slub.c revision d3e06e2b15590b70ea73733fc4612e4741ff46e0
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/swap.h> /* struct reclaim_state */
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
18#include <linux/proc_fs.h>
19#include <linux/seq_file.h>
20#include <linux/kmemtrace.h>
21#include <linux/kmemcheck.h>
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
26#include <linux/debugobjects.h>
27#include <linux/kallsyms.h>
28#include <linux/memory.h>
29#include <linux/math64.h>
30#include <linux/fault-inject.h>
31
32/*
33 * Lock order:
34 *   1. slab_lock(page)
35 *   2. slab->list_lock
36 *
37 *   The slab_lock protects operations on the object of a particular
38 *   slab and its metadata in the page struct. If the slab lock
39 *   has been taken then no allocations nor frees can be performed
40 *   on the objects in the slab nor can the slab be added or removed
41 *   from the partial or full lists since this would mean modifying
42 *   the page_struct of the slab.
43 *
44 *   The list_lock protects the partial and full list on each node and
45 *   the partial slab counter. If taken then no new slabs may be added or
46 *   removed from the lists nor make the number of partial slabs be modified.
47 *   (Note that the total number of slabs is an atomic value that may be
48 *   modified without taking the list lock).
49 *
50 *   The list_lock is a centralized lock and thus we avoid taking it as
51 *   much as possible. As long as SLUB does not have to handle partial
52 *   slabs, operations can continue without any centralized lock. F.e.
53 *   allocating a long series of objects that fill up slabs does not require
54 *   the list lock.
55 *
56 *   The lock order is sometimes inverted when we are trying to get a slab
57 *   off a list. We take the list_lock and then look for a page on the list
58 *   to use. While we do that objects in the slabs may be freed. We can
59 *   only operate on the slab if we have also taken the slab_lock. So we use
60 *   a slab_trylock() on the slab. If trylock was successful then no frees
61 *   can occur anymore and we can use the slab for allocations etc. If the
62 *   slab_trylock() does not succeed then frees are in progress in the slab and
63 *   we must stay away from it for a while since we may cause a bouncing
64 *   cacheline if we try to acquire the lock. So go onto the next slab.
65 *   If all pages are busy then we may allocate a new slab instead of reusing
66 *   a partial slab. A new slab has noone operating on it and thus there is
67 *   no danger of cacheline contention.
68 *
69 *   Interrupts are disabled during allocation and deallocation in order to
70 *   make the slab allocator safe to use in the context of an irq. In addition
71 *   interrupts are disabled to ensure that the processor does not change
72 *   while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
89 * PageActive 		The slab is frozen and exempt from list processing.
90 * 			This means that the slab is dedicated to a purpose
91 * 			such as satisfying allocations for a specific
92 * 			processor. Objects may be freed in the slab while
93 * 			it is frozen but slab_free will then skip the usual
94 * 			list operations. It is up to the processor holding
95 * 			the slab to integrate the slab into the slab lists
96 * 			when the slab is no longer needed.
97 *
98 * 			One use of this flag is to mark slabs that are
99 * 			used for allocations. Then such a slab becomes a cpu
100 * 			slab. The cpu slab may be equipped with an additional
101 * 			freelist that allows lockless access to
102 * 			free objects in addition to the regular freelist
103 * 			that requires the slab lock.
104 *
105 * PageError		Slab requires special handling due to debug
106 * 			options set. This moves	slab handling out of
107 * 			the fast path and disables lockless freelists.
108 */
109
110#ifdef CONFIG_SLUB_DEBUG
111#define SLABDEBUG 1
112#else
113#define SLABDEBUG 0
114#endif
115
116/*
117 * Issues still to be resolved:
118 *
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
121 * - Variable sizing of the per node arrays
122 */
123
124/* Enable to test recovery from slab corruption on boot */
125#undef SLUB_RESILIENCY_TEST
126
127/*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
131#define MIN_PARTIAL 5
132
133/*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138#define MAX_PARTIAL 10
139
140#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141				SLAB_POISON | SLAB_STORE_USER)
142
143/*
144 * Debugging flags that require metadata to be stored in the slab.  These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
147 */
148#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
149
150/*
151 * Set of flags that will prevent slab merging
152 */
153#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
155		SLAB_FAILSLAB)
156
157#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
158		SLAB_CACHE_DMA | SLAB_NOTRACK)
159
160#ifndef ARCH_KMALLOC_MINALIGN
161#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
162#endif
163
164#ifndef ARCH_SLAB_MINALIGN
165#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
166#endif
167
168#define OO_SHIFT	16
169#define OO_MASK		((1 << OO_SHIFT) - 1)
170#define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
171
172/* Internal SLUB flags */
173#define __OBJECT_POISON		0x80000000 /* Poison object */
174#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
175
176static int kmem_size = sizeof(struct kmem_cache);
177
178#ifdef CONFIG_SMP
179static struct notifier_block slab_notifier;
180#endif
181
182static enum {
183	DOWN,		/* No slab functionality available */
184	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
185	UP,		/* Everything works but does not show up in sysfs */
186	SYSFS		/* Sysfs up */
187} slab_state = DOWN;
188
189/* A list of all slab caches on the system */
190static DECLARE_RWSEM(slub_lock);
191static LIST_HEAD(slab_caches);
192
193/*
194 * Tracking user of a slab.
195 */
196struct track {
197	unsigned long addr;	/* Called from address */
198	int cpu;		/* Was running on cpu */
199	int pid;		/* Pid context */
200	unsigned long when;	/* When did the operation occur */
201};
202
203enum track_item { TRACK_ALLOC, TRACK_FREE };
204
205#ifdef CONFIG_SLUB_DEBUG
206static int sysfs_slab_add(struct kmem_cache *);
207static int sysfs_slab_alias(struct kmem_cache *, const char *);
208static void sysfs_slab_remove(struct kmem_cache *);
209
210#else
211static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
212static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
213							{ return 0; }
214static inline void sysfs_slab_remove(struct kmem_cache *s)
215{
216	kfree(s);
217}
218
219#endif
220
221static inline void stat(struct kmem_cache *s, enum stat_item si)
222{
223#ifdef CONFIG_SLUB_STATS
224	__this_cpu_inc(s->cpu_slab->stat[si]);
225#endif
226}
227
228/********************************************************************
229 * 			Core slab cache functions
230 *******************************************************************/
231
232int slab_is_available(void)
233{
234	return slab_state >= UP;
235}
236
237static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
238{
239#ifdef CONFIG_NUMA
240	return s->node[node];
241#else
242	return &s->local_node;
243#endif
244}
245
246/* Verify that a pointer has an address that is valid within a slab page */
247static inline int check_valid_pointer(struct kmem_cache *s,
248				struct page *page, const void *object)
249{
250	void *base;
251
252	if (!object)
253		return 1;
254
255	base = page_address(page);
256	if (object < base || object >= base + page->objects * s->size ||
257		(object - base) % s->size) {
258		return 0;
259	}
260
261	return 1;
262}
263
264static inline void *get_freepointer(struct kmem_cache *s, void *object)
265{
266	return *(void **)(object + s->offset);
267}
268
269static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
270{
271	*(void **)(object + s->offset) = fp;
272}
273
274/* Loop over all objects in a slab */
275#define for_each_object(__p, __s, __addr, __objects) \
276	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
277			__p += (__s)->size)
278
279/* Scan freelist */
280#define for_each_free_object(__p, __s, __free) \
281	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
282
283/* Determine object index from a given position */
284static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
285{
286	return (p - addr) / s->size;
287}
288
289static inline struct kmem_cache_order_objects oo_make(int order,
290						unsigned long size)
291{
292	struct kmem_cache_order_objects x = {
293		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
294	};
295
296	return x;
297}
298
299static inline int oo_order(struct kmem_cache_order_objects x)
300{
301	return x.x >> OO_SHIFT;
302}
303
304static inline int oo_objects(struct kmem_cache_order_objects x)
305{
306	return x.x & OO_MASK;
307}
308
309#ifdef CONFIG_SLUB_DEBUG
310/*
311 * Debug settings:
312 */
313#ifdef CONFIG_SLUB_DEBUG_ON
314static int slub_debug = DEBUG_DEFAULT_FLAGS;
315#else
316static int slub_debug;
317#endif
318
319static char *slub_debug_slabs;
320static int disable_higher_order_debug;
321
322/*
323 * Object debugging
324 */
325static void print_section(char *text, u8 *addr, unsigned int length)
326{
327	int i, offset;
328	int newline = 1;
329	char ascii[17];
330
331	ascii[16] = 0;
332
333	for (i = 0; i < length; i++) {
334		if (newline) {
335			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
336			newline = 0;
337		}
338		printk(KERN_CONT " %02x", addr[i]);
339		offset = i % 16;
340		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
341		if (offset == 15) {
342			printk(KERN_CONT " %s\n", ascii);
343			newline = 1;
344		}
345	}
346	if (!newline) {
347		i %= 16;
348		while (i < 16) {
349			printk(KERN_CONT "   ");
350			ascii[i] = ' ';
351			i++;
352		}
353		printk(KERN_CONT " %s\n", ascii);
354	}
355}
356
357static struct track *get_track(struct kmem_cache *s, void *object,
358	enum track_item alloc)
359{
360	struct track *p;
361
362	if (s->offset)
363		p = object + s->offset + sizeof(void *);
364	else
365		p = object + s->inuse;
366
367	return p + alloc;
368}
369
370static void set_track(struct kmem_cache *s, void *object,
371			enum track_item alloc, unsigned long addr)
372{
373	struct track *p = get_track(s, object, alloc);
374
375	if (addr) {
376		p->addr = addr;
377		p->cpu = smp_processor_id();
378		p->pid = current->pid;
379		p->when = jiffies;
380	} else
381		memset(p, 0, sizeof(struct track));
382}
383
384static void init_tracking(struct kmem_cache *s, void *object)
385{
386	if (!(s->flags & SLAB_STORE_USER))
387		return;
388
389	set_track(s, object, TRACK_FREE, 0UL);
390	set_track(s, object, TRACK_ALLOC, 0UL);
391}
392
393static void print_track(const char *s, struct track *t)
394{
395	if (!t->addr)
396		return;
397
398	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
399		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
400}
401
402static void print_tracking(struct kmem_cache *s, void *object)
403{
404	if (!(s->flags & SLAB_STORE_USER))
405		return;
406
407	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
408	print_track("Freed", get_track(s, object, TRACK_FREE));
409}
410
411static void print_page_info(struct page *page)
412{
413	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
414		page, page->objects, page->inuse, page->freelist, page->flags);
415
416}
417
418static void slab_bug(struct kmem_cache *s, char *fmt, ...)
419{
420	va_list args;
421	char buf[100];
422
423	va_start(args, fmt);
424	vsnprintf(buf, sizeof(buf), fmt, args);
425	va_end(args);
426	printk(KERN_ERR "========================================"
427			"=====================================\n");
428	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
429	printk(KERN_ERR "----------------------------------------"
430			"-------------------------------------\n\n");
431}
432
433static void slab_fix(struct kmem_cache *s, char *fmt, ...)
434{
435	va_list args;
436	char buf[100];
437
438	va_start(args, fmt);
439	vsnprintf(buf, sizeof(buf), fmt, args);
440	va_end(args);
441	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
442}
443
444static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
445{
446	unsigned int off;	/* Offset of last byte */
447	u8 *addr = page_address(page);
448
449	print_tracking(s, p);
450
451	print_page_info(page);
452
453	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
454			p, p - addr, get_freepointer(s, p));
455
456	if (p > addr + 16)
457		print_section("Bytes b4", p - 16, 16);
458
459	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
460
461	if (s->flags & SLAB_RED_ZONE)
462		print_section("Redzone", p + s->objsize,
463			s->inuse - s->objsize);
464
465	if (s->offset)
466		off = s->offset + sizeof(void *);
467	else
468		off = s->inuse;
469
470	if (s->flags & SLAB_STORE_USER)
471		off += 2 * sizeof(struct track);
472
473	if (off != s->size)
474		/* Beginning of the filler is the free pointer */
475		print_section("Padding", p + off, s->size - off);
476
477	dump_stack();
478}
479
480static void object_err(struct kmem_cache *s, struct page *page,
481			u8 *object, char *reason)
482{
483	slab_bug(s, "%s", reason);
484	print_trailer(s, page, object);
485}
486
487static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
488{
489	va_list args;
490	char buf[100];
491
492	va_start(args, fmt);
493	vsnprintf(buf, sizeof(buf), fmt, args);
494	va_end(args);
495	slab_bug(s, "%s", buf);
496	print_page_info(page);
497	dump_stack();
498}
499
500static void init_object(struct kmem_cache *s, void *object, int active)
501{
502	u8 *p = object;
503
504	if (s->flags & __OBJECT_POISON) {
505		memset(p, POISON_FREE, s->objsize - 1);
506		p[s->objsize - 1] = POISON_END;
507	}
508
509	if (s->flags & SLAB_RED_ZONE)
510		memset(p + s->objsize,
511			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
512			s->inuse - s->objsize);
513}
514
515static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
516{
517	while (bytes) {
518		if (*start != (u8)value)
519			return start;
520		start++;
521		bytes--;
522	}
523	return NULL;
524}
525
526static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
527						void *from, void *to)
528{
529	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
530	memset(from, data, to - from);
531}
532
533static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
534			u8 *object, char *what,
535			u8 *start, unsigned int value, unsigned int bytes)
536{
537	u8 *fault;
538	u8 *end;
539
540	fault = check_bytes(start, value, bytes);
541	if (!fault)
542		return 1;
543
544	end = start + bytes;
545	while (end > fault && end[-1] == value)
546		end--;
547
548	slab_bug(s, "%s overwritten", what);
549	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
550					fault, end - 1, fault[0], value);
551	print_trailer(s, page, object);
552
553	restore_bytes(s, what, value, fault, end);
554	return 0;
555}
556
557/*
558 * Object layout:
559 *
560 * object address
561 * 	Bytes of the object to be managed.
562 * 	If the freepointer may overlay the object then the free
563 * 	pointer is the first word of the object.
564 *
565 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
566 * 	0xa5 (POISON_END)
567 *
568 * object + s->objsize
569 * 	Padding to reach word boundary. This is also used for Redzoning.
570 * 	Padding is extended by another word if Redzoning is enabled and
571 * 	objsize == inuse.
572 *
573 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
574 * 	0xcc (RED_ACTIVE) for objects in use.
575 *
576 * object + s->inuse
577 * 	Meta data starts here.
578 *
579 * 	A. Free pointer (if we cannot overwrite object on free)
580 * 	B. Tracking data for SLAB_STORE_USER
581 * 	C. Padding to reach required alignment boundary or at mininum
582 * 		one word if debugging is on to be able to detect writes
583 * 		before the word boundary.
584 *
585 *	Padding is done using 0x5a (POISON_INUSE)
586 *
587 * object + s->size
588 * 	Nothing is used beyond s->size.
589 *
590 * If slabcaches are merged then the objsize and inuse boundaries are mostly
591 * ignored. And therefore no slab options that rely on these boundaries
592 * may be used with merged slabcaches.
593 */
594
595static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
596{
597	unsigned long off = s->inuse;	/* The end of info */
598
599	if (s->offset)
600		/* Freepointer is placed after the object. */
601		off += sizeof(void *);
602
603	if (s->flags & SLAB_STORE_USER)
604		/* We also have user information there */
605		off += 2 * sizeof(struct track);
606
607	if (s->size == off)
608		return 1;
609
610	return check_bytes_and_report(s, page, p, "Object padding",
611				p + off, POISON_INUSE, s->size - off);
612}
613
614/* Check the pad bytes at the end of a slab page */
615static int slab_pad_check(struct kmem_cache *s, struct page *page)
616{
617	u8 *start;
618	u8 *fault;
619	u8 *end;
620	int length;
621	int remainder;
622
623	if (!(s->flags & SLAB_POISON))
624		return 1;
625
626	start = page_address(page);
627	length = (PAGE_SIZE << compound_order(page));
628	end = start + length;
629	remainder = length % s->size;
630	if (!remainder)
631		return 1;
632
633	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
634	if (!fault)
635		return 1;
636	while (end > fault && end[-1] == POISON_INUSE)
637		end--;
638
639	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
640	print_section("Padding", end - remainder, remainder);
641
642	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
643	return 0;
644}
645
646static int check_object(struct kmem_cache *s, struct page *page,
647					void *object, int active)
648{
649	u8 *p = object;
650	u8 *endobject = object + s->objsize;
651
652	if (s->flags & SLAB_RED_ZONE) {
653		unsigned int red =
654			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
655
656		if (!check_bytes_and_report(s, page, object, "Redzone",
657			endobject, red, s->inuse - s->objsize))
658			return 0;
659	} else {
660		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
661			check_bytes_and_report(s, page, p, "Alignment padding",
662				endobject, POISON_INUSE, s->inuse - s->objsize);
663		}
664	}
665
666	if (s->flags & SLAB_POISON) {
667		if (!active && (s->flags & __OBJECT_POISON) &&
668			(!check_bytes_and_report(s, page, p, "Poison", p,
669					POISON_FREE, s->objsize - 1) ||
670			 !check_bytes_and_report(s, page, p, "Poison",
671				p + s->objsize - 1, POISON_END, 1)))
672			return 0;
673		/*
674		 * check_pad_bytes cleans up on its own.
675		 */
676		check_pad_bytes(s, page, p);
677	}
678
679	if (!s->offset && active)
680		/*
681		 * Object and freepointer overlap. Cannot check
682		 * freepointer while object is allocated.
683		 */
684		return 1;
685
686	/* Check free pointer validity */
687	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
688		object_err(s, page, p, "Freepointer corrupt");
689		/*
690		 * No choice but to zap it and thus lose the remainder
691		 * of the free objects in this slab. May cause
692		 * another error because the object count is now wrong.
693		 */
694		set_freepointer(s, p, NULL);
695		return 0;
696	}
697	return 1;
698}
699
700static int check_slab(struct kmem_cache *s, struct page *page)
701{
702	int maxobj;
703
704	VM_BUG_ON(!irqs_disabled());
705
706	if (!PageSlab(page)) {
707		slab_err(s, page, "Not a valid slab page");
708		return 0;
709	}
710
711	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
712	if (page->objects > maxobj) {
713		slab_err(s, page, "objects %u > max %u",
714			s->name, page->objects, maxobj);
715		return 0;
716	}
717	if (page->inuse > page->objects) {
718		slab_err(s, page, "inuse %u > max %u",
719			s->name, page->inuse, page->objects);
720		return 0;
721	}
722	/* Slab_pad_check fixes things up after itself */
723	slab_pad_check(s, page);
724	return 1;
725}
726
727/*
728 * Determine if a certain object on a page is on the freelist. Must hold the
729 * slab lock to guarantee that the chains are in a consistent state.
730 */
731static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
732{
733	int nr = 0;
734	void *fp = page->freelist;
735	void *object = NULL;
736	unsigned long max_objects;
737
738	while (fp && nr <= page->objects) {
739		if (fp == search)
740			return 1;
741		if (!check_valid_pointer(s, page, fp)) {
742			if (object) {
743				object_err(s, page, object,
744					"Freechain corrupt");
745				set_freepointer(s, object, NULL);
746				break;
747			} else {
748				slab_err(s, page, "Freepointer corrupt");
749				page->freelist = NULL;
750				page->inuse = page->objects;
751				slab_fix(s, "Freelist cleared");
752				return 0;
753			}
754			break;
755		}
756		object = fp;
757		fp = get_freepointer(s, object);
758		nr++;
759	}
760
761	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
762	if (max_objects > MAX_OBJS_PER_PAGE)
763		max_objects = MAX_OBJS_PER_PAGE;
764
765	if (page->objects != max_objects) {
766		slab_err(s, page, "Wrong number of objects. Found %d but "
767			"should be %d", page->objects, max_objects);
768		page->objects = max_objects;
769		slab_fix(s, "Number of objects adjusted.");
770	}
771	if (page->inuse != page->objects - nr) {
772		slab_err(s, page, "Wrong object count. Counter is %d but "
773			"counted were %d", page->inuse, page->objects - nr);
774		page->inuse = page->objects - nr;
775		slab_fix(s, "Object count adjusted.");
776	}
777	return search == NULL;
778}
779
780static void trace(struct kmem_cache *s, struct page *page, void *object,
781								int alloc)
782{
783	if (s->flags & SLAB_TRACE) {
784		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
785			s->name,
786			alloc ? "alloc" : "free",
787			object, page->inuse,
788			page->freelist);
789
790		if (!alloc)
791			print_section("Object", (void *)object, s->objsize);
792
793		dump_stack();
794	}
795}
796
797/*
798 * Tracking of fully allocated slabs for debugging purposes.
799 */
800static void add_full(struct kmem_cache_node *n, struct page *page)
801{
802	spin_lock(&n->list_lock);
803	list_add(&page->lru, &n->full);
804	spin_unlock(&n->list_lock);
805}
806
807static void remove_full(struct kmem_cache *s, struct page *page)
808{
809	struct kmem_cache_node *n;
810
811	if (!(s->flags & SLAB_STORE_USER))
812		return;
813
814	n = get_node(s, page_to_nid(page));
815
816	spin_lock(&n->list_lock);
817	list_del(&page->lru);
818	spin_unlock(&n->list_lock);
819}
820
821/* Tracking of the number of slabs for debugging purposes */
822static inline unsigned long slabs_node(struct kmem_cache *s, int node)
823{
824	struct kmem_cache_node *n = get_node(s, node);
825
826	return atomic_long_read(&n->nr_slabs);
827}
828
829static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
830{
831	return atomic_long_read(&n->nr_slabs);
832}
833
834static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
835{
836	struct kmem_cache_node *n = get_node(s, node);
837
838	/*
839	 * May be called early in order to allocate a slab for the
840	 * kmem_cache_node structure. Solve the chicken-egg
841	 * dilemma by deferring the increment of the count during
842	 * bootstrap (see early_kmem_cache_node_alloc).
843	 */
844	if (!NUMA_BUILD || n) {
845		atomic_long_inc(&n->nr_slabs);
846		atomic_long_add(objects, &n->total_objects);
847	}
848}
849static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
850{
851	struct kmem_cache_node *n = get_node(s, node);
852
853	atomic_long_dec(&n->nr_slabs);
854	atomic_long_sub(objects, &n->total_objects);
855}
856
857/* Object debug checks for alloc/free paths */
858static void setup_object_debug(struct kmem_cache *s, struct page *page,
859								void *object)
860{
861	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
862		return;
863
864	init_object(s, object, 0);
865	init_tracking(s, object);
866}
867
868static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
869					void *object, unsigned long addr)
870{
871	if (!check_slab(s, page))
872		goto bad;
873
874	if (!on_freelist(s, page, object)) {
875		object_err(s, page, object, "Object already allocated");
876		goto bad;
877	}
878
879	if (!check_valid_pointer(s, page, object)) {
880		object_err(s, page, object, "Freelist Pointer check fails");
881		goto bad;
882	}
883
884	if (!check_object(s, page, object, 0))
885		goto bad;
886
887	/* Success perform special debug activities for allocs */
888	if (s->flags & SLAB_STORE_USER)
889		set_track(s, object, TRACK_ALLOC, addr);
890	trace(s, page, object, 1);
891	init_object(s, object, 1);
892	return 1;
893
894bad:
895	if (PageSlab(page)) {
896		/*
897		 * If this is a slab page then lets do the best we can
898		 * to avoid issues in the future. Marking all objects
899		 * as used avoids touching the remaining objects.
900		 */
901		slab_fix(s, "Marking all objects used");
902		page->inuse = page->objects;
903		page->freelist = NULL;
904	}
905	return 0;
906}
907
908static int free_debug_processing(struct kmem_cache *s, struct page *page,
909					void *object, unsigned long addr)
910{
911	if (!check_slab(s, page))
912		goto fail;
913
914	if (!check_valid_pointer(s, page, object)) {
915		slab_err(s, page, "Invalid object pointer 0x%p", object);
916		goto fail;
917	}
918
919	if (on_freelist(s, page, object)) {
920		object_err(s, page, object, "Object already free");
921		goto fail;
922	}
923
924	if (!check_object(s, page, object, 1))
925		return 0;
926
927	if (unlikely(s != page->slab)) {
928		if (!PageSlab(page)) {
929			slab_err(s, page, "Attempt to free object(0x%p) "
930				"outside of slab", object);
931		} else if (!page->slab) {
932			printk(KERN_ERR
933				"SLUB <none>: no slab for object 0x%p.\n",
934						object);
935			dump_stack();
936		} else
937			object_err(s, page, object,
938					"page slab pointer corrupt.");
939		goto fail;
940	}
941
942	/* Special debug activities for freeing objects */
943	if (!PageSlubFrozen(page) && !page->freelist)
944		remove_full(s, page);
945	if (s->flags & SLAB_STORE_USER)
946		set_track(s, object, TRACK_FREE, addr);
947	trace(s, page, object, 0);
948	init_object(s, object, 0);
949	return 1;
950
951fail:
952	slab_fix(s, "Object at 0x%p not freed", object);
953	return 0;
954}
955
956static int __init setup_slub_debug(char *str)
957{
958	slub_debug = DEBUG_DEFAULT_FLAGS;
959	if (*str++ != '=' || !*str)
960		/*
961		 * No options specified. Switch on full debugging.
962		 */
963		goto out;
964
965	if (*str == ',')
966		/*
967		 * No options but restriction on slabs. This means full
968		 * debugging for slabs matching a pattern.
969		 */
970		goto check_slabs;
971
972	if (tolower(*str) == 'o') {
973		/*
974		 * Avoid enabling debugging on caches if its minimum order
975		 * would increase as a result.
976		 */
977		disable_higher_order_debug = 1;
978		goto out;
979	}
980
981	slub_debug = 0;
982	if (*str == '-')
983		/*
984		 * Switch off all debugging measures.
985		 */
986		goto out;
987
988	/*
989	 * Determine which debug features should be switched on
990	 */
991	for (; *str && *str != ','; str++) {
992		switch (tolower(*str)) {
993		case 'f':
994			slub_debug |= SLAB_DEBUG_FREE;
995			break;
996		case 'z':
997			slub_debug |= SLAB_RED_ZONE;
998			break;
999		case 'p':
1000			slub_debug |= SLAB_POISON;
1001			break;
1002		case 'u':
1003			slub_debug |= SLAB_STORE_USER;
1004			break;
1005		case 't':
1006			slub_debug |= SLAB_TRACE;
1007			break;
1008		case 'a':
1009			slub_debug |= SLAB_FAILSLAB;
1010			break;
1011		default:
1012			printk(KERN_ERR "slub_debug option '%c' "
1013				"unknown. skipped\n", *str);
1014		}
1015	}
1016
1017check_slabs:
1018	if (*str == ',')
1019		slub_debug_slabs = str + 1;
1020out:
1021	return 1;
1022}
1023
1024__setup("slub_debug", setup_slub_debug);
1025
1026static unsigned long kmem_cache_flags(unsigned long objsize,
1027	unsigned long flags, const char *name,
1028	void (*ctor)(void *))
1029{
1030	/*
1031	 * Enable debugging if selected on the kernel commandline.
1032	 */
1033	if (slub_debug && (!slub_debug_slabs ||
1034		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1035		flags |= slub_debug;
1036
1037	return flags;
1038}
1039#else
1040static inline void setup_object_debug(struct kmem_cache *s,
1041			struct page *page, void *object) {}
1042
1043static inline int alloc_debug_processing(struct kmem_cache *s,
1044	struct page *page, void *object, unsigned long addr) { return 0; }
1045
1046static inline int free_debug_processing(struct kmem_cache *s,
1047	struct page *page, void *object, unsigned long addr) { return 0; }
1048
1049static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1050			{ return 1; }
1051static inline int check_object(struct kmem_cache *s, struct page *page,
1052			void *object, int active) { return 1; }
1053static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1054static inline unsigned long kmem_cache_flags(unsigned long objsize,
1055	unsigned long flags, const char *name,
1056	void (*ctor)(void *))
1057{
1058	return flags;
1059}
1060#define slub_debug 0
1061
1062#define disable_higher_order_debug 0
1063
1064static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1065							{ return 0; }
1066static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1067							{ return 0; }
1068static inline void inc_slabs_node(struct kmem_cache *s, int node,
1069							int objects) {}
1070static inline void dec_slabs_node(struct kmem_cache *s, int node,
1071							int objects) {}
1072#endif
1073
1074/*
1075 * Slab allocation and freeing
1076 */
1077static inline struct page *alloc_slab_page(gfp_t flags, int node,
1078					struct kmem_cache_order_objects oo)
1079{
1080	int order = oo_order(oo);
1081
1082	flags |= __GFP_NOTRACK;
1083
1084	if (node == -1)
1085		return alloc_pages(flags, order);
1086	else
1087		return alloc_pages_node(node, flags, order);
1088}
1089
1090static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1091{
1092	struct page *page;
1093	struct kmem_cache_order_objects oo = s->oo;
1094	gfp_t alloc_gfp;
1095
1096	flags |= s->allocflags;
1097
1098	/*
1099	 * Let the initial higher-order allocation fail under memory pressure
1100	 * so we fall-back to the minimum order allocation.
1101	 */
1102	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1103
1104	page = alloc_slab_page(alloc_gfp, node, oo);
1105	if (unlikely(!page)) {
1106		oo = s->min;
1107		/*
1108		 * Allocation may have failed due to fragmentation.
1109		 * Try a lower order alloc if possible
1110		 */
1111		page = alloc_slab_page(flags, node, oo);
1112		if (!page)
1113			return NULL;
1114
1115		stat(s, ORDER_FALLBACK);
1116	}
1117
1118	if (kmemcheck_enabled
1119		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1120		int pages = 1 << oo_order(oo);
1121
1122		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1123
1124		/*
1125		 * Objects from caches that have a constructor don't get
1126		 * cleared when they're allocated, so we need to do it here.
1127		 */
1128		if (s->ctor)
1129			kmemcheck_mark_uninitialized_pages(page, pages);
1130		else
1131			kmemcheck_mark_unallocated_pages(page, pages);
1132	}
1133
1134	page->objects = oo_objects(oo);
1135	mod_zone_page_state(page_zone(page),
1136		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1137		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1138		1 << oo_order(oo));
1139
1140	return page;
1141}
1142
1143static void setup_object(struct kmem_cache *s, struct page *page,
1144				void *object)
1145{
1146	setup_object_debug(s, page, object);
1147	if (unlikely(s->ctor))
1148		s->ctor(object);
1149}
1150
1151static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1152{
1153	struct page *page;
1154	void *start;
1155	void *last;
1156	void *p;
1157
1158	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1159
1160	page = allocate_slab(s,
1161		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1162	if (!page)
1163		goto out;
1164
1165	inc_slabs_node(s, page_to_nid(page), page->objects);
1166	page->slab = s;
1167	page->flags |= 1 << PG_slab;
1168	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1169			SLAB_STORE_USER | SLAB_TRACE))
1170		__SetPageSlubDebug(page);
1171
1172	start = page_address(page);
1173
1174	if (unlikely(s->flags & SLAB_POISON))
1175		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1176
1177	last = start;
1178	for_each_object(p, s, start, page->objects) {
1179		setup_object(s, page, last);
1180		set_freepointer(s, last, p);
1181		last = p;
1182	}
1183	setup_object(s, page, last);
1184	set_freepointer(s, last, NULL);
1185
1186	page->freelist = start;
1187	page->inuse = 0;
1188out:
1189	return page;
1190}
1191
1192static void __free_slab(struct kmem_cache *s, struct page *page)
1193{
1194	int order = compound_order(page);
1195	int pages = 1 << order;
1196
1197	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1198		void *p;
1199
1200		slab_pad_check(s, page);
1201		for_each_object(p, s, page_address(page),
1202						page->objects)
1203			check_object(s, page, p, 0);
1204		__ClearPageSlubDebug(page);
1205	}
1206
1207	kmemcheck_free_shadow(page, compound_order(page));
1208
1209	mod_zone_page_state(page_zone(page),
1210		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1211		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1212		-pages);
1213
1214	__ClearPageSlab(page);
1215	reset_page_mapcount(page);
1216	if (current->reclaim_state)
1217		current->reclaim_state->reclaimed_slab += pages;
1218	__free_pages(page, order);
1219}
1220
1221static void rcu_free_slab(struct rcu_head *h)
1222{
1223	struct page *page;
1224
1225	page = container_of((struct list_head *)h, struct page, lru);
1226	__free_slab(page->slab, page);
1227}
1228
1229static void free_slab(struct kmem_cache *s, struct page *page)
1230{
1231	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1232		/*
1233		 * RCU free overloads the RCU head over the LRU
1234		 */
1235		struct rcu_head *head = (void *)&page->lru;
1236
1237		call_rcu(head, rcu_free_slab);
1238	} else
1239		__free_slab(s, page);
1240}
1241
1242static void discard_slab(struct kmem_cache *s, struct page *page)
1243{
1244	dec_slabs_node(s, page_to_nid(page), page->objects);
1245	free_slab(s, page);
1246}
1247
1248/*
1249 * Per slab locking using the pagelock
1250 */
1251static __always_inline void slab_lock(struct page *page)
1252{
1253	bit_spin_lock(PG_locked, &page->flags);
1254}
1255
1256static __always_inline void slab_unlock(struct page *page)
1257{
1258	__bit_spin_unlock(PG_locked, &page->flags);
1259}
1260
1261static __always_inline int slab_trylock(struct page *page)
1262{
1263	int rc = 1;
1264
1265	rc = bit_spin_trylock(PG_locked, &page->flags);
1266	return rc;
1267}
1268
1269/*
1270 * Management of partially allocated slabs
1271 */
1272static void add_partial(struct kmem_cache_node *n,
1273				struct page *page, int tail)
1274{
1275	spin_lock(&n->list_lock);
1276	n->nr_partial++;
1277	if (tail)
1278		list_add_tail(&page->lru, &n->partial);
1279	else
1280		list_add(&page->lru, &n->partial);
1281	spin_unlock(&n->list_lock);
1282}
1283
1284static void remove_partial(struct kmem_cache *s, struct page *page)
1285{
1286	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1287
1288	spin_lock(&n->list_lock);
1289	list_del(&page->lru);
1290	n->nr_partial--;
1291	spin_unlock(&n->list_lock);
1292}
1293
1294/*
1295 * Lock slab and remove from the partial list.
1296 *
1297 * Must hold list_lock.
1298 */
1299static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1300							struct page *page)
1301{
1302	if (slab_trylock(page)) {
1303		list_del(&page->lru);
1304		n->nr_partial--;
1305		__SetPageSlubFrozen(page);
1306		return 1;
1307	}
1308	return 0;
1309}
1310
1311/*
1312 * Try to allocate a partial slab from a specific node.
1313 */
1314static struct page *get_partial_node(struct kmem_cache_node *n)
1315{
1316	struct page *page;
1317
1318	/*
1319	 * Racy check. If we mistakenly see no partial slabs then we
1320	 * just allocate an empty slab. If we mistakenly try to get a
1321	 * partial slab and there is none available then get_partials()
1322	 * will return NULL.
1323	 */
1324	if (!n || !n->nr_partial)
1325		return NULL;
1326
1327	spin_lock(&n->list_lock);
1328	list_for_each_entry(page, &n->partial, lru)
1329		if (lock_and_freeze_slab(n, page))
1330			goto out;
1331	page = NULL;
1332out:
1333	spin_unlock(&n->list_lock);
1334	return page;
1335}
1336
1337/*
1338 * Get a page from somewhere. Search in increasing NUMA distances.
1339 */
1340static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1341{
1342#ifdef CONFIG_NUMA
1343	struct zonelist *zonelist;
1344	struct zoneref *z;
1345	struct zone *zone;
1346	enum zone_type high_zoneidx = gfp_zone(flags);
1347	struct page *page;
1348
1349	/*
1350	 * The defrag ratio allows a configuration of the tradeoffs between
1351	 * inter node defragmentation and node local allocations. A lower
1352	 * defrag_ratio increases the tendency to do local allocations
1353	 * instead of attempting to obtain partial slabs from other nodes.
1354	 *
1355	 * If the defrag_ratio is set to 0 then kmalloc() always
1356	 * returns node local objects. If the ratio is higher then kmalloc()
1357	 * may return off node objects because partial slabs are obtained
1358	 * from other nodes and filled up.
1359	 *
1360	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1361	 * defrag_ratio = 1000) then every (well almost) allocation will
1362	 * first attempt to defrag slab caches on other nodes. This means
1363	 * scanning over all nodes to look for partial slabs which may be
1364	 * expensive if we do it every time we are trying to find a slab
1365	 * with available objects.
1366	 */
1367	if (!s->remote_node_defrag_ratio ||
1368			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1369		return NULL;
1370
1371	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1372	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1373		struct kmem_cache_node *n;
1374
1375		n = get_node(s, zone_to_nid(zone));
1376
1377		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1378				n->nr_partial > s->min_partial) {
1379			page = get_partial_node(n);
1380			if (page)
1381				return page;
1382		}
1383	}
1384#endif
1385	return NULL;
1386}
1387
1388/*
1389 * Get a partial page, lock it and return it.
1390 */
1391static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1392{
1393	struct page *page;
1394	int searchnode = (node == -1) ? numa_node_id() : node;
1395
1396	page = get_partial_node(get_node(s, searchnode));
1397	if (page || (flags & __GFP_THISNODE))
1398		return page;
1399
1400	return get_any_partial(s, flags);
1401}
1402
1403/*
1404 * Move a page back to the lists.
1405 *
1406 * Must be called with the slab lock held.
1407 *
1408 * On exit the slab lock will have been dropped.
1409 */
1410static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1411{
1412	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1413
1414	__ClearPageSlubFrozen(page);
1415	if (page->inuse) {
1416
1417		if (page->freelist) {
1418			add_partial(n, page, tail);
1419			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1420		} else {
1421			stat(s, DEACTIVATE_FULL);
1422			if (SLABDEBUG && PageSlubDebug(page) &&
1423						(s->flags & SLAB_STORE_USER))
1424				add_full(n, page);
1425		}
1426		slab_unlock(page);
1427	} else {
1428		stat(s, DEACTIVATE_EMPTY);
1429		if (n->nr_partial < s->min_partial) {
1430			/*
1431			 * Adding an empty slab to the partial slabs in order
1432			 * to avoid page allocator overhead. This slab needs
1433			 * to come after the other slabs with objects in
1434			 * so that the others get filled first. That way the
1435			 * size of the partial list stays small.
1436			 *
1437			 * kmem_cache_shrink can reclaim any empty slabs from
1438			 * the partial list.
1439			 */
1440			add_partial(n, page, 1);
1441			slab_unlock(page);
1442		} else {
1443			slab_unlock(page);
1444			stat(s, FREE_SLAB);
1445			discard_slab(s, page);
1446		}
1447	}
1448}
1449
1450/*
1451 * Remove the cpu slab
1452 */
1453static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1454{
1455	struct page *page = c->page;
1456	int tail = 1;
1457
1458	if (page->freelist)
1459		stat(s, DEACTIVATE_REMOTE_FREES);
1460	/*
1461	 * Merge cpu freelist into slab freelist. Typically we get here
1462	 * because both freelists are empty. So this is unlikely
1463	 * to occur.
1464	 */
1465	while (unlikely(c->freelist)) {
1466		void **object;
1467
1468		tail = 0;	/* Hot objects. Put the slab first */
1469
1470		/* Retrieve object from cpu_freelist */
1471		object = c->freelist;
1472		c->freelist = get_freepointer(s, c->freelist);
1473
1474		/* And put onto the regular freelist */
1475		set_freepointer(s, object, page->freelist);
1476		page->freelist = object;
1477		page->inuse--;
1478	}
1479	c->page = NULL;
1480	unfreeze_slab(s, page, tail);
1481}
1482
1483static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1484{
1485	stat(s, CPUSLAB_FLUSH);
1486	slab_lock(c->page);
1487	deactivate_slab(s, c);
1488}
1489
1490/*
1491 * Flush cpu slab.
1492 *
1493 * Called from IPI handler with interrupts disabled.
1494 */
1495static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1496{
1497	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1498
1499	if (likely(c && c->page))
1500		flush_slab(s, c);
1501}
1502
1503static void flush_cpu_slab(void *d)
1504{
1505	struct kmem_cache *s = d;
1506
1507	__flush_cpu_slab(s, smp_processor_id());
1508}
1509
1510static void flush_all(struct kmem_cache *s)
1511{
1512	on_each_cpu(flush_cpu_slab, s, 1);
1513}
1514
1515/*
1516 * Check if the objects in a per cpu structure fit numa
1517 * locality expectations.
1518 */
1519static inline int node_match(struct kmem_cache_cpu *c, int node)
1520{
1521#ifdef CONFIG_NUMA
1522	if (node != -1 && c->node != node)
1523		return 0;
1524#endif
1525	return 1;
1526}
1527
1528static int count_free(struct page *page)
1529{
1530	return page->objects - page->inuse;
1531}
1532
1533static unsigned long count_partial(struct kmem_cache_node *n,
1534					int (*get_count)(struct page *))
1535{
1536	unsigned long flags;
1537	unsigned long x = 0;
1538	struct page *page;
1539
1540	spin_lock_irqsave(&n->list_lock, flags);
1541	list_for_each_entry(page, &n->partial, lru)
1542		x += get_count(page);
1543	spin_unlock_irqrestore(&n->list_lock, flags);
1544	return x;
1545}
1546
1547static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1548{
1549#ifdef CONFIG_SLUB_DEBUG
1550	return atomic_long_read(&n->total_objects);
1551#else
1552	return 0;
1553#endif
1554}
1555
1556static noinline void
1557slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1558{
1559	int node;
1560
1561	printk(KERN_WARNING
1562		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1563		nid, gfpflags);
1564	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1565		"default order: %d, min order: %d\n", s->name, s->objsize,
1566		s->size, oo_order(s->oo), oo_order(s->min));
1567
1568	if (oo_order(s->min) > get_order(s->objsize))
1569		printk(KERN_WARNING "  %s debugging increased min order, use "
1570		       "slub_debug=O to disable.\n", s->name);
1571
1572	for_each_online_node(node) {
1573		struct kmem_cache_node *n = get_node(s, node);
1574		unsigned long nr_slabs;
1575		unsigned long nr_objs;
1576		unsigned long nr_free;
1577
1578		if (!n)
1579			continue;
1580
1581		nr_free  = count_partial(n, count_free);
1582		nr_slabs = node_nr_slabs(n);
1583		nr_objs  = node_nr_objs(n);
1584
1585		printk(KERN_WARNING
1586			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1587			node, nr_slabs, nr_objs, nr_free);
1588	}
1589}
1590
1591/*
1592 * Slow path. The lockless freelist is empty or we need to perform
1593 * debugging duties.
1594 *
1595 * Interrupts are disabled.
1596 *
1597 * Processing is still very fast if new objects have been freed to the
1598 * regular freelist. In that case we simply take over the regular freelist
1599 * as the lockless freelist and zap the regular freelist.
1600 *
1601 * If that is not working then we fall back to the partial lists. We take the
1602 * first element of the freelist as the object to allocate now and move the
1603 * rest of the freelist to the lockless freelist.
1604 *
1605 * And if we were unable to get a new slab from the partial slab lists then
1606 * we need to allocate a new slab. This is the slowest path since it involves
1607 * a call to the page allocator and the setup of a new slab.
1608 */
1609static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1610			  unsigned long addr, struct kmem_cache_cpu *c)
1611{
1612	void **object;
1613	struct page *new;
1614
1615	/* We handle __GFP_ZERO in the caller */
1616	gfpflags &= ~__GFP_ZERO;
1617
1618	if (!c->page)
1619		goto new_slab;
1620
1621	slab_lock(c->page);
1622	if (unlikely(!node_match(c, node)))
1623		goto another_slab;
1624
1625	stat(s, ALLOC_REFILL);
1626
1627load_freelist:
1628	object = c->page->freelist;
1629	if (unlikely(!object))
1630		goto another_slab;
1631	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1632		goto debug;
1633
1634	c->freelist = get_freepointer(s, object);
1635	c->page->inuse = c->page->objects;
1636	c->page->freelist = NULL;
1637	c->node = page_to_nid(c->page);
1638unlock_out:
1639	slab_unlock(c->page);
1640	stat(s, ALLOC_SLOWPATH);
1641	return object;
1642
1643another_slab:
1644	deactivate_slab(s, c);
1645
1646new_slab:
1647	new = get_partial(s, gfpflags, node);
1648	if (new) {
1649		c->page = new;
1650		stat(s, ALLOC_FROM_PARTIAL);
1651		goto load_freelist;
1652	}
1653
1654	if (gfpflags & __GFP_WAIT)
1655		local_irq_enable();
1656
1657	new = new_slab(s, gfpflags, node);
1658
1659	if (gfpflags & __GFP_WAIT)
1660		local_irq_disable();
1661
1662	if (new) {
1663		c = __this_cpu_ptr(s->cpu_slab);
1664		stat(s, ALLOC_SLAB);
1665		if (c->page)
1666			flush_slab(s, c);
1667		slab_lock(new);
1668		__SetPageSlubFrozen(new);
1669		c->page = new;
1670		goto load_freelist;
1671	}
1672	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1673		slab_out_of_memory(s, gfpflags, node);
1674	return NULL;
1675debug:
1676	if (!alloc_debug_processing(s, c->page, object, addr))
1677		goto another_slab;
1678
1679	c->page->inuse++;
1680	c->page->freelist = get_freepointer(s, object);
1681	c->node = -1;
1682	goto unlock_out;
1683}
1684
1685/*
1686 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1687 * have the fastpath folded into their functions. So no function call
1688 * overhead for requests that can be satisfied on the fastpath.
1689 *
1690 * The fastpath works by first checking if the lockless freelist can be used.
1691 * If not then __slab_alloc is called for slow processing.
1692 *
1693 * Otherwise we can simply pick the next object from the lockless free list.
1694 */
1695static __always_inline void *slab_alloc(struct kmem_cache *s,
1696		gfp_t gfpflags, int node, unsigned long addr)
1697{
1698	void **object;
1699	struct kmem_cache_cpu *c;
1700	unsigned long flags;
1701
1702	gfpflags &= gfp_allowed_mask;
1703
1704	lockdep_trace_alloc(gfpflags);
1705	might_sleep_if(gfpflags & __GFP_WAIT);
1706
1707	if (should_failslab(s->objsize, gfpflags, s->flags))
1708		return NULL;
1709
1710	local_irq_save(flags);
1711	c = __this_cpu_ptr(s->cpu_slab);
1712	object = c->freelist;
1713	if (unlikely(!object || !node_match(c, node)))
1714
1715		object = __slab_alloc(s, gfpflags, node, addr, c);
1716
1717	else {
1718		c->freelist = get_freepointer(s, object);
1719		stat(s, ALLOC_FASTPATH);
1720	}
1721	local_irq_restore(flags);
1722
1723	if (unlikely(gfpflags & __GFP_ZERO) && object)
1724		memset(object, 0, s->objsize);
1725
1726	kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1727	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1728
1729	return object;
1730}
1731
1732void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1733{
1734	void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1735
1736	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1737
1738	return ret;
1739}
1740EXPORT_SYMBOL(kmem_cache_alloc);
1741
1742#ifdef CONFIG_TRACING
1743void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1744{
1745	return slab_alloc(s, gfpflags, -1, _RET_IP_);
1746}
1747EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1748#endif
1749
1750#ifdef CONFIG_NUMA
1751void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1752{
1753	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1754
1755	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1756				    s->objsize, s->size, gfpflags, node);
1757
1758	return ret;
1759}
1760EXPORT_SYMBOL(kmem_cache_alloc_node);
1761#endif
1762
1763#ifdef CONFIG_TRACING
1764void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1765				    gfp_t gfpflags,
1766				    int node)
1767{
1768	return slab_alloc(s, gfpflags, node, _RET_IP_);
1769}
1770EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1771#endif
1772
1773/*
1774 * Slow patch handling. This may still be called frequently since objects
1775 * have a longer lifetime than the cpu slabs in most processing loads.
1776 *
1777 * So we still attempt to reduce cache line usage. Just take the slab
1778 * lock and free the item. If there is no additional partial page
1779 * handling required then we can return immediately.
1780 */
1781static void __slab_free(struct kmem_cache *s, struct page *page,
1782			void *x, unsigned long addr)
1783{
1784	void *prior;
1785	void **object = (void *)x;
1786
1787	stat(s, FREE_SLOWPATH);
1788	slab_lock(page);
1789
1790	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1791		goto debug;
1792
1793checks_ok:
1794	prior = page->freelist;
1795	set_freepointer(s, object, prior);
1796	page->freelist = object;
1797	page->inuse--;
1798
1799	if (unlikely(PageSlubFrozen(page))) {
1800		stat(s, FREE_FROZEN);
1801		goto out_unlock;
1802	}
1803
1804	if (unlikely(!page->inuse))
1805		goto slab_empty;
1806
1807	/*
1808	 * Objects left in the slab. If it was not on the partial list before
1809	 * then add it.
1810	 */
1811	if (unlikely(!prior)) {
1812		add_partial(get_node(s, page_to_nid(page)), page, 1);
1813		stat(s, FREE_ADD_PARTIAL);
1814	}
1815
1816out_unlock:
1817	slab_unlock(page);
1818	return;
1819
1820slab_empty:
1821	if (prior) {
1822		/*
1823		 * Slab still on the partial list.
1824		 */
1825		remove_partial(s, page);
1826		stat(s, FREE_REMOVE_PARTIAL);
1827	}
1828	slab_unlock(page);
1829	stat(s, FREE_SLAB);
1830	discard_slab(s, page);
1831	return;
1832
1833debug:
1834	if (!free_debug_processing(s, page, x, addr))
1835		goto out_unlock;
1836	goto checks_ok;
1837}
1838
1839/*
1840 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1841 * can perform fastpath freeing without additional function calls.
1842 *
1843 * The fastpath is only possible if we are freeing to the current cpu slab
1844 * of this processor. This typically the case if we have just allocated
1845 * the item before.
1846 *
1847 * If fastpath is not possible then fall back to __slab_free where we deal
1848 * with all sorts of special processing.
1849 */
1850static __always_inline void slab_free(struct kmem_cache *s,
1851			struct page *page, void *x, unsigned long addr)
1852{
1853	void **object = (void *)x;
1854	struct kmem_cache_cpu *c;
1855	unsigned long flags;
1856
1857	kmemleak_free_recursive(x, s->flags);
1858	local_irq_save(flags);
1859	c = __this_cpu_ptr(s->cpu_slab);
1860	kmemcheck_slab_free(s, object, s->objsize);
1861	debug_check_no_locks_freed(object, s->objsize);
1862	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1863		debug_check_no_obj_freed(object, s->objsize);
1864	if (likely(page == c->page && c->node >= 0)) {
1865		set_freepointer(s, object, c->freelist);
1866		c->freelist = object;
1867		stat(s, FREE_FASTPATH);
1868	} else
1869		__slab_free(s, page, x, addr);
1870
1871	local_irq_restore(flags);
1872}
1873
1874void kmem_cache_free(struct kmem_cache *s, void *x)
1875{
1876	struct page *page;
1877
1878	page = virt_to_head_page(x);
1879
1880	slab_free(s, page, x, _RET_IP_);
1881
1882	trace_kmem_cache_free(_RET_IP_, x);
1883}
1884EXPORT_SYMBOL(kmem_cache_free);
1885
1886/* Figure out on which slab page the object resides */
1887static struct page *get_object_page(const void *x)
1888{
1889	struct page *page = virt_to_head_page(x);
1890
1891	if (!PageSlab(page))
1892		return NULL;
1893
1894	return page;
1895}
1896
1897/*
1898 * Object placement in a slab is made very easy because we always start at
1899 * offset 0. If we tune the size of the object to the alignment then we can
1900 * get the required alignment by putting one properly sized object after
1901 * another.
1902 *
1903 * Notice that the allocation order determines the sizes of the per cpu
1904 * caches. Each processor has always one slab available for allocations.
1905 * Increasing the allocation order reduces the number of times that slabs
1906 * must be moved on and off the partial lists and is therefore a factor in
1907 * locking overhead.
1908 */
1909
1910/*
1911 * Mininum / Maximum order of slab pages. This influences locking overhead
1912 * and slab fragmentation. A higher order reduces the number of partial slabs
1913 * and increases the number of allocations possible without having to
1914 * take the list_lock.
1915 */
1916static int slub_min_order;
1917static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1918static int slub_min_objects;
1919
1920/*
1921 * Merge control. If this is set then no merging of slab caches will occur.
1922 * (Could be removed. This was introduced to pacify the merge skeptics.)
1923 */
1924static int slub_nomerge;
1925
1926/*
1927 * Calculate the order of allocation given an slab object size.
1928 *
1929 * The order of allocation has significant impact on performance and other
1930 * system components. Generally order 0 allocations should be preferred since
1931 * order 0 does not cause fragmentation in the page allocator. Larger objects
1932 * be problematic to put into order 0 slabs because there may be too much
1933 * unused space left. We go to a higher order if more than 1/16th of the slab
1934 * would be wasted.
1935 *
1936 * In order to reach satisfactory performance we must ensure that a minimum
1937 * number of objects is in one slab. Otherwise we may generate too much
1938 * activity on the partial lists which requires taking the list_lock. This is
1939 * less a concern for large slabs though which are rarely used.
1940 *
1941 * slub_max_order specifies the order where we begin to stop considering the
1942 * number of objects in a slab as critical. If we reach slub_max_order then
1943 * we try to keep the page order as low as possible. So we accept more waste
1944 * of space in favor of a small page order.
1945 *
1946 * Higher order allocations also allow the placement of more objects in a
1947 * slab and thereby reduce object handling overhead. If the user has
1948 * requested a higher mininum order then we start with that one instead of
1949 * the smallest order which will fit the object.
1950 */
1951static inline int slab_order(int size, int min_objects,
1952				int max_order, int fract_leftover)
1953{
1954	int order;
1955	int rem;
1956	int min_order = slub_min_order;
1957
1958	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1959		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1960
1961	for (order = max(min_order,
1962				fls(min_objects * size - 1) - PAGE_SHIFT);
1963			order <= max_order; order++) {
1964
1965		unsigned long slab_size = PAGE_SIZE << order;
1966
1967		if (slab_size < min_objects * size)
1968			continue;
1969
1970		rem = slab_size % size;
1971
1972		if (rem <= slab_size / fract_leftover)
1973			break;
1974
1975	}
1976
1977	return order;
1978}
1979
1980static inline int calculate_order(int size)
1981{
1982	int order;
1983	int min_objects;
1984	int fraction;
1985	int max_objects;
1986
1987	/*
1988	 * Attempt to find best configuration for a slab. This
1989	 * works by first attempting to generate a layout with
1990	 * the best configuration and backing off gradually.
1991	 *
1992	 * First we reduce the acceptable waste in a slab. Then
1993	 * we reduce the minimum objects required in a slab.
1994	 */
1995	min_objects = slub_min_objects;
1996	if (!min_objects)
1997		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1998	max_objects = (PAGE_SIZE << slub_max_order)/size;
1999	min_objects = min(min_objects, max_objects);
2000
2001	while (min_objects > 1) {
2002		fraction = 16;
2003		while (fraction >= 4) {
2004			order = slab_order(size, min_objects,
2005						slub_max_order, fraction);
2006			if (order <= slub_max_order)
2007				return order;
2008			fraction /= 2;
2009		}
2010		min_objects--;
2011	}
2012
2013	/*
2014	 * We were unable to place multiple objects in a slab. Now
2015	 * lets see if we can place a single object there.
2016	 */
2017	order = slab_order(size, 1, slub_max_order, 1);
2018	if (order <= slub_max_order)
2019		return order;
2020
2021	/*
2022	 * Doh this slab cannot be placed using slub_max_order.
2023	 */
2024	order = slab_order(size, 1, MAX_ORDER, 1);
2025	if (order < MAX_ORDER)
2026		return order;
2027	return -ENOSYS;
2028}
2029
2030/*
2031 * Figure out what the alignment of the objects will be.
2032 */
2033static unsigned long calculate_alignment(unsigned long flags,
2034		unsigned long align, unsigned long size)
2035{
2036	/*
2037	 * If the user wants hardware cache aligned objects then follow that
2038	 * suggestion if the object is sufficiently large.
2039	 *
2040	 * The hardware cache alignment cannot override the specified
2041	 * alignment though. If that is greater then use it.
2042	 */
2043	if (flags & SLAB_HWCACHE_ALIGN) {
2044		unsigned long ralign = cache_line_size();
2045		while (size <= ralign / 2)
2046			ralign /= 2;
2047		align = max(align, ralign);
2048	}
2049
2050	if (align < ARCH_SLAB_MINALIGN)
2051		align = ARCH_SLAB_MINALIGN;
2052
2053	return ALIGN(align, sizeof(void *));
2054}
2055
2056static void
2057init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2058{
2059	n->nr_partial = 0;
2060	spin_lock_init(&n->list_lock);
2061	INIT_LIST_HEAD(&n->partial);
2062#ifdef CONFIG_SLUB_DEBUG
2063	atomic_long_set(&n->nr_slabs, 0);
2064	atomic_long_set(&n->total_objects, 0);
2065	INIT_LIST_HEAD(&n->full);
2066#endif
2067}
2068
2069static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2070
2071static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2072{
2073	if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2074		/*
2075		 * Boot time creation of the kmalloc array. Use static per cpu data
2076		 * since the per cpu allocator is not available yet.
2077		 */
2078		s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2079	else
2080		s->cpu_slab =  alloc_percpu(struct kmem_cache_cpu);
2081
2082	if (!s->cpu_slab)
2083		return 0;
2084
2085	return 1;
2086}
2087
2088#ifdef CONFIG_NUMA
2089/*
2090 * No kmalloc_node yet so do it by hand. We know that this is the first
2091 * slab on the node for this slabcache. There are no concurrent accesses
2092 * possible.
2093 *
2094 * Note that this function only works on the kmalloc_node_cache
2095 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2096 * memory on a fresh node that has no slab structures yet.
2097 */
2098static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2099{
2100	struct page *page;
2101	struct kmem_cache_node *n;
2102	unsigned long flags;
2103
2104	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2105
2106	page = new_slab(kmalloc_caches, gfpflags, node);
2107
2108	BUG_ON(!page);
2109	if (page_to_nid(page) != node) {
2110		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2111				"node %d\n", node);
2112		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2113				"in order to be able to continue\n");
2114	}
2115
2116	n = page->freelist;
2117	BUG_ON(!n);
2118	page->freelist = get_freepointer(kmalloc_caches, n);
2119	page->inuse++;
2120	kmalloc_caches->node[node] = n;
2121#ifdef CONFIG_SLUB_DEBUG
2122	init_object(kmalloc_caches, n, 1);
2123	init_tracking(kmalloc_caches, n);
2124#endif
2125	init_kmem_cache_node(n, kmalloc_caches);
2126	inc_slabs_node(kmalloc_caches, node, page->objects);
2127
2128	/*
2129	 * lockdep requires consistent irq usage for each lock
2130	 * so even though there cannot be a race this early in
2131	 * the boot sequence, we still disable irqs.
2132	 */
2133	local_irq_save(flags);
2134	add_partial(n, page, 0);
2135	local_irq_restore(flags);
2136}
2137
2138static void free_kmem_cache_nodes(struct kmem_cache *s)
2139{
2140	int node;
2141
2142	for_each_node_state(node, N_NORMAL_MEMORY) {
2143		struct kmem_cache_node *n = s->node[node];
2144		if (n && n != &s->local_node)
2145			kmem_cache_free(kmalloc_caches, n);
2146		s->node[node] = NULL;
2147	}
2148}
2149
2150static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2151{
2152	int node;
2153	int local_node;
2154
2155	if (slab_state >= UP && (s < kmalloc_caches ||
2156			s > kmalloc_caches + KMALLOC_CACHES))
2157		local_node = page_to_nid(virt_to_page(s));
2158	else
2159		local_node = 0;
2160
2161	for_each_node_state(node, N_NORMAL_MEMORY) {
2162		struct kmem_cache_node *n;
2163
2164		if (local_node == node)
2165			n = &s->local_node;
2166		else {
2167			if (slab_state == DOWN) {
2168				early_kmem_cache_node_alloc(gfpflags, node);
2169				continue;
2170			}
2171			n = kmem_cache_alloc_node(kmalloc_caches,
2172							gfpflags, node);
2173
2174			if (!n) {
2175				free_kmem_cache_nodes(s);
2176				return 0;
2177			}
2178
2179		}
2180		s->node[node] = n;
2181		init_kmem_cache_node(n, s);
2182	}
2183	return 1;
2184}
2185#else
2186static void free_kmem_cache_nodes(struct kmem_cache *s)
2187{
2188}
2189
2190static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2191{
2192	init_kmem_cache_node(&s->local_node, s);
2193	return 1;
2194}
2195#endif
2196
2197static void set_min_partial(struct kmem_cache *s, unsigned long min)
2198{
2199	if (min < MIN_PARTIAL)
2200		min = MIN_PARTIAL;
2201	else if (min > MAX_PARTIAL)
2202		min = MAX_PARTIAL;
2203	s->min_partial = min;
2204}
2205
2206/*
2207 * calculate_sizes() determines the order and the distribution of data within
2208 * a slab object.
2209 */
2210static int calculate_sizes(struct kmem_cache *s, int forced_order)
2211{
2212	unsigned long flags = s->flags;
2213	unsigned long size = s->objsize;
2214	unsigned long align = s->align;
2215	int order;
2216
2217	/*
2218	 * Round up object size to the next word boundary. We can only
2219	 * place the free pointer at word boundaries and this determines
2220	 * the possible location of the free pointer.
2221	 */
2222	size = ALIGN(size, sizeof(void *));
2223
2224#ifdef CONFIG_SLUB_DEBUG
2225	/*
2226	 * Determine if we can poison the object itself. If the user of
2227	 * the slab may touch the object after free or before allocation
2228	 * then we should never poison the object itself.
2229	 */
2230	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2231			!s->ctor)
2232		s->flags |= __OBJECT_POISON;
2233	else
2234		s->flags &= ~__OBJECT_POISON;
2235
2236
2237	/*
2238	 * If we are Redzoning then check if there is some space between the
2239	 * end of the object and the free pointer. If not then add an
2240	 * additional word to have some bytes to store Redzone information.
2241	 */
2242	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2243		size += sizeof(void *);
2244#endif
2245
2246	/*
2247	 * With that we have determined the number of bytes in actual use
2248	 * by the object. This is the potential offset to the free pointer.
2249	 */
2250	s->inuse = size;
2251
2252	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2253		s->ctor)) {
2254		/*
2255		 * Relocate free pointer after the object if it is not
2256		 * permitted to overwrite the first word of the object on
2257		 * kmem_cache_free.
2258		 *
2259		 * This is the case if we do RCU, have a constructor or
2260		 * destructor or are poisoning the objects.
2261		 */
2262		s->offset = size;
2263		size += sizeof(void *);
2264	}
2265
2266#ifdef CONFIG_SLUB_DEBUG
2267	if (flags & SLAB_STORE_USER)
2268		/*
2269		 * Need to store information about allocs and frees after
2270		 * the object.
2271		 */
2272		size += 2 * sizeof(struct track);
2273
2274	if (flags & SLAB_RED_ZONE)
2275		/*
2276		 * Add some empty padding so that we can catch
2277		 * overwrites from earlier objects rather than let
2278		 * tracking information or the free pointer be
2279		 * corrupted if a user writes before the start
2280		 * of the object.
2281		 */
2282		size += sizeof(void *);
2283#endif
2284
2285	/*
2286	 * Determine the alignment based on various parameters that the
2287	 * user specified and the dynamic determination of cache line size
2288	 * on bootup.
2289	 */
2290	align = calculate_alignment(flags, align, s->objsize);
2291	s->align = align;
2292
2293	/*
2294	 * SLUB stores one object immediately after another beginning from
2295	 * offset 0. In order to align the objects we have to simply size
2296	 * each object to conform to the alignment.
2297	 */
2298	size = ALIGN(size, align);
2299	s->size = size;
2300	if (forced_order >= 0)
2301		order = forced_order;
2302	else
2303		order = calculate_order(size);
2304
2305	if (order < 0)
2306		return 0;
2307
2308	s->allocflags = 0;
2309	if (order)
2310		s->allocflags |= __GFP_COMP;
2311
2312	if (s->flags & SLAB_CACHE_DMA)
2313		s->allocflags |= SLUB_DMA;
2314
2315	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2316		s->allocflags |= __GFP_RECLAIMABLE;
2317
2318	/*
2319	 * Determine the number of objects per slab
2320	 */
2321	s->oo = oo_make(order, size);
2322	s->min = oo_make(get_order(size), size);
2323	if (oo_objects(s->oo) > oo_objects(s->max))
2324		s->max = s->oo;
2325
2326	return !!oo_objects(s->oo);
2327
2328}
2329
2330static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2331		const char *name, size_t size,
2332		size_t align, unsigned long flags,
2333		void (*ctor)(void *))
2334{
2335	memset(s, 0, kmem_size);
2336	s->name = name;
2337	s->ctor = ctor;
2338	s->objsize = size;
2339	s->align = align;
2340	s->flags = kmem_cache_flags(size, flags, name, ctor);
2341
2342	if (!calculate_sizes(s, -1))
2343		goto error;
2344	if (disable_higher_order_debug) {
2345		/*
2346		 * Disable debugging flags that store metadata if the min slab
2347		 * order increased.
2348		 */
2349		if (get_order(s->size) > get_order(s->objsize)) {
2350			s->flags &= ~DEBUG_METADATA_FLAGS;
2351			s->offset = 0;
2352			if (!calculate_sizes(s, -1))
2353				goto error;
2354		}
2355	}
2356
2357	/*
2358	 * The larger the object size is, the more pages we want on the partial
2359	 * list to avoid pounding the page allocator excessively.
2360	 */
2361	set_min_partial(s, ilog2(s->size));
2362	s->refcount = 1;
2363#ifdef CONFIG_NUMA
2364	s->remote_node_defrag_ratio = 1000;
2365#endif
2366	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2367		goto error;
2368
2369	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2370		return 1;
2371
2372	free_kmem_cache_nodes(s);
2373error:
2374	if (flags & SLAB_PANIC)
2375		panic("Cannot create slab %s size=%lu realsize=%u "
2376			"order=%u offset=%u flags=%lx\n",
2377			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2378			s->offset, flags);
2379	return 0;
2380}
2381
2382/*
2383 * Check if a given pointer is valid
2384 */
2385int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2386{
2387	struct page *page;
2388
2389	if (!kern_ptr_validate(object, s->size))
2390		return 0;
2391
2392	page = get_object_page(object);
2393
2394	if (!page || s != page->slab)
2395		/* No slab or wrong slab */
2396		return 0;
2397
2398	if (!check_valid_pointer(s, page, object))
2399		return 0;
2400
2401	/*
2402	 * We could also check if the object is on the slabs freelist.
2403	 * But this would be too expensive and it seems that the main
2404	 * purpose of kmem_ptr_valid() is to check if the object belongs
2405	 * to a certain slab.
2406	 */
2407	return 1;
2408}
2409EXPORT_SYMBOL(kmem_ptr_validate);
2410
2411/*
2412 * Determine the size of a slab object
2413 */
2414unsigned int kmem_cache_size(struct kmem_cache *s)
2415{
2416	return s->objsize;
2417}
2418EXPORT_SYMBOL(kmem_cache_size);
2419
2420const char *kmem_cache_name(struct kmem_cache *s)
2421{
2422	return s->name;
2423}
2424EXPORT_SYMBOL(kmem_cache_name);
2425
2426static void list_slab_objects(struct kmem_cache *s, struct page *page,
2427							const char *text)
2428{
2429#ifdef CONFIG_SLUB_DEBUG
2430	void *addr = page_address(page);
2431	void *p;
2432	DECLARE_BITMAP(map, page->objects);
2433
2434	bitmap_zero(map, page->objects);
2435	slab_err(s, page, "%s", text);
2436	slab_lock(page);
2437	for_each_free_object(p, s, page->freelist)
2438		set_bit(slab_index(p, s, addr), map);
2439
2440	for_each_object(p, s, addr, page->objects) {
2441
2442		if (!test_bit(slab_index(p, s, addr), map)) {
2443			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2444							p, p - addr);
2445			print_tracking(s, p);
2446		}
2447	}
2448	slab_unlock(page);
2449#endif
2450}
2451
2452/*
2453 * Attempt to free all partial slabs on a node.
2454 */
2455static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2456{
2457	unsigned long flags;
2458	struct page *page, *h;
2459
2460	spin_lock_irqsave(&n->list_lock, flags);
2461	list_for_each_entry_safe(page, h, &n->partial, lru) {
2462		if (!page->inuse) {
2463			list_del(&page->lru);
2464			discard_slab(s, page);
2465			n->nr_partial--;
2466		} else {
2467			list_slab_objects(s, page,
2468				"Objects remaining on kmem_cache_close()");
2469		}
2470	}
2471	spin_unlock_irqrestore(&n->list_lock, flags);
2472}
2473
2474/*
2475 * Release all resources used by a slab cache.
2476 */
2477static inline int kmem_cache_close(struct kmem_cache *s)
2478{
2479	int node;
2480
2481	flush_all(s);
2482	free_percpu(s->cpu_slab);
2483	/* Attempt to free all objects */
2484	for_each_node_state(node, N_NORMAL_MEMORY) {
2485		struct kmem_cache_node *n = get_node(s, node);
2486
2487		free_partial(s, n);
2488		if (n->nr_partial || slabs_node(s, node))
2489			return 1;
2490	}
2491	free_kmem_cache_nodes(s);
2492	return 0;
2493}
2494
2495/*
2496 * Close a cache and release the kmem_cache structure
2497 * (must be used for caches created using kmem_cache_create)
2498 */
2499void kmem_cache_destroy(struct kmem_cache *s)
2500{
2501	down_write(&slub_lock);
2502	s->refcount--;
2503	if (!s->refcount) {
2504		list_del(&s->list);
2505		up_write(&slub_lock);
2506		if (kmem_cache_close(s)) {
2507			printk(KERN_ERR "SLUB %s: %s called for cache that "
2508				"still has objects.\n", s->name, __func__);
2509			dump_stack();
2510		}
2511		if (s->flags & SLAB_DESTROY_BY_RCU)
2512			rcu_barrier();
2513		sysfs_slab_remove(s);
2514	} else
2515		up_write(&slub_lock);
2516}
2517EXPORT_SYMBOL(kmem_cache_destroy);
2518
2519/********************************************************************
2520 *		Kmalloc subsystem
2521 *******************************************************************/
2522
2523struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2524EXPORT_SYMBOL(kmalloc_caches);
2525
2526static int __init setup_slub_min_order(char *str)
2527{
2528	get_option(&str, &slub_min_order);
2529
2530	return 1;
2531}
2532
2533__setup("slub_min_order=", setup_slub_min_order);
2534
2535static int __init setup_slub_max_order(char *str)
2536{
2537	get_option(&str, &slub_max_order);
2538	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2539
2540	return 1;
2541}
2542
2543__setup("slub_max_order=", setup_slub_max_order);
2544
2545static int __init setup_slub_min_objects(char *str)
2546{
2547	get_option(&str, &slub_min_objects);
2548
2549	return 1;
2550}
2551
2552__setup("slub_min_objects=", setup_slub_min_objects);
2553
2554static int __init setup_slub_nomerge(char *str)
2555{
2556	slub_nomerge = 1;
2557	return 1;
2558}
2559
2560__setup("slub_nomerge", setup_slub_nomerge);
2561
2562static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2563		const char *name, int size, gfp_t gfp_flags)
2564{
2565	unsigned int flags = 0;
2566
2567	if (gfp_flags & SLUB_DMA)
2568		flags = SLAB_CACHE_DMA;
2569
2570	/*
2571	 * This function is called with IRQs disabled during early-boot on
2572	 * single CPU so there's no need to take slub_lock here.
2573	 */
2574	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2575								flags, NULL))
2576		goto panic;
2577
2578	list_add(&s->list, &slab_caches);
2579
2580	if (sysfs_slab_add(s))
2581		goto panic;
2582	return s;
2583
2584panic:
2585	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2586}
2587
2588#ifdef CONFIG_ZONE_DMA
2589static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2590
2591static void sysfs_add_func(struct work_struct *w)
2592{
2593	struct kmem_cache *s;
2594
2595	down_write(&slub_lock);
2596	list_for_each_entry(s, &slab_caches, list) {
2597		if (s->flags & __SYSFS_ADD_DEFERRED) {
2598			s->flags &= ~__SYSFS_ADD_DEFERRED;
2599			sysfs_slab_add(s);
2600		}
2601	}
2602	up_write(&slub_lock);
2603}
2604
2605static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2606
2607static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2608{
2609	struct kmem_cache *s;
2610	char *text;
2611	size_t realsize;
2612	unsigned long slabflags;
2613	int i;
2614
2615	s = kmalloc_caches_dma[index];
2616	if (s)
2617		return s;
2618
2619	/* Dynamically create dma cache */
2620	if (flags & __GFP_WAIT)
2621		down_write(&slub_lock);
2622	else {
2623		if (!down_write_trylock(&slub_lock))
2624			goto out;
2625	}
2626
2627	if (kmalloc_caches_dma[index])
2628		goto unlock_out;
2629
2630	realsize = kmalloc_caches[index].objsize;
2631	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2632			 (unsigned int)realsize);
2633
2634	s = NULL;
2635	for (i = 0; i < KMALLOC_CACHES; i++)
2636		if (!kmalloc_caches[i].size)
2637			break;
2638
2639	BUG_ON(i >= KMALLOC_CACHES);
2640	s = kmalloc_caches + i;
2641
2642	/*
2643	 * Must defer sysfs creation to a workqueue because we don't know
2644	 * what context we are called from. Before sysfs comes up, we don't
2645	 * need to do anything because our sysfs initcall will start by
2646	 * adding all existing slabs to sysfs.
2647	 */
2648	slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2649	if (slab_state >= SYSFS)
2650		slabflags |= __SYSFS_ADD_DEFERRED;
2651
2652	if (!text || !kmem_cache_open(s, flags, text,
2653			realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2654		s->size = 0;
2655		kfree(text);
2656		goto unlock_out;
2657	}
2658
2659	list_add(&s->list, &slab_caches);
2660	kmalloc_caches_dma[index] = s;
2661
2662	if (slab_state >= SYSFS)
2663		schedule_work(&sysfs_add_work);
2664
2665unlock_out:
2666	up_write(&slub_lock);
2667out:
2668	return kmalloc_caches_dma[index];
2669}
2670#endif
2671
2672/*
2673 * Conversion table for small slabs sizes / 8 to the index in the
2674 * kmalloc array. This is necessary for slabs < 192 since we have non power
2675 * of two cache sizes there. The size of larger slabs can be determined using
2676 * fls.
2677 */
2678static s8 size_index[24] = {
2679	3,	/* 8 */
2680	4,	/* 16 */
2681	5,	/* 24 */
2682	5,	/* 32 */
2683	6,	/* 40 */
2684	6,	/* 48 */
2685	6,	/* 56 */
2686	6,	/* 64 */
2687	1,	/* 72 */
2688	1,	/* 80 */
2689	1,	/* 88 */
2690	1,	/* 96 */
2691	7,	/* 104 */
2692	7,	/* 112 */
2693	7,	/* 120 */
2694	7,	/* 128 */
2695	2,	/* 136 */
2696	2,	/* 144 */
2697	2,	/* 152 */
2698	2,	/* 160 */
2699	2,	/* 168 */
2700	2,	/* 176 */
2701	2,	/* 184 */
2702	2	/* 192 */
2703};
2704
2705static inline int size_index_elem(size_t bytes)
2706{
2707	return (bytes - 1) / 8;
2708}
2709
2710static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2711{
2712	int index;
2713
2714	if (size <= 192) {
2715		if (!size)
2716			return ZERO_SIZE_PTR;
2717
2718		index = size_index[size_index_elem(size)];
2719	} else
2720		index = fls(size - 1);
2721
2722#ifdef CONFIG_ZONE_DMA
2723	if (unlikely((flags & SLUB_DMA)))
2724		return dma_kmalloc_cache(index, flags);
2725
2726#endif
2727	return &kmalloc_caches[index];
2728}
2729
2730void *__kmalloc(size_t size, gfp_t flags)
2731{
2732	struct kmem_cache *s;
2733	void *ret;
2734
2735	if (unlikely(size > SLUB_MAX_SIZE))
2736		return kmalloc_large(size, flags);
2737
2738	s = get_slab(size, flags);
2739
2740	if (unlikely(ZERO_OR_NULL_PTR(s)))
2741		return s;
2742
2743	ret = slab_alloc(s, flags, -1, _RET_IP_);
2744
2745	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2746
2747	return ret;
2748}
2749EXPORT_SYMBOL(__kmalloc);
2750
2751static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2752{
2753	struct page *page;
2754	void *ptr = NULL;
2755
2756	flags |= __GFP_COMP | __GFP_NOTRACK;
2757	page = alloc_pages_node(node, flags, get_order(size));
2758	if (page)
2759		ptr = page_address(page);
2760
2761	kmemleak_alloc(ptr, size, 1, flags);
2762	return ptr;
2763}
2764
2765#ifdef CONFIG_NUMA
2766void *__kmalloc_node(size_t size, gfp_t flags, int node)
2767{
2768	struct kmem_cache *s;
2769	void *ret;
2770
2771	if (unlikely(size > SLUB_MAX_SIZE)) {
2772		ret = kmalloc_large_node(size, flags, node);
2773
2774		trace_kmalloc_node(_RET_IP_, ret,
2775				   size, PAGE_SIZE << get_order(size),
2776				   flags, node);
2777
2778		return ret;
2779	}
2780
2781	s = get_slab(size, flags);
2782
2783	if (unlikely(ZERO_OR_NULL_PTR(s)))
2784		return s;
2785
2786	ret = slab_alloc(s, flags, node, _RET_IP_);
2787
2788	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2789
2790	return ret;
2791}
2792EXPORT_SYMBOL(__kmalloc_node);
2793#endif
2794
2795size_t ksize(const void *object)
2796{
2797	struct page *page;
2798	struct kmem_cache *s;
2799
2800	if (unlikely(object == ZERO_SIZE_PTR))
2801		return 0;
2802
2803	page = virt_to_head_page(object);
2804
2805	if (unlikely(!PageSlab(page))) {
2806		WARN_ON(!PageCompound(page));
2807		return PAGE_SIZE << compound_order(page);
2808	}
2809	s = page->slab;
2810
2811#ifdef CONFIG_SLUB_DEBUG
2812	/*
2813	 * Debugging requires use of the padding between object
2814	 * and whatever may come after it.
2815	 */
2816	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2817		return s->objsize;
2818
2819#endif
2820	/*
2821	 * If we have the need to store the freelist pointer
2822	 * back there or track user information then we can
2823	 * only use the space before that information.
2824	 */
2825	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2826		return s->inuse;
2827	/*
2828	 * Else we can use all the padding etc for the allocation
2829	 */
2830	return s->size;
2831}
2832EXPORT_SYMBOL(ksize);
2833
2834void kfree(const void *x)
2835{
2836	struct page *page;
2837	void *object = (void *)x;
2838
2839	trace_kfree(_RET_IP_, x);
2840
2841	if (unlikely(ZERO_OR_NULL_PTR(x)))
2842		return;
2843
2844	page = virt_to_head_page(x);
2845	if (unlikely(!PageSlab(page))) {
2846		BUG_ON(!PageCompound(page));
2847		kmemleak_free(x);
2848		put_page(page);
2849		return;
2850	}
2851	slab_free(page->slab, page, object, _RET_IP_);
2852}
2853EXPORT_SYMBOL(kfree);
2854
2855/*
2856 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2857 * the remaining slabs by the number of items in use. The slabs with the
2858 * most items in use come first. New allocations will then fill those up
2859 * and thus they can be removed from the partial lists.
2860 *
2861 * The slabs with the least items are placed last. This results in them
2862 * being allocated from last increasing the chance that the last objects
2863 * are freed in them.
2864 */
2865int kmem_cache_shrink(struct kmem_cache *s)
2866{
2867	int node;
2868	int i;
2869	struct kmem_cache_node *n;
2870	struct page *page;
2871	struct page *t;
2872	int objects = oo_objects(s->max);
2873	struct list_head *slabs_by_inuse =
2874		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2875	unsigned long flags;
2876
2877	if (!slabs_by_inuse)
2878		return -ENOMEM;
2879
2880	flush_all(s);
2881	for_each_node_state(node, N_NORMAL_MEMORY) {
2882		n = get_node(s, node);
2883
2884		if (!n->nr_partial)
2885			continue;
2886
2887		for (i = 0; i < objects; i++)
2888			INIT_LIST_HEAD(slabs_by_inuse + i);
2889
2890		spin_lock_irqsave(&n->list_lock, flags);
2891
2892		/*
2893		 * Build lists indexed by the items in use in each slab.
2894		 *
2895		 * Note that concurrent frees may occur while we hold the
2896		 * list_lock. page->inuse here is the upper limit.
2897		 */
2898		list_for_each_entry_safe(page, t, &n->partial, lru) {
2899			if (!page->inuse && slab_trylock(page)) {
2900				/*
2901				 * Must hold slab lock here because slab_free
2902				 * may have freed the last object and be
2903				 * waiting to release the slab.
2904				 */
2905				list_del(&page->lru);
2906				n->nr_partial--;
2907				slab_unlock(page);
2908				discard_slab(s, page);
2909			} else {
2910				list_move(&page->lru,
2911				slabs_by_inuse + page->inuse);
2912			}
2913		}
2914
2915		/*
2916		 * Rebuild the partial list with the slabs filled up most
2917		 * first and the least used slabs at the end.
2918		 */
2919		for (i = objects - 1; i >= 0; i--)
2920			list_splice(slabs_by_inuse + i, n->partial.prev);
2921
2922		spin_unlock_irqrestore(&n->list_lock, flags);
2923	}
2924
2925	kfree(slabs_by_inuse);
2926	return 0;
2927}
2928EXPORT_SYMBOL(kmem_cache_shrink);
2929
2930#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2931static int slab_mem_going_offline_callback(void *arg)
2932{
2933	struct kmem_cache *s;
2934
2935	down_read(&slub_lock);
2936	list_for_each_entry(s, &slab_caches, list)
2937		kmem_cache_shrink(s);
2938	up_read(&slub_lock);
2939
2940	return 0;
2941}
2942
2943static void slab_mem_offline_callback(void *arg)
2944{
2945	struct kmem_cache_node *n;
2946	struct kmem_cache *s;
2947	struct memory_notify *marg = arg;
2948	int offline_node;
2949
2950	offline_node = marg->status_change_nid;
2951
2952	/*
2953	 * If the node still has available memory. we need kmem_cache_node
2954	 * for it yet.
2955	 */
2956	if (offline_node < 0)
2957		return;
2958
2959	down_read(&slub_lock);
2960	list_for_each_entry(s, &slab_caches, list) {
2961		n = get_node(s, offline_node);
2962		if (n) {
2963			/*
2964			 * if n->nr_slabs > 0, slabs still exist on the node
2965			 * that is going down. We were unable to free them,
2966			 * and offline_pages() function shouldn't call this
2967			 * callback. So, we must fail.
2968			 */
2969			BUG_ON(slabs_node(s, offline_node));
2970
2971			s->node[offline_node] = NULL;
2972			kmem_cache_free(kmalloc_caches, n);
2973		}
2974	}
2975	up_read(&slub_lock);
2976}
2977
2978static int slab_mem_going_online_callback(void *arg)
2979{
2980	struct kmem_cache_node *n;
2981	struct kmem_cache *s;
2982	struct memory_notify *marg = arg;
2983	int nid = marg->status_change_nid;
2984	int ret = 0;
2985
2986	/*
2987	 * If the node's memory is already available, then kmem_cache_node is
2988	 * already created. Nothing to do.
2989	 */
2990	if (nid < 0)
2991		return 0;
2992
2993	/*
2994	 * We are bringing a node online. No memory is available yet. We must
2995	 * allocate a kmem_cache_node structure in order to bring the node
2996	 * online.
2997	 */
2998	down_read(&slub_lock);
2999	list_for_each_entry(s, &slab_caches, list) {
3000		/*
3001		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3002		 *      since memory is not yet available from the node that
3003		 *      is brought up.
3004		 */
3005		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3006		if (!n) {
3007			ret = -ENOMEM;
3008			goto out;
3009		}
3010		init_kmem_cache_node(n, s);
3011		s->node[nid] = n;
3012	}
3013out:
3014	up_read(&slub_lock);
3015	return ret;
3016}
3017
3018static int slab_memory_callback(struct notifier_block *self,
3019				unsigned long action, void *arg)
3020{
3021	int ret = 0;
3022
3023	switch (action) {
3024	case MEM_GOING_ONLINE:
3025		ret = slab_mem_going_online_callback(arg);
3026		break;
3027	case MEM_GOING_OFFLINE:
3028		ret = slab_mem_going_offline_callback(arg);
3029		break;
3030	case MEM_OFFLINE:
3031	case MEM_CANCEL_ONLINE:
3032		slab_mem_offline_callback(arg);
3033		break;
3034	case MEM_ONLINE:
3035	case MEM_CANCEL_OFFLINE:
3036		break;
3037	}
3038	if (ret)
3039		ret = notifier_from_errno(ret);
3040	else
3041		ret = NOTIFY_OK;
3042	return ret;
3043}
3044
3045#endif /* CONFIG_MEMORY_HOTPLUG */
3046
3047/********************************************************************
3048 *			Basic setup of slabs
3049 *******************************************************************/
3050
3051void __init kmem_cache_init(void)
3052{
3053	int i;
3054	int caches = 0;
3055
3056#ifdef CONFIG_NUMA
3057	/*
3058	 * Must first have the slab cache available for the allocations of the
3059	 * struct kmem_cache_node's. There is special bootstrap code in
3060	 * kmem_cache_open for slab_state == DOWN.
3061	 */
3062	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3063		sizeof(struct kmem_cache_node), GFP_NOWAIT);
3064	kmalloc_caches[0].refcount = -1;
3065	caches++;
3066
3067	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3068#endif
3069
3070	/* Able to allocate the per node structures */
3071	slab_state = PARTIAL;
3072
3073	/* Caches that are not of the two-to-the-power-of size */
3074	if (KMALLOC_MIN_SIZE <= 32) {
3075		create_kmalloc_cache(&kmalloc_caches[1],
3076				"kmalloc-96", 96, GFP_NOWAIT);
3077		caches++;
3078	}
3079	if (KMALLOC_MIN_SIZE <= 64) {
3080		create_kmalloc_cache(&kmalloc_caches[2],
3081				"kmalloc-192", 192, GFP_NOWAIT);
3082		caches++;
3083	}
3084
3085	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3086		create_kmalloc_cache(&kmalloc_caches[i],
3087			"kmalloc", 1 << i, GFP_NOWAIT);
3088		caches++;
3089	}
3090
3091
3092	/*
3093	 * Patch up the size_index table if we have strange large alignment
3094	 * requirements for the kmalloc array. This is only the case for
3095	 * MIPS it seems. The standard arches will not generate any code here.
3096	 *
3097	 * Largest permitted alignment is 256 bytes due to the way we
3098	 * handle the index determination for the smaller caches.
3099	 *
3100	 * Make sure that nothing crazy happens if someone starts tinkering
3101	 * around with ARCH_KMALLOC_MINALIGN
3102	 */
3103	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3104		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3105
3106	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3107		int elem = size_index_elem(i);
3108		if (elem >= ARRAY_SIZE(size_index))
3109			break;
3110		size_index[elem] = KMALLOC_SHIFT_LOW;
3111	}
3112
3113	if (KMALLOC_MIN_SIZE == 64) {
3114		/*
3115		 * The 96 byte size cache is not used if the alignment
3116		 * is 64 byte.
3117		 */
3118		for (i = 64 + 8; i <= 96; i += 8)
3119			size_index[size_index_elem(i)] = 7;
3120	} else if (KMALLOC_MIN_SIZE == 128) {
3121		/*
3122		 * The 192 byte sized cache is not used if the alignment
3123		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3124		 * instead.
3125		 */
3126		for (i = 128 + 8; i <= 192; i += 8)
3127			size_index[size_index_elem(i)] = 8;
3128	}
3129
3130	slab_state = UP;
3131
3132	/* Provide the correct kmalloc names now that the caches are up */
3133	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3134		kmalloc_caches[i]. name =
3135			kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3136
3137#ifdef CONFIG_SMP
3138	register_cpu_notifier(&slab_notifier);
3139#endif
3140#ifdef CONFIG_NUMA
3141	kmem_size = offsetof(struct kmem_cache, node) +
3142				nr_node_ids * sizeof(struct kmem_cache_node *);
3143#else
3144	kmem_size = sizeof(struct kmem_cache);
3145#endif
3146
3147	printk(KERN_INFO
3148		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3149		" CPUs=%d, Nodes=%d\n",
3150		caches, cache_line_size(),
3151		slub_min_order, slub_max_order, slub_min_objects,
3152		nr_cpu_ids, nr_node_ids);
3153}
3154
3155void __init kmem_cache_init_late(void)
3156{
3157}
3158
3159/*
3160 * Find a mergeable slab cache
3161 */
3162static int slab_unmergeable(struct kmem_cache *s)
3163{
3164	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3165		return 1;
3166
3167	if (s->ctor)
3168		return 1;
3169
3170	/*
3171	 * We may have set a slab to be unmergeable during bootstrap.
3172	 */
3173	if (s->refcount < 0)
3174		return 1;
3175
3176	return 0;
3177}
3178
3179static struct kmem_cache *find_mergeable(size_t size,
3180		size_t align, unsigned long flags, const char *name,
3181		void (*ctor)(void *))
3182{
3183	struct kmem_cache *s;
3184
3185	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3186		return NULL;
3187
3188	if (ctor)
3189		return NULL;
3190
3191	size = ALIGN(size, sizeof(void *));
3192	align = calculate_alignment(flags, align, size);
3193	size = ALIGN(size, align);
3194	flags = kmem_cache_flags(size, flags, name, NULL);
3195
3196	list_for_each_entry(s, &slab_caches, list) {
3197		if (slab_unmergeable(s))
3198			continue;
3199
3200		if (size > s->size)
3201			continue;
3202
3203		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3204				continue;
3205		/*
3206		 * Check if alignment is compatible.
3207		 * Courtesy of Adrian Drzewiecki
3208		 */
3209		if ((s->size & ~(align - 1)) != s->size)
3210			continue;
3211
3212		if (s->size - size >= sizeof(void *))
3213			continue;
3214
3215		return s;
3216	}
3217	return NULL;
3218}
3219
3220struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3221		size_t align, unsigned long flags, void (*ctor)(void *))
3222{
3223	struct kmem_cache *s;
3224
3225	if (WARN_ON(!name))
3226		return NULL;
3227
3228	down_write(&slub_lock);
3229	s = find_mergeable(size, align, flags, name, ctor);
3230	if (s) {
3231		s->refcount++;
3232		/*
3233		 * Adjust the object sizes so that we clear
3234		 * the complete object on kzalloc.
3235		 */
3236		s->objsize = max(s->objsize, (int)size);
3237		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3238		up_write(&slub_lock);
3239
3240		if (sysfs_slab_alias(s, name)) {
3241			down_write(&slub_lock);
3242			s->refcount--;
3243			up_write(&slub_lock);
3244			goto err;
3245		}
3246		return s;
3247	}
3248
3249	s = kmalloc(kmem_size, GFP_KERNEL);
3250	if (s) {
3251		if (kmem_cache_open(s, GFP_KERNEL, name,
3252				size, align, flags, ctor)) {
3253			list_add(&s->list, &slab_caches);
3254			up_write(&slub_lock);
3255			if (sysfs_slab_add(s)) {
3256				down_write(&slub_lock);
3257				list_del(&s->list);
3258				up_write(&slub_lock);
3259				kfree(s);
3260				goto err;
3261			}
3262			return s;
3263		}
3264		kfree(s);
3265	}
3266	up_write(&slub_lock);
3267
3268err:
3269	if (flags & SLAB_PANIC)
3270		panic("Cannot create slabcache %s\n", name);
3271	else
3272		s = NULL;
3273	return s;
3274}
3275EXPORT_SYMBOL(kmem_cache_create);
3276
3277#ifdef CONFIG_SMP
3278/*
3279 * Use the cpu notifier to insure that the cpu slabs are flushed when
3280 * necessary.
3281 */
3282static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3283		unsigned long action, void *hcpu)
3284{
3285	long cpu = (long)hcpu;
3286	struct kmem_cache *s;
3287	unsigned long flags;
3288
3289	switch (action) {
3290	case CPU_UP_CANCELED:
3291	case CPU_UP_CANCELED_FROZEN:
3292	case CPU_DEAD:
3293	case CPU_DEAD_FROZEN:
3294		down_read(&slub_lock);
3295		list_for_each_entry(s, &slab_caches, list) {
3296			local_irq_save(flags);
3297			__flush_cpu_slab(s, cpu);
3298			local_irq_restore(flags);
3299		}
3300		up_read(&slub_lock);
3301		break;
3302	default:
3303		break;
3304	}
3305	return NOTIFY_OK;
3306}
3307
3308static struct notifier_block __cpuinitdata slab_notifier = {
3309	.notifier_call = slab_cpuup_callback
3310};
3311
3312#endif
3313
3314void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3315{
3316	struct kmem_cache *s;
3317	void *ret;
3318
3319	if (unlikely(size > SLUB_MAX_SIZE))
3320		return kmalloc_large(size, gfpflags);
3321
3322	s = get_slab(size, gfpflags);
3323
3324	if (unlikely(ZERO_OR_NULL_PTR(s)))
3325		return s;
3326
3327	ret = slab_alloc(s, gfpflags, -1, caller);
3328
3329	/* Honor the call site pointer we recieved. */
3330	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3331
3332	return ret;
3333}
3334
3335void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3336					int node, unsigned long caller)
3337{
3338	struct kmem_cache *s;
3339	void *ret;
3340
3341	if (unlikely(size > SLUB_MAX_SIZE))
3342		return kmalloc_large_node(size, gfpflags, node);
3343
3344	s = get_slab(size, gfpflags);
3345
3346	if (unlikely(ZERO_OR_NULL_PTR(s)))
3347		return s;
3348
3349	ret = slab_alloc(s, gfpflags, node, caller);
3350
3351	/* Honor the call site pointer we recieved. */
3352	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3353
3354	return ret;
3355}
3356
3357#ifdef CONFIG_SLUB_DEBUG
3358static int count_inuse(struct page *page)
3359{
3360	return page->inuse;
3361}
3362
3363static int count_total(struct page *page)
3364{
3365	return page->objects;
3366}
3367
3368static int validate_slab(struct kmem_cache *s, struct page *page,
3369						unsigned long *map)
3370{
3371	void *p;
3372	void *addr = page_address(page);
3373
3374	if (!check_slab(s, page) ||
3375			!on_freelist(s, page, NULL))
3376		return 0;
3377
3378	/* Now we know that a valid freelist exists */
3379	bitmap_zero(map, page->objects);
3380
3381	for_each_free_object(p, s, page->freelist) {
3382		set_bit(slab_index(p, s, addr), map);
3383		if (!check_object(s, page, p, 0))
3384			return 0;
3385	}
3386
3387	for_each_object(p, s, addr, page->objects)
3388		if (!test_bit(slab_index(p, s, addr), map))
3389			if (!check_object(s, page, p, 1))
3390				return 0;
3391	return 1;
3392}
3393
3394static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3395						unsigned long *map)
3396{
3397	if (slab_trylock(page)) {
3398		validate_slab(s, page, map);
3399		slab_unlock(page);
3400	} else
3401		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3402			s->name, page);
3403
3404	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3405		if (!PageSlubDebug(page))
3406			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3407				"on slab 0x%p\n", s->name, page);
3408	} else {
3409		if (PageSlubDebug(page))
3410			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3411				"slab 0x%p\n", s->name, page);
3412	}
3413}
3414
3415static int validate_slab_node(struct kmem_cache *s,
3416		struct kmem_cache_node *n, unsigned long *map)
3417{
3418	unsigned long count = 0;
3419	struct page *page;
3420	unsigned long flags;
3421
3422	spin_lock_irqsave(&n->list_lock, flags);
3423
3424	list_for_each_entry(page, &n->partial, lru) {
3425		validate_slab_slab(s, page, map);
3426		count++;
3427	}
3428	if (count != n->nr_partial)
3429		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3430			"counter=%ld\n", s->name, count, n->nr_partial);
3431
3432	if (!(s->flags & SLAB_STORE_USER))
3433		goto out;
3434
3435	list_for_each_entry(page, &n->full, lru) {
3436		validate_slab_slab(s, page, map);
3437		count++;
3438	}
3439	if (count != atomic_long_read(&n->nr_slabs))
3440		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3441			"counter=%ld\n", s->name, count,
3442			atomic_long_read(&n->nr_slabs));
3443
3444out:
3445	spin_unlock_irqrestore(&n->list_lock, flags);
3446	return count;
3447}
3448
3449static long validate_slab_cache(struct kmem_cache *s)
3450{
3451	int node;
3452	unsigned long count = 0;
3453	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3454				sizeof(unsigned long), GFP_KERNEL);
3455
3456	if (!map)
3457		return -ENOMEM;
3458
3459	flush_all(s);
3460	for_each_node_state(node, N_NORMAL_MEMORY) {
3461		struct kmem_cache_node *n = get_node(s, node);
3462
3463		count += validate_slab_node(s, n, map);
3464	}
3465	kfree(map);
3466	return count;
3467}
3468
3469#ifdef SLUB_RESILIENCY_TEST
3470static void resiliency_test(void)
3471{
3472	u8 *p;
3473
3474	printk(KERN_ERR "SLUB resiliency testing\n");
3475	printk(KERN_ERR "-----------------------\n");
3476	printk(KERN_ERR "A. Corruption after allocation\n");
3477
3478	p = kzalloc(16, GFP_KERNEL);
3479	p[16] = 0x12;
3480	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3481			" 0x12->0x%p\n\n", p + 16);
3482
3483	validate_slab_cache(kmalloc_caches + 4);
3484
3485	/* Hmmm... The next two are dangerous */
3486	p = kzalloc(32, GFP_KERNEL);
3487	p[32 + sizeof(void *)] = 0x34;
3488	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3489			" 0x34 -> -0x%p\n", p);
3490	printk(KERN_ERR
3491		"If allocated object is overwritten then not detectable\n\n");
3492
3493	validate_slab_cache(kmalloc_caches + 5);
3494	p = kzalloc(64, GFP_KERNEL);
3495	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3496	*p = 0x56;
3497	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3498									p);
3499	printk(KERN_ERR
3500		"If allocated object is overwritten then not detectable\n\n");
3501	validate_slab_cache(kmalloc_caches + 6);
3502
3503	printk(KERN_ERR "\nB. Corruption after free\n");
3504	p = kzalloc(128, GFP_KERNEL);
3505	kfree(p);
3506	*p = 0x78;
3507	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3508	validate_slab_cache(kmalloc_caches + 7);
3509
3510	p = kzalloc(256, GFP_KERNEL);
3511	kfree(p);
3512	p[50] = 0x9a;
3513	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3514			p);
3515	validate_slab_cache(kmalloc_caches + 8);
3516
3517	p = kzalloc(512, GFP_KERNEL);
3518	kfree(p);
3519	p[512] = 0xab;
3520	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3521	validate_slab_cache(kmalloc_caches + 9);
3522}
3523#else
3524static void resiliency_test(void) {};
3525#endif
3526
3527/*
3528 * Generate lists of code addresses where slabcache objects are allocated
3529 * and freed.
3530 */
3531
3532struct location {
3533	unsigned long count;
3534	unsigned long addr;
3535	long long sum_time;
3536	long min_time;
3537	long max_time;
3538	long min_pid;
3539	long max_pid;
3540	DECLARE_BITMAP(cpus, NR_CPUS);
3541	nodemask_t nodes;
3542};
3543
3544struct loc_track {
3545	unsigned long max;
3546	unsigned long count;
3547	struct location *loc;
3548};
3549
3550static void free_loc_track(struct loc_track *t)
3551{
3552	if (t->max)
3553		free_pages((unsigned long)t->loc,
3554			get_order(sizeof(struct location) * t->max));
3555}
3556
3557static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3558{
3559	struct location *l;
3560	int order;
3561
3562	order = get_order(sizeof(struct location) * max);
3563
3564	l = (void *)__get_free_pages(flags, order);
3565	if (!l)
3566		return 0;
3567
3568	if (t->count) {
3569		memcpy(l, t->loc, sizeof(struct location) * t->count);
3570		free_loc_track(t);
3571	}
3572	t->max = max;
3573	t->loc = l;
3574	return 1;
3575}
3576
3577static int add_location(struct loc_track *t, struct kmem_cache *s,
3578				const struct track *track)
3579{
3580	long start, end, pos;
3581	struct location *l;
3582	unsigned long caddr;
3583	unsigned long age = jiffies - track->when;
3584
3585	start = -1;
3586	end = t->count;
3587
3588	for ( ; ; ) {
3589		pos = start + (end - start + 1) / 2;
3590
3591		/*
3592		 * There is nothing at "end". If we end up there
3593		 * we need to add something to before end.
3594		 */
3595		if (pos == end)
3596			break;
3597
3598		caddr = t->loc[pos].addr;
3599		if (track->addr == caddr) {
3600
3601			l = &t->loc[pos];
3602			l->count++;
3603			if (track->when) {
3604				l->sum_time += age;
3605				if (age < l->min_time)
3606					l->min_time = age;
3607				if (age > l->max_time)
3608					l->max_time = age;
3609
3610				if (track->pid < l->min_pid)
3611					l->min_pid = track->pid;
3612				if (track->pid > l->max_pid)
3613					l->max_pid = track->pid;
3614
3615				cpumask_set_cpu(track->cpu,
3616						to_cpumask(l->cpus));
3617			}
3618			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3619			return 1;
3620		}
3621
3622		if (track->addr < caddr)
3623			end = pos;
3624		else
3625			start = pos;
3626	}
3627
3628	/*
3629	 * Not found. Insert new tracking element.
3630	 */
3631	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3632		return 0;
3633
3634	l = t->loc + pos;
3635	if (pos < t->count)
3636		memmove(l + 1, l,
3637			(t->count - pos) * sizeof(struct location));
3638	t->count++;
3639	l->count = 1;
3640	l->addr = track->addr;
3641	l->sum_time = age;
3642	l->min_time = age;
3643	l->max_time = age;
3644	l->min_pid = track->pid;
3645	l->max_pid = track->pid;
3646	cpumask_clear(to_cpumask(l->cpus));
3647	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3648	nodes_clear(l->nodes);
3649	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3650	return 1;
3651}
3652
3653static void process_slab(struct loc_track *t, struct kmem_cache *s,
3654		struct page *page, enum track_item alloc)
3655{
3656	void *addr = page_address(page);
3657	DECLARE_BITMAP(map, page->objects);
3658	void *p;
3659
3660	bitmap_zero(map, page->objects);
3661	for_each_free_object(p, s, page->freelist)
3662		set_bit(slab_index(p, s, addr), map);
3663
3664	for_each_object(p, s, addr, page->objects)
3665		if (!test_bit(slab_index(p, s, addr), map))
3666			add_location(t, s, get_track(s, p, alloc));
3667}
3668
3669static int list_locations(struct kmem_cache *s, char *buf,
3670					enum track_item alloc)
3671{
3672	int len = 0;
3673	unsigned long i;
3674	struct loc_track t = { 0, 0, NULL };
3675	int node;
3676
3677	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3678			GFP_TEMPORARY))
3679		return sprintf(buf, "Out of memory\n");
3680
3681	/* Push back cpu slabs */
3682	flush_all(s);
3683
3684	for_each_node_state(node, N_NORMAL_MEMORY) {
3685		struct kmem_cache_node *n = get_node(s, node);
3686		unsigned long flags;
3687		struct page *page;
3688
3689		if (!atomic_long_read(&n->nr_slabs))
3690			continue;
3691
3692		spin_lock_irqsave(&n->list_lock, flags);
3693		list_for_each_entry(page, &n->partial, lru)
3694			process_slab(&t, s, page, alloc);
3695		list_for_each_entry(page, &n->full, lru)
3696			process_slab(&t, s, page, alloc);
3697		spin_unlock_irqrestore(&n->list_lock, flags);
3698	}
3699
3700	for (i = 0; i < t.count; i++) {
3701		struct location *l = &t.loc[i];
3702
3703		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3704			break;
3705		len += sprintf(buf + len, "%7ld ", l->count);
3706
3707		if (l->addr)
3708			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3709		else
3710			len += sprintf(buf + len, "<not-available>");
3711
3712		if (l->sum_time != l->min_time) {
3713			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3714				l->min_time,
3715				(long)div_u64(l->sum_time, l->count),
3716				l->max_time);
3717		} else
3718			len += sprintf(buf + len, " age=%ld",
3719				l->min_time);
3720
3721		if (l->min_pid != l->max_pid)
3722			len += sprintf(buf + len, " pid=%ld-%ld",
3723				l->min_pid, l->max_pid);
3724		else
3725			len += sprintf(buf + len, " pid=%ld",
3726				l->min_pid);
3727
3728		if (num_online_cpus() > 1 &&
3729				!cpumask_empty(to_cpumask(l->cpus)) &&
3730				len < PAGE_SIZE - 60) {
3731			len += sprintf(buf + len, " cpus=");
3732			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3733						 to_cpumask(l->cpus));
3734		}
3735
3736		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3737				len < PAGE_SIZE - 60) {
3738			len += sprintf(buf + len, " nodes=");
3739			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3740					l->nodes);
3741		}
3742
3743		len += sprintf(buf + len, "\n");
3744	}
3745
3746	free_loc_track(&t);
3747	if (!t.count)
3748		len += sprintf(buf, "No data\n");
3749	return len;
3750}
3751
3752enum slab_stat_type {
3753	SL_ALL,			/* All slabs */
3754	SL_PARTIAL,		/* Only partially allocated slabs */
3755	SL_CPU,			/* Only slabs used for cpu caches */
3756	SL_OBJECTS,		/* Determine allocated objects not slabs */
3757	SL_TOTAL		/* Determine object capacity not slabs */
3758};
3759
3760#define SO_ALL		(1 << SL_ALL)
3761#define SO_PARTIAL	(1 << SL_PARTIAL)
3762#define SO_CPU		(1 << SL_CPU)
3763#define SO_OBJECTS	(1 << SL_OBJECTS)
3764#define SO_TOTAL	(1 << SL_TOTAL)
3765
3766static ssize_t show_slab_objects(struct kmem_cache *s,
3767			    char *buf, unsigned long flags)
3768{
3769	unsigned long total = 0;
3770	int node;
3771	int x;
3772	unsigned long *nodes;
3773	unsigned long *per_cpu;
3774
3775	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3776	if (!nodes)
3777		return -ENOMEM;
3778	per_cpu = nodes + nr_node_ids;
3779
3780	if (flags & SO_CPU) {
3781		int cpu;
3782
3783		for_each_possible_cpu(cpu) {
3784			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3785
3786			if (!c || c->node < 0)
3787				continue;
3788
3789			if (c->page) {
3790					if (flags & SO_TOTAL)
3791						x = c->page->objects;
3792				else if (flags & SO_OBJECTS)
3793					x = c->page->inuse;
3794				else
3795					x = 1;
3796
3797				total += x;
3798				nodes[c->node] += x;
3799			}
3800			per_cpu[c->node]++;
3801		}
3802	}
3803
3804	if (flags & SO_ALL) {
3805		for_each_node_state(node, N_NORMAL_MEMORY) {
3806			struct kmem_cache_node *n = get_node(s, node);
3807
3808		if (flags & SO_TOTAL)
3809			x = atomic_long_read(&n->total_objects);
3810		else if (flags & SO_OBJECTS)
3811			x = atomic_long_read(&n->total_objects) -
3812				count_partial(n, count_free);
3813
3814			else
3815				x = atomic_long_read(&n->nr_slabs);
3816			total += x;
3817			nodes[node] += x;
3818		}
3819
3820	} else if (flags & SO_PARTIAL) {
3821		for_each_node_state(node, N_NORMAL_MEMORY) {
3822			struct kmem_cache_node *n = get_node(s, node);
3823
3824			if (flags & SO_TOTAL)
3825				x = count_partial(n, count_total);
3826			else if (flags & SO_OBJECTS)
3827				x = count_partial(n, count_inuse);
3828			else
3829				x = n->nr_partial;
3830			total += x;
3831			nodes[node] += x;
3832		}
3833	}
3834	x = sprintf(buf, "%lu", total);
3835#ifdef CONFIG_NUMA
3836	for_each_node_state(node, N_NORMAL_MEMORY)
3837		if (nodes[node])
3838			x += sprintf(buf + x, " N%d=%lu",
3839					node, nodes[node]);
3840#endif
3841	kfree(nodes);
3842	return x + sprintf(buf + x, "\n");
3843}
3844
3845static int any_slab_objects(struct kmem_cache *s)
3846{
3847	int node;
3848
3849	for_each_online_node(node) {
3850		struct kmem_cache_node *n = get_node(s, node);
3851
3852		if (!n)
3853			continue;
3854
3855		if (atomic_long_read(&n->total_objects))
3856			return 1;
3857	}
3858	return 0;
3859}
3860
3861#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3862#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3863
3864struct slab_attribute {
3865	struct attribute attr;
3866	ssize_t (*show)(struct kmem_cache *s, char *buf);
3867	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3868};
3869
3870#define SLAB_ATTR_RO(_name) \
3871	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3872
3873#define SLAB_ATTR(_name) \
3874	static struct slab_attribute _name##_attr =  \
3875	__ATTR(_name, 0644, _name##_show, _name##_store)
3876
3877static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3878{
3879	return sprintf(buf, "%d\n", s->size);
3880}
3881SLAB_ATTR_RO(slab_size);
3882
3883static ssize_t align_show(struct kmem_cache *s, char *buf)
3884{
3885	return sprintf(buf, "%d\n", s->align);
3886}
3887SLAB_ATTR_RO(align);
3888
3889static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3890{
3891	return sprintf(buf, "%d\n", s->objsize);
3892}
3893SLAB_ATTR_RO(object_size);
3894
3895static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3896{
3897	return sprintf(buf, "%d\n", oo_objects(s->oo));
3898}
3899SLAB_ATTR_RO(objs_per_slab);
3900
3901static ssize_t order_store(struct kmem_cache *s,
3902				const char *buf, size_t length)
3903{
3904	unsigned long order;
3905	int err;
3906
3907	err = strict_strtoul(buf, 10, &order);
3908	if (err)
3909		return err;
3910
3911	if (order > slub_max_order || order < slub_min_order)
3912		return -EINVAL;
3913
3914	calculate_sizes(s, order);
3915	return length;
3916}
3917
3918static ssize_t order_show(struct kmem_cache *s, char *buf)
3919{
3920	return sprintf(buf, "%d\n", oo_order(s->oo));
3921}
3922SLAB_ATTR(order);
3923
3924static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3925{
3926	return sprintf(buf, "%lu\n", s->min_partial);
3927}
3928
3929static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3930				 size_t length)
3931{
3932	unsigned long min;
3933	int err;
3934
3935	err = strict_strtoul(buf, 10, &min);
3936	if (err)
3937		return err;
3938
3939	set_min_partial(s, min);
3940	return length;
3941}
3942SLAB_ATTR(min_partial);
3943
3944static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3945{
3946	if (s->ctor) {
3947		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3948
3949		return n + sprintf(buf + n, "\n");
3950	}
3951	return 0;
3952}
3953SLAB_ATTR_RO(ctor);
3954
3955static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3956{
3957	return sprintf(buf, "%d\n", s->refcount - 1);
3958}
3959SLAB_ATTR_RO(aliases);
3960
3961static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3962{
3963	return show_slab_objects(s, buf, SO_ALL);
3964}
3965SLAB_ATTR_RO(slabs);
3966
3967static ssize_t partial_show(struct kmem_cache *s, char *buf)
3968{
3969	return show_slab_objects(s, buf, SO_PARTIAL);
3970}
3971SLAB_ATTR_RO(partial);
3972
3973static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3974{
3975	return show_slab_objects(s, buf, SO_CPU);
3976}
3977SLAB_ATTR_RO(cpu_slabs);
3978
3979static ssize_t objects_show(struct kmem_cache *s, char *buf)
3980{
3981	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3982}
3983SLAB_ATTR_RO(objects);
3984
3985static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3986{
3987	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3988}
3989SLAB_ATTR_RO(objects_partial);
3990
3991static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3992{
3993	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3994}
3995SLAB_ATTR_RO(total_objects);
3996
3997static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3998{
3999	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4000}
4001
4002static ssize_t sanity_checks_store(struct kmem_cache *s,
4003				const char *buf, size_t length)
4004{
4005	s->flags &= ~SLAB_DEBUG_FREE;
4006	if (buf[0] == '1')
4007		s->flags |= SLAB_DEBUG_FREE;
4008	return length;
4009}
4010SLAB_ATTR(sanity_checks);
4011
4012static ssize_t trace_show(struct kmem_cache *s, char *buf)
4013{
4014	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4015}
4016
4017static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4018							size_t length)
4019{
4020	s->flags &= ~SLAB_TRACE;
4021	if (buf[0] == '1')
4022		s->flags |= SLAB_TRACE;
4023	return length;
4024}
4025SLAB_ATTR(trace);
4026
4027#ifdef CONFIG_FAILSLAB
4028static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4029{
4030	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4031}
4032
4033static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4034							size_t length)
4035{
4036	s->flags &= ~SLAB_FAILSLAB;
4037	if (buf[0] == '1')
4038		s->flags |= SLAB_FAILSLAB;
4039	return length;
4040}
4041SLAB_ATTR(failslab);
4042#endif
4043
4044static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4045{
4046	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4047}
4048
4049static ssize_t reclaim_account_store(struct kmem_cache *s,
4050				const char *buf, size_t length)
4051{
4052	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4053	if (buf[0] == '1')
4054		s->flags |= SLAB_RECLAIM_ACCOUNT;
4055	return length;
4056}
4057SLAB_ATTR(reclaim_account);
4058
4059static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4060{
4061	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4062}
4063SLAB_ATTR_RO(hwcache_align);
4064
4065#ifdef CONFIG_ZONE_DMA
4066static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4067{
4068	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4069}
4070SLAB_ATTR_RO(cache_dma);
4071#endif
4072
4073static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4074{
4075	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4076}
4077SLAB_ATTR_RO(destroy_by_rcu);
4078
4079static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4080{
4081	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4082}
4083
4084static ssize_t red_zone_store(struct kmem_cache *s,
4085				const char *buf, size_t length)
4086{
4087	if (any_slab_objects(s))
4088		return -EBUSY;
4089
4090	s->flags &= ~SLAB_RED_ZONE;
4091	if (buf[0] == '1')
4092		s->flags |= SLAB_RED_ZONE;
4093	calculate_sizes(s, -1);
4094	return length;
4095}
4096SLAB_ATTR(red_zone);
4097
4098static ssize_t poison_show(struct kmem_cache *s, char *buf)
4099{
4100	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4101}
4102
4103static ssize_t poison_store(struct kmem_cache *s,
4104				const char *buf, size_t length)
4105{
4106	if (any_slab_objects(s))
4107		return -EBUSY;
4108
4109	s->flags &= ~SLAB_POISON;
4110	if (buf[0] == '1')
4111		s->flags |= SLAB_POISON;
4112	calculate_sizes(s, -1);
4113	return length;
4114}
4115SLAB_ATTR(poison);
4116
4117static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4118{
4119	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4120}
4121
4122static ssize_t store_user_store(struct kmem_cache *s,
4123				const char *buf, size_t length)
4124{
4125	if (any_slab_objects(s))
4126		return -EBUSY;
4127
4128	s->flags &= ~SLAB_STORE_USER;
4129	if (buf[0] == '1')
4130		s->flags |= SLAB_STORE_USER;
4131	calculate_sizes(s, -1);
4132	return length;
4133}
4134SLAB_ATTR(store_user);
4135
4136static ssize_t validate_show(struct kmem_cache *s, char *buf)
4137{
4138	return 0;
4139}
4140
4141static ssize_t validate_store(struct kmem_cache *s,
4142			const char *buf, size_t length)
4143{
4144	int ret = -EINVAL;
4145
4146	if (buf[0] == '1') {
4147		ret = validate_slab_cache(s);
4148		if (ret >= 0)
4149			ret = length;
4150	}
4151	return ret;
4152}
4153SLAB_ATTR(validate);
4154
4155static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4156{
4157	return 0;
4158}
4159
4160static ssize_t shrink_store(struct kmem_cache *s,
4161			const char *buf, size_t length)
4162{
4163	if (buf[0] == '1') {
4164		int rc = kmem_cache_shrink(s);
4165
4166		if (rc)
4167			return rc;
4168	} else
4169		return -EINVAL;
4170	return length;
4171}
4172SLAB_ATTR(shrink);
4173
4174static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4175{
4176	if (!(s->flags & SLAB_STORE_USER))
4177		return -ENOSYS;
4178	return list_locations(s, buf, TRACK_ALLOC);
4179}
4180SLAB_ATTR_RO(alloc_calls);
4181
4182static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4183{
4184	if (!(s->flags & SLAB_STORE_USER))
4185		return -ENOSYS;
4186	return list_locations(s, buf, TRACK_FREE);
4187}
4188SLAB_ATTR_RO(free_calls);
4189
4190#ifdef CONFIG_NUMA
4191static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4192{
4193	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4194}
4195
4196static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4197				const char *buf, size_t length)
4198{
4199	unsigned long ratio;
4200	int err;
4201
4202	err = strict_strtoul(buf, 10, &ratio);
4203	if (err)
4204		return err;
4205
4206	if (ratio <= 100)
4207		s->remote_node_defrag_ratio = ratio * 10;
4208
4209	return length;
4210}
4211SLAB_ATTR(remote_node_defrag_ratio);
4212#endif
4213
4214#ifdef CONFIG_SLUB_STATS
4215static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4216{
4217	unsigned long sum  = 0;
4218	int cpu;
4219	int len;
4220	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4221
4222	if (!data)
4223		return -ENOMEM;
4224
4225	for_each_online_cpu(cpu) {
4226		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4227
4228		data[cpu] = x;
4229		sum += x;
4230	}
4231
4232	len = sprintf(buf, "%lu", sum);
4233
4234#ifdef CONFIG_SMP
4235	for_each_online_cpu(cpu) {
4236		if (data[cpu] && len < PAGE_SIZE - 20)
4237			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4238	}
4239#endif
4240	kfree(data);
4241	return len + sprintf(buf + len, "\n");
4242}
4243
4244static void clear_stat(struct kmem_cache *s, enum stat_item si)
4245{
4246	int cpu;
4247
4248	for_each_online_cpu(cpu)
4249		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4250}
4251
4252#define STAT_ATTR(si, text) 					\
4253static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4254{								\
4255	return show_stat(s, buf, si);				\
4256}								\
4257static ssize_t text##_store(struct kmem_cache *s,		\
4258				const char *buf, size_t length)	\
4259{								\
4260	if (buf[0] != '0')					\
4261		return -EINVAL;					\
4262	clear_stat(s, si);					\
4263	return length;						\
4264}								\
4265SLAB_ATTR(text);						\
4266
4267STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4268STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4269STAT_ATTR(FREE_FASTPATH, free_fastpath);
4270STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4271STAT_ATTR(FREE_FROZEN, free_frozen);
4272STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4273STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4274STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4275STAT_ATTR(ALLOC_SLAB, alloc_slab);
4276STAT_ATTR(ALLOC_REFILL, alloc_refill);
4277STAT_ATTR(FREE_SLAB, free_slab);
4278STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4279STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4280STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4281STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4282STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4283STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4284STAT_ATTR(ORDER_FALLBACK, order_fallback);
4285#endif
4286
4287static struct attribute *slab_attrs[] = {
4288	&slab_size_attr.attr,
4289	&object_size_attr.attr,
4290	&objs_per_slab_attr.attr,
4291	&order_attr.attr,
4292	&min_partial_attr.attr,
4293	&objects_attr.attr,
4294	&objects_partial_attr.attr,
4295	&total_objects_attr.attr,
4296	&slabs_attr.attr,
4297	&partial_attr.attr,
4298	&cpu_slabs_attr.attr,
4299	&ctor_attr.attr,
4300	&aliases_attr.attr,
4301	&align_attr.attr,
4302	&sanity_checks_attr.attr,
4303	&trace_attr.attr,
4304	&hwcache_align_attr.attr,
4305	&reclaim_account_attr.attr,
4306	&destroy_by_rcu_attr.attr,
4307	&red_zone_attr.attr,
4308	&poison_attr.attr,
4309	&store_user_attr.attr,
4310	&validate_attr.attr,
4311	&shrink_attr.attr,
4312	&alloc_calls_attr.attr,
4313	&free_calls_attr.attr,
4314#ifdef CONFIG_ZONE_DMA
4315	&cache_dma_attr.attr,
4316#endif
4317#ifdef CONFIG_NUMA
4318	&remote_node_defrag_ratio_attr.attr,
4319#endif
4320#ifdef CONFIG_SLUB_STATS
4321	&alloc_fastpath_attr.attr,
4322	&alloc_slowpath_attr.attr,
4323	&free_fastpath_attr.attr,
4324	&free_slowpath_attr.attr,
4325	&free_frozen_attr.attr,
4326	&free_add_partial_attr.attr,
4327	&free_remove_partial_attr.attr,
4328	&alloc_from_partial_attr.attr,
4329	&alloc_slab_attr.attr,
4330	&alloc_refill_attr.attr,
4331	&free_slab_attr.attr,
4332	&cpuslab_flush_attr.attr,
4333	&deactivate_full_attr.attr,
4334	&deactivate_empty_attr.attr,
4335	&deactivate_to_head_attr.attr,
4336	&deactivate_to_tail_attr.attr,
4337	&deactivate_remote_frees_attr.attr,
4338	&order_fallback_attr.attr,
4339#endif
4340#ifdef CONFIG_FAILSLAB
4341	&failslab_attr.attr,
4342#endif
4343
4344	NULL
4345};
4346
4347static struct attribute_group slab_attr_group = {
4348	.attrs = slab_attrs,
4349};
4350
4351static ssize_t slab_attr_show(struct kobject *kobj,
4352				struct attribute *attr,
4353				char *buf)
4354{
4355	struct slab_attribute *attribute;
4356	struct kmem_cache *s;
4357	int err;
4358
4359	attribute = to_slab_attr(attr);
4360	s = to_slab(kobj);
4361
4362	if (!attribute->show)
4363		return -EIO;
4364
4365	err = attribute->show(s, buf);
4366
4367	return err;
4368}
4369
4370static ssize_t slab_attr_store(struct kobject *kobj,
4371				struct attribute *attr,
4372				const char *buf, size_t len)
4373{
4374	struct slab_attribute *attribute;
4375	struct kmem_cache *s;
4376	int err;
4377
4378	attribute = to_slab_attr(attr);
4379	s = to_slab(kobj);
4380
4381	if (!attribute->store)
4382		return -EIO;
4383
4384	err = attribute->store(s, buf, len);
4385
4386	return err;
4387}
4388
4389static void kmem_cache_release(struct kobject *kobj)
4390{
4391	struct kmem_cache *s = to_slab(kobj);
4392
4393	kfree(s);
4394}
4395
4396static const struct sysfs_ops slab_sysfs_ops = {
4397	.show = slab_attr_show,
4398	.store = slab_attr_store,
4399};
4400
4401static struct kobj_type slab_ktype = {
4402	.sysfs_ops = &slab_sysfs_ops,
4403	.release = kmem_cache_release
4404};
4405
4406static int uevent_filter(struct kset *kset, struct kobject *kobj)
4407{
4408	struct kobj_type *ktype = get_ktype(kobj);
4409
4410	if (ktype == &slab_ktype)
4411		return 1;
4412	return 0;
4413}
4414
4415static const struct kset_uevent_ops slab_uevent_ops = {
4416	.filter = uevent_filter,
4417};
4418
4419static struct kset *slab_kset;
4420
4421#define ID_STR_LENGTH 64
4422
4423/* Create a unique string id for a slab cache:
4424 *
4425 * Format	:[flags-]size
4426 */
4427static char *create_unique_id(struct kmem_cache *s)
4428{
4429	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4430	char *p = name;
4431
4432	BUG_ON(!name);
4433
4434	*p++ = ':';
4435	/*
4436	 * First flags affecting slabcache operations. We will only
4437	 * get here for aliasable slabs so we do not need to support
4438	 * too many flags. The flags here must cover all flags that
4439	 * are matched during merging to guarantee that the id is
4440	 * unique.
4441	 */
4442	if (s->flags & SLAB_CACHE_DMA)
4443		*p++ = 'd';
4444	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4445		*p++ = 'a';
4446	if (s->flags & SLAB_DEBUG_FREE)
4447		*p++ = 'F';
4448	if (!(s->flags & SLAB_NOTRACK))
4449		*p++ = 't';
4450	if (p != name + 1)
4451		*p++ = '-';
4452	p += sprintf(p, "%07d", s->size);
4453	BUG_ON(p > name + ID_STR_LENGTH - 1);
4454	return name;
4455}
4456
4457static int sysfs_slab_add(struct kmem_cache *s)
4458{
4459	int err;
4460	const char *name;
4461	int unmergeable;
4462
4463	if (slab_state < SYSFS)
4464		/* Defer until later */
4465		return 0;
4466
4467	unmergeable = slab_unmergeable(s);
4468	if (unmergeable) {
4469		/*
4470		 * Slabcache can never be merged so we can use the name proper.
4471		 * This is typically the case for debug situations. In that
4472		 * case we can catch duplicate names easily.
4473		 */
4474		sysfs_remove_link(&slab_kset->kobj, s->name);
4475		name = s->name;
4476	} else {
4477		/*
4478		 * Create a unique name for the slab as a target
4479		 * for the symlinks.
4480		 */
4481		name = create_unique_id(s);
4482	}
4483
4484	s->kobj.kset = slab_kset;
4485	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4486	if (err) {
4487		kobject_put(&s->kobj);
4488		return err;
4489	}
4490
4491	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4492	if (err) {
4493		kobject_del(&s->kobj);
4494		kobject_put(&s->kobj);
4495		return err;
4496	}
4497	kobject_uevent(&s->kobj, KOBJ_ADD);
4498	if (!unmergeable) {
4499		/* Setup first alias */
4500		sysfs_slab_alias(s, s->name);
4501		kfree(name);
4502	}
4503	return 0;
4504}
4505
4506static void sysfs_slab_remove(struct kmem_cache *s)
4507{
4508	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4509	kobject_del(&s->kobj);
4510	kobject_put(&s->kobj);
4511}
4512
4513/*
4514 * Need to buffer aliases during bootup until sysfs becomes
4515 * available lest we lose that information.
4516 */
4517struct saved_alias {
4518	struct kmem_cache *s;
4519	const char *name;
4520	struct saved_alias *next;
4521};
4522
4523static struct saved_alias *alias_list;
4524
4525static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4526{
4527	struct saved_alias *al;
4528
4529	if (slab_state == SYSFS) {
4530		/*
4531		 * If we have a leftover link then remove it.
4532		 */
4533		sysfs_remove_link(&slab_kset->kobj, name);
4534		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4535	}
4536
4537	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4538	if (!al)
4539		return -ENOMEM;
4540
4541	al->s = s;
4542	al->name = name;
4543	al->next = alias_list;
4544	alias_list = al;
4545	return 0;
4546}
4547
4548static int __init slab_sysfs_init(void)
4549{
4550	struct kmem_cache *s;
4551	int err;
4552
4553	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4554	if (!slab_kset) {
4555		printk(KERN_ERR "Cannot register slab subsystem.\n");
4556		return -ENOSYS;
4557	}
4558
4559	slab_state = SYSFS;
4560
4561	list_for_each_entry(s, &slab_caches, list) {
4562		err = sysfs_slab_add(s);
4563		if (err)
4564			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4565						" to sysfs\n", s->name);
4566	}
4567
4568	while (alias_list) {
4569		struct saved_alias *al = alias_list;
4570
4571		alias_list = alias_list->next;
4572		err = sysfs_slab_alias(al->s, al->name);
4573		if (err)
4574			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4575					" %s to sysfs\n", s->name);
4576		kfree(al);
4577	}
4578
4579	resiliency_test();
4580	return 0;
4581}
4582
4583__initcall(slab_sysfs_init);
4584#endif
4585
4586/*
4587 * The /proc/slabinfo ABI
4588 */
4589#ifdef CONFIG_SLABINFO
4590static void print_slabinfo_header(struct seq_file *m)
4591{
4592	seq_puts(m, "slabinfo - version: 2.1\n");
4593	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4594		 "<objperslab> <pagesperslab>");
4595	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4596	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4597	seq_putc(m, '\n');
4598}
4599
4600static void *s_start(struct seq_file *m, loff_t *pos)
4601{
4602	loff_t n = *pos;
4603
4604	down_read(&slub_lock);
4605	if (!n)
4606		print_slabinfo_header(m);
4607
4608	return seq_list_start(&slab_caches, *pos);
4609}
4610
4611static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4612{
4613	return seq_list_next(p, &slab_caches, pos);
4614}
4615
4616static void s_stop(struct seq_file *m, void *p)
4617{
4618	up_read(&slub_lock);
4619}
4620
4621static int s_show(struct seq_file *m, void *p)
4622{
4623	unsigned long nr_partials = 0;
4624	unsigned long nr_slabs = 0;
4625	unsigned long nr_inuse = 0;
4626	unsigned long nr_objs = 0;
4627	unsigned long nr_free = 0;
4628	struct kmem_cache *s;
4629	int node;
4630
4631	s = list_entry(p, struct kmem_cache, list);
4632
4633	for_each_online_node(node) {
4634		struct kmem_cache_node *n = get_node(s, node);
4635
4636		if (!n)
4637			continue;
4638
4639		nr_partials += n->nr_partial;
4640		nr_slabs += atomic_long_read(&n->nr_slabs);
4641		nr_objs += atomic_long_read(&n->total_objects);
4642		nr_free += count_partial(n, count_free);
4643	}
4644
4645	nr_inuse = nr_objs - nr_free;
4646
4647	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4648		   nr_objs, s->size, oo_objects(s->oo),
4649		   (1 << oo_order(s->oo)));
4650	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4651	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4652		   0UL);
4653	seq_putc(m, '\n');
4654	return 0;
4655}
4656
4657static const struct seq_operations slabinfo_op = {
4658	.start = s_start,
4659	.next = s_next,
4660	.stop = s_stop,
4661	.show = s_show,
4662};
4663
4664static int slabinfo_open(struct inode *inode, struct file *file)
4665{
4666	return seq_open(file, &slabinfo_op);
4667}
4668
4669static const struct file_operations proc_slabinfo_operations = {
4670	.open		= slabinfo_open,
4671	.read		= seq_read,
4672	.llseek		= seq_lseek,
4673	.release	= seq_release,
4674};
4675
4676static int __init slab_proc_init(void)
4677{
4678	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4679	return 0;
4680}
4681module_init(slab_proc_init);
4682#endif /* CONFIG_SLABINFO */
4683