space left. We go to a higher order if more than 1/16th of the slab
1966 * would be wasted.
1967 *
1968 * In order to reach satisfactory performance we must ensure that a minimum
1969 * number of objects is in one slab. Otherwise we may generate too much
1970 * activity on the partial lists which requires taking the list_lock. This is
1971 * less a concern for large slabs though which are rarely used.
1972 *
1973 * slub_max_order specifies the order where we begin to stop considering the
1974 * number of objects in a slab as critical. If we reach slub_max_order then
1975 * we try to keep the page order as low as possible. So we accept more waste
1976 * of space in favor of a small page order.
1977 *
1978 * Higher order allocations also allow the placement of more objects in a
1979 * slab and thereby reduce object handling overhead. If the user has
1980 * requested a higher mininum order then we start with that one instead of
1981 * the smallest order which will fit the object.
1982 */
1983static inline int slab_order(int size, int min_objects,
1984				int max_order, int fract_leftover)
1985{
1986	int order;
1987	int rem;
1988	int min_order = slub_min_order;
1989
1990	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1991		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1992
1993	for (order = max(min_order,
1994				fls(min_objects * size - 1) - PAGE_SHIFT);
1995			order <= max_order; order++) {
1996
1997		unsigned long slab_size = PAGE_SIZE << order;
1998
1999		if (slab_size < min_objects * size)
2000			continue;
2001
2002		rem = slab_size % size;
2003
2004		if (rem <= slab_size / fract_leftover)
2005			break;
2006
2007	}
2008
2009	return order;
2010}
2011
2012static inline int calculate_order(int size)
2013{
2014	int order;
2015	int min_objects;
2016	int fraction;
2017	int max_objects;
2018
2019	/*
2020	 * Attempt to find best configuration for a slab. This
2021	 * works by first attempting to generate a layout with
2022	 * the best configuration and backing off gradually.
2023	 *
2024	 * First we reduce the acceptable waste in a slab. Then
2025	 * we reduce the minimum objects required in a slab.
2026	 */
2027	min_objects = slub_min_objects;
2028	if (!min_objects)
2029		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2030	max_objects = (PAGE_SIZE << slub_max_order)/size;
2031	min_objects = min(min_objects, max_objects);
2032
2033	while (min_objects > 1) {
2034		fraction = 16;
2035		while (fraction >= 4) {
2036			order = slab_order(size, min_objects,
2037						slub_max_order, fraction);
2038			if (order <= slub_max_order)
2039				return order;
2040			fraction /= 2;
2041		}
2042		min_objects--;
2043	}
2044
2045	/*
2046	 * We were unable to place multiple objects in a slab. Now
2047	 * lets see if we can place a single object there.
2048	 */
2049	order = slab_order(size, 1, slub_max_order, 1);
2050	if (order <= slub_max_order)
2051		return order;
2052
2053	/*
2054	 * Doh this slab cannot be placed using slub_max_order.
2055	 */
2056	order = slab_order(size, 1, MAX_ORDER, 1);
2057	if (order < MAX_ORDER)
2058		return order;
2059	return -ENOSYS;
2060}
2061
2062/*
2063 * Figure out what the alignment of the objects will be.
2064 */
2065static unsigned long calculate_alignment(unsigned long flags,
2066		unsigned long align, unsigned long size)
2067{
2068	/*
2069	 * If the user wants hardware cache aligned objects then follow that
2070	 * suggestion if the object is sufficiently large.
2071	 *
2072	 * The hardware cache alignment cannot override the specified
2073	 * alignment though. If that is greater then use it.
2074	 */
2075	if (flags & SLAB_HWCACHE_ALIGN) {
2076		unsigned long ralign = cache_line_size();
2077		while (size <= ralign / 2)
2078			ralign /= 2;
2079		align = max(align, ralign);
2080	}
2081
2082	if (align < ARCH_SLAB_MINALIGN)
2083		align = ARCH_SLAB_MINALIGN;
2084
2085	return ALIGN(align, sizeof(void *));
2086}
2087
2088static void
2089init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2090{
2091	n->nr_partial = 0;
2092	spin_lock_init(&n->list_lock);
2093	INIT_LIST_HEAD(&n->partial);
2094#ifdef CONFIG_SLUB_DEBUG
2095	atomic_long_set(&n->nr_slabs, 0);
2096	atomic_long_set(&n->total_objects, 0);
2097	INIT_LIST_HEAD(&n->full);
2098#endif
2099}
2100
2101static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2102{
2103	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2104			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2105
2106	s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2107
2108	return s->cpu_slab != NULL;
2109}
2110
2111static struct kmem_cache *kmem_cache_node;
2112
2113/*
2114 * No kmalloc_node yet so do it by hand. We know that this is the first
2115 * slab on the node for this slabcache. There are no concurrent accesses
2116 * possible.
2117 *
2118 * Note that this function only works on the kmalloc_node_cache
2119 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2120 * memory on a fresh node that has no slab structures yet.
2121 */
2122static void early_kmem_cache_node_alloc(int node)
2123{
2124	struct page *page;
2125	struct kmem_cache_node *n;
2126	unsigned long flags;
2127
2128	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2129
2130	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2131
2132	BUG_ON(!page);
2133	if (page_to_nid(page) != node) {
2134		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2135				"node %d\n", node);
2136		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2137				"in order to be able to continue\n");
2138	}
2139
2140	n = page->freelist;
2141	BUG_ON(!n);
2142	page->freelist = get_freepointer(kmem_cache_node, n);
2143	page->inuse++;
2144	kmem_cache_node->node[node] = n;
2145#ifdef CONFIG_SLUB_DEBUG
2146	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2147	init_tracking(kmem_cache_node, n);
2148#endif
2149	init_kmem_cache_node(n, kmem_cache_node);
2150	inc_slabs_node(kmem_cache_node, node, page->objects);
2151
2152	/*
2153	 * lockdep requires consistent irq usage for each lock
2154	 * so even though there cannot be a race this early in
2155	 * the boot sequence, we still disable irqs.
2156	 */
2157	local_irq_save(flags);
2158	add_partial(n, page, 0);
2159	local_irq_restore(flags);
2160}
2161
2162static void free_kmem_cache_nodes(struct kmem_cache *s)
2163{
2164	int node;
2165
2166	for_each_node_state(node, N_NORMAL_MEMORY) {
2167		struct kmem_cache_node *n = s->node[node];
2168
2169		if (n)
2170			kmem_cache_free(kmem_cache_node, n);
2171
2172		s->node[node] = NULL;
2173	}
2174}
2175
2176static int init_kmem_cache_nodes(struct kmem_cache *s)
2177{
2178	int node;
2179
2180	for_each_node_state(node, N_NORMAL_MEMORY) {
2181		struct kmem_cache_node *n;
2182
2183		if (slab_state == DOWN) {
2184			early_kmem_cache_node_alloc(node);
2185			continue;
2186		}
2187		n = kmem_cache_alloc_node(kmem_cache_node,
2188						GFP_KERNEL, node);
2189
2190		if (!n) {
2191			free_kmem_cache_nodes(s);
2192			return 0;
2193		}
2194
2195		s->node[node] = n;
2196		init_kmem_cache_node(n, s);
2197	}
2198	return 1;
2199}
2200
2201static void set_min_partial(struct kmem_cache *s, unsigned long min)
2202{
2203	if (min < MIN_PARTIAL)
2204		min = MIN_PARTIAL;
2205	else if (min > MAX_PARTIAL)
2206		min = MAX_PARTIAL;
2207	s->min_partial = min;
2208}
2209
2210/*
2211 * calculate_sizes() determines the order and the distribution of data within
2212 * a slab object.
2213 */
2214static int calculate_sizes(struct kmem_cache *s, int forced_order)
2215{
2216	unsigned long flags = s->flags;
2217	unsigned long size = s->objsize;
2218	unsigned long align = s->align;
2219	int order;
2220
2221	/*
2222	 * Round up object size to the next word boundary. We can only
2223	 * place the free pointer at word boundaries and this determines
2224	 * the possible location of the free pointer.
2225	 */
2226	size = ALIGN(size, sizeof(void *));
2227
2228#ifdef CONFIG_SLUB_DEBUG
2229	/*
2230	 * Determine if we can poison the object itself. If the user of
2231	 * the slab may touch the object after free or before allocation
2232	 * then we should never poison the object itself.
2233	 */
2234	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2235			!s->ctor)
2236		s->flags |= __OBJECT_POISON;
2237	else
2238		s->flags &= ~__OBJECT_POISON;
2239
2240
2241	/*
2242	 * If we are Redzoning then check if there is some space between the
2243	 * end of the object and the free pointer. If not then add an
2244	 * additional word to have some bytes to store Redzone information.
2245	 */
2246	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2247		size += sizeof(void *);
2248#endif
2249
2250	/*
2251	 * With that we have determined the number of bytes in actual use
2252	 * by the object. This is the potential offset to the free pointer.
2253	 */
2254	s->inuse = size;
2255
2256	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2257		s->ctor)) {
2258		/*
2259		 * Relocate free pointer after the object if it is not
2260		 * permitted to overwrite the first word of the object on
2261		 * kmem_cache_free.
2262		 *
2263		 * This is the case if we do RCU, have a constructor or
2264		 * destructor or are poisoning the objects.
2265		 */
2266		s->offset = size;
2267		size += sizeof(void *);
2268	}
2269
2270#ifdef CONFIG_SLUB_DEBUG
2271	if (flags & SLAB_STORE_USER)
2272		/*
2273		 * Need to store information about allocs and frees after
2274		 * the object.
2275		 */
2276		size += 2 * sizeof(struct track);
2277
2278	if (flags & SLAB_RED_ZONE)
2279		/*
2280		 * Add some empty padding so that we can catch
2281		 * overwrites from earlier objects rather than let
2282		 * tracking information or the free pointer be
2283		 * corrupted if a user writes before the start
2284		 * of the object.
2285		 */
2286		size += sizeof(void *);
2287#endif
2288
2289	/*
2290	 * Determine the alignment based on various parameters that the
2291	 * user specified and the dynamic determination of cache line size
2292	 * on bootup.
2293	 */
2294	align = calculate_alignment(flags, align, s->objsize);
2295	s->align = align;
2296
2297	/*
2298	 * SLUB stores one object immediately after another beginning from
2299	 * offset 0. In order to align the objects we have to simply size
2300	 * each object to conform to the alignment.
2301	 */
2302	size = ALIGN(size, align);
2303	s->size = size;
2304	if (forced_order >= 0)
2305		order = forced_order;
2306	else
2307		order = calculate_order(size);
2308
2309	if (order < 0)
2310		return 0;
2311
2312	s->allocflags = 0;
2313	if (order)
2314		s->allocflags |= __GFP_COMP;
2315
2316	if (s->flags & SLAB_CACHE_DMA)
2317		s->allocflags |= SLUB_DMA;
2318
2319	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2320		s->allocflags |= __GFP_RECLAIMABLE;
2321
2322	/*
2323	 * Determine the number of objects per slab
2324	 */
2325	s->oo = oo_make(order, size);
2326	s->min = oo_make(get_order(size), size);
2327	if (oo_objects(s->oo) > oo_objects(s->max))
2328		s->max = s->oo;
2329
2330	return !!oo_objects(s->oo);
2331
2332}
2333
2334static int kmem_cache_open(struct kmem_cache *s,
2335		const char *name, size_t size,
2336		size_t align, unsigned long flags,
2337		void (*ctor)(void *))
2338{
2339	memset(s, 0, kmem_size);
2340	s->name = name;
2341	s->ctor = ctor;
2342	s->objsize = size;
2343	s->align = align;
2344	s->flags = kmem_cache_flags(size, flags, name, ctor);
2345
2346	if (!calculate_sizes(s, -1))
2347		goto error;
2348	if (disable_higher_order_debug) {
2349		/*
2350		 * Disable debugging flags that store metadata if the min slab
2351		 * order increased.
2352		 */
2353		if (get_order(s->size) > get_order(s->objsize)) {
2354			s->flags &= ~DEBUG_METADATA_FLAGS;
2355			s->offset = 0;
2356			if (!calculate_sizes(s, -1))
2357				goto error;
2358		}
2359	}
2360
2361	/*
2362	 * The larger the object size is, the more pages we want on the partial
2363	 * list to avoid pounding the page allocator excessively.
2364	 */
2365	set_min_partial(s, ilog2(s->size));
2366	s->refcount = 1;
2367#ifdef CONFIG_NUMA
2368	s->remote_node_defrag_ratio = 1000;
2369#endif
2370	if (!init_kmem_cache_nodes(s))
2371		goto error;
2372
2373	if (alloc_kmem_cache_cpus(s))
2374		return 1;
2375
2376	free_kmem_cache_nodes(s);
2377error:
2378	if (flags & SLAB_PANIC)
2379		panic("Cannot create slab %s size=%lu realsize=%u "
2380			"order=%u offset=%u flags=%lx\n",
2381			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2382			s->offset, flags);
2383	return 0;
2384}
2385
2386/*
2387 * Check if a given pointer is valid
2388 */
2389int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2390{
2391	struct page *page;
2392
2393	if (!kern_ptr_validate(object, s->size))
2394		return 0;
2395
2396	page = get_object_page(object);
2397
2398	if (!page || s != page->slab)
2399		/* No slab or wrong slab */
2400		return 0;
2401
2402	if (!check_valid_pointer(s, page, object))
2403		return 0;
2404
2405	/*
2406	 * We could also check if the object is on the slabs freelist.
2407	 * But this would be too expensive and it seems that the main
2408	 * purpose of kmem_ptr_valid() is to check if the object belongs
2409	 * to a certain slab.
2410	 */
2411	return 1;
2412}
2413EXPORT_SYMBOL(kmem_ptr_validate);
2414
2415/*
2416 * Determine the size of a slab object
2417 */
2418unsigned int kmem_cache_size(struct kmem_cache *s)
2419{
2420	return s->objsize;
2421}
2422EXPORT_SYMBOL(kmem_cache_size);
2423
2424const char *kmem_cache_name(struct kmem_cache *s)
2425{
2426	return s->name;
2427}
2428EXPORT_SYMBOL(kmem_cache_name);
2429
2430static void list_slab_objects(struct kmem_cache *s, struct page *page,
2431							const char *text)
2432{
2433#ifdef CONFIG_SLUB_DEBUG
2434	void *addr = page_address(page);
2435	void *p;
2436	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2437				     sizeof(long), GFP_ATOMIC);
2438	if (!map)
2439		return;
2440	slab_err(s, page, "%s", text);
2441	slab_lock(page);
2442	for_each_free_object(p, s, page->freelist)
2443		set_bit(slab_index(p, s, addr), map);
2444
2445	for_each_object(p, s, addr, page->objects) {
2446
2447		if (!test_bit(slab_index(p, s, addr), map)) {
2448			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2449							p, p - addr);
2450			print_tracking(s, p);
2451		}
2452	}
2453	slab_unlock(page);
2454	kfree(map);
2455#endif
2456}
2457
2458/*
2459 * Attempt to free all partial slabs on a node.
2460 */
2461static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2462{
2463	unsigned long flags;
2464	struct page *page, *h;
2465
2466	spin_lock_irqsave(&n->list_lock, flags);
2467	list_for_each_entry_safe(page, h, &n->partial, lru) {
2468		if (!page->inuse) {
2469			__remove_partial(n, page);
2470			discard_slab(s, page);
2471		} else {
2472			list_slab_objects(s, page,
2473				"Objects remaining on kmem_cache_close()");
2474		}
2475	}
2476	spin_unlock_irqrestore(&n->list_lock, flags);
2477}
2478
2479/*
2480 * Release all resources used by a slab cache.
2481 */
2482static inline int kmem_cache_close(struct kmem_cache *s)
2483{
2484	int node;
2485
2486	flush_all(s);
2487	free_percpu(s->cpu_slab);
2488	/* Attempt to free all objects */
2489	for_each_node_state(node, N_NORMAL_MEMORY) {
2490		struct kmem_cache_node *n = get_node(s, node);
2491
2492		free_partial(s, n);
2493		if (n->nr_partial || slabs_node(s, node))
2494			return 1;
2495	}
2496	free_kmem_cache_nodes(s);
2497	return 0;
2498}
2499
2500/*
2501 * Close a cache and release the kmem_cache structure
2502 * (must be used for caches created using kmem_cache_create)
2503 */
2504void kmem_cache_destroy(struct kmem_cache *s)
2505{
2506	down_write(&slub_lock);
2507	s->refcount--;
2508	if (!s->refcount) {
2509		list_del(&s->list);
2510		if (kmem_cache_close(s)) {
2511			printk(KERN_ERR "SLUB %s: %s called for cache that "
2512				"still has objects.\n", s->name, __func__);
2513			dump_stack();
2514		}
2515		if (s->flags & SLAB_DESTROY_BY_RCU)
2516			rcu_barrier();
2517		sysfs_slab_remove(s);
2518	}
2519	up_write(&slub_lock);
2520}
2521EXPORT_SYMBOL(kmem_cache_destroy);
2522
2523/********************************************************************
2524 *		Kmalloc subsystem
2525 *******************************************************************/
2526
2527struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2528EXPORT_SYMBOL(kmalloc_caches);
2529
2530static struct kmem_cache *kmem_cache;
2531
2532#ifdef CONFIG_ZONE_DMA
2533static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2534#endif
2535
2536static int __init setup_slub_min_order(char *str)
2537{
2538	get_option(&str, &slub_min_order);
2539
2540	return 1;
2541}
2542
2543__setup("slub_min_order=", setup_slub_min_order);
2544
2545static int __init setup_slub_max_order(char *str)
2546{
2547	get_option(&str, &slub_max_order);
2548	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2549
2550	return 1;
2551}
2552
2553__setup("slub_max_order=", setup_slub_max_order);
2554
2555static int __init setup_slub_min_objects(char *str)
2556{
2557	get_option(&str, &slub_min_objects);
2558
2559	return 1;
2560}
2561
2562__setup("slub_min_objects=", setup_slub_min_objects);
2563
2564static int __init setup_slub_nomerge(char *str)
2565{
2566	slub_nomerge = 1;
2567	return 1;
2568}
2569
2570__setup("slub_nomerge", setup_slub_nomerge);
2571
2572static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2573						int size, unsigned int flags)
2574{
2575	struct kmem_cache *s;
2576
2577	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2578
2579	/*
2580	 * This function is called with IRQs disabled during early-boot on
2581	 * single CPU so there's no need to take slub_lock here.
2582	 */
2583	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2584								flags, NULL))
2585		goto panic;
2586
2587	list_add(&s->list, &slab_caches);
2588	return s;
2589
2590panic:
2591	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2592	return NULL;
2593}
2594
2595/*
2596 * Conversion table for small slabs sizes / 8 to the index in the
2597 * kmalloc array. This is necessary for slabs < 192 since we have non power
2598 * of two cache sizes there. The size of larger slabs can be determined using
2599 * fls.
2600 */
2601static s8 size_index[24] = {
2602	3,	/* 8 */
2603	4,	/* 16 */
2604	5,	/* 24 */
2605	5,	/* 32 */
2606	6,	/* 40 */
2607	6,	/* 48 */
2608	6,	/* 56 */
2609	6,	/* 64 */
2610	1,	/* 72 */
2611	1,	/* 80 */
2612	1,	/* 88 */
2613	1,	/* 96 */
2614	7,	/* 104 */
2615	7,	/* 112 */
2616	7,	/* 120 */
2617	7,	/* 128 */
2618	2,	/* 136 */
2619	2,	/* 144 */
2620	2,	/* 152 */
2621	2,	/* 160 */
2622	2,	/* 168 */
2623	2,	/* 176 */
2624	2,	/* 184 */
2625	2	/* 192 */
2626};
2627
2628static inline int size_index_elem(size_t bytes)
2629{
2630	return (bytes - 1) / 8;
2631}
2632
2633static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2634{
2635	int index;
2636
2637	if (size <= 192) {
2638		if (!size)
2639			return ZERO_SIZE_PTR;
2640
2641		index = size_index[size_index_elem(size)];
2642	} else
2643		index = fls(size - 1);
2644
2645#ifdef CONFIG_ZONE_DMA
2646	if (unlikely((flags & SLUB_DMA)))
2647		return kmalloc_dma_caches[index];
2648
2649#endif
2650	return kmalloc_caches[index];
2651}
2652
2653void *__kmalloc(size_t size, gfp_t flags)
2654{
2655	struct kmem_cache *s;
2656	void *ret;
2657
2658	if (unlikely(size > SLUB_MAX_SIZE))
2659		return kmalloc_large(size, flags);
2660
2661	s = get_slab(size, flags);
2662
2663	if (unlikely(ZERO_OR_NULL_PTR(s)))
2664		return s;
2665
2666	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2667
2668	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2669
2670	return ret;
2671}
2672EXPORT_SYMBOL(__kmalloc);
2673
2674static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2675{
2676	struct page *page;
2677	void *ptr = NULL;
2678
2679	flags |= __GFP_COMP | __GFP_NOTRACK;
2680	page = alloc_pages_node(node, flags, get_order(size));
2681	if (page)
2682		ptr = page_address(page);
2683
2684	kmemleak_alloc(ptr, size, 1, flags);
2685	return ptr;
2686}
2687
2688#ifdef CONFIG_NUMA
2689void *__kmalloc_node(size_t size, gfp_t flags, int node)
2690{
2691	struct kmem_cache *s;
2692	void *ret;
2693
2694	if (unlikely(size > SLUB_MAX_SIZE)) {
2695		ret = kmalloc_large_node(size, flags, node);
2696
2697		trace_kmalloc_node(_RET_IP_, ret,
2698				   size, PAGE_SIZE << get_order(size),
2699				   flags, node);
2700
2701		return ret;
2702	}
2703
2704	s = get_slab(size, flags);
2705
2706	if (unlikely(ZERO_OR_NULL_PTR(s)))
2707		return s;
2708
2709	ret = slab_alloc(s, flags, node, _RET_IP_);
2710
2711	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2712
2713	return ret;
2714}
2715EXPORT_SYMBOL(__kmalloc_node);
2716#endif
2717
2718size_t ksize(const void *object)
2719{
2720	struct page *page;
2721	struct kmem_cache *s;
2722
2723	if (unlikely(object == ZERO_SIZE_PTR))
2724		return 0;
2725
2726	page = virt_to_head_page(object);
2727
2728	if (unlikely(!PageSlab(page))) {
2729		WARN_ON(!PageCompound(page));
2730		return PAGE_SIZE << compound_order(page);
2731	}
2732	s = page->slab;
2733
2734#ifdef CONFIG_SLUB_DEBUG
2735	/*
2736	 * Debugging requires use of the padding between object
2737	 * and whatever may come after it.
2738	 */
2739	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2740		return s->objsize;
2741
2742#endif
2743	/*
2744	 * If we have the need to store the freelist pointer
2745	 * back there or track user information then we can
2746	 * only use the space before that information.
2747	 */
2748	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2749		return s->inuse;
2750	/*
2751	 * Else we can use all the padding etc for the allocation
2752	 */
2753	return s->size;
2754}
2755EXPORT_SYMBOL(ksize);
2756
2757void kfree(const void *x)
2758{
2759	struct page *page;
2760	void *object = (void *)x;
2761
2762	trace_kfree(_RET_IP_, x);
2763
2764	if (unlikely(ZERO_OR_NULL_PTR(x)))
2765		return;
2766
2767	page = virt_to_head_page(x);
2768	if (unlikely(!PageSlab(page))) {
2769		BUG_ON(!PageCompound(page));
2770		kmemleak_free(x);
2771		put_page(page);
2772		return;
2773	}
2774	slab_free(page->slab, page, object, _RET_IP_);
2775}
2776EXPORT_SYMBOL(kfree);
2777
2778/*
2779 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2780 * the remaining slabs by the number of items in use. The slabs with the
2781 * most items in use come first. New allocations will then fill those up
2782 * and thus they can be removed from the partial lists.
2783 *
2784 * The slabs with the least items are placed last. This results in them
2785 * being allocated from last increasing the chance that the last objects
2786 * are freed in them.
2787 */
2788int kmem_cache_shrink(struct kmem_cache *s)
2789{
2790	int node;
2791	int i;
2792	struct kmem_cache_node *n;
2793	struct page *page;
2794	struct page *t;
2795	int objects = oo_objects(s->max);
2796	struct list_head *slabs_by_inuse =
2797		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2798	unsigned long flags;
2799
2800	if (!slabs_by_inuse)
2801		return -ENOMEM;
2802
2803	flush_all(s);
2804	for_each_node_state(node, N_NORMAL_MEMORY) {
2805		n = get_node(s, node);
2806
2807		if (!n->nr_partial)
2808			continue;
2809
2810		for (i = 0; i < objects; i++)
2811			INIT_LIST_HEAD(slabs_by_inuse + i);
2812
2813		spin_lock_irqsave(&n->list_lock, flags);
2814
2815		/*
2816		 * Build lists indexed by the items in use in each slab.
2817		 *
2818		 * Note that concurrent frees may occur while we hold the
2819		 * list_lock. page->inuse here is the upper limit.
2820		 */
2821		list_for_each_entry_safe(page, t, &n->partial, lru) {
2822			if (!page->inuse && slab_trylock(page)) {
2823				/*
2824				 * Must hold slab lock here because slab_free
2825				 * may have freed the last object and be
2826				 * waiting to release the slab.
2827				 */
2828				__remove_partial(n, page);
2829				slab_unlock(page);
2830				discard_slab(s, page);
2831			} else {
2832				list_move(&page->lru,
2833				slabs_by_inuse + page->inuse);
2834			}
2835		}
2836
2837		/*
2838		 * Rebuild the partial list with the slabs filled up most
2839		 * first and the least used slabs at the end.
2840		 */
2841		for (i = objects - 1; i >= 0; i--)
2842			list_splice(slabs_by_inuse + i, n->partial.prev);
2843
2844		spin_unlock_irqrestore(&n->list_lock, flags);
2845	}
2846
2847	kfree(slabs_by_inuse);
2848	return 0;
2849}
2850EXPORT_SYMBOL(kmem_cache_shrink);
2851
2852#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2853static int slab_mem_going_offline_callback(void *arg)
2854{
2855	struct kmem_cache *s;
2856
2857	down_read(&slub_lock);
2858	list_for_each_entry(s, &slab_caches, list)
2859		kmem_cache_shrink(s);
2860	up_read(&slub_lock);
2861
2862	return 0;
2863}
2864
2865static void slab_mem_offline_callback(void *arg)
2866{
2867	struct kmem_cache_node *n;
2868	struct kmem_cache *s;
2869	struct memory_notify *marg = arg;
2870	int offline_node;
2871
2872	offline_node = marg->status_change_nid;
2873
2874	/*
2875	 * If the node still has available memory. we need kmem_cache_node
2876	 * for it yet.
2877	 */
2878	if (offline_node < 0)
2879		return;
2880
2881	down_read(&slub_lock);
2882	list_for_each_entry(s, &slab_caches, list) {
2883		n = get_node(s, offline_node);
2884		if (n) {
2885			/*
2886			 * if n->nr_slabs > 0, slabs still exist on the node
2887			 * that is going down. We were unable to free them,
2888			 * and offline_pages() function shouldn't call this
2889			 * callback. So, we must fail.
2890			 */
2891			BUG_ON(slabs_node(s, offline_node));
2892
2893			s->node[offline_node] = NULL;
2894			kmem_cache_free(kmem_cache_node, n);
2895		}
2896	}
2897	up_read(&slub_lock);
2898}
2899
2900static int slab_mem_going_online_callback(void *arg)
2901{
2902	struct kmem_cache_node *n;
2903	struct kmem_cache *s;
2904	struct memory_notify *marg = arg;
2905	int nid = marg->status_change_nid;
2906	int ret = 0;
2907
2908	/*
2909	 * If the node's memory is already available, then kmem_cache_node is
2910	 * already created. Nothing to do.
2911	 */
2912	if (nid < 0)
2913		return 0;
2914
2915	/*
2916	 * We are bringing a node online. No memory is available yet. We must
2917	 * allocate a kmem_cache_node structure in order to bring the node
2918	 * online.
2919	 */
2920	down_read(&slub_lock);
2921	list_for_each_entry(s, &slab_caches, list) {
2922		/*
2923		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2924		 *      since memory is not yet available from the node that
2925		 *      is brought up.
2926		 */
2927		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
2928		if (!n) {
2929			ret = -ENOMEM;
2930			goto out;
2931		}
2932		init_kmem_cache_node(n, s);
2933		s->node[nid] = n;
2934	}
2935out:
2936	up_read(&slub_lock);
2937	return ret;
2938}
2939
2940static int slab_memory_callback(struct notifier_block *self,
2941				unsigned long action, void *arg)
2942{
2943	int ret = 0;
2944
2945	switch (action) {
2946	case MEM_GOING_ONLINE:
2947		ret = slab_mem_going_online_callback(arg);
2948		break;
2949	case MEM_GOING_OFFLINE:
2950		ret = slab_mem_going_offline_callback(arg);
2951		break;
2952	case MEM_OFFLINE:
2953	case MEM_CANCEL_ONLINE:
2954		slab_mem_offline_callback(arg);
2955		break;
2956	case MEM_ONLINE:
2957	case MEM_CANCEL_OFFLINE:
2958		break;
2959	}
2960	if (ret)
2961		ret = notifier_from_errno(ret);
2962	else
2963		ret = NOTIFY_OK;
2964	return ret;
2965}
2966
2967#endif /* CONFIG_MEMORY_HOTPLUG */
2968
2969/********************************************************************
2970 *			Basic setup of slabs
2971 *******************************************************************/
2972
2973/*
2974 * Used for early kmem_cache structures that were allocated using
2975 * the page allocator
2976 */
2977
2978static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2979{
2980	int node;
2981
2982	list_add(&s->list, &slab_caches);
2983	s->refcount = -1;
2984
2985	for_each_node_state(node, N_NORMAL_MEMORY) {
2986		struct kmem_cache_node *n = get_node(s, node);
2987		struct page *p;
2988
2989		if (n) {
2990			list_for_each_entry(p, &n->partial, lru)
2991				p->slab = s;
2992
2993#ifdef CONFIG_SLAB_DEBUG
2994			list_for_each_entry(p, &n->full, lru)
2995				p->slab = s;
2996#endif
2997		}
2998	}
2999}
3000
3001void __init kmem_cache_init(void)
3002{
3003	int i;
3004	int caches = 0;
3005	struct kmem_cache *temp_kmem_cache;
3006	int order;
3007	struct kmem_cache *temp_kmem_cache_node;
3008	unsigned long kmalloc_size;
3009
3010	kmem_size = offsetof(struct kmem_cache, node) +
3011				nr_node_ids * sizeof(struct kmem_cache_node *);
3012
3013	/* Allocate two kmem_caches from the page allocator */
3014	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3015	order = get_order(2 * kmalloc_size);
3016	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3017
3018	/*
3019	 * Must first have the slab cache available for the allocations of the
3020	 * struct kmem_cache_node's. There is special bootstrap code in
3021	 * kmem_cache_open for slab_state == DOWN.
3022	 */
3023	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3024
3025	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3026		sizeof(struct kmem_cache_node),
3027		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3028
3029	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3030
3031	/* Able to allocate the per node structures */
3032	slab_state = PARTIAL;
3033
3034	temp_kmem_cache = kmem_cache;
3035	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3036		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3037	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3038	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3039
3040	/*
3041	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3042	 * kmem_cache_node is separately allocated so no need to
3043	 * update any list pointers.
3044	 */
3045	temp_kmem_cache_node = kmem_cache_node;
3046
3047	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3048	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3049
3050	kmem_cache_bootstrap_fixup(kmem_cache_node);
3051
3052	caches++;
3053	kmem_cache_bootstrap_fixup(kmem_cache);
3054	caches++;
3055	/* Free temporary boot structure */
3056	free_pages((unsigned long)temp_kmem_cache, order);
3057
3058	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3059
3060	/*
3061	 * Patch up the size_index table if we have strange large alignment
3062	 * requirements for the kmalloc array. This is only the case for
3063	 * MIPS it seems. The standard arches will not generate any code here.
3064	 *
3065	 * Largest permitted alignment is 256 bytes due to the way we
3066	 * handle the index determination for the smaller caches.
3067	 *
3068	 * Make sure that nothing crazy happens if someone starts tinkering
3069	 * around with ARCH_KMALLOC_MINALIGN
3070	 */
3071	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3072		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3073
3074	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3075		int elem = size_index_elem(i);
3076		if (elem >= ARRAY_SIZE(size_index))
3077			break;
3078		size_index[elem] = KMALLOC_SHIFT_LOW;
3079	}
3080
3081	if (KMALLOC_MIN_SIZE == 64) {
3082		/*
3083		 * The 96 byte size cache is not used if the alignment
3084		 * is 64 byte.
3085		 */
3086		for (i = 64 + 8; i <= 96; i += 8)
3087			size_index[size_index_elem(i)] = 7;
3088	} else if (KMALLOC_MIN_SIZE == 128) {
3089		/*
3090		 * The 192 byte sized cache is not used if the alignment
3091		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3092		 * instead.
3093		 */
3094		for (i = 128 + 8; i <= 192; i += 8)
3095			size_index[size_index_elem(i)] = 8;
3096	}
3097
3098	/* Caches that are not of the two-to-the-power-of size */
3099	if (KMALLOC_MIN_SIZE <= 32) {
3100		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3101		caches++;
3102	}
3103
3104	if (KMALLOC_MIN_SIZE <= 64) {
3105		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3106		caches++;
3107	}
3108
3109	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3110		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3111		caches++;
3112	}
3113
3114	slab_state = UP;
3115
3116	/* Provide the correct kmalloc names now that the caches are up */
3117	if (KMALLOC_MIN_SIZE <= 32) {
3118		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3119		BUG_ON(!kmalloc_caches[1]->name);
3120	}
3121
3122	if (KMALLOC_MIN_SIZE <= 64) {
3123		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3124		BUG_ON(!kmalloc_caches[2]->name);
3125	}
3126
3127	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3128		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3129
3130		BUG_ON(!s);
3131		kmalloc_caches[i]->name = s;
3132	}
3133
3134#ifdef CONFIG_SMP
3135	register_cpu_notifier(&slab_notifier);
3136#endif
3137
3138#ifdef CONFIG_ZONE_DMA
3139	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3140		struct kmem_cache *s = kmalloc_caches[i];
3141
3142		if (s && s->size) {
3143			char *name = kasprintf(GFP_NOWAIT,
3144				 "dma-kmalloc-%d", s->objsize);
3145
3146			BUG_ON(!name);
3147			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3148				s->objsize, SLAB_CACHE_DMA);
3149		}
3150	}
3151#endif
3152	printk(KERN_INFO
3153		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3154		" CPUs=%d, Nodes=%d\n",
3155		caches, cache_line_size(),
3156		slub_min_order, slub_max_order, slub_min_objects,
3157		nr_cpu_ids, nr_node_ids);
3158}
3159
3160void __init kmem_cache_init_late(void)
3161{
3162}
3163
3164/*
3165 * Find a mergeable slab cache
3166 */
3167static int slab_unmergeable(struct kmem_cache *s)
3168{
3169	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3170		return 1;
3171
3172	if (s->ctor)
3173		return 1;
3174
3175	/*
3176	 * We may have set a slab to be unmergeable during bootstrap.
3177	 */
3178	if (s->refcount < 0)
3179		return 1;
3180
3181	return 0;
3182}
3183
3184static struct kmem_cache *find_mergeable(size_t size,
3185		size_t align, unsigned long flags, const char *name,
3186		void (*ctor)(void *))
3187{
3188	struct kmem_cache *s;
3189
3190	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3191		return NULL;
3192
3193	if (ctor)
3194		return NULL;
3195
3196	size = ALIGN(size, sizeof(void *));
3197	align = calculate_alignment(flags, align, size);
3198	size = ALIGN(size, align);
3199	flags = kmem_cache_flags(size, flags, name, NULL);
3200
3201	list_for_each_entry(s, &slab_caches, list) {
3202		if (slab_unmergeable(s))
3203			continue;
3204
3205		if (size > s->size)
3206			continue;
3207
3208		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3209				continue;
3210		/*
3211		 * Check if alignment is compatible.
3212		 * Courtesy of Adrian Drzewiecki
3213		 */
3214		if ((s->size & ~(align - 1)) != s->size)
3215			continue;
3216
3217		if (s->size - size >= sizeof(void *))
3218			continue;
3219
3220		return s;
3221	}
3222	return NULL;
3223}
3224
3225struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3226		size_t align, unsigned long flags, void (*ctor)(void *))
3227{
3228	struct kmem_cache *s;
3229	char *n;
3230
3231	if (WARN_ON(!name))
3232		return NULL;
3233
3234	down_write(&slub_lock);
3235	s = find_mergeable(size, align, flags, name, ctor);
3236	if (s) {
3237		s->refcount++;
3238		/*
3239		 * Adjust the object sizes so that we clear
3240		 * the complete object on kzalloc.
3241		 */
3242		s->objsize = max(s->objsize, (int)size);
3243		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3244
3245		if (sysfs_slab_alias(s, name)) {
3246			s->refcount--;
3247			goto err;
3248		}
3249		up_write(&slub_lock);
3250		return s;
3251	}
3252
3253	n = kstrdup(name, GFP_KERNEL);
3254	if (!n)
3255		goto err;
3256
3257	s = kmalloc(kmem_size, GFP_KERNEL);
3258	if (s) {
3259		if (kmem_cache_open(s, n,
3260				size, align, flags, ctor)) {
3261			list_add(&s->list, &slab_caches);
3262			if (sysfs_slab_add(s)) {
3263				list_del(&s->list);
3264				kfree(n);
3265				kfree(s);
3266				goto err;
3267			}
3268			up_write(&slub_lock);
3269			return s;
3270		}
3271		kfree(n);
3272		kfree(s);
3273	}
3274	up_write(&slub_lock);
3275
3276err:
3277	if (flags & SLAB_PANIC)
3278		panic("Cannot create slabcache %s\n", name);
3279	else
3280		s = NULL;
3281	return s;
3282}
3283EXPORT_SYMBOL(kmem_cache_create);
3284
3285#ifdef CONFIG_SMP
3286/*
3287 * Use the cpu notifier to insure that the cpu slabs are flushed when
3288 * necessary.
3289 */
3290static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3291		unsigned long action, void *hcpu)
3292{
3293	long cpu = (long)hcpu;
3294	struct kmem_cache *s;
3295	unsigned long flags;
3296
3297	switch (action) {
3298	case CPU_UP_CANCELED:
3299	case CPU_UP_CANCELED_FROZEN:
3300	case CPU_DEAD:
3301	case CPU_DEAD_FROZEN:
3302		down_read(&slub_lock);
3303		list_for_each_entry(s, &slab_caches, list) {
3304			local_irq_save(flags);
3305			__flush_cpu_slab(s, cpu);
3306			local_irq_restore(flags);
3307		}
3308		up_read(&slub_lock);
3309		break;
3310	default:
3311		break;
3312	}
3313	return NOTIFY_OK;
3314}
3315
3316static struct notifier_block __cpuinitdata slab_notifier = {
3317	.notifier_call = slab_cpuup_callback
3318};
3319
3320#endif
3321
3322void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3323{
3324	struct kmem_cache *s;
3325	void *ret;
3326
3327	if (unlikely(size > SLUB_MAX_SIZE))
3328		return kmalloc_large(size, gfpflags);
3329
3330	s = get_slab(size, gfpflags);
3331
3332	if (unlikely(ZERO_OR_NULL_PTR(s)))
3333		return s;
3334
3335	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3336
3337	/* Honor the call site pointer we recieved. */
3338	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3339
3340	return ret;
3341}
3342
3343void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3344					int node, unsigned long caller)
3345{
3346	struct kmem_cache *s;
3347	void *ret;
3348
3349	if (unlikely(size > SLUB_MAX_SIZE)) {
3350		ret = kmalloc_large_node(size, gfpflags, node);
3351
3352		trace_kmalloc_node(caller, ret,
3353				   size, PAGE_SIZE << get_order(size),
3354				   gfpflags, node);
3355
3356		return ret;
3357	}
3358
3359	s = get_slab(size, gfpflags);
3360
3361	if (unlikely(ZERO_OR_NULL_PTR(s)))
3362		return s;
3363
3364	ret = slab_alloc(s, gfpflags, node, caller);
3365
3366	/* Honor the call site pointer we recieved. */
3367	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3368
3369	return ret;
3370}
3371
3372#ifdef CONFIG_SLUB_DEBUG
3373static int count_inuse(struct page *page)
3374{
3375	return page->inuse;
3376}
3377
3378static int count_total(struct page *page)
3379{
3380	return page->objects;
3381}
3382
3383static int validate_slab(struct kmem_cache *s, struct page *page,
3384						unsigned long *map)
3385{
3386	void *p;
3387	void *addr = page_address(page);
3388
3389	if (!check_slab(s, page) ||
3390			!on_freelist(s, page, NULL))
3391		return 0;
3392
3393	/* Now we know that a valid freelist exists */
3394	bitmap_zero(map, page->objects);
3395
3396	for_each_free_object(p, s, page->freelist) {
3397		set_bit(slab_index(p, s, addr), map);
3398		if (!check_object(s, page, p, 0))
3399			return 0;
3400	}
3401
3402	for_each_object(p, s, addr, page->objects)
3403		if (!test_bit(slab_index(p, s, addr), map))
3404			if (!check_object(s, page, p, 1))
3405				return 0;
3406	return 1;
3407}
3408
3409static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3410						unsigned long *map)
3411{
3412	if (slab_trylock(page)) {
3413		validate_slab(s, page, map);
3414		slab_unlock(page);
3415	} else
3416		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3417			s->name, page);
3418}
3419
3420static int validate_slab_node(struct kmem_cache *s,
3421		struct kmem_cache_node *n, unsigned long *map)
3422{
3423	unsigned long count = 0;
3424	struct page *page;
3425	unsigned long flags;
3426
3427	spin_lock_irqsave(&n->list_lock, flags);
3428
3429	list_for_each_entry(page, &n->partial, lru) {
3430		validate_slab_slab(s, page, map);
3431		count++;
3432	}
3433	if (count != n->nr_partial)
3434		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3435			"counter=%ld\n", s->name, count, n->nr_partial);
3436
3437	if (!(s->flags & SLAB_STORE_USER))
3438		goto out;
3439
3440	list_for_each_entry(page, &n->full, lru) {
3441		validate_slab_slab(s, page, map);
3442		count++;
3443	}
3444	if (count != atomic_long_read(&n->nr_slabs))
3445		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3446			"counter=%ld\n", s->name, count,
3447			atomic_long_read(&n->nr_slabs));
3448
3449out:
3450	spin_unlock_irqrestore(&n->list_lock, flags);
3451	return count;
3452}
3453
3454static long validate_slab_cache(struct kmem_cache *s)
3455{
3456	int node;
3457	unsigned long count = 0;
3458	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3459				sizeof(unsigned long), GFP_KERNEL);
3460
3461	if (!map)
3462		return -ENOMEM;
3463
3464	flush_all(s);
3465	for_each_node_state(node, N_NORMAL_MEMORY) {
3466		struct kmem_cache_node *n = get_node(s, node);
3467
3468		count += validate_slab_node(s, n, map);
3469	}
3470	kfree(map);
3471	return count;
3472}
3473
3474#ifdef SLUB_RESILIENCY_TEST
3475static void resiliency_test(void)
3476{
3477	u8 *p;
3478
3479	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3480
3481	printk(KERN_ERR "SLUB resiliency testing\n");
3482	printk(KERN_ERR "-----------------------\n");
3483	printk(KERN_ERR "A. Corruption after allocation\n");
3484
3485	p = kzalloc(16, GFP_KERNEL);
3486	p[16] = 0x12;
3487	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3488			" 0x12->0x%p\n\n", p + 16);
3489
3490	validate_slab_cache(kmalloc_caches[4]);
3491
3492	/* Hmmm... The next two are dangerous */
3493	p = kzalloc(32, GFP_KERNEL);
3494	p[32 + sizeof(void *)] = 0x34;
3495	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3496			" 0x34 -> -0x%p\n", p);
3497	printk(KERN_ERR
3498		"If allocated object is overwritten then not detectable\n\n");
3499
3500	validate_slab_cache(kmalloc_caches[5]);
3501	p = kzalloc(64, GFP_KERNEL);
3502	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3503	*p = 0x56;
3504	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3505									p);
3506	printk(KERN_ERR
3507		"If allocated object is overwritten then not detectable\n\n");
3508	validate_slab_cache(kmalloc_caches[6]);
3509
3510	printk(KERN_ERR "\nB. Corruption after free\n");
3511	p = kzalloc(128, GFP_KERNEL);
3512	kfree(p);
3513	*p = 0x78;
3514	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3515	validate_slab_cache(kmalloc_caches[7]);
3516
3517	p = kzalloc(256, GFP_KERNEL);
3518	kfree(p);
3519	p[50] = 0x9a;
3520	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3521			p);
3522	validate_slab_cache(kmalloc_caches[8]);
3523
3524	p = kzalloc(512, GFP_KERNEL);
3525	kfree(p);
3526	p[512] = 0xab;
3527	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3528	validate_slab_cache(kmalloc_caches[9]);
3529}
3530#else
3531static void resiliency_test(void) {};
3532#endif
3533
3534/*
3535 * Generate lists of code addresses where slabcache objects are allocated
3536 * and freed.
3537 */
3538
3539struct location {
3540	unsigned long count;
3541	unsigned long addr;
3542	long long sum_time;
3543	long min_time;
3544	long max_time;
3545	long min_pid;
3546	long max_pid;
3547	DECLARE_BITMAP(cpus, NR_CPUS);
3548	nodemask_t nodes;
3549};
3550
3551struct loc_track {
3552	unsigned long max;
3553	unsigned long count;
3554	struct location *loc;
3555};
3556
3557static void free_loc_track(struct loc_track *t)
3558{
3559	if (t->max)
3560		free_pages((unsigned long)t->loc,
3561			get_order(sizeof(struct location) * t->max));
3562}
3563
3564static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3565{
3566	struct location *l;
3567	int order;
3568
3569	order = get_order(sizeof(struct location) * max);
3570
3571	l = (void *)__get_free_pages(flags, order);
3572	if (!l)
3573		return 0;
3574
3575	if (t->count) {
3576		memcpy(l, t->loc, sizeof(struct location) * t->count);
3577		free_loc_track(t);
3578	}
3579	t->max = max;
3580	t->loc = l;
3581	return 1;
3582}
3583
3584static int add_location(struct loc_track *t, struct kmem_cache *s,
3585				const struct track *track)
3586{
3587	long start, end, pos;
3588	struct location *l;
3589	unsigned long caddr;
3590	unsigned long age = jiffies - track->when;
3591
3592	start = -1;
3593	end = t->count;
3594
3595	for ( ; ; ) {
3596		pos = start + (end - start + 1) / 2;
3597
3598		/*
3599		 * There is nothing at "end". If we end up there
3600		 * we need to add something to before end.
3601		 */
3602		if (pos == end)
3603			break;
3604
3605		caddr = t->loc[pos].addr;
3606		if (track->addr == caddr) {
3607
3608			l = &t->loc[pos];
3609			l->count++;
3610			if (track->when) {
3611				l->sum_time += age;
3612				if (age < l->min_time)
3613					l->min_time = age;
3614				if (age > l->max_time)
3615					l->max_time = age;
3616
3617				if (track->pid < l->min_pid)
3618					l->min_pid = track->pid;
3619				if (track->pid > l->max_pid)
3620					l->max_pid = track->pid;
3621
3622				cpumask_set_cpu(track->cpu,
3623						to_cpumask(l->cpus));
3624			}
3625			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3626			return 1;
3627		}
3628
3629		if (track->addr < caddr)
3630			end = pos;
3631		else
3632			start = pos;
3633	}
3634
3635	/*
3636	 * Not found. Insert new tracking element.
3637	 */
3638	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3639		return 0;
3640
3641	l = t->loc + pos;
3642	if (pos < t->count)
3643		memmove(l + 1, l,
3644			(t->count - pos) * sizeof(struct location));
3645	t->count++;
3646	l->count = 1;
3647	l->addr = track->addr;
3648	l->sum_time = age;
3649	l->min_time = age;
3650	l->max_time = age;
3651	l->min_pid = track->pid;
3652	l->max_pid = track->pid;
3653	cpumask_clear(to_cpumask(l->cpus));
3654	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3655	nodes_clear(l->nodes);
3656	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3657	return 1;
3658}
3659
3660static void process_slab(struct loc_track *t, struct kmem_cache *s,
3661		struct page *page, enum track_item alloc,
3662		unsigned long *map)
3663{
3664	void *addr = page_address(page);
3665	void *p;
3666
3667	bitmap_zero(map, page->objects);
3668	for_each_free_object(p, s, page->freelist)
3669		set_bit(slab_index(p, s, addr), map);
3670
3671	for_each_object(p, s, addr, page->objects)
3672		if (!test_bit(slab_index(p, s, addr), map))
3673			add_location(t, s, get_track(s, p, alloc));
3674}
3675
3676static int list_locations(struct kmem_cache *s, char *buf,
3677					enum track_item alloc)
3678{
3679	int len = 0;
3680	unsigned long i;
3681	struct loc_track t = { 0, 0, NULL };
3682	int node;
3683	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3684				     sizeof(unsigned long), GFP_KERNEL);
3685
3686	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3687				     GFP_TEMPORARY)) {
3688		kfree(map);
3689		return sprintf(buf, "Out of memory\n");
3690	}
3691	/* Push back cpu slabs */
3692	flush_all(s);
3693
3694	for_each_node_state(node, N_NORMAL_MEMORY) {
3695		struct kmem_cache_node *n = get_node(s, node);
3696		unsigned long flags;
3697		struct page *page;
3698
3699		if (!atomic_long_read(&n->nr_slabs))
3700			continue;
3701
3702		spin_lock_irqsave(&n->list_lock, flags);
3703		list_for_each_entry(page, &n->partial, lru)
3704			process_slab(&t, s, page, alloc, map);
3705		list_for_each_entry(page, &n->full, lru)
3706			process_slab(&t, s, page, alloc, map);
3707		spin_unlock_irqrestore(&n->list_lock, flags);
3708	}
3709
3710	for (i = 0; i < t.count; i++) {
3711		struct location *l = &t.loc[i];
3712
3713		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3714			break;
3715		len += sprintf(buf + len, "%7ld ", l->count);
3716
3717		if (l->addr)
3718			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3719		else
3720			len += sprintf(buf + len, "<not-available>");
3721
3722		if (l->sum_time != l->min_time) {
3723			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3724				l->min_time,
3725				(long)div_u64(l->sum_time, l->count),
3726				l->max_time);
3727		} else
3728			len += sprintf(buf + len, " age=%ld",
3729				l->min_time);
3730
3731		if (l->min_pid != l->max_pid)
3732			len += sprintf(buf + len, " pid=%ld-%ld",
3733				l->min_pid, l->max_pid);
3734		else
3735			len += sprintf(buf + len, " pid=%ld",
3736				l->min_pid);
3737
3738		if (num_online_cpus() > 1 &&
3739				!cpumask_empty(to_cpumask(l->cpus)) &&
3740				len < PAGE_SIZE - 60) {
3741			len += sprintf(buf + len, " cpus=");
3742			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3743						 to_cpumask(l->cpus));
3744		}
3745
3746		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3747				len < PAGE_SIZE - 60) {
3748			len += sprintf(buf + len, " nodes=");
3749			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3750					l->nodes);
3751		}
3752
3753		len += sprintf(buf + len, "\n");
3754	}
3755
3756	free_loc_track(&t);
3757	kfree(map);
3758	if (!t.count)
3759		len += sprintf(buf, "No data\n");
3760	return len;
3761}
3762
3763enum slab_stat_type {
3764	SL_ALL,			/* All slabs */
3765	SL_PARTIAL,		/* Only partially allocated slabs */
3766	SL_CPU,			/* Only slabs used for cpu caches */
3767	SL_OBJECTS,		/* Determine allocated objects not slabs */
3768	SL_TOTAL		/* Determine object capacity not slabs */
3769};
3770
3771#define SO_ALL		(1 << SL_ALL)
3772#define SO_PARTIAL	(1 << SL_PARTIAL)
3773#define SO_CPU		(1 << SL_CPU)
3774#define SO_OBJECTS	(1 << SL_OBJECTS)
3775#define SO_TOTAL	(1 << SL_TOTAL)
3776
3777static ssize_t show_slab_objects(struct kmem_cache *s,
3778			    char *buf, unsigned long flags)
3779{
3780	unsigned long total = 0;
3781	int node;
3782	int x;
3783	unsigned long *nodes;
3784	unsigned long *per_cpu;
3785
3786	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3787	if (!nodes)
3788		return -ENOMEM;
3789	per_cpu = nodes + nr_node_ids;
3790
3791	if (flags & SO_CPU) {
3792		int cpu;
3793
3794		for_each_possible_cpu(cpu) {
3795			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3796
3797			if (!c || c->node < 0)
3798				continue;
3799
3800			if (c->page) {
3801					if (flags & SO_TOTAL)
3802						x = c->page->objects;
3803				else if (flags & SO_OBJECTS)
3804					x = c->page->inuse;
3805				else
3806					x = 1;
3807
3808				total += x;
3809				nodes[c->node] += x;
3810			}
3811			per_cpu[c->node]++;
3812		}
3813	}
3814
3815	if (flags & SO_ALL) {
3816		for_each_node_state(node, N_NORMAL_MEMORY) {
3817			struct kmem_cache_node *n = get_node(s, node);
3818
3819		if (flags & SO_TOTAL)
3820			x = atomic_long_read(&n->total_objects);
3821		else if (flags & SO_OBJECTS)
3822			x = atomic_long_read(&n->total_objects) -
3823				count_partial(n, count_free);
3824
3825			else
3826				x = atomic_long_read(&n->nr_slabs);
3827			total += x;
3828			nodes[node] += x;
3829		}
3830
3831	} else if (flags & SO_PARTIAL) {
3832		for_each_node_state(node, N_NORMAL_MEMORY) {
3833			struct kmem_cache_node *n = get_node(s, node);
3834
3835			if (flags & SO_TOTAL)
3836				x = count_partial(n, count_total);
3837			else if (flags & SO_OBJECTS)
3838				x = count_partial(n, count_inuse);
3839			else
3840				x = n->nr_partial;
3841			total += x;
3842			nodes[node] += x;
3843		}
3844	}
3845	x = sprintf(buf, "%lu", total);
3846#ifdef CONFIG_NUMA
3847	for_each_node_state(node, N_NORMAL_MEMORY)
3848		if (nodes[node])
3849			x += sprintf(buf + x, " N%d=%lu",
3850					node, nodes[node]);
3851#endif
3852	kfree(nodes);
3853	return x + sprintf(buf + x, "\n");
3854}
3855
3856static int any_slab_objects(struct kmem_cache *s)
3857{
3858	int node;
3859
3860	for_each_online_node(node) {
3861		struct kmem_cache_node *n = get_node(s, node);
3862
3863		if (!n)
3864			continue;
3865
3866		if (atomic_long_read(&n->total_objects))
3867			return 1;
3868	}
3869	return 0;
3870}
3871
3872#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3873#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3874
3875struct slab_attribute {
3876	struct attribute attr;
3877	ssize_t (*show)(struct kmem_cache *s, char *buf);
3878	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3879};
3880
3881#define SLAB_ATTR_RO(_name) \
3882	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3883
3884#define SLAB_ATTR(_name) \
3885	static struct slab_attribute _name##_attr =  \
3886	__ATTR(_name, 0644, _name##_show, _name##_store)
3887
3888static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3889{
3890	return sprintf(buf, "%d\n", s->size);
3891}
3892SLAB_ATTR_RO(slab_size);
3893
3894static ssize_t align_show(struct kmem_cache *s, char *buf)
3895{
3896	return sprintf(buf, "%d\n", s->align);
3897}
3898SLAB_ATTR_RO(align);
3899
3900static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3901{
3902	return sprintf(buf, "%d\n", s->objsize);
3903}
3904SLAB_ATTR_RO(object_size);
3905
3906static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3907{
3908	return sprintf(buf, "%d\n", oo_objects(s->oo));
3909}
3910SLAB_ATTR_RO(objs_per_slab);
3911
3912static ssize_t order_store(struct kmem_cache *s,
3913				const char *buf, size_t length)
3914{
3915	unsigned long order;
3916	int err;
3917
3918	err = strict_strtoul(buf, 10, &order);
3919	if (err)
3920		return err;
3921
3922	if (order > slub_max_order || order < slub_min_order)
3923		return -EINVAL;
3924
3925	calculate_sizes(s, order);
3926	return length;
3927}
3928
3929static ssize_t order_show(struct kmem_cache *s, char *buf)
3930{
3931	return sprintf(buf, "%d\n", oo_order(s->oo));
3932}
3933SLAB_ATTR(order);
3934
3935static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3936{
3937	return sprintf(buf, "%lu\n", s->min_partial);
3938}
3939
3940static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3941				 size_t length)
3942{
3943	unsigned long min;
3944	int err;
3945
3946	err = strict_strtoul(buf, 10, &min);
3947	if (err)
3948		return err;
3949
3950	set_min_partial(s, min);
3951	return length;
3952}
3953SLAB_ATTR(min_partial);
3954
3955static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3956{
3957	if (s->ctor) {
3958		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3959
3960		return n + sprintf(buf + n, "\n");
3961	}
3962	return 0;
3963}
3964SLAB_ATTR_RO(ctor);
3965
3966static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3967{
3968	return sprintf(buf, "%d\n", s->refcount - 1);
3969}
3970SLAB_ATTR_RO(aliases);
3971
3972static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3973{
3974	return show_slab_objects(s, buf, SO_ALL);
3975}
3976SLAB_ATTR_RO(slabs);
3977
3978static ssize_t partial_show(struct kmem_cache *s, char *buf)
3979{
3980	return show_slab_objects(s, buf, SO_PARTIAL);
3981}
3982SLAB_ATTR_RO(partial);
3983
3984static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3985{
3986	return show_slab_objects(s, buf, SO_CPU);
3987}
3988SLAB_ATTR_RO(cpu_slabs);
3989
3990static ssize_t objects_show(struct kmem_cache *s, char *buf)
3991{
3992	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3993}
3994SLAB_ATTR_RO(objects);
3995
3996static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3997{
3998	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3999}
4000SLAB_ATTR_RO(objects_partial);
4001
4002static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4003{
4004	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4005}
4006SLAB_ATTR_RO(total_objects);
4007
4008static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4009{
4010	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4011}
4012
4013static ssize_t sanity_checks_store(struct kmem_cache *s,
4014				const char *buf, size_t length)
4015{
4016	s->flags &= ~SLAB_DEBUG_FREE;
4017	if (buf[0] == '1')
4018		s->flags |= SLAB_DEBUG_FREE;
4019	return length;
4020}
4021SLAB_ATTR(sanity_checks);
4022
4023static ssize_t trace_show(struct kmem_cache *s, char *buf)
4024{
4025	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4026}
4027
4028static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4029							size_t length)
4030{
4031	s->flags &= ~SLAB_TRACE;
4032	if (buf[0] == '1')
4033		s->flags |= SLAB_TRACE;
4034	return length;
4035}
4036SLAB_ATTR(trace);
4037
4038#ifdef CONFIG_FAILSLAB
4039static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4040{
4041	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4042}
4043
4044static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4045							size_t length)
4046{
4047	s->flags &= ~SLAB_FAILSLAB;
4048	if (buf[0] == '1')
4049		s->flags |= SLAB_FAILSLAB;
4050	return length;
4051}
4052SLAB_ATTR(failslab);
4053#endif
4054
4055static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4056{
4057	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4058}
4059
4060static ssize_t reclaim_account_store(struct kmem_cache *s,
4061				const char *buf, size_t length)
4062{
4063	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4064	if (buf[0] == '1')
4065		s->flags |= SLAB_RECLAIM_ACCOUNT;
4066	return length;
4067}
4068SLAB_ATTR(reclaim_account);
4069
4070static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4071{
4072	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4073}
4074SLAB_ATTR_RO(hwcache_align);
4075
4076#ifdef CONFIG_ZONE_DMA
4077static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4078{
4079	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4080}
4081SLAB_ATTR_RO(cache_dma);
4082#endif
4083
4084static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4085{
4086	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4087}
4088SLAB_ATTR_RO(destroy_by_rcu);
4089
4090static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4091{
4092	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4093}
4094
4095static ssize_t red_zone_store(struct kmem_cache *s,
4096				const char *buf, size_t length)
4097{
4098	if (any_slab_objects(s))
4099		return -EBUSY;
4100
4101	s->flags &= ~SLAB_RED_ZONE;
4102	if (buf[0] == '1')
4103		s->flags |= SLAB_RED_ZONE;
4104	calculate_sizes(s, -1);
4105	return length;
4106}
4107SLAB_ATTR(red_zone);
4108
4109static ssize_t poison_show(struct kmem_cache *s, char *buf)
4110{
4111	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4112}
4113
4114static ssize_t poison_store(struct kmem_cache *s,
4115				const char *buf, size_t length)
4116{
4117	if (any_slab_objects(s))
4118		return -EBUSY;
4119
4120	s->flags &= ~SLAB_POISON;
4121	if (buf[0] == '1')
4122		s->flags |= SLAB_POISON;
4123	calculate_sizes(s, -1);
4124	return length;
4125}
4126SLAB_ATTR(poison);
4127
4128static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4129{
4130	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4131}
4132
4133static ssize_t store_user_store(struct kmem_cache *s,
4134				const char *buf, size_t length)
4135{
4136	if (any_slab_objects(s))
4137		return -EBUSY;
4138
4139	s->flags &= ~SLAB_STORE_USER;
4140	if (buf[0] == '1')
4141		s->flags |= SLAB_STORE_USER;
4142	calculate_sizes(s, -1);
4143	return length;
4144}
4145SLAB_ATTR(store_user);
4146
4147static ssize_t validate_show(struct kmem_cache *s, char *buf)
4148{
4149	return 0;
4150}
4151
4152static ssize_t validate_store(struct kmem_cache *s,
4153			const char *buf, size_t length)
4154{
4155	int ret = -EINVAL;
4156
4157	if (buf[0] == '1') {
4158		ret = validate_slab_cache(s);
4159		if (ret >= 0)
4160			ret = length;
4161	}
4162	return ret;
4163}
4164SLAB_ATTR(validate);
4165
4166static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4167{
4168	return 0;
4169}
4170
4171static ssize_t shrink_store(struct kmem_cache *s,
4172			const char *buf, size_t length)
4173{
4174	if (buf[0] == '1') {
4175		int rc = kmem_cache_shrink(s);
4176
4177		if (rc)
4178			return rc;
4179	} else
4180		return -EINVAL;
4181	return length;
4182}
4183SLAB_ATTR(shrink);
4184
4185static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4186{
4187	if (!(s->flags & SLAB_STORE_USER))
4188		return -ENOSYS;
4189	return list_locations(s, buf, TRACK_ALLOC);
4190}
4191SLAB_ATTR_RO(alloc_calls);
4192
4193static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4194{
4195	if (!(s->flags & SLAB_STORE_USER))
4196		return -ENOSYS;
4197	return list_locations(s, buf, TRACK_FREE);
4198}
4199SLAB_ATTR_RO(free_calls);
4200
4201#ifdef CONFIG_NUMA
4202static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4203{
4204	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4205}
4206
4207static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4208				const char *buf, size_t length)
4209{
4210	unsigned long ratio;
4211	int err;
4212
4213	err = strict_strtoul(buf, 10, &ratio);
4214	if (err)
4215		return err;
4216
4217	if (ratio <= 100)
4218		s->remote_node_defrag_ratio = ratio * 10;
4219
4220	return length;
4221}
4222SLAB_ATTR(remote_node_defrag_ratio);
4223#endif
4224
4225#ifdef CONFIG_SLUB_STATS
4226static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4227{
4228	unsigned long sum  = 0;
4229	int cpu;
4230	int len;
4231	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4232
4233	if (!data)
4234		return -ENOMEM;
4235
4236	for_each_online_cpu(cpu) {
4237		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4238
4239		data[cpu] = x;
4240		sum += x;
4241	}
4242
4243	len = sprintf(buf, "%lu", sum);
4244
4245#ifdef CONFIG_SMP
4246	for_each_online_cpu(cpu) {
4247		if (data[cpu] && len < PAGE_SIZE - 20)
4248			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4249	}
4250#endif
4251	kfree(data);
4252	return len + sprintf(buf + len, "\n");
4253}
4254
4255static void clear_stat(struct kmem_cache *s, enum stat_item si)
4256{
4257	int cpu;
4258
4259	for_each_online_cpu(cpu)
4260		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4261}
4262
4263#define STAT_ATTR(si, text) 					\
4264static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4265{								\
4266	return show_stat(s, buf, si);				\
4267}								\
4268static ssize_t text##_store(struct kmem_cache *s,		\
4269				const char *buf, size_t length)	\
4270{								\
4271	if (buf[0] != '0')					\
4272		return -EINVAL;					\
4273	clear_stat(s, si);					\
4274	return length;						\
4275}								\
4276SLAB_ATTR(text);						\
4277
4278STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4279STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4280STAT_ATTR(FREE_FASTPATH, free_fastpath);
4281STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4282STAT_ATTR(FREE_FROZEN, free_frozen);
4283STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4284STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4285STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4286STAT_ATTR(ALLOC_SLAB, alloc_slab);
4287STAT_ATTR(ALLOC_REFILL, alloc_refill);
4288STAT_ATTR(FREE_SLAB, free_slab);
4289STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4290STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4291STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4292STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4293STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4294STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4295STAT_ATTR(ORDER_FALLBACK, order_fallback);
4296#endif
4297
4298static struct attribute *slab_attrs[] = {
4299	&slab_size_attr.attr,
4300	&object_size_attr.attr,
4301	&objs_per_slab_attr.attr,
4302	&order_attr.attr,
4303	&min_partial_attr.attr,
4304	&objects_attr.attr,
4305	&objects_partial_attr.attr,
4306	&total_objects_attr.attr,
4307	&slabs_attr.attr,
4308	&partial_attr.attr,
4309	&cpu_slabs_attr.attr,
4310	&ctor_attr.attr,
4311	&aliases_attr.attr,
4312	&align_attr.attr,
4313	&sanity_checks_attr.attr,
4314	&trace_attr.attr,
4315	&hwcache_align_attr.attr,
4316	&reclaim_account_attr.attr,
4317	&destroy_by_rcu_attr.attr,
4318	&red_zone_attr.attr,
4319	&poison_attr.attr,
4320	&store_user_attr.attr,
4321	&validate_attr.attr,
4322	&shrink_attr.attr,
4323	&alloc_calls_attr.attr,
4324	&free_calls_attr.attr,
4325#ifdef CONFIG_ZONE_DMA
4326	&cache_dma_attr.attr,
4327#endif
4328#ifdef CONFIG_NUMA
4329	&remote_node_defrag_ratio_attr.attr,
4330#endif
4331#ifdef CONFIG_SLUB_STATS
4332	&alloc_fastpath_attr.attr,
4333	&alloc_slowpath_attr.attr,
4334	&free_fastpath_attr.attr,
4335	&free_slowpath_attr.attr,
4336	&free_frozen_attr.attr,
4337	&free_add_partial_attr.attr,
4338	&free_remove_partial_attr.attr,
4339	&alloc_from_partial_attr.attr,
4340	&alloc_slab_attr.attr,
4341	&alloc_refill_attr.attr,
4342	&free_slab_attr.attr,
4343	&cpuslab_flush_attr.attr,
4344	&deactivate_full_attr.attr,
4345	&deactivate_empty_attr.attr,
4346	&deactivate_to_head_attr.attr,
4347	&deactivate_to_tail_attr.attr,
4348	&deactivate_remote_frees_attr.attr,
4349	&order_fallback_attr.attr,
4350#endif
4351#ifdef CONFIG_FAILSLAB
4352	&failslab_attr.attr,
4353#endif
4354
4355	NULL
4356};
4357
4358static struct attribute_group slab_attr_group = {
4359	.attrs = slab_attrs,
4360};
4361
4362static ssize_t slab_attr_show(struct kobject *kobj,
4363				struct attribute *attr,
4364				char *buf)
4365{
4366	struct slab_attribute *attribute;
4367	struct kmem_cache *s;
4368	int err;
4369
4370	attribute = to_slab_attr(attr);
4371	s = to_slab(kobj);
4372
4373	if (!attribute->show)
4374		return -EIO;
4375
4376	err = attribute->show(s, buf);
4377
4378	return err;
4379}
4380
4381static ssize_t slab_attr_store(struct kobject *kobj,
4382				struct attribute *attr,
4383				const char *buf, size_t len)
4384{
4385	struct slab_attribute *attribute;
4386	struct kmem_cache *s;
4387	int err;
4388
4389	attribute = to_slab_attr(attr);
4390	s = to_slab(kobj);
4391
4392	if (!attribute->store)
4393		return -EIO;
4394
4395	err = attribute->store(s, buf, len);
4396
4397	return err;
4398}
4399
4400static void kmem_cache_release(struct kobject *kobj)
4401{
4402	struct kmem_cache *s = to_slab(kobj);
4403
4404	kfree(s->name);
4405	kfree(s);
4406}
4407
4408static const struct sysfs_ops slab_sysfs_ops = {
4409	.show = slab_attr_show,
4410	.store = slab_attr_store,
4411};
4412
4413static struct kobj_type slab_ktype = {
4414	.sysfs_ops = &slab_sysfs_ops,
4415	.release = kmem_cache_release
4416};
4417
4418static int uevent_filter(struct kset *kset, struct kobject *kobj)
4419{
4420	struct kobj_type *ktype = get_ktype(kobj);
4421
4422	if (ktype == &slab_ktype)
4423		return 1;
4424	return 0;
4425}
4426
4427static const struct kset_uevent_ops slab_uevent_ops = {
4428	.filter = uevent_filter,
4429};
4430
4431static struct kset *slab_kset;
4432
4433#define ID_STR_LENGTH 64
4434
4435/* Create a unique string id for a slab cache:
4436 *
4437 * Format	:[flags-]size
4438 */
4439static char *create_unique_id(struct kmem_cache *s)
4440{
4441	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4442	char *p = name;
4443
4444	BUG_ON(!name);
4445
4446	*p++ = ':';
4447	/*
4448	 * First flags affecting slabcache operations. We will only
4449	 * get here for aliasable slabs so we do not need to support
4450	 * too many flags. The flags here must cover all flags that
4451	 * are matched during merging to guarantee that the id is
4452	 * unique.
4453	 */
4454	if (s->flags & SLAB_CACHE_DMA)
4455		*p++ = 'd';
4456	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4457		*p++ = 'a';
4458	if (s->flags & SLAB_DEBUG_FREE)
4459		*p++ = 'F';
4460	if (!(s->flags & SLAB_NOTRACK))
4461		*p++ = 't';
4462	if (p != name + 1)
4463		*p++ = '-';
4464	p += sprintf(p, "%07d", s->size);
4465	BUG_ON(p > name + ID_STR_LENGTH - 1);
4466	return name;
4467}
4468
4469static int sysfs_slab_add(struct kmem_cache *s)
4470{
4471	int err;
4472	const char *name;
4473	int unmergeable;
4474
4475	if (slab_state < SYSFS)
4476		/* Defer until later */
4477		return 0;
4478
4479	unmergeable = slab_unmergeable(s);
4480	if (unmergeable) {
4481		/*
4482		 * Slabcache can never be merged so we can use the name proper.
4483		 * This is typically the case for debug situations. In that
4484		 * case we can catch duplicate names easily.
4485		 */
4486		sysfs_remove_link(&slab_kset->kobj, s->name);
4487		name = s->name;
4488	} else {
4489		/*
4490		 * Create a unique name for the slab as a target
4491		 * for the symlinks.
4492		 */
4493		name = create_unique_id(s);
4494	}
4495
4496	s->kobj.kset = slab_kset;
4497	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4498	if (err) {
4499		kobject_put(&s->kobj);
4500		return err;
4501	}
4502
4503	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4504	if (err) {
4505		kobject_del(&s->kobj);
4506		kobject_put(&s->kobj);
4507		return err;
4508	}
4509	kobject_uevent(&s->kobj, KOBJ_ADD);
4510	if (!unmergeable) {
4511		/* Setup first alias */
4512		sysfs_slab_alias(s, s->name);
4513		kfree(name);
4514	}
4515	return 0;
4516}
4517
4518static void sysfs_slab_remove(struct kmem_cache *s)
4519{
4520	if (slab_state < SYSFS)
4521		/*
4522		 * Sysfs has not been setup yet so no need to remove the
4523		 * cache from sysfs.
4524		 */
4525		return;
4526
4527	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4528	kobject_del(&s->kobj);
4529	kobject_put(&s->kobj);
4530}
4531
4532/*
4533 * Need to buffer aliases during bootup until sysfs becomes
4534 * available lest we lose that information.
4535 */
4536struct saved_alias {
4537	struct kmem_cache *s;
4538	const char *name;
4539	struct saved_alias *next;
4540};
4541
4542static struct saved_alias *alias_list;
4543
4544static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4545{
4546	struct saved_alias *al;
4547
4548	if (slab_state == SYSFS) {
4549		/*
4550		 * If we have a leftover link then remove it.
4551		 */
4552		sysfs_remove_link(&slab_kset->kobj, name);
4553		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4554	}
4555
4556	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4557	if (!al)
4558		return -ENOMEM;
4559
4560	al->s = s;
4561	al->name = name;
4562	al->next = alias_list;
4563	alias_list = al;
4564	return 0;
4565}
4566
4567static int __init slab_sysfs_init(void)
4568{
4569	struct kmem_cache *s;
4570	int err;
4571
4572	down_write(&slub_lock);
4573
4574	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4575	if (!slab_kset) {
4576		up_write(&slub_lock);
4577		printk(KERN_ERR "Cannot register slab subsystem.\n");
4578		return -ENOSYS;
4579	}
4580
4581	slab_state = SYSFS;
4582
4583	list_for_each_entry(s, &slab_caches, list) {
4584		err = sysfs_slab_add(s);
4585		if (err)
4586			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4587						" to sysfs\n", s->name);
4588	}
4589
4590	while (alias_list) {
4591		struct saved_alias *al = alias_list;
4592
4593		alias_list = alias_list->next;
4594		err = sysfs_slab_alias(al->s, al->name);
4595		if (err)
4596			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4597					" %s to sysfs\n", s->name);
4598		kfree(al);
4599	}
4600
4601	up_write(&slub_lock);
4602	resiliency_test();
4603	return 0;
4604}
4605
4606__initcall(slab_sysfs_init);
4607#endif
4608
4609/*
4610 * The /proc/slabinfo ABI
4611 */
4612#ifdef CONFIG_SLABINFO
4613static void print_slabinfo_header(struct seq_file *m)
4614{
4615	seq_puts(m, "slabinfo - version: 2.1\n");
4616	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4617		 "<objperslab> <pagesperslab>");
4618	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4619	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4620	seq_putc(m, '\n');
4621}
4622
4623static void *s_start(struct seq_file *m, loff_t *pos)
4624{
4625	loff_t n = *pos;
4626
4627	down_read(&slub_lock);
4628	if (!n)
4629		print_slabinfo_header(m);
4630
4631	return seq_list_start(&slab_caches, *pos);
4632}
4633
4634static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4635{
4636	return seq_list_next(p, &slab_caches, pos);
4637}
4638
4639static void s_stop(struct seq_file *m, void *p)
4640{
4641	up_read(&slub_lock);
4642}
4643
4644static int s_show(struct seq_file *m, void *p)
4645{
4646	unsigned long nr_partials = 0;
4647	unsigned long nr_slabs = 0;
4648	unsigned long nr_inuse = 0;
4649	unsigned long nr_objs = 0;
4650	unsigned long nr_free = 0;
4651	struct kmem_cache *s;
4652	int node;
4653
4654	s = list_entry(p, struct kmem_cache, list);
4655
4656	for_each_online_node(node) {
4657		struct kmem_cache_node *n = get_node(s, node);
4658
4659		if (!n)
4660			continue;
4661
4662		nr_partials += n->nr_partial;
4663		nr_slabs += atomic_long_read(&n->nr_slabs);
4664		nr_objs += atomic_long_read(&n->total_objects);
4665		nr_free += count_partial(n, count_free);
4666	}
4667
4668	nr_inuse = nr_objs - nr_free;
4669
4670	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4671		   nr_objs, s->size, oo_objects(s->oo),
4672		   (1 << oo_order(s->oo)));
4673	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4674	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4675		   0UL);
4676	seq_putc(m, '\n');
4677	return 0;
4678}
4679
4680static const struct seq_operations slabinfo_op = {
4681	.start = s_start,
4682	.next = s_next,
4683	.stop = s_stop,
4684	.show = s_show,
4685};
4686
4687static int slabinfo_open(struct inode *inode, struct file *file)
4688{
4689	return seq_open(file, &slabinfo_op);
4690}
4691
4692static const struct file_operations proc_slabinfo_operations = {
4693	.open		= slabinfo_open,
4694	.read		= seq_read,
4695	.llseek		= seq_lseek,
4696	.release	= seq_release,
4697};
4698
4699static int __init slab_proc_init(void)
4700{
4701	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4702	return 0;
4703}
4704module_init(slab_proc_init);
4705#endif /* CONFIG_SLABINFO */
4706