slub.c revision d18a90dd85f8243ed20cdadb6d8a37d595df456d
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/swap.h> /* struct reclaim_state */
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
18#include <linux/proc_fs.h>
19#include <linux/seq_file.h>
20#include <linux/kmemcheck.h>
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
25#include <linux/debugobjects.h>
26#include <linux/kallsyms.h>
27#include <linux/memory.h>
28#include <linux/math64.h>
29#include <linux/fault-inject.h>
30
31#include <trace/events/kmem.h>
32
33/*
34 * Lock order:
35 *   1. slab_lock(page)
36 *   2. slab->list_lock
37 *
38 *   The slab_lock protects operations on the object of a particular
39 *   slab and its metadata in the page struct. If the slab lock
40 *   has been taken then no allocations nor frees can be performed
41 *   on the objects in the slab nor can the slab be added or removed
42 *   from the partial or full lists since this would mean modifying
43 *   the page_struct of the slab.
44 *
45 *   The list_lock protects the partial and full list on each node and
46 *   the partial slab counter. If taken then no new slabs may be added or
47 *   removed from the lists nor make the number of partial slabs be modified.
48 *   (Note that the total number of slabs is an atomic value that may be
49 *   modified without taking the list lock).
50 *
51 *   The list_lock is a centralized lock and thus we avoid taking it as
52 *   much as possible. As long as SLUB does not have to handle partial
53 *   slabs, operations can continue without any centralized lock. F.e.
54 *   allocating a long series of objects that fill up slabs does not require
55 *   the list lock.
56 *
57 *   The lock order is sometimes inverted when we are trying to get a slab
58 *   off a list. We take the list_lock and then look for a page on the list
59 *   to use. While we do that objects in the slabs may be freed. We can
60 *   only operate on the slab if we have also taken the slab_lock. So we use
61 *   a slab_trylock() on the slab. If trylock was successful then no frees
62 *   can occur anymore and we can use the slab for allocations etc. If the
63 *   slab_trylock() does not succeed then frees are in progress in the slab and
64 *   we must stay away from it for a while since we may cause a bouncing
65 *   cacheline if we try to acquire the lock. So go onto the next slab.
66 *   If all pages are busy then we may allocate a new slab instead of reusing
67 *   a partial slab. A new slab has no one operating on it and thus there is
68 *   no danger of cacheline contention.
69 *
70 *   Interrupts are disabled during allocation and deallocation in order to
71 *   make the slab allocator safe to use in the context of an irq. In addition
72 *   interrupts are disabled to ensure that the processor does not change
73 *   while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive 		The slab is frozen and exempt from list processing.
91 * 			This means that the slab is dedicated to a purpose
92 * 			such as satisfying allocations for a specific
93 * 			processor. Objects may be freed in the slab while
94 * 			it is frozen but slab_free will then skip the usual
95 * 			list operations. It is up to the processor holding
96 * 			the slab to integrate the slab into the slab lists
97 * 			when the slab is no longer needed.
98 *
99 * 			One use of this flag is to mark slabs that are
100 * 			used for allocations. Then such a slab becomes a cpu
101 * 			slab. The cpu slab may be equipped with an additional
102 * 			freelist that allows lockless access to
103 * 			free objects in addition to the regular freelist
104 * 			that requires the slab lock.
105 *
106 * PageError		Slab requires special handling due to debug
107 * 			options set. This moves	slab handling out of
108 * 			the fast path and disables lockless freelists.
109 */
110
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112		SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
116#ifdef CONFIG_SLUB_DEBUG
117	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118#else
119	return 0;
120#endif
121}
122
123/*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
138#define MIN_PARTIAL 5
139
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148				SLAB_POISON | SLAB_STORE_USER)
149
150/*
151 * Debugging flags that require metadata to be stored in the slab.  These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
154 */
155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
156
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162		SLAB_FAILSLAB)
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165		SLAB_CACHE_DMA | SLAB_NOTRACK)
166
167#define OO_SHIFT	16
168#define OO_MASK		((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
170
171/* Internal SLUB flags */
172#define __OBJECT_POISON		0x80000000UL /* Poison object */
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181	DOWN,		/* No slab functionality available */
182	PARTIAL,	/* Kmem_cache_node works */
183	UP,		/* Everything works but does not show up in sysfs */
184	SYSFS		/* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
189static LIST_HEAD(slab_caches);
190
191/*
192 * Tracking user of a slab.
193 */
194#define TRACK_ADDRS_COUNT 16
195struct track {
196	unsigned long addr;	/* Called from address */
197#ifdef CONFIG_STACKTRACE
198	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
199#endif
200	int cpu;		/* Was running on cpu */
201	int pid;		/* Pid context */
202	unsigned long when;	/* When did the operation occur */
203};
204
205enum track_item { TRACK_ALLOC, TRACK_FREE };
206
207#ifdef CONFIG_SYSFS
208static int sysfs_slab_add(struct kmem_cache *);
209static int sysfs_slab_alias(struct kmem_cache *, const char *);
210static void sysfs_slab_remove(struct kmem_cache *);
211
212#else
213static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
214static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
215							{ return 0; }
216static inline void sysfs_slab_remove(struct kmem_cache *s)
217{
218	kfree(s->name);
219	kfree(s);
220}
221
222#endif
223
224static inline void stat(const struct kmem_cache *s, enum stat_item si)
225{
226#ifdef CONFIG_SLUB_STATS
227	__this_cpu_inc(s->cpu_slab->stat[si]);
228#endif
229}
230
231/********************************************************************
232 * 			Core slab cache functions
233 *******************************************************************/
234
235int slab_is_available(void)
236{
237	return slab_state >= UP;
238}
239
240static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
241{
242	return s->node[node];
243}
244
245/* Verify that a pointer has an address that is valid within a slab page */
246static inline int check_valid_pointer(struct kmem_cache *s,
247				struct page *page, const void *object)
248{
249	void *base;
250
251	if (!object)
252		return 1;
253
254	base = page_address(page);
255	if (object < base || object >= base + page->objects * s->size ||
256		(object - base) % s->size) {
257		return 0;
258	}
259
260	return 1;
261}
262
263static inline void *get_freepointer(struct kmem_cache *s, void *object)
264{
265	return *(void **)(object + s->offset);
266}
267
268static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269{
270	void *p;
271
272#ifdef CONFIG_DEBUG_PAGEALLOC
273	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274#else
275	p = get_freepointer(s, object);
276#endif
277	return p;
278}
279
280static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281{
282	*(void **)(object + s->offset) = fp;
283}
284
285/* Loop over all objects in a slab */
286#define for_each_object(__p, __s, __addr, __objects) \
287	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288			__p += (__s)->size)
289
290/* Determine object index from a given position */
291static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292{
293	return (p - addr) / s->size;
294}
295
296static inline size_t slab_ksize(const struct kmem_cache *s)
297{
298#ifdef CONFIG_SLUB_DEBUG
299	/*
300	 * Debugging requires use of the padding between object
301	 * and whatever may come after it.
302	 */
303	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304		return s->objsize;
305
306#endif
307	/*
308	 * If we have the need to store the freelist pointer
309	 * back there or track user information then we can
310	 * only use the space before that information.
311	 */
312	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313		return s->inuse;
314	/*
315	 * Else we can use all the padding etc for the allocation
316	 */
317	return s->size;
318}
319
320static inline int order_objects(int order, unsigned long size, int reserved)
321{
322	return ((PAGE_SIZE << order) - reserved) / size;
323}
324
325static inline struct kmem_cache_order_objects oo_make(int order,
326		unsigned long size, int reserved)
327{
328	struct kmem_cache_order_objects x = {
329		(order << OO_SHIFT) + order_objects(order, size, reserved)
330	};
331
332	return x;
333}
334
335static inline int oo_order(struct kmem_cache_order_objects x)
336{
337	return x.x >> OO_SHIFT;
338}
339
340static inline int oo_objects(struct kmem_cache_order_objects x)
341{
342	return x.x & OO_MASK;
343}
344
345#ifdef CONFIG_SLUB_DEBUG
346/*
347 * Determine a map of object in use on a page.
348 *
349 * Slab lock or node listlock must be held to guarantee that the page does
350 * not vanish from under us.
351 */
352static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
353{
354	void *p;
355	void *addr = page_address(page);
356
357	for (p = page->freelist; p; p = get_freepointer(s, p))
358		set_bit(slab_index(p, s, addr), map);
359}
360
361/*
362 * Debug settings:
363 */
364#ifdef CONFIG_SLUB_DEBUG_ON
365static int slub_debug = DEBUG_DEFAULT_FLAGS;
366#else
367static int slub_debug;
368#endif
369
370static char *slub_debug_slabs;
371static int disable_higher_order_debug;
372
373/*
374 * Object debugging
375 */
376static void print_section(char *text, u8 *addr, unsigned int length)
377{
378	int i, offset;
379	int newline = 1;
380	char ascii[17];
381
382	ascii[16] = 0;
383
384	for (i = 0; i < length; i++) {
385		if (newline) {
386			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
387			newline = 0;
388		}
389		printk(KERN_CONT " %02x", addr[i]);
390		offset = i % 16;
391		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
392		if (offset == 15) {
393			printk(KERN_CONT " %s\n", ascii);
394			newline = 1;
395		}
396	}
397	if (!newline) {
398		i %= 16;
399		while (i < 16) {
400			printk(KERN_CONT "   ");
401			ascii[i] = ' ';
402			i++;
403		}
404		printk(KERN_CONT " %s\n", ascii);
405	}
406}
407
408static struct track *get_track(struct kmem_cache *s, void *object,
409	enum track_item alloc)
410{
411	struct track *p;
412
413	if (s->offset)
414		p = object + s->offset + sizeof(void *);
415	else
416		p = object + s->inuse;
417
418	return p + alloc;
419}
420
421static void set_track(struct kmem_cache *s, void *object,
422			enum track_item alloc, unsigned long addr)
423{
424	struct track *p = get_track(s, object, alloc);
425
426	if (addr) {
427#ifdef CONFIG_STACKTRACE
428		struct stack_trace trace;
429		int i;
430
431		trace.nr_entries = 0;
432		trace.max_entries = TRACK_ADDRS_COUNT;
433		trace.entries = p->addrs;
434		trace.skip = 3;
435		save_stack_trace(&trace);
436
437		/* See rant in lockdep.c */
438		if (trace.nr_entries != 0 &&
439		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
440			trace.nr_entries--;
441
442		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
443			p->addrs[i] = 0;
444#endif
445		p->addr = addr;
446		p->cpu = smp_processor_id();
447		p->pid = current->pid;
448		p->when = jiffies;
449	} else
450		memset(p, 0, sizeof(struct track));
451}
452
453static void init_tracking(struct kmem_cache *s, void *object)
454{
455	if (!(s->flags & SLAB_STORE_USER))
456		return;
457
458	set_track(s, object, TRACK_FREE, 0UL);
459	set_track(s, object, TRACK_ALLOC, 0UL);
460}
461
462static void print_track(const char *s, struct track *t)
463{
464	if (!t->addr)
465		return;
466
467	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
468		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
469#ifdef CONFIG_STACKTRACE
470	{
471		int i;
472		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
473			if (t->addrs[i])
474				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
475			else
476				break;
477	}
478#endif
479}
480
481static void print_tracking(struct kmem_cache *s, void *object)
482{
483	if (!(s->flags & SLAB_STORE_USER))
484		return;
485
486	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
487	print_track("Freed", get_track(s, object, TRACK_FREE));
488}
489
490static void print_page_info(struct page *page)
491{
492	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
493		page, page->objects, page->inuse, page->freelist, page->flags);
494
495}
496
497static void slab_bug(struct kmem_cache *s, char *fmt, ...)
498{
499	va_list args;
500	char buf[100];
501
502	va_start(args, fmt);
503	vsnprintf(buf, sizeof(buf), fmt, args);
504	va_end(args);
505	printk(KERN_ERR "========================================"
506			"=====================================\n");
507	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
508	printk(KERN_ERR "----------------------------------------"
509			"-------------------------------------\n\n");
510}
511
512static void slab_fix(struct kmem_cache *s, char *fmt, ...)
513{
514	va_list args;
515	char buf[100];
516
517	va_start(args, fmt);
518	vsnprintf(buf, sizeof(buf), fmt, args);
519	va_end(args);
520	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
521}
522
523static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
524{
525	unsigned int off;	/* Offset of last byte */
526	u8 *addr = page_address(page);
527
528	print_tracking(s, p);
529
530	print_page_info(page);
531
532	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
533			p, p - addr, get_freepointer(s, p));
534
535	if (p > addr + 16)
536		print_section("Bytes b4", p - 16, 16);
537
538	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
539
540	if (s->flags & SLAB_RED_ZONE)
541		print_section("Redzone", p + s->objsize,
542			s->inuse - s->objsize);
543
544	if (s->offset)
545		off = s->offset + sizeof(void *);
546	else
547		off = s->inuse;
548
549	if (s->flags & SLAB_STORE_USER)
550		off += 2 * sizeof(struct track);
551
552	if (off != s->size)
553		/* Beginning of the filler is the free pointer */
554		print_section("Padding", p + off, s->size - off);
555
556	dump_stack();
557}
558
559static void object_err(struct kmem_cache *s, struct page *page,
560			u8 *object, char *reason)
561{
562	slab_bug(s, "%s", reason);
563	print_trailer(s, page, object);
564}
565
566static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
567{
568	va_list args;
569	char buf[100];
570
571	va_start(args, fmt);
572	vsnprintf(buf, sizeof(buf), fmt, args);
573	va_end(args);
574	slab_bug(s, "%s", buf);
575	print_page_info(page);
576	dump_stack();
577}
578
579static void init_object(struct kmem_cache *s, void *object, u8 val)
580{
581	u8 *p = object;
582
583	if (s->flags & __OBJECT_POISON) {
584		memset(p, POISON_FREE, s->objsize - 1);
585		p[s->objsize - 1] = POISON_END;
586	}
587
588	if (s->flags & SLAB_RED_ZONE)
589		memset(p + s->objsize, val, s->inuse - s->objsize);
590}
591
592static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
593{
594	while (bytes) {
595		if (*start != (u8)value)
596			return start;
597		start++;
598		bytes--;
599	}
600	return NULL;
601}
602
603static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
604						void *from, void *to)
605{
606	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
607	memset(from, data, to - from);
608}
609
610static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
611			u8 *object, char *what,
612			u8 *start, unsigned int value, unsigned int bytes)
613{
614	u8 *fault;
615	u8 *end;
616
617	fault = check_bytes(start, value, bytes);
618	if (!fault)
619		return 1;
620
621	end = start + bytes;
622	while (end > fault && end[-1] == value)
623		end--;
624
625	slab_bug(s, "%s overwritten", what);
626	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
627					fault, end - 1, fault[0], value);
628	print_trailer(s, page, object);
629
630	restore_bytes(s, what, value, fault, end);
631	return 0;
632}
633
634/*
635 * Object layout:
636 *
637 * object address
638 * 	Bytes of the object to be managed.
639 * 	If the freepointer may overlay the object then the free
640 * 	pointer is the first word of the object.
641 *
642 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
643 * 	0xa5 (POISON_END)
644 *
645 * object + s->objsize
646 * 	Padding to reach word boundary. This is also used for Redzoning.
647 * 	Padding is extended by another word if Redzoning is enabled and
648 * 	objsize == inuse.
649 *
650 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
651 * 	0xcc (RED_ACTIVE) for objects in use.
652 *
653 * object + s->inuse
654 * 	Meta data starts here.
655 *
656 * 	A. Free pointer (if we cannot overwrite object on free)
657 * 	B. Tracking data for SLAB_STORE_USER
658 * 	C. Padding to reach required alignment boundary or at mininum
659 * 		one word if debugging is on to be able to detect writes
660 * 		before the word boundary.
661 *
662 *	Padding is done using 0x5a (POISON_INUSE)
663 *
664 * object + s->size
665 * 	Nothing is used beyond s->size.
666 *
667 * If slabcaches are merged then the objsize and inuse boundaries are mostly
668 * ignored. And therefore no slab options that rely on these boundaries
669 * may be used with merged slabcaches.
670 */
671
672static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
673{
674	unsigned long off = s->inuse;	/* The end of info */
675
676	if (s->offset)
677		/* Freepointer is placed after the object. */
678		off += sizeof(void *);
679
680	if (s->flags & SLAB_STORE_USER)
681		/* We also have user information there */
682		off += 2 * sizeof(struct track);
683
684	if (s->size == off)
685		return 1;
686
687	return check_bytes_and_report(s, page, p, "Object padding",
688				p + off, POISON_INUSE, s->size - off);
689}
690
691/* Check the pad bytes at the end of a slab page */
692static int slab_pad_check(struct kmem_cache *s, struct page *page)
693{
694	u8 *start;
695	u8 *fault;
696	u8 *end;
697	int length;
698	int remainder;
699
700	if (!(s->flags & SLAB_POISON))
701		return 1;
702
703	start = page_address(page);
704	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
705	end = start + length;
706	remainder = length % s->size;
707	if (!remainder)
708		return 1;
709
710	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
711	if (!fault)
712		return 1;
713	while (end > fault && end[-1] == POISON_INUSE)
714		end--;
715
716	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
717	print_section("Padding", end - remainder, remainder);
718
719	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
720	return 0;
721}
722
723static int check_object(struct kmem_cache *s, struct page *page,
724					void *object, u8 val)
725{
726	u8 *p = object;
727	u8 *endobject = object + s->objsize;
728
729	if (s->flags & SLAB_RED_ZONE) {
730		if (!check_bytes_and_report(s, page, object, "Redzone",
731			endobject, val, s->inuse - s->objsize))
732			return 0;
733	} else {
734		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
735			check_bytes_and_report(s, page, p, "Alignment padding",
736				endobject, POISON_INUSE, s->inuse - s->objsize);
737		}
738	}
739
740	if (s->flags & SLAB_POISON) {
741		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
742			(!check_bytes_and_report(s, page, p, "Poison", p,
743					POISON_FREE, s->objsize - 1) ||
744			 !check_bytes_and_report(s, page, p, "Poison",
745				p + s->objsize - 1, POISON_END, 1)))
746			return 0;
747		/*
748		 * check_pad_bytes cleans up on its own.
749		 */
750		check_pad_bytes(s, page, p);
751	}
752
753	if (!s->offset && val == SLUB_RED_ACTIVE)
754		/*
755		 * Object and freepointer overlap. Cannot check
756		 * freepointer while object is allocated.
757		 */
758		return 1;
759
760	/* Check free pointer validity */
761	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
762		object_err(s, page, p, "Freepointer corrupt");
763		/*
764		 * No choice but to zap it and thus lose the remainder
765		 * of the free objects in this slab. May cause
766		 * another error because the object count is now wrong.
767		 */
768		set_freepointer(s, p, NULL);
769		return 0;
770	}
771	return 1;
772}
773
774static int check_slab(struct kmem_cache *s, struct page *page)
775{
776	int maxobj;
777
778	VM_BUG_ON(!irqs_disabled());
779
780	if (!PageSlab(page)) {
781		slab_err(s, page, "Not a valid slab page");
782		return 0;
783	}
784
785	maxobj = order_objects(compound_order(page), s->size, s->reserved);
786	if (page->objects > maxobj) {
787		slab_err(s, page, "objects %u > max %u",
788			s->name, page->objects, maxobj);
789		return 0;
790	}
791	if (page->inuse > page->objects) {
792		slab_err(s, page, "inuse %u > max %u",
793			s->name, page->inuse, page->objects);
794		return 0;
795	}
796	/* Slab_pad_check fixes things up after itself */
797	slab_pad_check(s, page);
798	return 1;
799}
800
801/*
802 * Determine if a certain object on a page is on the freelist. Must hold the
803 * slab lock to guarantee that the chains are in a consistent state.
804 */
805static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
806{
807	int nr = 0;
808	void *fp = page->freelist;
809	void *object = NULL;
810	unsigned long max_objects;
811
812	while (fp && nr <= page->objects) {
813		if (fp == search)
814			return 1;
815		if (!check_valid_pointer(s, page, fp)) {
816			if (object) {
817				object_err(s, page, object,
818					"Freechain corrupt");
819				set_freepointer(s, object, NULL);
820				break;
821			} else {
822				slab_err(s, page, "Freepointer corrupt");
823				page->freelist = NULL;
824				page->inuse = page->objects;
825				slab_fix(s, "Freelist cleared");
826				return 0;
827			}
828			break;
829		}
830		object = fp;
831		fp = get_freepointer(s, object);
832		nr++;
833	}
834
835	max_objects = order_objects(compound_order(page), s->size, s->reserved);
836	if (max_objects > MAX_OBJS_PER_PAGE)
837		max_objects = MAX_OBJS_PER_PAGE;
838
839	if (page->objects != max_objects) {
840		slab_err(s, page, "Wrong number of objects. Found %d but "
841			"should be %d", page->objects, max_objects);
842		page->objects = max_objects;
843		slab_fix(s, "Number of objects adjusted.");
844	}
845	if (page->inuse != page->objects - nr) {
846		slab_err(s, page, "Wrong object count. Counter is %d but "
847			"counted were %d", page->inuse, page->objects - nr);
848		page->inuse = page->objects - nr;
849		slab_fix(s, "Object count adjusted.");
850	}
851	return search == NULL;
852}
853
854static void trace(struct kmem_cache *s, struct page *page, void *object,
855								int alloc)
856{
857	if (s->flags & SLAB_TRACE) {
858		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
859			s->name,
860			alloc ? "alloc" : "free",
861			object, page->inuse,
862			page->freelist);
863
864		if (!alloc)
865			print_section("Object", (void *)object, s->objsize);
866
867		dump_stack();
868	}
869}
870
871/*
872 * Hooks for other subsystems that check memory allocations. In a typical
873 * production configuration these hooks all should produce no code at all.
874 */
875static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
876{
877	flags &= gfp_allowed_mask;
878	lockdep_trace_alloc(flags);
879	might_sleep_if(flags & __GFP_WAIT);
880
881	return should_failslab(s->objsize, flags, s->flags);
882}
883
884static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
885{
886	flags &= gfp_allowed_mask;
887	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
888	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
889}
890
891static inline void slab_free_hook(struct kmem_cache *s, void *x)
892{
893	kmemleak_free_recursive(x, s->flags);
894
895	/*
896	 * Trouble is that we may no longer disable interupts in the fast path
897	 * So in order to make the debug calls that expect irqs to be
898	 * disabled we need to disable interrupts temporarily.
899	 */
900#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
901	{
902		unsigned long flags;
903
904		local_irq_save(flags);
905		kmemcheck_slab_free(s, x, s->objsize);
906		debug_check_no_locks_freed(x, s->objsize);
907		local_irq_restore(flags);
908	}
909#endif
910	if (!(s->flags & SLAB_DEBUG_OBJECTS))
911		debug_check_no_obj_freed(x, s->objsize);
912}
913
914/*
915 * Tracking of fully allocated slabs for debugging purposes.
916 */
917static void add_full(struct kmem_cache_node *n, struct page *page)
918{
919	spin_lock(&n->list_lock);
920	list_add(&page->lru, &n->full);
921	spin_unlock(&n->list_lock);
922}
923
924static void remove_full(struct kmem_cache *s, struct page *page)
925{
926	struct kmem_cache_node *n;
927
928	if (!(s->flags & SLAB_STORE_USER))
929		return;
930
931	n = get_node(s, page_to_nid(page));
932
933	spin_lock(&n->list_lock);
934	list_del(&page->lru);
935	spin_unlock(&n->list_lock);
936}
937
938/* Tracking of the number of slabs for debugging purposes */
939static inline unsigned long slabs_node(struct kmem_cache *s, int node)
940{
941	struct kmem_cache_node *n = get_node(s, node);
942
943	return atomic_long_read(&n->nr_slabs);
944}
945
946static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
947{
948	return atomic_long_read(&n->nr_slabs);
949}
950
951static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
952{
953	struct kmem_cache_node *n = get_node(s, node);
954
955	/*
956	 * May be called early in order to allocate a slab for the
957	 * kmem_cache_node structure. Solve the chicken-egg
958	 * dilemma by deferring the increment of the count during
959	 * bootstrap (see early_kmem_cache_node_alloc).
960	 */
961	if (n) {
962		atomic_long_inc(&n->nr_slabs);
963		atomic_long_add(objects, &n->total_objects);
964	}
965}
966static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
967{
968	struct kmem_cache_node *n = get_node(s, node);
969
970	atomic_long_dec(&n->nr_slabs);
971	atomic_long_sub(objects, &n->total_objects);
972}
973
974/* Object debug checks for alloc/free paths */
975static void setup_object_debug(struct kmem_cache *s, struct page *page,
976								void *object)
977{
978	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
979		return;
980
981	init_object(s, object, SLUB_RED_INACTIVE);
982	init_tracking(s, object);
983}
984
985static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
986					void *object, unsigned long addr)
987{
988	if (!check_slab(s, page))
989		goto bad;
990
991	if (!on_freelist(s, page, object)) {
992		object_err(s, page, object, "Object already allocated");
993		goto bad;
994	}
995
996	if (!check_valid_pointer(s, page, object)) {
997		object_err(s, page, object, "Freelist Pointer check fails");
998		goto bad;
999	}
1000
1001	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1002		goto bad;
1003
1004	/* Success perform special debug activities for allocs */
1005	if (s->flags & SLAB_STORE_USER)
1006		set_track(s, object, TRACK_ALLOC, addr);
1007	trace(s, page, object, 1);
1008	init_object(s, object, SLUB_RED_ACTIVE);
1009	return 1;
1010
1011bad:
1012	if (PageSlab(page)) {
1013		/*
1014		 * If this is a slab page then lets do the best we can
1015		 * to avoid issues in the future. Marking all objects
1016		 * as used avoids touching the remaining objects.
1017		 */
1018		slab_fix(s, "Marking all objects used");
1019		page->inuse = page->objects;
1020		page->freelist = NULL;
1021	}
1022	return 0;
1023}
1024
1025static noinline int free_debug_processing(struct kmem_cache *s,
1026		 struct page *page, void *object, unsigned long addr)
1027{
1028	if (!check_slab(s, page))
1029		goto fail;
1030
1031	if (!check_valid_pointer(s, page, object)) {
1032		slab_err(s, page, "Invalid object pointer 0x%p", object);
1033		goto fail;
1034	}
1035
1036	if (on_freelist(s, page, object)) {
1037		object_err(s, page, object, "Object already free");
1038		goto fail;
1039	}
1040
1041	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1042		return 0;
1043
1044	if (unlikely(s != page->slab)) {
1045		if (!PageSlab(page)) {
1046			slab_err(s, page, "Attempt to free object(0x%p) "
1047				"outside of slab", object);
1048		} else if (!page->slab) {
1049			printk(KERN_ERR
1050				"SLUB <none>: no slab for object 0x%p.\n",
1051						object);
1052			dump_stack();
1053		} else
1054			object_err(s, page, object,
1055					"page slab pointer corrupt.");
1056		goto fail;
1057	}
1058
1059	/* Special debug activities for freeing objects */
1060	if (!PageSlubFrozen(page) && !page->freelist)
1061		remove_full(s, page);
1062	if (s->flags & SLAB_STORE_USER)
1063		set_track(s, object, TRACK_FREE, addr);
1064	trace(s, page, object, 0);
1065	init_object(s, object, SLUB_RED_INACTIVE);
1066	return 1;
1067
1068fail:
1069	slab_fix(s, "Object at 0x%p not freed", object);
1070	return 0;
1071}
1072
1073static int __init setup_slub_debug(char *str)
1074{
1075	slub_debug = DEBUG_DEFAULT_FLAGS;
1076	if (*str++ != '=' || !*str)
1077		/*
1078		 * No options specified. Switch on full debugging.
1079		 */
1080		goto out;
1081
1082	if (*str == ',')
1083		/*
1084		 * No options but restriction on slabs. This means full
1085		 * debugging for slabs matching a pattern.
1086		 */
1087		goto check_slabs;
1088
1089	if (tolower(*str) == 'o') {
1090		/*
1091		 * Avoid enabling debugging on caches if its minimum order
1092		 * would increase as a result.
1093		 */
1094		disable_higher_order_debug = 1;
1095		goto out;
1096	}
1097
1098	slub_debug = 0;
1099	if (*str == '-')
1100		/*
1101		 * Switch off all debugging measures.
1102		 */
1103		goto out;
1104
1105	/*
1106	 * Determine which debug features should be switched on
1107	 */
1108	for (; *str && *str != ','; str++) {
1109		switch (tolower(*str)) {
1110		case 'f':
1111			slub_debug |= SLAB_DEBUG_FREE;
1112			break;
1113		case 'z':
1114			slub_debug |= SLAB_RED_ZONE;
1115			break;
1116		case 'p':
1117			slub_debug |= SLAB_POISON;
1118			break;
1119		case 'u':
1120			slub_debug |= SLAB_STORE_USER;
1121			break;
1122		case 't':
1123			slub_debug |= SLAB_TRACE;
1124			break;
1125		case 'a':
1126			slub_debug |= SLAB_FAILSLAB;
1127			break;
1128		default:
1129			printk(KERN_ERR "slub_debug option '%c' "
1130				"unknown. skipped\n", *str);
1131		}
1132	}
1133
1134check_slabs:
1135	if (*str == ',')
1136		slub_debug_slabs = str + 1;
1137out:
1138	return 1;
1139}
1140
1141__setup("slub_debug", setup_slub_debug);
1142
1143static unsigned long kmem_cache_flags(unsigned long objsize,
1144	unsigned long flags, const char *name,
1145	void (*ctor)(void *))
1146{
1147	/*
1148	 * Enable debugging if selected on the kernel commandline.
1149	 */
1150	if (slub_debug && (!slub_debug_slabs ||
1151		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1152		flags |= slub_debug;
1153
1154	return flags;
1155}
1156#else
1157static inline void setup_object_debug(struct kmem_cache *s,
1158			struct page *page, void *object) {}
1159
1160static inline int alloc_debug_processing(struct kmem_cache *s,
1161	struct page *page, void *object, unsigned long addr) { return 0; }
1162
1163static inline int free_debug_processing(struct kmem_cache *s,
1164	struct page *page, void *object, unsigned long addr) { return 0; }
1165
1166static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1167			{ return 1; }
1168static inline int check_object(struct kmem_cache *s, struct page *page,
1169			void *object, u8 val) { return 1; }
1170static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1171static inline unsigned long kmem_cache_flags(unsigned long objsize,
1172	unsigned long flags, const char *name,
1173	void (*ctor)(void *))
1174{
1175	return flags;
1176}
1177#define slub_debug 0
1178
1179#define disable_higher_order_debug 0
1180
1181static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1182							{ return 0; }
1183static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1184							{ return 0; }
1185static inline void inc_slabs_node(struct kmem_cache *s, int node,
1186							int objects) {}
1187static inline void dec_slabs_node(struct kmem_cache *s, int node,
1188							int objects) {}
1189
1190static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1191							{ return 0; }
1192
1193static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1194		void *object) {}
1195
1196static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1197
1198#endif /* CONFIG_SLUB_DEBUG */
1199
1200/*
1201 * Slab allocation and freeing
1202 */
1203static inline struct page *alloc_slab_page(gfp_t flags, int node,
1204					struct kmem_cache_order_objects oo)
1205{
1206	int order = oo_order(oo);
1207
1208	flags |= __GFP_NOTRACK;
1209
1210	if (node == NUMA_NO_NODE)
1211		return alloc_pages(flags, order);
1212	else
1213		return alloc_pages_exact_node(node, flags, order);
1214}
1215
1216static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1217{
1218	struct page *page;
1219	struct kmem_cache_order_objects oo = s->oo;
1220	gfp_t alloc_gfp;
1221
1222	flags |= s->allocflags;
1223
1224	/*
1225	 * Let the initial higher-order allocation fail under memory pressure
1226	 * so we fall-back to the minimum order allocation.
1227	 */
1228	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1229
1230	page = alloc_slab_page(alloc_gfp, node, oo);
1231	if (unlikely(!page)) {
1232		oo = s->min;
1233		/*
1234		 * Allocation may have failed due to fragmentation.
1235		 * Try a lower order alloc if possible
1236		 */
1237		page = alloc_slab_page(flags, node, oo);
1238		if (!page)
1239			return NULL;
1240
1241		stat(s, ORDER_FALLBACK);
1242	}
1243
1244	if (kmemcheck_enabled
1245		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1246		int pages = 1 << oo_order(oo);
1247
1248		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1249
1250		/*
1251		 * Objects from caches that have a constructor don't get
1252		 * cleared when they're allocated, so we need to do it here.
1253		 */
1254		if (s->ctor)
1255			kmemcheck_mark_uninitialized_pages(page, pages);
1256		else
1257			kmemcheck_mark_unallocated_pages(page, pages);
1258	}
1259
1260	page->objects = oo_objects(oo);
1261	mod_zone_page_state(page_zone(page),
1262		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1263		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1264		1 << oo_order(oo));
1265
1266	return page;
1267}
1268
1269static void setup_object(struct kmem_cache *s, struct page *page,
1270				void *object)
1271{
1272	setup_object_debug(s, page, object);
1273	if (unlikely(s->ctor))
1274		s->ctor(object);
1275}
1276
1277static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1278{
1279	struct page *page;
1280	void *start;
1281	void *last;
1282	void *p;
1283
1284	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1285
1286	page = allocate_slab(s,
1287		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1288	if (!page)
1289		goto out;
1290
1291	inc_slabs_node(s, page_to_nid(page), page->objects);
1292	page->slab = s;
1293	page->flags |= 1 << PG_slab;
1294
1295	start = page_address(page);
1296
1297	if (unlikely(s->flags & SLAB_POISON))
1298		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1299
1300	last = start;
1301	for_each_object(p, s, start, page->objects) {
1302		setup_object(s, page, last);
1303		set_freepointer(s, last, p);
1304		last = p;
1305	}
1306	setup_object(s, page, last);
1307	set_freepointer(s, last, NULL);
1308
1309	page->freelist = start;
1310	page->inuse = 0;
1311out:
1312	return page;
1313}
1314
1315static void __free_slab(struct kmem_cache *s, struct page *page)
1316{
1317	int order = compound_order(page);
1318	int pages = 1 << order;
1319
1320	if (kmem_cache_debug(s)) {
1321		void *p;
1322
1323		slab_pad_check(s, page);
1324		for_each_object(p, s, page_address(page),
1325						page->objects)
1326			check_object(s, page, p, SLUB_RED_INACTIVE);
1327	}
1328
1329	kmemcheck_free_shadow(page, compound_order(page));
1330
1331	mod_zone_page_state(page_zone(page),
1332		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1333		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1334		-pages);
1335
1336	__ClearPageSlab(page);
1337	reset_page_mapcount(page);
1338	if (current->reclaim_state)
1339		current->reclaim_state->reclaimed_slab += pages;
1340	__free_pages(page, order);
1341}
1342
1343#define need_reserve_slab_rcu						\
1344	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1345
1346static void rcu_free_slab(struct rcu_head *h)
1347{
1348	struct page *page;
1349
1350	if (need_reserve_slab_rcu)
1351		page = virt_to_head_page(h);
1352	else
1353		page = container_of((struct list_head *)h, struct page, lru);
1354
1355	__free_slab(page->slab, page);
1356}
1357
1358static void free_slab(struct kmem_cache *s, struct page *page)
1359{
1360	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1361		struct rcu_head *head;
1362
1363		if (need_reserve_slab_rcu) {
1364			int order = compound_order(page);
1365			int offset = (PAGE_SIZE << order) - s->reserved;
1366
1367			VM_BUG_ON(s->reserved != sizeof(*head));
1368			head = page_address(page) + offset;
1369		} else {
1370			/*
1371			 * RCU free overloads the RCU head over the LRU
1372			 */
1373			head = (void *)&page->lru;
1374		}
1375
1376		call_rcu(head, rcu_free_slab);
1377	} else
1378		__free_slab(s, page);
1379}
1380
1381static void discard_slab(struct kmem_cache *s, struct page *page)
1382{
1383	dec_slabs_node(s, page_to_nid(page), page->objects);
1384	free_slab(s, page);
1385}
1386
1387/*
1388 * Per slab locking using the pagelock
1389 */
1390static __always_inline void slab_lock(struct page *page)
1391{
1392	bit_spin_lock(PG_locked, &page->flags);
1393}
1394
1395static __always_inline void slab_unlock(struct page *page)
1396{
1397	__bit_spin_unlock(PG_locked, &page->flags);
1398}
1399
1400static __always_inline int slab_trylock(struct page *page)
1401{
1402	int rc = 1;
1403
1404	rc = bit_spin_trylock(PG_locked, &page->flags);
1405	return rc;
1406}
1407
1408/*
1409 * Management of partially allocated slabs
1410 */
1411static void add_partial(struct kmem_cache_node *n,
1412				struct page *page, int tail)
1413{
1414	spin_lock(&n->list_lock);
1415	n->nr_partial++;
1416	if (tail)
1417		list_add_tail(&page->lru, &n->partial);
1418	else
1419		list_add(&page->lru, &n->partial);
1420	spin_unlock(&n->list_lock);
1421}
1422
1423static inline void __remove_partial(struct kmem_cache_node *n,
1424					struct page *page)
1425{
1426	list_del(&page->lru);
1427	n->nr_partial--;
1428}
1429
1430static void remove_partial(struct kmem_cache *s, struct page *page)
1431{
1432	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1433
1434	spin_lock(&n->list_lock);
1435	__remove_partial(n, page);
1436	spin_unlock(&n->list_lock);
1437}
1438
1439/*
1440 * Lock slab and remove from the partial list.
1441 *
1442 * Must hold list_lock.
1443 */
1444static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1445							struct page *page)
1446{
1447	if (slab_trylock(page)) {
1448		__remove_partial(n, page);
1449		__SetPageSlubFrozen(page);
1450		return 1;
1451	}
1452	return 0;
1453}
1454
1455/*
1456 * Try to allocate a partial slab from a specific node.
1457 */
1458static struct page *get_partial_node(struct kmem_cache_node *n)
1459{
1460	struct page *page;
1461
1462	/*
1463	 * Racy check. If we mistakenly see no partial slabs then we
1464	 * just allocate an empty slab. If we mistakenly try to get a
1465	 * partial slab and there is none available then get_partials()
1466	 * will return NULL.
1467	 */
1468	if (!n || !n->nr_partial)
1469		return NULL;
1470
1471	spin_lock(&n->list_lock);
1472	list_for_each_entry(page, &n->partial, lru)
1473		if (lock_and_freeze_slab(n, page))
1474			goto out;
1475	page = NULL;
1476out:
1477	spin_unlock(&n->list_lock);
1478	return page;
1479}
1480
1481/*
1482 * Get a page from somewhere. Search in increasing NUMA distances.
1483 */
1484static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1485{
1486#ifdef CONFIG_NUMA
1487	struct zonelist *zonelist;
1488	struct zoneref *z;
1489	struct zone *zone;
1490	enum zone_type high_zoneidx = gfp_zone(flags);
1491	struct page *page;
1492
1493	/*
1494	 * The defrag ratio allows a configuration of the tradeoffs between
1495	 * inter node defragmentation and node local allocations. A lower
1496	 * defrag_ratio increases the tendency to do local allocations
1497	 * instead of attempting to obtain partial slabs from other nodes.
1498	 *
1499	 * If the defrag_ratio is set to 0 then kmalloc() always
1500	 * returns node local objects. If the ratio is higher then kmalloc()
1501	 * may return off node objects because partial slabs are obtained
1502	 * from other nodes and filled up.
1503	 *
1504	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1505	 * defrag_ratio = 1000) then every (well almost) allocation will
1506	 * first attempt to defrag slab caches on other nodes. This means
1507	 * scanning over all nodes to look for partial slabs which may be
1508	 * expensive if we do it every time we are trying to find a slab
1509	 * with available objects.
1510	 */
1511	if (!s->remote_node_defrag_ratio ||
1512			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1513		return NULL;
1514
1515	get_mems_allowed();
1516	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1517	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1518		struct kmem_cache_node *n;
1519
1520		n = get_node(s, zone_to_nid(zone));
1521
1522		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1523				n->nr_partial > s->min_partial) {
1524			page = get_partial_node(n);
1525			if (page) {
1526				put_mems_allowed();
1527				return page;
1528			}
1529		}
1530	}
1531	put_mems_allowed();
1532#endif
1533	return NULL;
1534}
1535
1536/*
1537 * Get a partial page, lock it and return it.
1538 */
1539static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1540{
1541	struct page *page;
1542	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1543
1544	page = get_partial_node(get_node(s, searchnode));
1545	if (page || node != NUMA_NO_NODE)
1546		return page;
1547
1548	return get_any_partial(s, flags);
1549}
1550
1551/*
1552 * Move a page back to the lists.
1553 *
1554 * Must be called with the slab lock held.
1555 *
1556 * On exit the slab lock will have been dropped.
1557 */
1558static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1559	__releases(bitlock)
1560{
1561	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1562
1563	__ClearPageSlubFrozen(page);
1564	if (page->inuse) {
1565
1566		if (page->freelist) {
1567			add_partial(n, page, tail);
1568			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1569		} else {
1570			stat(s, DEACTIVATE_FULL);
1571			if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1572				add_full(n, page);
1573		}
1574		slab_unlock(page);
1575	} else {
1576		stat(s, DEACTIVATE_EMPTY);
1577		if (n->nr_partial < s->min_partial) {
1578			/*
1579			 * Adding an empty slab to the partial slabs in order
1580			 * to avoid page allocator overhead. This slab needs
1581			 * to come after the other slabs with objects in
1582			 * so that the others get filled first. That way the
1583			 * size of the partial list stays small.
1584			 *
1585			 * kmem_cache_shrink can reclaim any empty slabs from
1586			 * the partial list.
1587			 */
1588			add_partial(n, page, 1);
1589			slab_unlock(page);
1590		} else {
1591			slab_unlock(page);
1592			stat(s, FREE_SLAB);
1593			discard_slab(s, page);
1594		}
1595	}
1596}
1597
1598#ifdef CONFIG_PREEMPT
1599/*
1600 * Calculate the next globally unique transaction for disambiguiation
1601 * during cmpxchg. The transactions start with the cpu number and are then
1602 * incremented by CONFIG_NR_CPUS.
1603 */
1604#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1605#else
1606/*
1607 * No preemption supported therefore also no need to check for
1608 * different cpus.
1609 */
1610#define TID_STEP 1
1611#endif
1612
1613static inline unsigned long next_tid(unsigned long tid)
1614{
1615	return tid + TID_STEP;
1616}
1617
1618static inline unsigned int tid_to_cpu(unsigned long tid)
1619{
1620	return tid % TID_STEP;
1621}
1622
1623static inline unsigned long tid_to_event(unsigned long tid)
1624{
1625	return tid / TID_STEP;
1626}
1627
1628static inline unsigned int init_tid(int cpu)
1629{
1630	return cpu;
1631}
1632
1633static inline void note_cmpxchg_failure(const char *n,
1634		const struct kmem_cache *s, unsigned long tid)
1635{
1636#ifdef SLUB_DEBUG_CMPXCHG
1637	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1638
1639	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1640
1641#ifdef CONFIG_PREEMPT
1642	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1643		printk("due to cpu change %d -> %d\n",
1644			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1645	else
1646#endif
1647	if (tid_to_event(tid) != tid_to_event(actual_tid))
1648		printk("due to cpu running other code. Event %ld->%ld\n",
1649			tid_to_event(tid), tid_to_event(actual_tid));
1650	else
1651		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1652			actual_tid, tid, next_tid(tid));
1653#endif
1654	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1655}
1656
1657void init_kmem_cache_cpus(struct kmem_cache *s)
1658{
1659	int cpu;
1660
1661	for_each_possible_cpu(cpu)
1662		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1663}
1664/*
1665 * Remove the cpu slab
1666 */
1667static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1668	__releases(bitlock)
1669{
1670	struct page *page = c->page;
1671	int tail = 1;
1672
1673	if (page->freelist)
1674		stat(s, DEACTIVATE_REMOTE_FREES);
1675	/*
1676	 * Merge cpu freelist into slab freelist. Typically we get here
1677	 * because both freelists are empty. So this is unlikely
1678	 * to occur.
1679	 */
1680	while (unlikely(c->freelist)) {
1681		void **object;
1682
1683		tail = 0;	/* Hot objects. Put the slab first */
1684
1685		/* Retrieve object from cpu_freelist */
1686		object = c->freelist;
1687		c->freelist = get_freepointer(s, c->freelist);
1688
1689		/* And put onto the regular freelist */
1690		set_freepointer(s, object, page->freelist);
1691		page->freelist = object;
1692		page->inuse--;
1693	}
1694	c->page = NULL;
1695	c->tid = next_tid(c->tid);
1696	unfreeze_slab(s, page, tail);
1697}
1698
1699static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1700{
1701	stat(s, CPUSLAB_FLUSH);
1702	slab_lock(c->page);
1703	deactivate_slab(s, c);
1704}
1705
1706/*
1707 * Flush cpu slab.
1708 *
1709 * Called from IPI handler with interrupts disabled.
1710 */
1711static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1712{
1713	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1714
1715	if (likely(c && c->page))
1716		flush_slab(s, c);
1717}
1718
1719static void flush_cpu_slab(void *d)
1720{
1721	struct kmem_cache *s = d;
1722
1723	__flush_cpu_slab(s, smp_processor_id());
1724}
1725
1726static void flush_all(struct kmem_cache *s)
1727{
1728	on_each_cpu(flush_cpu_slab, s, 1);
1729}
1730
1731/*
1732 * Check if the objects in a per cpu structure fit numa
1733 * locality expectations.
1734 */
1735static inline int node_match(struct kmem_cache_cpu *c, int node)
1736{
1737#ifdef CONFIG_NUMA
1738	if (node != NUMA_NO_NODE && c->node != node)
1739		return 0;
1740#endif
1741	return 1;
1742}
1743
1744static int count_free(struct page *page)
1745{
1746	return page->objects - page->inuse;
1747}
1748
1749static unsigned long count_partial(struct kmem_cache_node *n,
1750					int (*get_count)(struct page *))
1751{
1752	unsigned long flags;
1753	unsigned long x = 0;
1754	struct page *page;
1755
1756	spin_lock_irqsave(&n->list_lock, flags);
1757	list_for_each_entry(page, &n->partial, lru)
1758		x += get_count(page);
1759	spin_unlock_irqrestore(&n->list_lock, flags);
1760	return x;
1761}
1762
1763static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1764{
1765#ifdef CONFIG_SLUB_DEBUG
1766	return atomic_long_read(&n->total_objects);
1767#else
1768	return 0;
1769#endif
1770}
1771
1772static noinline void
1773slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1774{
1775	int node;
1776
1777	printk(KERN_WARNING
1778		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1779		nid, gfpflags);
1780	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1781		"default order: %d, min order: %d\n", s->name, s->objsize,
1782		s->size, oo_order(s->oo), oo_order(s->min));
1783
1784	if (oo_order(s->min) > get_order(s->objsize))
1785		printk(KERN_WARNING "  %s debugging increased min order, use "
1786		       "slub_debug=O to disable.\n", s->name);
1787
1788	for_each_online_node(node) {
1789		struct kmem_cache_node *n = get_node(s, node);
1790		unsigned long nr_slabs;
1791		unsigned long nr_objs;
1792		unsigned long nr_free;
1793
1794		if (!n)
1795			continue;
1796
1797		nr_free  = count_partial(n, count_free);
1798		nr_slabs = node_nr_slabs(n);
1799		nr_objs  = node_nr_objs(n);
1800
1801		printk(KERN_WARNING
1802			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1803			node, nr_slabs, nr_objs, nr_free);
1804	}
1805}
1806
1807/*
1808 * Slow path. The lockless freelist is empty or we need to perform
1809 * debugging duties.
1810 *
1811 * Interrupts are disabled.
1812 *
1813 * Processing is still very fast if new objects have been freed to the
1814 * regular freelist. In that case we simply take over the regular freelist
1815 * as the lockless freelist and zap the regular freelist.
1816 *
1817 * If that is not working then we fall back to the partial lists. We take the
1818 * first element of the freelist as the object to allocate now and move the
1819 * rest of the freelist to the lockless freelist.
1820 *
1821 * And if we were unable to get a new slab from the partial slab lists then
1822 * we need to allocate a new slab. This is the slowest path since it involves
1823 * a call to the page allocator and the setup of a new slab.
1824 */
1825static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1826			  unsigned long addr, struct kmem_cache_cpu *c)
1827{
1828	void **object;
1829	struct page *page;
1830	unsigned long flags;
1831
1832	local_irq_save(flags);
1833#ifdef CONFIG_PREEMPT
1834	/*
1835	 * We may have been preempted and rescheduled on a different
1836	 * cpu before disabling interrupts. Need to reload cpu area
1837	 * pointer.
1838	 */
1839	c = this_cpu_ptr(s->cpu_slab);
1840#endif
1841
1842	/* We handle __GFP_ZERO in the caller */
1843	gfpflags &= ~__GFP_ZERO;
1844
1845	page = c->page;
1846	if (!page)
1847		goto new_slab;
1848
1849	slab_lock(page);
1850	if (unlikely(!node_match(c, node)))
1851		goto another_slab;
1852
1853	stat(s, ALLOC_REFILL);
1854
1855load_freelist:
1856	object = page->freelist;
1857	if (unlikely(!object))
1858		goto another_slab;
1859	if (kmem_cache_debug(s))
1860		goto debug;
1861
1862	c->freelist = get_freepointer(s, object);
1863	page->inuse = page->objects;
1864	page->freelist = NULL;
1865
1866	slab_unlock(page);
1867	c->tid = next_tid(c->tid);
1868	local_irq_restore(flags);
1869	stat(s, ALLOC_SLOWPATH);
1870	return object;
1871
1872another_slab:
1873	deactivate_slab(s, c);
1874
1875new_slab:
1876	page = get_partial(s, gfpflags, node);
1877	if (page) {
1878		stat(s, ALLOC_FROM_PARTIAL);
1879		c->node = page_to_nid(page);
1880		c->page = page;
1881		goto load_freelist;
1882	}
1883
1884	gfpflags &= gfp_allowed_mask;
1885	if (gfpflags & __GFP_WAIT)
1886		local_irq_enable();
1887
1888	page = new_slab(s, gfpflags, node);
1889
1890	if (gfpflags & __GFP_WAIT)
1891		local_irq_disable();
1892
1893	if (page) {
1894		c = __this_cpu_ptr(s->cpu_slab);
1895		stat(s, ALLOC_SLAB);
1896		if (c->page)
1897			flush_slab(s, c);
1898
1899		slab_lock(page);
1900		__SetPageSlubFrozen(page);
1901		c->node = page_to_nid(page);
1902		c->page = page;
1903		goto load_freelist;
1904	}
1905	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1906		slab_out_of_memory(s, gfpflags, node);
1907	local_irq_restore(flags);
1908	return NULL;
1909debug:
1910	if (!alloc_debug_processing(s, page, object, addr))
1911		goto another_slab;
1912
1913	page->inuse++;
1914	page->freelist = get_freepointer(s, object);
1915	deactivate_slab(s, c);
1916	c->page = NULL;
1917	c->node = NUMA_NO_NODE;
1918	local_irq_restore(flags);
1919	return object;
1920}
1921
1922/*
1923 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1924 * have the fastpath folded into their functions. So no function call
1925 * overhead for requests that can be satisfied on the fastpath.
1926 *
1927 * The fastpath works by first checking if the lockless freelist can be used.
1928 * If not then __slab_alloc is called for slow processing.
1929 *
1930 * Otherwise we can simply pick the next object from the lockless free list.
1931 */
1932static __always_inline void *slab_alloc(struct kmem_cache *s,
1933		gfp_t gfpflags, int node, unsigned long addr)
1934{
1935	void **object;
1936	struct kmem_cache_cpu *c;
1937	unsigned long tid;
1938
1939	if (slab_pre_alloc_hook(s, gfpflags))
1940		return NULL;
1941
1942redo:
1943
1944	/*
1945	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1946	 * enabled. We may switch back and forth between cpus while
1947	 * reading from one cpu area. That does not matter as long
1948	 * as we end up on the original cpu again when doing the cmpxchg.
1949	 */
1950	c = __this_cpu_ptr(s->cpu_slab);
1951
1952	/*
1953	 * The transaction ids are globally unique per cpu and per operation on
1954	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1955	 * occurs on the right processor and that there was no operation on the
1956	 * linked list in between.
1957	 */
1958	tid = c->tid;
1959	barrier();
1960
1961	object = c->freelist;
1962	if (unlikely(!object || !node_match(c, node)))
1963
1964		object = __slab_alloc(s, gfpflags, node, addr, c);
1965
1966	else {
1967		/*
1968		 * The cmpxchg will only match if there was no additional
1969		 * operation and if we are on the right processor.
1970		 *
1971		 * The cmpxchg does the following atomically (without lock semantics!)
1972		 * 1. Relocate first pointer to the current per cpu area.
1973		 * 2. Verify that tid and freelist have not been changed
1974		 * 3. If they were not changed replace tid and freelist
1975		 *
1976		 * Since this is without lock semantics the protection is only against
1977		 * code executing on this cpu *not* from access by other cpus.
1978		 */
1979		if (unlikely(!irqsafe_cpu_cmpxchg_double(
1980				s->cpu_slab->freelist, s->cpu_slab->tid,
1981				object, tid,
1982				get_freepointer_safe(s, object), next_tid(tid)))) {
1983
1984			note_cmpxchg_failure("slab_alloc", s, tid);
1985			goto redo;
1986		}
1987		stat(s, ALLOC_FASTPATH);
1988	}
1989
1990	if (unlikely(gfpflags & __GFP_ZERO) && object)
1991		memset(object, 0, s->objsize);
1992
1993	slab_post_alloc_hook(s, gfpflags, object);
1994
1995	return object;
1996}
1997
1998void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1999{
2000	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2001
2002	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2003
2004	return ret;
2005}
2006EXPORT_SYMBOL(kmem_cache_alloc);
2007
2008#ifdef CONFIG_TRACING
2009void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2010{
2011	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2012	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2013	return ret;
2014}
2015EXPORT_SYMBOL(kmem_cache_alloc_trace);
2016
2017void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2018{
2019	void *ret = kmalloc_order(size, flags, order);
2020	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2021	return ret;
2022}
2023EXPORT_SYMBOL(kmalloc_order_trace);
2024#endif
2025
2026#ifdef CONFIG_NUMA
2027void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2028{
2029	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2030
2031	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2032				    s->objsize, s->size, gfpflags, node);
2033
2034	return ret;
2035}
2036EXPORT_SYMBOL(kmem_cache_alloc_node);
2037
2038#ifdef CONFIG_TRACING
2039void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2040				    gfp_t gfpflags,
2041				    int node, size_t size)
2042{
2043	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2044
2045	trace_kmalloc_node(_RET_IP_, ret,
2046			   size, s->size, gfpflags, node);
2047	return ret;
2048}
2049EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2050#endif
2051#endif
2052
2053/*
2054 * Slow patch handling. This may still be called frequently since objects
2055 * have a longer lifetime than the cpu slabs in most processing loads.
2056 *
2057 * So we still attempt to reduce cache line usage. Just take the slab
2058 * lock and free the item. If there is no additional partial page
2059 * handling required then we can return immediately.
2060 */
2061static void __slab_free(struct kmem_cache *s, struct page *page,
2062			void *x, unsigned long addr)
2063{
2064	void *prior;
2065	void **object = (void *)x;
2066	unsigned long flags;
2067
2068	local_irq_save(flags);
2069	slab_lock(page);
2070	stat(s, FREE_SLOWPATH);
2071
2072	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2073		goto out_unlock;
2074
2075	prior = page->freelist;
2076	set_freepointer(s, object, prior);
2077	page->freelist = object;
2078	page->inuse--;
2079
2080	if (unlikely(PageSlubFrozen(page))) {
2081		stat(s, FREE_FROZEN);
2082		goto out_unlock;
2083	}
2084
2085	if (unlikely(!page->inuse))
2086		goto slab_empty;
2087
2088	/*
2089	 * Objects left in the slab. If it was not on the partial list before
2090	 * then add it.
2091	 */
2092	if (unlikely(!prior)) {
2093		add_partial(get_node(s, page_to_nid(page)), page, 1);
2094		stat(s, FREE_ADD_PARTIAL);
2095	}
2096
2097out_unlock:
2098	slab_unlock(page);
2099	local_irq_restore(flags);
2100	return;
2101
2102slab_empty:
2103	if (prior) {
2104		/*
2105		 * Slab still on the partial list.
2106		 */
2107		remove_partial(s, page);
2108		stat(s, FREE_REMOVE_PARTIAL);
2109	}
2110	slab_unlock(page);
2111	local_irq_restore(flags);
2112	stat(s, FREE_SLAB);
2113	discard_slab(s, page);
2114}
2115
2116/*
2117 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2118 * can perform fastpath freeing without additional function calls.
2119 *
2120 * The fastpath is only possible if we are freeing to the current cpu slab
2121 * of this processor. This typically the case if we have just allocated
2122 * the item before.
2123 *
2124 * If fastpath is not possible then fall back to __slab_free where we deal
2125 * with all sorts of special processing.
2126 */
2127static __always_inline void slab_free(struct kmem_cache *s,
2128			struct page *page, void *x, unsigned long addr)
2129{
2130	void **object = (void *)x;
2131	struct kmem_cache_cpu *c;
2132	unsigned long tid;
2133
2134	slab_free_hook(s, x);
2135
2136redo:
2137
2138	/*
2139	 * Determine the currently cpus per cpu slab.
2140	 * The cpu may change afterward. However that does not matter since
2141	 * data is retrieved via this pointer. If we are on the same cpu
2142	 * during the cmpxchg then the free will succedd.
2143	 */
2144	c = __this_cpu_ptr(s->cpu_slab);
2145
2146	tid = c->tid;
2147	barrier();
2148
2149	if (likely(page == c->page)) {
2150		set_freepointer(s, object, c->freelist);
2151
2152		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2153				s->cpu_slab->freelist, s->cpu_slab->tid,
2154				c->freelist, tid,
2155				object, next_tid(tid)))) {
2156
2157			note_cmpxchg_failure("slab_free", s, tid);
2158			goto redo;
2159		}
2160		stat(s, FREE_FASTPATH);
2161	} else
2162		__slab_free(s, page, x, addr);
2163
2164}
2165
2166void kmem_cache_free(struct kmem_cache *s, void *x)
2167{
2168	struct page *page;
2169
2170	page = virt_to_head_page(x);
2171
2172	slab_free(s, page, x, _RET_IP_);
2173
2174	trace_kmem_cache_free(_RET_IP_, x);
2175}
2176EXPORT_SYMBOL(kmem_cache_free);
2177
2178/*
2179 * Object placement in a slab is made very easy because we always start at
2180 * offset 0. If we tune the size of the object to the alignment then we can
2181 * get the required alignment by putting one properly sized object after
2182 * another.
2183 *
2184 * Notice that the allocation order determines the sizes of the per cpu
2185 * caches. Each processor has always one slab available for allocations.
2186 * Increasing the allocation order reduces the number of times that slabs
2187 * must be moved on and off the partial lists and is therefore a factor in
2188 * locking overhead.
2189 */
2190
2191/*
2192 * Mininum / Maximum order of slab pages. This influences locking overhead
2193 * and slab fragmentation. A higher order reduces the number of partial slabs
2194 * and increases the number of allocations possible without having to
2195 * take the list_lock.
2196 */
2197static int slub_min_order;
2198static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2199static int slub_min_objects;
2200
2201/*
2202 * Merge control. If this is set then no merging of slab caches will occur.
2203 * (Could be removed. This was introduced to pacify the merge skeptics.)
2204 */
2205static int slub_nomerge;
2206
2207/*
2208 * Calculate the order of allocation given an slab object size.
2209 *
2210 * The order of allocation has significant impact on performance and other
2211 * system components. Generally order 0 allocations should be preferred since
2212 * order 0 does not cause fragmentation in the page allocator. Larger objects
2213 * be problematic to put into order 0 slabs because there may be too much
2214 * unused space left. We go to a higher order if more than 1/16th of the slab
2215 * would be wasted.
2216 *
2217 * In order to reach satisfactory performance we must ensure that a minimum
2218 * number of objects is in one slab. Otherwise we may generate too much
2219 * activity on the partial lists which requires taking the list_lock. This is
2220 * less a concern for large slabs though which are rarely used.
2221 *
2222 * slub_max_order specifies the order where we begin to stop considering the
2223 * number of objects in a slab as critical. If we reach slub_max_order then
2224 * we try to keep the page order as low as possible. So we accept more waste
2225 * of space in favor of a small page order.
2226 *
2227 * Higher order allocations also allow the placement of more objects in a
2228 * slab and thereby reduce object handling overhead. If the user has
2229 * requested a higher mininum order then we start with that one instead of
2230 * the smallest order which will fit the object.
2231 */
2232static inline int slab_order(int size, int min_objects,
2233				int max_order, int fract_leftover, int reserved)
2234{
2235	int order;
2236	int rem;
2237	int min_order = slub_min_order;
2238
2239	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2240		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2241
2242	for (order = max(min_order,
2243				fls(min_objects * size - 1) - PAGE_SHIFT);
2244			order <= max_order; order++) {
2245
2246		unsigned long slab_size = PAGE_SIZE << order;
2247
2248		if (slab_size < min_objects * size + reserved)
2249			continue;
2250
2251		rem = (slab_size - reserved) % size;
2252
2253		if (rem <= slab_size / fract_leftover)
2254			break;
2255
2256	}
2257
2258	return order;
2259}
2260
2261static inline int calculate_order(int size, int reserved)
2262{
2263	int order;
2264	int min_objects;
2265	int fraction;
2266	int max_objects;
2267
2268	/*
2269	 * Attempt to find best configuration for a slab. This
2270	 * works by first attempting to generate a layout with
2271	 * the best configuration and backing off gradually.
2272	 *
2273	 * First we reduce the acceptable waste in a slab. Then
2274	 * we reduce the minimum objects required in a slab.
2275	 */
2276	min_objects = slub_min_objects;
2277	if (!min_objects)
2278		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2279	max_objects = order_objects(slub_max_order, size, reserved);
2280	min_objects = min(min_objects, max_objects);
2281
2282	while (min_objects > 1) {
2283		fraction = 16;
2284		while (fraction >= 4) {
2285			order = slab_order(size, min_objects,
2286					slub_max_order, fraction, reserved);
2287			if (order <= slub_max_order)
2288				return order;
2289			fraction /= 2;
2290		}
2291		min_objects--;
2292	}
2293
2294	/*
2295	 * We were unable to place multiple objects in a slab. Now
2296	 * lets see if we can place a single object there.
2297	 */
2298	order = slab_order(size, 1, slub_max_order, 1, reserved);
2299	if (order <= slub_max_order)
2300		return order;
2301
2302	/*
2303	 * Doh this slab cannot be placed using slub_max_order.
2304	 */
2305	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2306	if (order < MAX_ORDER)
2307		return order;
2308	return -ENOSYS;
2309}
2310
2311/*
2312 * Figure out what the alignment of the objects will be.
2313 */
2314static unsigned long calculate_alignment(unsigned long flags,
2315		unsigned long align, unsigned long size)
2316{
2317	/*
2318	 * If the user wants hardware cache aligned objects then follow that
2319	 * suggestion if the object is sufficiently large.
2320	 *
2321	 * The hardware cache alignment cannot override the specified
2322	 * alignment though. If that is greater then use it.
2323	 */
2324	if (flags & SLAB_HWCACHE_ALIGN) {
2325		unsigned long ralign = cache_line_size();
2326		while (size <= ralign / 2)
2327			ralign /= 2;
2328		align = max(align, ralign);
2329	}
2330
2331	if (align < ARCH_SLAB_MINALIGN)
2332		align = ARCH_SLAB_MINALIGN;
2333
2334	return ALIGN(align, sizeof(void *));
2335}
2336
2337static void
2338init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2339{
2340	n->nr_partial = 0;
2341	spin_lock_init(&n->list_lock);
2342	INIT_LIST_HEAD(&n->partial);
2343#ifdef CONFIG_SLUB_DEBUG
2344	atomic_long_set(&n->nr_slabs, 0);
2345	atomic_long_set(&n->total_objects, 0);
2346	INIT_LIST_HEAD(&n->full);
2347#endif
2348}
2349
2350static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2351{
2352	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2353			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2354
2355#ifdef CONFIG_CMPXCHG_LOCAL
2356	/*
2357	 * Must align to double word boundary for the double cmpxchg instructions
2358	 * to work.
2359	 */
2360	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
2361#else
2362	/* Regular alignment is sufficient */
2363	s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2364#endif
2365
2366	if (!s->cpu_slab)
2367		return 0;
2368
2369	init_kmem_cache_cpus(s);
2370
2371	return 1;
2372}
2373
2374static struct kmem_cache *kmem_cache_node;
2375
2376/*
2377 * No kmalloc_node yet so do it by hand. We know that this is the first
2378 * slab on the node for this slabcache. There are no concurrent accesses
2379 * possible.
2380 *
2381 * Note that this function only works on the kmalloc_node_cache
2382 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2383 * memory on a fresh node that has no slab structures yet.
2384 */
2385static void early_kmem_cache_node_alloc(int node)
2386{
2387	struct page *page;
2388	struct kmem_cache_node *n;
2389	unsigned long flags;
2390
2391	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2392
2393	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2394
2395	BUG_ON(!page);
2396	if (page_to_nid(page) != node) {
2397		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2398				"node %d\n", node);
2399		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2400				"in order to be able to continue\n");
2401	}
2402
2403	n = page->freelist;
2404	BUG_ON(!n);
2405	page->freelist = get_freepointer(kmem_cache_node, n);
2406	page->inuse++;
2407	kmem_cache_node->node[node] = n;
2408#ifdef CONFIG_SLUB_DEBUG
2409	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2410	init_tracking(kmem_cache_node, n);
2411#endif
2412	init_kmem_cache_node(n, kmem_cache_node);
2413	inc_slabs_node(kmem_cache_node, node, page->objects);
2414
2415	/*
2416	 * lockdep requires consistent irq usage for each lock
2417	 * so even though there cannot be a race this early in
2418	 * the boot sequence, we still disable irqs.
2419	 */
2420	local_irq_save(flags);
2421	add_partial(n, page, 0);
2422	local_irq_restore(flags);
2423}
2424
2425static void free_kmem_cache_nodes(struct kmem_cache *s)
2426{
2427	int node;
2428
2429	for_each_node_state(node, N_NORMAL_MEMORY) {
2430		struct kmem_cache_node *n = s->node[node];
2431
2432		if (n)
2433			kmem_cache_free(kmem_cache_node, n);
2434
2435		s->node[node] = NULL;
2436	}
2437}
2438
2439static int init_kmem_cache_nodes(struct kmem_cache *s)
2440{
2441	int node;
2442
2443	for_each_node_state(node, N_NORMAL_MEMORY) {
2444		struct kmem_cache_node *n;
2445
2446		if (slab_state == DOWN) {
2447			early_kmem_cache_node_alloc(node);
2448			continue;
2449		}
2450		n = kmem_cache_alloc_node(kmem_cache_node,
2451						GFP_KERNEL, node);
2452
2453		if (!n) {
2454			free_kmem_cache_nodes(s);
2455			return 0;
2456		}
2457
2458		s->node[node] = n;
2459		init_kmem_cache_node(n, s);
2460	}
2461	return 1;
2462}
2463
2464static void set_min_partial(struct kmem_cache *s, unsigned long min)
2465{
2466	if (min < MIN_PARTIAL)
2467		min = MIN_PARTIAL;
2468	else if (min > MAX_PARTIAL)
2469		min = MAX_PARTIAL;
2470	s->min_partial = min;
2471}
2472
2473/*
2474 * calculate_sizes() determines the order and the distribution of data within
2475 * a slab object.
2476 */
2477static int calculate_sizes(struct kmem_cache *s, int forced_order)
2478{
2479	unsigned long flags = s->flags;
2480	unsigned long size = s->objsize;
2481	unsigned long align = s->align;
2482	int order;
2483
2484	/*
2485	 * Round up object size to the next word boundary. We can only
2486	 * place the free pointer at word boundaries and this determines
2487	 * the possible location of the free pointer.
2488	 */
2489	size = ALIGN(size, sizeof(void *));
2490
2491#ifdef CONFIG_SLUB_DEBUG
2492	/*
2493	 * Determine if we can poison the object itself. If the user of
2494	 * the slab may touch the object after free or before allocation
2495	 * then we should never poison the object itself.
2496	 */
2497	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2498			!s->ctor)
2499		s->flags |= __OBJECT_POISON;
2500	else
2501		s->flags &= ~__OBJECT_POISON;
2502
2503
2504	/*
2505	 * If we are Redzoning then check if there is some space between the
2506	 * end of the object and the free pointer. If not then add an
2507	 * additional word to have some bytes to store Redzone information.
2508	 */
2509	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2510		size += sizeof(void *);
2511#endif
2512
2513	/*
2514	 * With that we have determined the number of bytes in actual use
2515	 * by the object. This is the potential offset to the free pointer.
2516	 */
2517	s->inuse = size;
2518
2519	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2520		s->ctor)) {
2521		/*
2522		 * Relocate free pointer after the object if it is not
2523		 * permitted to overwrite the first word of the object on
2524		 * kmem_cache_free.
2525		 *
2526		 * This is the case if we do RCU, have a constructor or
2527		 * destructor or are poisoning the objects.
2528		 */
2529		s->offset = size;
2530		size += sizeof(void *);
2531	}
2532
2533#ifdef CONFIG_SLUB_DEBUG
2534	if (flags & SLAB_STORE_USER)
2535		/*
2536		 * Need to store information about allocs and frees after
2537		 * the object.
2538		 */
2539		size += 2 * sizeof(struct track);
2540
2541	if (flags & SLAB_RED_ZONE)
2542		/*
2543		 * Add some empty padding so that we can catch
2544		 * overwrites from earlier objects rather than let
2545		 * tracking information or the free pointer be
2546		 * corrupted if a user writes before the start
2547		 * of the object.
2548		 */
2549		size += sizeof(void *);
2550#endif
2551
2552	/*
2553	 * Determine the alignment based on various parameters that the
2554	 * user specified and the dynamic determination of cache line size
2555	 * on bootup.
2556	 */
2557	align = calculate_alignment(flags, align, s->objsize);
2558	s->align = align;
2559
2560	/*
2561	 * SLUB stores one object immediately after another beginning from
2562	 * offset 0. In order to align the objects we have to simply size
2563	 * each object to conform to the alignment.
2564	 */
2565	size = ALIGN(size, align);
2566	s->size = size;
2567	if (forced_order >= 0)
2568		order = forced_order;
2569	else
2570		order = calculate_order(size, s->reserved);
2571
2572	if (order < 0)
2573		return 0;
2574
2575	s->allocflags = 0;
2576	if (order)
2577		s->allocflags |= __GFP_COMP;
2578
2579	if (s->flags & SLAB_CACHE_DMA)
2580		s->allocflags |= SLUB_DMA;
2581
2582	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2583		s->allocflags |= __GFP_RECLAIMABLE;
2584
2585	/*
2586	 * Determine the number of objects per slab
2587	 */
2588	s->oo = oo_make(order, size, s->reserved);
2589	s->min = oo_make(get_order(size), size, s->reserved);
2590	if (oo_objects(s->oo) > oo_objects(s->max))
2591		s->max = s->oo;
2592
2593	return !!oo_objects(s->oo);
2594
2595}
2596
2597static int kmem_cache_open(struct kmem_cache *s,
2598		const char *name, size_t size,
2599		size_t align, unsigned long flags,
2600		void (*ctor)(void *))
2601{
2602	memset(s, 0, kmem_size);
2603	s->name = name;
2604	s->ctor = ctor;
2605	s->objsize = size;
2606	s->align = align;
2607	s->flags = kmem_cache_flags(size, flags, name, ctor);
2608	s->reserved = 0;
2609
2610	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2611		s->reserved = sizeof(struct rcu_head);
2612
2613	if (!calculate_sizes(s, -1))
2614		goto error;
2615	if (disable_higher_order_debug) {
2616		/*
2617		 * Disable debugging flags that store metadata if the min slab
2618		 * order increased.
2619		 */
2620		if (get_order(s->size) > get_order(s->objsize)) {
2621			s->flags &= ~DEBUG_METADATA_FLAGS;
2622			s->offset = 0;
2623			if (!calculate_sizes(s, -1))
2624				goto error;
2625		}
2626	}
2627
2628	/*
2629	 * The larger the object size is, the more pages we want on the partial
2630	 * list to avoid pounding the page allocator excessively.
2631	 */
2632	set_min_partial(s, ilog2(s->size));
2633	s->refcount = 1;
2634#ifdef CONFIG_NUMA
2635	s->remote_node_defrag_ratio = 1000;
2636#endif
2637	if (!init_kmem_cache_nodes(s))
2638		goto error;
2639
2640	if (alloc_kmem_cache_cpus(s))
2641		return 1;
2642
2643	free_kmem_cache_nodes(s);
2644error:
2645	if (flags & SLAB_PANIC)
2646		panic("Cannot create slab %s size=%lu realsize=%u "
2647			"order=%u offset=%u flags=%lx\n",
2648			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2649			s->offset, flags);
2650	return 0;
2651}
2652
2653/*
2654 * Determine the size of a slab object
2655 */
2656unsigned int kmem_cache_size(struct kmem_cache *s)
2657{
2658	return s->objsize;
2659}
2660EXPORT_SYMBOL(kmem_cache_size);
2661
2662static void list_slab_objects(struct kmem_cache *s, struct page *page,
2663							const char *text)
2664{
2665#ifdef CONFIG_SLUB_DEBUG
2666	void *addr = page_address(page);
2667	void *p;
2668	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2669				     sizeof(long), GFP_ATOMIC);
2670	if (!map)
2671		return;
2672	slab_err(s, page, "%s", text);
2673	slab_lock(page);
2674
2675	get_map(s, page, map);
2676	for_each_object(p, s, addr, page->objects) {
2677
2678		if (!test_bit(slab_index(p, s, addr), map)) {
2679			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2680							p, p - addr);
2681			print_tracking(s, p);
2682		}
2683	}
2684	slab_unlock(page);
2685	kfree(map);
2686#endif
2687}
2688
2689/*
2690 * Attempt to free all partial slabs on a node.
2691 */
2692static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2693{
2694	unsigned long flags;
2695	struct page *page, *h;
2696
2697	spin_lock_irqsave(&n->list_lock, flags);
2698	list_for_each_entry_safe(page, h, &n->partial, lru) {
2699		if (!page->inuse) {
2700			__remove_partial(n, page);
2701			discard_slab(s, page);
2702		} else {
2703			list_slab_objects(s, page,
2704				"Objects remaining on kmem_cache_close()");
2705		}
2706	}
2707	spin_unlock_irqrestore(&n->list_lock, flags);
2708}
2709
2710/*
2711 * Release all resources used by a slab cache.
2712 */
2713static inline int kmem_cache_close(struct kmem_cache *s)
2714{
2715	int node;
2716
2717	flush_all(s);
2718	free_percpu(s->cpu_slab);
2719	/* Attempt to free all objects */
2720	for_each_node_state(node, N_NORMAL_MEMORY) {
2721		struct kmem_cache_node *n = get_node(s, node);
2722
2723		free_partial(s, n);
2724		if (n->nr_partial || slabs_node(s, node))
2725			return 1;
2726	}
2727	free_kmem_cache_nodes(s);
2728	return 0;
2729}
2730
2731/*
2732 * Close a cache and release the kmem_cache structure
2733 * (must be used for caches created using kmem_cache_create)
2734 */
2735void kmem_cache_destroy(struct kmem_cache *s)
2736{
2737	down_write(&slub_lock);
2738	s->refcount--;
2739	if (!s->refcount) {
2740		list_del(&s->list);
2741		if (kmem_cache_close(s)) {
2742			printk(KERN_ERR "SLUB %s: %s called for cache that "
2743				"still has objects.\n", s->name, __func__);
2744			dump_stack();
2745		}
2746		if (s->flags & SLAB_DESTROY_BY_RCU)
2747			rcu_barrier();
2748		sysfs_slab_remove(s);
2749	}
2750	up_write(&slub_lock);
2751}
2752EXPORT_SYMBOL(kmem_cache_destroy);
2753
2754/********************************************************************
2755 *		Kmalloc subsystem
2756 *******************************************************************/
2757
2758struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2759EXPORT_SYMBOL(kmalloc_caches);
2760
2761static struct kmem_cache *kmem_cache;
2762
2763#ifdef CONFIG_ZONE_DMA
2764static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2765#endif
2766
2767static int __init setup_slub_min_order(char *str)
2768{
2769	get_option(&str, &slub_min_order);
2770
2771	return 1;
2772}
2773
2774__setup("slub_min_order=", setup_slub_min_order);
2775
2776static int __init setup_slub_max_order(char *str)
2777{
2778	get_option(&str, &slub_max_order);
2779	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2780
2781	return 1;
2782}
2783
2784__setup("slub_max_order=", setup_slub_max_order);
2785
2786static int __init setup_slub_min_objects(char *str)
2787{
2788	get_option(&str, &slub_min_objects);
2789
2790	return 1;
2791}
2792
2793__setup("slub_min_objects=", setup_slub_min_objects);
2794
2795static int __init setup_slub_nomerge(char *str)
2796{
2797	slub_nomerge = 1;
2798	return 1;
2799}
2800
2801__setup("slub_nomerge", setup_slub_nomerge);
2802
2803static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2804						int size, unsigned int flags)
2805{
2806	struct kmem_cache *s;
2807
2808	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2809
2810	/*
2811	 * This function is called with IRQs disabled during early-boot on
2812	 * single CPU so there's no need to take slub_lock here.
2813	 */
2814	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2815								flags, NULL))
2816		goto panic;
2817
2818	list_add(&s->list, &slab_caches);
2819	return s;
2820
2821panic:
2822	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2823	return NULL;
2824}
2825
2826/*
2827 * Conversion table for small slabs sizes / 8 to the index in the
2828 * kmalloc array. This is necessary for slabs < 192 since we have non power
2829 * of two cache sizes there. The size of larger slabs can be determined using
2830 * fls.
2831 */
2832static s8 size_index[24] = {
2833	3,	/* 8 */
2834	4,	/* 16 */
2835	5,	/* 24 */
2836	5,	/* 32 */
2837	6,	/* 40 */
2838	6,	/* 48 */
2839	6,	/* 56 */
2840	6,	/* 64 */
2841	1,	/* 72 */
2842	1,	/* 80 */
2843	1,	/* 88 */
2844	1,	/* 96 */
2845	7,	/* 104 */
2846	7,	/* 112 */
2847	7,	/* 120 */
2848	7,	/* 128 */
2849	2,	/* 136 */
2850	2,	/* 144 */
2851	2,	/* 152 */
2852	2,	/* 160 */
2853	2,	/* 168 */
2854	2,	/* 176 */
2855	2,	/* 184 */
2856	2	/* 192 */
2857};
2858
2859static inline int size_index_elem(size_t bytes)
2860{
2861	return (bytes - 1) / 8;
2862}
2863
2864static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2865{
2866	int index;
2867
2868	if (size <= 192) {
2869		if (!size)
2870			return ZERO_SIZE_PTR;
2871
2872		index = size_index[size_index_elem(size)];
2873	} else
2874		index = fls(size - 1);
2875
2876#ifdef CONFIG_ZONE_DMA
2877	if (unlikely((flags & SLUB_DMA)))
2878		return kmalloc_dma_caches[index];
2879
2880#endif
2881	return kmalloc_caches[index];
2882}
2883
2884void *__kmalloc(size_t size, gfp_t flags)
2885{
2886	struct kmem_cache *s;
2887	void *ret;
2888
2889	if (unlikely(size > SLUB_MAX_SIZE))
2890		return kmalloc_large(size, flags);
2891
2892	s = get_slab(size, flags);
2893
2894	if (unlikely(ZERO_OR_NULL_PTR(s)))
2895		return s;
2896
2897	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2898
2899	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2900
2901	return ret;
2902}
2903EXPORT_SYMBOL(__kmalloc);
2904
2905#ifdef CONFIG_NUMA
2906static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2907{
2908	struct page *page;
2909	void *ptr = NULL;
2910
2911	flags |= __GFP_COMP | __GFP_NOTRACK;
2912	page = alloc_pages_node(node, flags, get_order(size));
2913	if (page)
2914		ptr = page_address(page);
2915
2916	kmemleak_alloc(ptr, size, 1, flags);
2917	return ptr;
2918}
2919
2920void *__kmalloc_node(size_t size, gfp_t flags, int node)
2921{
2922	struct kmem_cache *s;
2923	void *ret;
2924
2925	if (unlikely(size > SLUB_MAX_SIZE)) {
2926		ret = kmalloc_large_node(size, flags, node);
2927
2928		trace_kmalloc_node(_RET_IP_, ret,
2929				   size, PAGE_SIZE << get_order(size),
2930				   flags, node);
2931
2932		return ret;
2933	}
2934
2935	s = get_slab(size, flags);
2936
2937	if (unlikely(ZERO_OR_NULL_PTR(s)))
2938		return s;
2939
2940	ret = slab_alloc(s, flags, node, _RET_IP_);
2941
2942	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2943
2944	return ret;
2945}
2946EXPORT_SYMBOL(__kmalloc_node);
2947#endif
2948
2949size_t ksize(const void *object)
2950{
2951	struct page *page;
2952
2953	if (unlikely(object == ZERO_SIZE_PTR))
2954		return 0;
2955
2956	page = virt_to_head_page(object);
2957
2958	if (unlikely(!PageSlab(page))) {
2959		WARN_ON(!PageCompound(page));
2960		return PAGE_SIZE << compound_order(page);
2961	}
2962
2963	return slab_ksize(page->slab);
2964}
2965EXPORT_SYMBOL(ksize);
2966
2967#ifdef CONFIG_SLUB_DEBUG
2968bool verify_mem_not_deleted(const void *x)
2969{
2970	struct page *page;
2971	void *object = (void *)x;
2972	unsigned long flags;
2973	bool rv;
2974
2975	if (unlikely(ZERO_OR_NULL_PTR(x)))
2976		return false;
2977
2978	local_irq_save(flags);
2979
2980	page = virt_to_head_page(x);
2981	if (unlikely(!PageSlab(page))) {
2982		/* maybe it was from stack? */
2983		rv = true;
2984		goto out_unlock;
2985	}
2986
2987	slab_lock(page);
2988	if (on_freelist(page->slab, page, object)) {
2989		object_err(page->slab, page, object, "Object is on free-list");
2990		rv = false;
2991	} else {
2992		rv = true;
2993	}
2994	slab_unlock(page);
2995
2996out_unlock:
2997	local_irq_restore(flags);
2998	return rv;
2999}
3000EXPORT_SYMBOL(verify_mem_not_deleted);
3001#endif
3002
3003void kfree(const void *x)
3004{
3005	struct page *page;
3006	void *object = (void *)x;
3007
3008	trace_kfree(_RET_IP_, x);
3009
3010	if (unlikely(ZERO_OR_NULL_PTR(x)))
3011		return;
3012
3013	page = virt_to_head_page(x);
3014	if (unlikely(!PageSlab(page))) {
3015		BUG_ON(!PageCompound(page));
3016		kmemleak_free(x);
3017		put_page(page);
3018		return;
3019	}
3020	slab_free(page->slab, page, object, _RET_IP_);
3021}
3022EXPORT_SYMBOL(kfree);
3023
3024/*
3025 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3026 * the remaining slabs by the number of items in use. The slabs with the
3027 * most items in use come first. New allocations will then fill those up
3028 * and thus they can be removed from the partial lists.
3029 *
3030 * The slabs with the least items are placed last. This results in them
3031 * being allocated from last increasing the chance that the last objects
3032 * are freed in them.
3033 */
3034int kmem_cache_shrink(struct kmem_cache *s)
3035{
3036	int node;
3037	int i;
3038	struct kmem_cache_node *n;
3039	struct page *page;
3040	struct page *t;
3041	int objects = oo_objects(s->max);
3042	struct list_head *slabs_by_inuse =
3043		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3044	unsigned long flags;
3045
3046	if (!slabs_by_inuse)
3047		return -ENOMEM;
3048
3049	flush_all(s);
3050	for_each_node_state(node, N_NORMAL_MEMORY) {
3051		n = get_node(s, node);
3052
3053		if (!n->nr_partial)
3054			continue;
3055
3056		for (i = 0; i < objects; i++)
3057			INIT_LIST_HEAD(slabs_by_inuse + i);
3058
3059		spin_lock_irqsave(&n->list_lock, flags);
3060
3061		/*
3062		 * Build lists indexed by the items in use in each slab.
3063		 *
3064		 * Note that concurrent frees may occur while we hold the
3065		 * list_lock. page->inuse here is the upper limit.
3066		 */
3067		list_for_each_entry_safe(page, t, &n->partial, lru) {
3068			if (!page->inuse && slab_trylock(page)) {
3069				/*
3070				 * Must hold slab lock here because slab_free
3071				 * may have freed the last object and be
3072				 * waiting to release the slab.
3073				 */
3074				__remove_partial(n, page);
3075				slab_unlock(page);
3076				discard_slab(s, page);
3077			} else {
3078				list_move(&page->lru,
3079				slabs_by_inuse + page->inuse);
3080			}
3081		}
3082
3083		/*
3084		 * Rebuild the partial list with the slabs filled up most
3085		 * first and the least used slabs at the end.
3086		 */
3087		for (i = objects - 1; i >= 0; i--)
3088			list_splice(slabs_by_inuse + i, n->partial.prev);
3089
3090		spin_unlock_irqrestore(&n->list_lock, flags);
3091	}
3092
3093	kfree(slabs_by_inuse);
3094	return 0;
3095}
3096EXPORT_SYMBOL(kmem_cache_shrink);
3097
3098#if defined(CONFIG_MEMORY_HOTPLUG)
3099static int slab_mem_going_offline_callback(void *arg)
3100{
3101	struct kmem_cache *s;
3102
3103	down_read(&slub_lock);
3104	list_for_each_entry(s, &slab_caches, list)
3105		kmem_cache_shrink(s);
3106	up_read(&slub_lock);
3107
3108	return 0;
3109}
3110
3111static void slab_mem_offline_callback(void *arg)
3112{
3113	struct kmem_cache_node *n;
3114	struct kmem_cache *s;
3115	struct memory_notify *marg = arg;
3116	int offline_node;
3117
3118	offline_node = marg->status_change_nid;
3119
3120	/*
3121	 * If the node still has available memory. we need kmem_cache_node
3122	 * for it yet.
3123	 */
3124	if (offline_node < 0)
3125		return;
3126
3127	down_read(&slub_lock);
3128	list_for_each_entry(s, &slab_caches, list) {
3129		n = get_node(s, offline_node);
3130		if (n) {
3131			/*
3132			 * if n->nr_slabs > 0, slabs still exist on the node
3133			 * that is going down. We were unable to free them,
3134			 * and offline_pages() function shouldn't call this
3135			 * callback. So, we must fail.
3136			 */
3137			BUG_ON(slabs_node(s, offline_node));
3138
3139			s->node[offline_node] = NULL;
3140			kmem_cache_free(kmem_cache_node, n);
3141		}
3142	}
3143	up_read(&slub_lock);
3144}
3145
3146static int slab_mem_going_online_callback(void *arg)
3147{
3148	struct kmem_cache_node *n;
3149	struct kmem_cache *s;
3150	struct memory_notify *marg = arg;
3151	int nid = marg->status_change_nid;
3152	int ret = 0;
3153
3154	/*
3155	 * If the node's memory is already available, then kmem_cache_node is
3156	 * already created. Nothing to do.
3157	 */
3158	if (nid < 0)
3159		return 0;
3160
3161	/*
3162	 * We are bringing a node online. No memory is available yet. We must
3163	 * allocate a kmem_cache_node structure in order to bring the node
3164	 * online.
3165	 */
3166	down_read(&slub_lock);
3167	list_for_each_entry(s, &slab_caches, list) {
3168		/*
3169		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3170		 *      since memory is not yet available from the node that
3171		 *      is brought up.
3172		 */
3173		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3174		if (!n) {
3175			ret = -ENOMEM;
3176			goto out;
3177		}
3178		init_kmem_cache_node(n, s);
3179		s->node[nid] = n;
3180	}
3181out:
3182	up_read(&slub_lock);
3183	return ret;
3184}
3185
3186static int slab_memory_callback(struct notifier_block *self,
3187				unsigned long action, void *arg)
3188{
3189	int ret = 0;
3190
3191	switch (action) {
3192	case MEM_GOING_ONLINE:
3193		ret = slab_mem_going_online_callback(arg);
3194		break;
3195	case MEM_GOING_OFFLINE:
3196		ret = slab_mem_going_offline_callback(arg);
3197		break;
3198	case MEM_OFFLINE:
3199	case MEM_CANCEL_ONLINE:
3200		slab_mem_offline_callback(arg);
3201		break;
3202	case MEM_ONLINE:
3203	case MEM_CANCEL_OFFLINE:
3204		break;
3205	}
3206	if (ret)
3207		ret = notifier_from_errno(ret);
3208	else
3209		ret = NOTIFY_OK;
3210	return ret;
3211}
3212
3213#endif /* CONFIG_MEMORY_HOTPLUG */
3214
3215/********************************************************************
3216 *			Basic setup of slabs
3217 *******************************************************************/
3218
3219/*
3220 * Used for early kmem_cache structures that were allocated using
3221 * the page allocator
3222 */
3223
3224static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3225{
3226	int node;
3227
3228	list_add(&s->list, &slab_caches);
3229	s->refcount = -1;
3230
3231	for_each_node_state(node, N_NORMAL_MEMORY) {
3232		struct kmem_cache_node *n = get_node(s, node);
3233		struct page *p;
3234
3235		if (n) {
3236			list_for_each_entry(p, &n->partial, lru)
3237				p->slab = s;
3238
3239#ifdef CONFIG_SLUB_DEBUG
3240			list_for_each_entry(p, &n->full, lru)
3241				p->slab = s;
3242#endif
3243		}
3244	}
3245}
3246
3247void __init kmem_cache_init(void)
3248{
3249	int i;
3250	int caches = 0;
3251	struct kmem_cache *temp_kmem_cache;
3252	int order;
3253	struct kmem_cache *temp_kmem_cache_node;
3254	unsigned long kmalloc_size;
3255
3256	kmem_size = offsetof(struct kmem_cache, node) +
3257				nr_node_ids * sizeof(struct kmem_cache_node *);
3258
3259	/* Allocate two kmem_caches from the page allocator */
3260	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3261	order = get_order(2 * kmalloc_size);
3262	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3263
3264	/*
3265	 * Must first have the slab cache available for the allocations of the
3266	 * struct kmem_cache_node's. There is special bootstrap code in
3267	 * kmem_cache_open for slab_state == DOWN.
3268	 */
3269	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3270
3271	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3272		sizeof(struct kmem_cache_node),
3273		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3274
3275	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3276
3277	/* Able to allocate the per node structures */
3278	slab_state = PARTIAL;
3279
3280	temp_kmem_cache = kmem_cache;
3281	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3282		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3283	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3284	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3285
3286	/*
3287	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3288	 * kmem_cache_node is separately allocated so no need to
3289	 * update any list pointers.
3290	 */
3291	temp_kmem_cache_node = kmem_cache_node;
3292
3293	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3294	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3295
3296	kmem_cache_bootstrap_fixup(kmem_cache_node);
3297
3298	caches++;
3299	kmem_cache_bootstrap_fixup(kmem_cache);
3300	caches++;
3301	/* Free temporary boot structure */
3302	free_pages((unsigned long)temp_kmem_cache, order);
3303
3304	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3305
3306	/*
3307	 * Patch up the size_index table if we have strange large alignment
3308	 * requirements for the kmalloc array. This is only the case for
3309	 * MIPS it seems. The standard arches will not generate any code here.
3310	 *
3311	 * Largest permitted alignment is 256 bytes due to the way we
3312	 * handle the index determination for the smaller caches.
3313	 *
3314	 * Make sure that nothing crazy happens if someone starts tinkering
3315	 * around with ARCH_KMALLOC_MINALIGN
3316	 */
3317	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3318		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3319
3320	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3321		int elem = size_index_elem(i);
3322		if (elem >= ARRAY_SIZE(size_index))
3323			break;
3324		size_index[elem] = KMALLOC_SHIFT_LOW;
3325	}
3326
3327	if (KMALLOC_MIN_SIZE == 64) {
3328		/*
3329		 * The 96 byte size cache is not used if the alignment
3330		 * is 64 byte.
3331		 */
3332		for (i = 64 + 8; i <= 96; i += 8)
3333			size_index[size_index_elem(i)] = 7;
3334	} else if (KMALLOC_MIN_SIZE == 128) {
3335		/*
3336		 * The 192 byte sized cache is not used if the alignment
3337		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3338		 * instead.
3339		 */
3340		for (i = 128 + 8; i <= 192; i += 8)
3341			size_index[size_index_elem(i)] = 8;
3342	}
3343
3344	/* Caches that are not of the two-to-the-power-of size */
3345	if (KMALLOC_MIN_SIZE <= 32) {
3346		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3347		caches++;
3348	}
3349
3350	if (KMALLOC_MIN_SIZE <= 64) {
3351		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3352		caches++;
3353	}
3354
3355	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3356		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3357		caches++;
3358	}
3359
3360	slab_state = UP;
3361
3362	/* Provide the correct kmalloc names now that the caches are up */
3363	if (KMALLOC_MIN_SIZE <= 32) {
3364		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3365		BUG_ON(!kmalloc_caches[1]->name);
3366	}
3367
3368	if (KMALLOC_MIN_SIZE <= 64) {
3369		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3370		BUG_ON(!kmalloc_caches[2]->name);
3371	}
3372
3373	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3374		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3375
3376		BUG_ON(!s);
3377		kmalloc_caches[i]->name = s;
3378	}
3379
3380#ifdef CONFIG_SMP
3381	register_cpu_notifier(&slab_notifier);
3382#endif
3383
3384#ifdef CONFIG_ZONE_DMA
3385	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3386		struct kmem_cache *s = kmalloc_caches[i];
3387
3388		if (s && s->size) {
3389			char *name = kasprintf(GFP_NOWAIT,
3390				 "dma-kmalloc-%d", s->objsize);
3391
3392			BUG_ON(!name);
3393			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3394				s->objsize, SLAB_CACHE_DMA);
3395		}
3396	}
3397#endif
3398	printk(KERN_INFO
3399		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3400		" CPUs=%d, Nodes=%d\n",
3401		caches, cache_line_size(),
3402		slub_min_order, slub_max_order, slub_min_objects,
3403		nr_cpu_ids, nr_node_ids);
3404}
3405
3406void __init kmem_cache_init_late(void)
3407{
3408}
3409
3410/*
3411 * Find a mergeable slab cache
3412 */
3413static int slab_unmergeable(struct kmem_cache *s)
3414{
3415	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3416		return 1;
3417
3418	if (s->ctor)
3419		return 1;
3420
3421	/*
3422	 * We may have set a slab to be unmergeable during bootstrap.
3423	 */
3424	if (s->refcount < 0)
3425		return 1;
3426
3427	return 0;
3428}
3429
3430static struct kmem_cache *find_mergeable(size_t size,
3431		size_t align, unsigned long flags, const char *name,
3432		void (*ctor)(void *))
3433{
3434	struct kmem_cache *s;
3435
3436	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3437		return NULL;
3438
3439	if (ctor)
3440		return NULL;
3441
3442	size = ALIGN(size, sizeof(void *));
3443	align = calculate_alignment(flags, align, size);
3444	size = ALIGN(size, align);
3445	flags = kmem_cache_flags(size, flags, name, NULL);
3446
3447	list_for_each_entry(s, &slab_caches, list) {
3448		if (slab_unmergeable(s))
3449			continue;
3450
3451		if (size > s->size)
3452			continue;
3453
3454		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3455				continue;
3456		/*
3457		 * Check if alignment is compatible.
3458		 * Courtesy of Adrian Drzewiecki
3459		 */
3460		if ((s->size & ~(align - 1)) != s->size)
3461			continue;
3462
3463		if (s->size - size >= sizeof(void *))
3464			continue;
3465
3466		return s;
3467	}
3468	return NULL;
3469}
3470
3471struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3472		size_t align, unsigned long flags, void (*ctor)(void *))
3473{
3474	struct kmem_cache *s;
3475	char *n;
3476
3477	if (WARN_ON(!name))
3478		return NULL;
3479
3480	down_write(&slub_lock);
3481	s = find_mergeable(size, align, flags, name, ctor);
3482	if (s) {
3483		s->refcount++;
3484		/*
3485		 * Adjust the object sizes so that we clear
3486		 * the complete object on kzalloc.
3487		 */
3488		s->objsize = max(s->objsize, (int)size);
3489		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3490
3491		if (sysfs_slab_alias(s, name)) {
3492			s->refcount--;
3493			goto err;
3494		}
3495		up_write(&slub_lock);
3496		return s;
3497	}
3498
3499	n = kstrdup(name, GFP_KERNEL);
3500	if (!n)
3501		goto err;
3502
3503	s = kmalloc(kmem_size, GFP_KERNEL);
3504	if (s) {
3505		if (kmem_cache_open(s, n,
3506				size, align, flags, ctor)) {
3507			list_add(&s->list, &slab_caches);
3508			if (sysfs_slab_add(s)) {
3509				list_del(&s->list);
3510				kfree(n);
3511				kfree(s);
3512				goto err;
3513			}
3514			up_write(&slub_lock);
3515			return s;
3516		}
3517		kfree(n);
3518		kfree(s);
3519	}
3520err:
3521	up_write(&slub_lock);
3522
3523	if (flags & SLAB_PANIC)
3524		panic("Cannot create slabcache %s\n", name);
3525	else
3526		s = NULL;
3527	return s;
3528}
3529EXPORT_SYMBOL(kmem_cache_create);
3530
3531#ifdef CONFIG_SMP
3532/*
3533 * Use the cpu notifier to insure that the cpu slabs are flushed when
3534 * necessary.
3535 */
3536static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3537		unsigned long action, void *hcpu)
3538{
3539	long cpu = (long)hcpu;
3540	struct kmem_cache *s;
3541	unsigned long flags;
3542
3543	switch (action) {
3544	case CPU_UP_CANCELED:
3545	case CPU_UP_CANCELED_FROZEN:
3546	case CPU_DEAD:
3547	case CPU_DEAD_FROZEN:
3548		down_read(&slub_lock);
3549		list_for_each_entry(s, &slab_caches, list) {
3550			local_irq_save(flags);
3551			__flush_cpu_slab(s, cpu);
3552			local_irq_restore(flags);
3553		}
3554		up_read(&slub_lock);
3555		break;
3556	default:
3557		break;
3558	}
3559	return NOTIFY_OK;
3560}
3561
3562static struct notifier_block __cpuinitdata slab_notifier = {
3563	.notifier_call = slab_cpuup_callback
3564};
3565
3566#endif
3567
3568void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3569{
3570	struct kmem_cache *s;
3571	void *ret;
3572
3573	if (unlikely(size > SLUB_MAX_SIZE))
3574		return kmalloc_large(size, gfpflags);
3575
3576	s = get_slab(size, gfpflags);
3577
3578	if (unlikely(ZERO_OR_NULL_PTR(s)))
3579		return s;
3580
3581	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3582
3583	/* Honor the call site pointer we received. */
3584	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3585
3586	return ret;
3587}
3588
3589#ifdef CONFIG_NUMA
3590void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3591					int node, unsigned long caller)
3592{
3593	struct kmem_cache *s;
3594	void *ret;
3595
3596	if (unlikely(size > SLUB_MAX_SIZE)) {
3597		ret = kmalloc_large_node(size, gfpflags, node);
3598
3599		trace_kmalloc_node(caller, ret,
3600				   size, PAGE_SIZE << get_order(size),
3601				   gfpflags, node);
3602
3603		return ret;
3604	}
3605
3606	s = get_slab(size, gfpflags);
3607
3608	if (unlikely(ZERO_OR_NULL_PTR(s)))
3609		return s;
3610
3611	ret = slab_alloc(s, gfpflags, node, caller);
3612
3613	/* Honor the call site pointer we received. */
3614	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3615
3616	return ret;
3617}
3618#endif
3619
3620#ifdef CONFIG_SYSFS
3621static int count_inuse(struct page *page)
3622{
3623	return page->inuse;
3624}
3625
3626static int count_total(struct page *page)
3627{
3628	return page->objects;
3629}
3630#endif
3631
3632#ifdef CONFIG_SLUB_DEBUG
3633static int validate_slab(struct kmem_cache *s, struct page *page,
3634						unsigned long *map)
3635{
3636	void *p;
3637	void *addr = page_address(page);
3638
3639	if (!check_slab(s, page) ||
3640			!on_freelist(s, page, NULL))
3641		return 0;
3642
3643	/* Now we know that a valid freelist exists */
3644	bitmap_zero(map, page->objects);
3645
3646	get_map(s, page, map);
3647	for_each_object(p, s, addr, page->objects) {
3648		if (test_bit(slab_index(p, s, addr), map))
3649			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3650				return 0;
3651	}
3652
3653	for_each_object(p, s, addr, page->objects)
3654		if (!test_bit(slab_index(p, s, addr), map))
3655			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3656				return 0;
3657	return 1;
3658}
3659
3660static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3661						unsigned long *map)
3662{
3663	if (slab_trylock(page)) {
3664		validate_slab(s, page, map);
3665		slab_unlock(page);
3666	} else
3667		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3668			s->name, page);
3669}
3670
3671static int validate_slab_node(struct kmem_cache *s,
3672		struct kmem_cache_node *n, unsigned long *map)
3673{
3674	unsigned long count = 0;
3675	struct page *page;
3676	unsigned long flags;
3677
3678	spin_lock_irqsave(&n->list_lock, flags);
3679
3680	list_for_each_entry(page, &n->partial, lru) {
3681		validate_slab_slab(s, page, map);
3682		count++;
3683	}
3684	if (count != n->nr_partial)
3685		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3686			"counter=%ld\n", s->name, count, n->nr_partial);
3687
3688	if (!(s->flags & SLAB_STORE_USER))
3689		goto out;
3690
3691	list_for_each_entry(page, &n->full, lru) {
3692		validate_slab_slab(s, page, map);
3693		count++;
3694	}
3695	if (count != atomic_long_read(&n->nr_slabs))
3696		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3697			"counter=%ld\n", s->name, count,
3698			atomic_long_read(&n->nr_slabs));
3699
3700out:
3701	spin_unlock_irqrestore(&n->list_lock, flags);
3702	return count;
3703}
3704
3705static long validate_slab_cache(struct kmem_cache *s)
3706{
3707	int node;
3708	unsigned long count = 0;
3709	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3710				sizeof(unsigned long), GFP_KERNEL);
3711
3712	if (!map)
3713		return -ENOMEM;
3714
3715	flush_all(s);
3716	for_each_node_state(node, N_NORMAL_MEMORY) {
3717		struct kmem_cache_node *n = get_node(s, node);
3718
3719		count += validate_slab_node(s, n, map);
3720	}
3721	kfree(map);
3722	return count;
3723}
3724/*
3725 * Generate lists of code addresses where slabcache objects are allocated
3726 * and freed.
3727 */
3728
3729struct location {
3730	unsigned long count;
3731	unsigned long addr;
3732	long long sum_time;
3733	long min_time;
3734	long max_time;
3735	long min_pid;
3736	long max_pid;
3737	DECLARE_BITMAP(cpus, NR_CPUS);
3738	nodemask_t nodes;
3739};
3740
3741struct loc_track {
3742	unsigned long max;
3743	unsigned long count;
3744	struct location *loc;
3745};
3746
3747static void free_loc_track(struct loc_track *t)
3748{
3749	if (t->max)
3750		free_pages((unsigned long)t->loc,
3751			get_order(sizeof(struct location) * t->max));
3752}
3753
3754static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3755{
3756	struct location *l;
3757	int order;
3758
3759	order = get_order(sizeof(struct location) * max);
3760
3761	l = (void *)__get_free_pages(flags, order);
3762	if (!l)
3763		return 0;
3764
3765	if (t->count) {
3766		memcpy(l, t->loc, sizeof(struct location) * t->count);
3767		free_loc_track(t);
3768	}
3769	t->max = max;
3770	t->loc = l;
3771	return 1;
3772}
3773
3774static int add_location(struct loc_track *t, struct kmem_cache *s,
3775				const struct track *track)
3776{
3777	long start, end, pos;
3778	struct location *l;
3779	unsigned long caddr;
3780	unsigned long age = jiffies - track->when;
3781
3782	start = -1;
3783	end = t->count;
3784
3785	for ( ; ; ) {
3786		pos = start + (end - start + 1) / 2;
3787
3788		/*
3789		 * There is nothing at "end". If we end up there
3790		 * we need to add something to before end.
3791		 */
3792		if (pos == end)
3793			break;
3794
3795		caddr = t->loc[pos].addr;
3796		if (track->addr == caddr) {
3797
3798			l = &t->loc[pos];
3799			l->count++;
3800			if (track->when) {
3801				l->sum_time += age;
3802				if (age < l->min_time)
3803					l->min_time = age;
3804				if (age > l->max_time)
3805					l->max_time = age;
3806
3807				if (track->pid < l->min_pid)
3808					l->min_pid = track->pid;
3809				if (track->pid > l->max_pid)
3810					l->max_pid = track->pid;
3811
3812				cpumask_set_cpu(track->cpu,
3813						to_cpumask(l->cpus));
3814			}
3815			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3816			return 1;
3817		}
3818
3819		if (track->addr < caddr)
3820			end = pos;
3821		else
3822			start = pos;
3823	}
3824
3825	/*
3826	 * Not found. Insert new tracking element.
3827	 */
3828	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3829		return 0;
3830
3831	l = t->loc + pos;
3832	if (pos < t->count)
3833		memmove(l + 1, l,
3834			(t->count - pos) * sizeof(struct location));
3835	t->count++;
3836	l->count = 1;
3837	l->addr = track->addr;
3838	l->sum_time = age;
3839	l->min_time = age;
3840	l->max_time = age;
3841	l->min_pid = track->pid;
3842	l->max_pid = track->pid;
3843	cpumask_clear(to_cpumask(l->cpus));
3844	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3845	nodes_clear(l->nodes);
3846	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3847	return 1;
3848}
3849
3850static void process_slab(struct loc_track *t, struct kmem_cache *s,
3851		struct page *page, enum track_item alloc,
3852		unsigned long *map)
3853{
3854	void *addr = page_address(page);
3855	void *p;
3856
3857	bitmap_zero(map, page->objects);
3858	get_map(s, page, map);
3859
3860	for_each_object(p, s, addr, page->objects)
3861		if (!test_bit(slab_index(p, s, addr), map))
3862			add_location(t, s, get_track(s, p, alloc));
3863}
3864
3865static int list_locations(struct kmem_cache *s, char *buf,
3866					enum track_item alloc)
3867{
3868	int len = 0;
3869	unsigned long i;
3870	struct loc_track t = { 0, 0, NULL };
3871	int node;
3872	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3873				     sizeof(unsigned long), GFP_KERNEL);
3874
3875	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3876				     GFP_TEMPORARY)) {
3877		kfree(map);
3878		return sprintf(buf, "Out of memory\n");
3879	}
3880	/* Push back cpu slabs */
3881	flush_all(s);
3882
3883	for_each_node_state(node, N_NORMAL_MEMORY) {
3884		struct kmem_cache_node *n = get_node(s, node);
3885		unsigned long flags;
3886		struct page *page;
3887
3888		if (!atomic_long_read(&n->nr_slabs))
3889			continue;
3890
3891		spin_lock_irqsave(&n->list_lock, flags);
3892		list_for_each_entry(page, &n->partial, lru)
3893			process_slab(&t, s, page, alloc, map);
3894		list_for_each_entry(page, &n->full, lru)
3895			process_slab(&t, s, page, alloc, map);
3896		spin_unlock_irqrestore(&n->list_lock, flags);
3897	}
3898
3899	for (i = 0; i < t.count; i++) {
3900		struct location *l = &t.loc[i];
3901
3902		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3903			break;
3904		len += sprintf(buf + len, "%7ld ", l->count);
3905
3906		if (l->addr)
3907			len += sprintf(buf + len, "%pS", (void *)l->addr);
3908		else
3909			len += sprintf(buf + len, "<not-available>");
3910
3911		if (l->sum_time != l->min_time) {
3912			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3913				l->min_time,
3914				(long)div_u64(l->sum_time, l->count),
3915				l->max_time);
3916		} else
3917			len += sprintf(buf + len, " age=%ld",
3918				l->min_time);
3919
3920		if (l->min_pid != l->max_pid)
3921			len += sprintf(buf + len, " pid=%ld-%ld",
3922				l->min_pid, l->max_pid);
3923		else
3924			len += sprintf(buf + len, " pid=%ld",
3925				l->min_pid);
3926
3927		if (num_online_cpus() > 1 &&
3928				!cpumask_empty(to_cpumask(l->cpus)) &&
3929				len < PAGE_SIZE - 60) {
3930			len += sprintf(buf + len, " cpus=");
3931			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3932						 to_cpumask(l->cpus));
3933		}
3934
3935		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3936				len < PAGE_SIZE - 60) {
3937			len += sprintf(buf + len, " nodes=");
3938			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3939					l->nodes);
3940		}
3941
3942		len += sprintf(buf + len, "\n");
3943	}
3944
3945	free_loc_track(&t);
3946	kfree(map);
3947	if (!t.count)
3948		len += sprintf(buf, "No data\n");
3949	return len;
3950}
3951#endif
3952
3953#ifdef SLUB_RESILIENCY_TEST
3954static void resiliency_test(void)
3955{
3956	u8 *p;
3957
3958	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3959
3960	printk(KERN_ERR "SLUB resiliency testing\n");
3961	printk(KERN_ERR "-----------------------\n");
3962	printk(KERN_ERR "A. Corruption after allocation\n");
3963
3964	p = kzalloc(16, GFP_KERNEL);
3965	p[16] = 0x12;
3966	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3967			" 0x12->0x%p\n\n", p + 16);
3968
3969	validate_slab_cache(kmalloc_caches[4]);
3970
3971	/* Hmmm... The next two are dangerous */
3972	p = kzalloc(32, GFP_KERNEL);
3973	p[32 + sizeof(void *)] = 0x34;
3974	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3975			" 0x34 -> -0x%p\n", p);
3976	printk(KERN_ERR
3977		"If allocated object is overwritten then not detectable\n\n");
3978
3979	validate_slab_cache(kmalloc_caches[5]);
3980	p = kzalloc(64, GFP_KERNEL);
3981	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3982	*p = 0x56;
3983	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3984									p);
3985	printk(KERN_ERR
3986		"If allocated object is overwritten then not detectable\n\n");
3987	validate_slab_cache(kmalloc_caches[6]);
3988
3989	printk(KERN_ERR "\nB. Corruption after free\n");
3990	p = kzalloc(128, GFP_KERNEL);
3991	kfree(p);
3992	*p = 0x78;
3993	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3994	validate_slab_cache(kmalloc_caches[7]);
3995
3996	p = kzalloc(256, GFP_KERNEL);
3997	kfree(p);
3998	p[50] = 0x9a;
3999	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4000			p);
4001	validate_slab_cache(kmalloc_caches[8]);
4002
4003	p = kzalloc(512, GFP_KERNEL);
4004	kfree(p);
4005	p[512] = 0xab;
4006	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4007	validate_slab_cache(kmalloc_caches[9]);
4008}
4009#else
4010#ifdef CONFIG_SYSFS
4011static void resiliency_test(void) {};
4012#endif
4013#endif
4014
4015#ifdef CONFIG_SYSFS
4016enum slab_stat_type {
4017	SL_ALL,			/* All slabs */
4018	SL_PARTIAL,		/* Only partially allocated slabs */
4019	SL_CPU,			/* Only slabs used for cpu caches */
4020	SL_OBJECTS,		/* Determine allocated objects not slabs */
4021	SL_TOTAL		/* Determine object capacity not slabs */
4022};
4023
4024#define SO_ALL		(1 << SL_ALL)
4025#define SO_PARTIAL	(1 << SL_PARTIAL)
4026#define SO_CPU		(1 << SL_CPU)
4027#define SO_OBJECTS	(1 << SL_OBJECTS)
4028#define SO_TOTAL	(1 << SL_TOTAL)
4029
4030static ssize_t show_slab_objects(struct kmem_cache *s,
4031			    char *buf, unsigned long flags)
4032{
4033	unsigned long total = 0;
4034	int node;
4035	int x;
4036	unsigned long *nodes;
4037	unsigned long *per_cpu;
4038
4039	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4040	if (!nodes)
4041		return -ENOMEM;
4042	per_cpu = nodes + nr_node_ids;
4043
4044	if (flags & SO_CPU) {
4045		int cpu;
4046
4047		for_each_possible_cpu(cpu) {
4048			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4049
4050			if (!c || c->node < 0)
4051				continue;
4052
4053			if (c->page) {
4054					if (flags & SO_TOTAL)
4055						x = c->page->objects;
4056				else if (flags & SO_OBJECTS)
4057					x = c->page->inuse;
4058				else
4059					x = 1;
4060
4061				total += x;
4062				nodes[c->node] += x;
4063			}
4064			per_cpu[c->node]++;
4065		}
4066	}
4067
4068	lock_memory_hotplug();
4069#ifdef CONFIG_SLUB_DEBUG
4070	if (flags & SO_ALL) {
4071		for_each_node_state(node, N_NORMAL_MEMORY) {
4072			struct kmem_cache_node *n = get_node(s, node);
4073
4074		if (flags & SO_TOTAL)
4075			x = atomic_long_read(&n->total_objects);
4076		else if (flags & SO_OBJECTS)
4077			x = atomic_long_read(&n->total_objects) -
4078				count_partial(n, count_free);
4079
4080			else
4081				x = atomic_long_read(&n->nr_slabs);
4082			total += x;
4083			nodes[node] += x;
4084		}
4085
4086	} else
4087#endif
4088	if (flags & SO_PARTIAL) {
4089		for_each_node_state(node, N_NORMAL_MEMORY) {
4090			struct kmem_cache_node *n = get_node(s, node);
4091
4092			if (flags & SO_TOTAL)
4093				x = count_partial(n, count_total);
4094			else if (flags & SO_OBJECTS)
4095				x = count_partial(n, count_inuse);
4096			else
4097				x = n->nr_partial;
4098			total += x;
4099			nodes[node] += x;
4100		}
4101	}
4102	x = sprintf(buf, "%lu", total);
4103#ifdef CONFIG_NUMA
4104	for_each_node_state(node, N_NORMAL_MEMORY)
4105		if (nodes[node])
4106			x += sprintf(buf + x, " N%d=%lu",
4107					node, nodes[node]);
4108#endif
4109	unlock_memory_hotplug();
4110	kfree(nodes);
4111	return x + sprintf(buf + x, "\n");
4112}
4113
4114#ifdef CONFIG_SLUB_DEBUG
4115static int any_slab_objects(struct kmem_cache *s)
4116{
4117	int node;
4118
4119	for_each_online_node(node) {
4120		struct kmem_cache_node *n = get_node(s, node);
4121
4122		if (!n)
4123			continue;
4124
4125		if (atomic_long_read(&n->total_objects))
4126			return 1;
4127	}
4128	return 0;
4129}
4130#endif
4131
4132#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4133#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4134
4135struct slab_attribute {
4136	struct attribute attr;
4137	ssize_t (*show)(struct kmem_cache *s, char *buf);
4138	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4139};
4140
4141#define SLAB_ATTR_RO(_name) \
4142	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4143
4144#define SLAB_ATTR(_name) \
4145	static struct slab_attribute _name##_attr =  \
4146	__ATTR(_name, 0644, _name##_show, _name##_store)
4147
4148static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4149{
4150	return sprintf(buf, "%d\n", s->size);
4151}
4152SLAB_ATTR_RO(slab_size);
4153
4154static ssize_t align_show(struct kmem_cache *s, char *buf)
4155{
4156	return sprintf(buf, "%d\n", s->align);
4157}
4158SLAB_ATTR_RO(align);
4159
4160static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4161{
4162	return sprintf(buf, "%d\n", s->objsize);
4163}
4164SLAB_ATTR_RO(object_size);
4165
4166static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4167{
4168	return sprintf(buf, "%d\n", oo_objects(s->oo));
4169}
4170SLAB_ATTR_RO(objs_per_slab);
4171
4172static ssize_t order_store(struct kmem_cache *s,
4173				const char *buf, size_t length)
4174{
4175	unsigned long order;
4176	int err;
4177
4178	err = strict_strtoul(buf, 10, &order);
4179	if (err)
4180		return err;
4181
4182	if (order > slub_max_order || order < slub_min_order)
4183		return -EINVAL;
4184
4185	calculate_sizes(s, order);
4186	return length;
4187}
4188
4189static ssize_t order_show(struct kmem_cache *s, char *buf)
4190{
4191	return sprintf(buf, "%d\n", oo_order(s->oo));
4192}
4193SLAB_ATTR(order);
4194
4195static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4196{
4197	return sprintf(buf, "%lu\n", s->min_partial);
4198}
4199
4200static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4201				 size_t length)
4202{
4203	unsigned long min;
4204	int err;
4205
4206	err = strict_strtoul(buf, 10, &min);
4207	if (err)
4208		return err;
4209
4210	set_min_partial(s, min);
4211	return length;
4212}
4213SLAB_ATTR(min_partial);
4214
4215static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4216{
4217	if (!s->ctor)
4218		return 0;
4219	return sprintf(buf, "%pS\n", s->ctor);
4220}
4221SLAB_ATTR_RO(ctor);
4222
4223static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4224{
4225	return sprintf(buf, "%d\n", s->refcount - 1);
4226}
4227SLAB_ATTR_RO(aliases);
4228
4229static ssize_t partial_show(struct kmem_cache *s, char *buf)
4230{
4231	return show_slab_objects(s, buf, SO_PARTIAL);
4232}
4233SLAB_ATTR_RO(partial);
4234
4235static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4236{
4237	return show_slab_objects(s, buf, SO_CPU);
4238}
4239SLAB_ATTR_RO(cpu_slabs);
4240
4241static ssize_t objects_show(struct kmem_cache *s, char *buf)
4242{
4243	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4244}
4245SLAB_ATTR_RO(objects);
4246
4247static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4248{
4249	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4250}
4251SLAB_ATTR_RO(objects_partial);
4252
4253static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4254{
4255	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4256}
4257
4258static ssize_t reclaim_account_store(struct kmem_cache *s,
4259				const char *buf, size_t length)
4260{
4261	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4262	if (buf[0] == '1')
4263		s->flags |= SLAB_RECLAIM_ACCOUNT;
4264	return length;
4265}
4266SLAB_ATTR(reclaim_account);
4267
4268static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4269{
4270	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4271}
4272SLAB_ATTR_RO(hwcache_align);
4273
4274#ifdef CONFIG_ZONE_DMA
4275static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4276{
4277	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4278}
4279SLAB_ATTR_RO(cache_dma);
4280#endif
4281
4282static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4283{
4284	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4285}
4286SLAB_ATTR_RO(destroy_by_rcu);
4287
4288static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4289{
4290	return sprintf(buf, "%d\n", s->reserved);
4291}
4292SLAB_ATTR_RO(reserved);
4293
4294#ifdef CONFIG_SLUB_DEBUG
4295static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4296{
4297	return show_slab_objects(s, buf, SO_ALL);
4298}
4299SLAB_ATTR_RO(slabs);
4300
4301static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4302{
4303	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4304}
4305SLAB_ATTR_RO(total_objects);
4306
4307static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4308{
4309	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4310}
4311
4312static ssize_t sanity_checks_store(struct kmem_cache *s,
4313				const char *buf, size_t length)
4314{
4315	s->flags &= ~SLAB_DEBUG_FREE;
4316	if (buf[0] == '1')
4317		s->flags |= SLAB_DEBUG_FREE;
4318	return length;
4319}
4320SLAB_ATTR(sanity_checks);
4321
4322static ssize_t trace_show(struct kmem_cache *s, char *buf)
4323{
4324	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4325}
4326
4327static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4328							size_t length)
4329{
4330	s->flags &= ~SLAB_TRACE;
4331	if (buf[0] == '1')
4332		s->flags |= SLAB_TRACE;
4333	return length;
4334}
4335SLAB_ATTR(trace);
4336
4337static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4338{
4339	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4340}
4341
4342static ssize_t red_zone_store(struct kmem_cache *s,
4343				const char *buf, size_t length)
4344{
4345	if (any_slab_objects(s))
4346		return -EBUSY;
4347
4348	s->flags &= ~SLAB_RED_ZONE;
4349	if (buf[0] == '1')
4350		s->flags |= SLAB_RED_ZONE;
4351	calculate_sizes(s, -1);
4352	return length;
4353}
4354SLAB_ATTR(red_zone);
4355
4356static ssize_t poison_show(struct kmem_cache *s, char *buf)
4357{
4358	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4359}
4360
4361static ssize_t poison_store(struct kmem_cache *s,
4362				const char *buf, size_t length)
4363{
4364	if (any_slab_objects(s))
4365		return -EBUSY;
4366
4367	s->flags &= ~SLAB_POISON;
4368	if (buf[0] == '1')
4369		s->flags |= SLAB_POISON;
4370	calculate_sizes(s, -1);
4371	return length;
4372}
4373SLAB_ATTR(poison);
4374
4375static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4376{
4377	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4378}
4379
4380static ssize_t store_user_store(struct kmem_cache *s,
4381				const char *buf, size_t length)
4382{
4383	if (any_slab_objects(s))
4384		return -EBUSY;
4385
4386	s->flags &= ~SLAB_STORE_USER;
4387	if (buf[0] == '1')
4388		s->flags |= SLAB_STORE_USER;
4389	calculate_sizes(s, -1);
4390	return length;
4391}
4392SLAB_ATTR(store_user);
4393
4394static ssize_t validate_show(struct kmem_cache *s, char *buf)
4395{
4396	return 0;
4397}
4398
4399static ssize_t validate_store(struct kmem_cache *s,
4400			const char *buf, size_t length)
4401{
4402	int ret = -EINVAL;
4403
4404	if (buf[0] == '1') {
4405		ret = validate_slab_cache(s);
4406		if (ret >= 0)
4407			ret = length;
4408	}
4409	return ret;
4410}
4411SLAB_ATTR(validate);
4412
4413static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4414{
4415	if (!(s->flags & SLAB_STORE_USER))
4416		return -ENOSYS;
4417	return list_locations(s, buf, TRACK_ALLOC);
4418}
4419SLAB_ATTR_RO(alloc_calls);
4420
4421static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4422{
4423	if (!(s->flags & SLAB_STORE_USER))
4424		return -ENOSYS;
4425	return list_locations(s, buf, TRACK_FREE);
4426}
4427SLAB_ATTR_RO(free_calls);
4428#endif /* CONFIG_SLUB_DEBUG */
4429
4430#ifdef CONFIG_FAILSLAB
4431static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4432{
4433	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4434}
4435
4436static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4437							size_t length)
4438{
4439	s->flags &= ~SLAB_FAILSLAB;
4440	if (buf[0] == '1')
4441		s->flags |= SLAB_FAILSLAB;
4442	return length;
4443}
4444SLAB_ATTR(failslab);
4445#endif
4446
4447static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4448{
4449	return 0;
4450}
4451
4452static ssize_t shrink_store(struct kmem_cache *s,
4453			const char *buf, size_t length)
4454{
4455	if (buf[0] == '1') {
4456		int rc = kmem_cache_shrink(s);
4457
4458		if (rc)
4459			return rc;
4460	} else
4461		return -EINVAL;
4462	return length;
4463}
4464SLAB_ATTR(shrink);
4465
4466#ifdef CONFIG_NUMA
4467static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4468{
4469	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4470}
4471
4472static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4473				const char *buf, size_t length)
4474{
4475	unsigned long ratio;
4476	int err;
4477
4478	err = strict_strtoul(buf, 10, &ratio);
4479	if (err)
4480		return err;
4481
4482	if (ratio <= 100)
4483		s->remote_node_defrag_ratio = ratio * 10;
4484
4485	return length;
4486}
4487SLAB_ATTR(remote_node_defrag_ratio);
4488#endif
4489
4490#ifdef CONFIG_SLUB_STATS
4491static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4492{
4493	unsigned long sum  = 0;
4494	int cpu;
4495	int len;
4496	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4497
4498	if (!data)
4499		return -ENOMEM;
4500
4501	for_each_online_cpu(cpu) {
4502		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4503
4504		data[cpu] = x;
4505		sum += x;
4506	}
4507
4508	len = sprintf(buf, "%lu", sum);
4509
4510#ifdef CONFIG_SMP
4511	for_each_online_cpu(cpu) {
4512		if (data[cpu] && len < PAGE_SIZE - 20)
4513			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4514	}
4515#endif
4516	kfree(data);
4517	return len + sprintf(buf + len, "\n");
4518}
4519
4520static void clear_stat(struct kmem_cache *s, enum stat_item si)
4521{
4522	int cpu;
4523
4524	for_each_online_cpu(cpu)
4525		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4526}
4527
4528#define STAT_ATTR(si, text) 					\
4529static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4530{								\
4531	return show_stat(s, buf, si);				\
4532}								\
4533static ssize_t text##_store(struct kmem_cache *s,		\
4534				const char *buf, size_t length)	\
4535{								\
4536	if (buf[0] != '0')					\
4537		return -EINVAL;					\
4538	clear_stat(s, si);					\
4539	return length;						\
4540}								\
4541SLAB_ATTR(text);						\
4542
4543STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4544STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4545STAT_ATTR(FREE_FASTPATH, free_fastpath);
4546STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4547STAT_ATTR(FREE_FROZEN, free_frozen);
4548STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4549STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4550STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4551STAT_ATTR(ALLOC_SLAB, alloc_slab);
4552STAT_ATTR(ALLOC_REFILL, alloc_refill);
4553STAT_ATTR(FREE_SLAB, free_slab);
4554STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4555STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4556STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4557STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4558STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4559STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4560STAT_ATTR(ORDER_FALLBACK, order_fallback);
4561#endif
4562
4563static struct attribute *slab_attrs[] = {
4564	&slab_size_attr.attr,
4565	&object_size_attr.attr,
4566	&objs_per_slab_attr.attr,
4567	&order_attr.attr,
4568	&min_partial_attr.attr,
4569	&objects_attr.attr,
4570	&objects_partial_attr.attr,
4571	&partial_attr.attr,
4572	&cpu_slabs_attr.attr,
4573	&ctor_attr.attr,
4574	&aliases_attr.attr,
4575	&align_attr.attr,
4576	&hwcache_align_attr.attr,
4577	&reclaim_account_attr.attr,
4578	&destroy_by_rcu_attr.attr,
4579	&shrink_attr.attr,
4580	&reserved_attr.attr,
4581#ifdef CONFIG_SLUB_DEBUG
4582	&total_objects_attr.attr,
4583	&slabs_attr.attr,
4584	&sanity_checks_attr.attr,
4585	&trace_attr.attr,
4586	&red_zone_attr.attr,
4587	&poison_attr.attr,
4588	&store_user_attr.attr,
4589	&validate_attr.attr,
4590	&alloc_calls_attr.attr,
4591	&free_calls_attr.attr,
4592#endif
4593#ifdef CONFIG_ZONE_DMA
4594	&cache_dma_attr.attr,
4595#endif
4596#ifdef CONFIG_NUMA
4597	&remote_node_defrag_ratio_attr.attr,
4598#endif
4599#ifdef CONFIG_SLUB_STATS
4600	&alloc_fastpath_attr.attr,
4601	&alloc_slowpath_attr.attr,
4602	&free_fastpath_attr.attr,
4603	&free_slowpath_attr.attr,
4604	&free_frozen_attr.attr,
4605	&free_add_partial_attr.attr,
4606	&free_remove_partial_attr.attr,
4607	&alloc_from_partial_attr.attr,
4608	&alloc_slab_attr.attr,
4609	&alloc_refill_attr.attr,
4610	&free_slab_attr.attr,
4611	&cpuslab_flush_attr.attr,
4612	&deactivate_full_attr.attr,
4613	&deactivate_empty_attr.attr,
4614	&deactivate_to_head_attr.attr,
4615	&deactivate_to_tail_attr.attr,
4616	&deactivate_remote_frees_attr.attr,
4617	&order_fallback_attr.attr,
4618#endif
4619#ifdef CONFIG_FAILSLAB
4620	&failslab_attr.attr,
4621#endif
4622
4623	NULL
4624};
4625
4626static struct attribute_group slab_attr_group = {
4627	.attrs = slab_attrs,
4628};
4629
4630static ssize_t slab_attr_show(struct kobject *kobj,
4631				struct attribute *attr,
4632				char *buf)
4633{
4634	struct slab_attribute *attribute;
4635	struct kmem_cache *s;
4636	int err;
4637
4638	attribute = to_slab_attr(attr);
4639	s = to_slab(kobj);
4640
4641	if (!attribute->show)
4642		return -EIO;
4643
4644	err = attribute->show(s, buf);
4645
4646	return err;
4647}
4648
4649static ssize_t slab_attr_store(struct kobject *kobj,
4650				struct attribute *attr,
4651				const char *buf, size_t len)
4652{
4653	struct slab_attribute *attribute;
4654	struct kmem_cache *s;
4655	int err;
4656
4657	attribute = to_slab_attr(attr);
4658	s = to_slab(kobj);
4659
4660	if (!attribute->store)
4661		return -EIO;
4662
4663	err = attribute->store(s, buf, len);
4664
4665	return err;
4666}
4667
4668static void kmem_cache_release(struct kobject *kobj)
4669{
4670	struct kmem_cache *s = to_slab(kobj);
4671
4672	kfree(s->name);
4673	kfree(s);
4674}
4675
4676static const struct sysfs_ops slab_sysfs_ops = {
4677	.show = slab_attr_show,
4678	.store = slab_attr_store,
4679};
4680
4681static struct kobj_type slab_ktype = {
4682	.sysfs_ops = &slab_sysfs_ops,
4683	.release = kmem_cache_release
4684};
4685
4686static int uevent_filter(struct kset *kset, struct kobject *kobj)
4687{
4688	struct kobj_type *ktype = get_ktype(kobj);
4689
4690	if (ktype == &slab_ktype)
4691		return 1;
4692	return 0;
4693}
4694
4695static const struct kset_uevent_ops slab_uevent_ops = {
4696	.filter = uevent_filter,
4697};
4698
4699static struct kset *slab_kset;
4700
4701#define ID_STR_LENGTH 64
4702
4703/* Create a unique string id for a slab cache:
4704 *
4705 * Format	:[flags-]size
4706 */
4707static char *create_unique_id(struct kmem_cache *s)
4708{
4709	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4710	char *p = name;
4711
4712	BUG_ON(!name);
4713
4714	*p++ = ':';
4715	/*
4716	 * First flags affecting slabcache operations. We will only
4717	 * get here for aliasable slabs so we do not need to support
4718	 * too many flags. The flags here must cover all flags that
4719	 * are matched during merging to guarantee that the id is
4720	 * unique.
4721	 */
4722	if (s->flags & SLAB_CACHE_DMA)
4723		*p++ = 'd';
4724	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4725		*p++ = 'a';
4726	if (s->flags & SLAB_DEBUG_FREE)
4727		*p++ = 'F';
4728	if (!(s->flags & SLAB_NOTRACK))
4729		*p++ = 't';
4730	if (p != name + 1)
4731		*p++ = '-';
4732	p += sprintf(p, "%07d", s->size);
4733	BUG_ON(p > name + ID_STR_LENGTH - 1);
4734	return name;
4735}
4736
4737static int sysfs_slab_add(struct kmem_cache *s)
4738{
4739	int err;
4740	const char *name;
4741	int unmergeable;
4742
4743	if (slab_state < SYSFS)
4744		/* Defer until later */
4745		return 0;
4746
4747	unmergeable = slab_unmergeable(s);
4748	if (unmergeable) {
4749		/*
4750		 * Slabcache can never be merged so we can use the name proper.
4751		 * This is typically the case for debug situations. In that
4752		 * case we can catch duplicate names easily.
4753		 */
4754		sysfs_remove_link(&slab_kset->kobj, s->name);
4755		name = s->name;
4756	} else {
4757		/*
4758		 * Create a unique name for the slab as a target
4759		 * for the symlinks.
4760		 */
4761		name = create_unique_id(s);
4762	}
4763
4764	s->kobj.kset = slab_kset;
4765	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4766	if (err) {
4767		kobject_put(&s->kobj);
4768		return err;
4769	}
4770
4771	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4772	if (err) {
4773		kobject_del(&s->kobj);
4774		kobject_put(&s->kobj);
4775		return err;
4776	}
4777	kobject_uevent(&s->kobj, KOBJ_ADD);
4778	if (!unmergeable) {
4779		/* Setup first alias */
4780		sysfs_slab_alias(s, s->name);
4781		kfree(name);
4782	}
4783	return 0;
4784}
4785
4786static void sysfs_slab_remove(struct kmem_cache *s)
4787{
4788	if (slab_state < SYSFS)
4789		/*
4790		 * Sysfs has not been setup yet so no need to remove the
4791		 * cache from sysfs.
4792		 */
4793		return;
4794
4795	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4796	kobject_del(&s->kobj);
4797	kobject_put(&s->kobj);
4798}
4799
4800/*
4801 * Need to buffer aliases during bootup until sysfs becomes
4802 * available lest we lose that information.
4803 */
4804struct saved_alias {
4805	struct kmem_cache *s;
4806	const char *name;
4807	struct saved_alias *next;
4808};
4809
4810static struct saved_alias *alias_list;
4811
4812static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4813{
4814	struct saved_alias *al;
4815
4816	if (slab_state == SYSFS) {
4817		/*
4818		 * If we have a leftover link then remove it.
4819		 */
4820		sysfs_remove_link(&slab_kset->kobj, name);
4821		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4822	}
4823
4824	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4825	if (!al)
4826		return -ENOMEM;
4827
4828	al->s = s;
4829	al->name = name;
4830	al->next = alias_list;
4831	alias_list = al;
4832	return 0;
4833}
4834
4835static int __init slab_sysfs_init(void)
4836{
4837	struct kmem_cache *s;
4838	int err;
4839
4840	down_write(&slub_lock);
4841
4842	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4843	if (!slab_kset) {
4844		up_write(&slub_lock);
4845		printk(KERN_ERR "Cannot register slab subsystem.\n");
4846		return -ENOSYS;
4847	}
4848
4849	slab_state = SYSFS;
4850
4851	list_for_each_entry(s, &slab_caches, list) {
4852		err = sysfs_slab_add(s);
4853		if (err)
4854			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4855						" to sysfs\n", s->name);
4856	}
4857
4858	while (alias_list) {
4859		struct saved_alias *al = alias_list;
4860
4861		alias_list = alias_list->next;
4862		err = sysfs_slab_alias(al->s, al->name);
4863		if (err)
4864			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4865					" %s to sysfs\n", s->name);
4866		kfree(al);
4867	}
4868
4869	up_write(&slub_lock);
4870	resiliency_test();
4871	return 0;
4872}
4873
4874__initcall(slab_sysfs_init);
4875#endif /* CONFIG_SYSFS */
4876
4877/*
4878 * The /proc/slabinfo ABI
4879 */
4880#ifdef CONFIG_SLABINFO
4881static void print_slabinfo_header(struct seq_file *m)
4882{
4883	seq_puts(m, "slabinfo - version: 2.1\n");
4884	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4885		 "<objperslab> <pagesperslab>");
4886	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4887	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4888	seq_putc(m, '\n');
4889}
4890
4891static void *s_start(struct seq_file *m, loff_t *pos)
4892{
4893	loff_t n = *pos;
4894
4895	down_read(&slub_lock);
4896	if (!n)
4897		print_slabinfo_header(m);
4898
4899	return seq_list_start(&slab_caches, *pos);
4900}
4901
4902static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4903{
4904	return seq_list_next(p, &slab_caches, pos);
4905}
4906
4907static void s_stop(struct seq_file *m, void *p)
4908{
4909	up_read(&slub_lock);
4910}
4911
4912static int s_show(struct seq_file *m, void *p)
4913{
4914	unsigned long nr_partials = 0;
4915	unsigned long nr_slabs = 0;
4916	unsigned long nr_inuse = 0;
4917	unsigned long nr_objs = 0;
4918	unsigned long nr_free = 0;
4919	struct kmem_cache *s;
4920	int node;
4921
4922	s = list_entry(p, struct kmem_cache, list);
4923
4924	for_each_online_node(node) {
4925		struct kmem_cache_node *n = get_node(s, node);
4926
4927		if (!n)
4928			continue;
4929
4930		nr_partials += n->nr_partial;
4931		nr_slabs += atomic_long_read(&n->nr_slabs);
4932		nr_objs += atomic_long_read(&n->total_objects);
4933		nr_free += count_partial(n, count_free);
4934	}
4935
4936	nr_inuse = nr_objs - nr_free;
4937
4938	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4939		   nr_objs, s->size, oo_objects(s->oo),
4940		   (1 << oo_order(s->oo)));
4941	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4942	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4943		   0UL);
4944	seq_putc(m, '\n');
4945	return 0;
4946}
4947
4948static const struct seq_operations slabinfo_op = {
4949	.start = s_start,
4950	.next = s_next,
4951	.stop = s_stop,
4952	.show = s_show,
4953};
4954
4955static int slabinfo_open(struct inode *inode, struct file *file)
4956{
4957	return seq_open(file, &slabinfo_op);
4958}
4959
4960static const struct file_operations proc_slabinfo_operations = {
4961	.open		= slabinfo_open,
4962	.read		= seq_read,
4963	.llseek		= seq_lseek,
4964	.release	= seq_release,
4965};
4966
4967static int __init slab_proc_init(void)
4968{
4969	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4970	return 0;
4971}
4972module_init(slab_proc_init);
4973#endif /* CONFIG_SLABINFO */
4974