slub.c revision dc1fb7f43636754a4d06f7bdb8ea3269a7d71d6d
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/swap.h> /* struct reclaim_state */
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
18#include <linux/proc_fs.h>
19#include <linux/seq_file.h>
20#include <linux/kmemcheck.h>
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
25#include <linux/debugobjects.h>
26#include <linux/kallsyms.h>
27#include <linux/memory.h>
28#include <linux/math64.h>
29#include <linux/fault-inject.h>
30
31#include <trace/events/kmem.h>
32
33/*
34 * Lock order:
35 *   1. slab_lock(page)
36 *   2. slab->list_lock
37 *
38 *   The slab_lock protects operations on the object of a particular
39 *   slab and its metadata in the page struct. If the slab lock
40 *   has been taken then no allocations nor frees can be performed
41 *   on the objects in the slab nor can the slab be added or removed
42 *   from the partial or full lists since this would mean modifying
43 *   the page_struct of the slab.
44 *
45 *   The list_lock protects the partial and full list on each node and
46 *   the partial slab counter. If taken then no new slabs may be added or
47 *   removed from the lists nor make the number of partial slabs be modified.
48 *   (Note that the total number of slabs is an atomic value that may be
49 *   modified without taking the list lock).
50 *
51 *   The list_lock is a centralized lock and thus we avoid taking it as
52 *   much as possible. As long as SLUB does not have to handle partial
53 *   slabs, operations can continue without any centralized lock. F.e.
54 *   allocating a long series of objects that fill up slabs does not require
55 *   the list lock.
56 *
57 *   The lock order is sometimes inverted when we are trying to get a slab
58 *   off a list. We take the list_lock and then look for a page on the list
59 *   to use. While we do that objects in the slabs may be freed. We can
60 *   only operate on the slab if we have also taken the slab_lock. So we use
61 *   a slab_trylock() on the slab. If trylock was successful then no frees
62 *   can occur anymore and we can use the slab for allocations etc. If the
63 *   slab_trylock() does not succeed then frees are in progress in the slab and
64 *   we must stay away from it for a while since we may cause a bouncing
65 *   cacheline if we try to acquire the lock. So go onto the next slab.
66 *   If all pages are busy then we may allocate a new slab instead of reusing
67 *   a partial slab. A new slab has noone operating on it and thus there is
68 *   no danger of cacheline contention.
69 *
70 *   Interrupts are disabled during allocation and deallocation in order to
71 *   make the slab allocator safe to use in the context of an irq. In addition
72 *   interrupts are disabled to ensure that the processor does not change
73 *   while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive 		The slab is frozen and exempt from list processing.
91 * 			This means that the slab is dedicated to a purpose
92 * 			such as satisfying allocations for a specific
93 * 			processor. Objects may be freed in the slab while
94 * 			it is frozen but slab_free will then skip the usual
95 * 			list operations. It is up to the processor holding
96 * 			the slab to integrate the slab into the slab lists
97 * 			when the slab is no longer needed.
98 *
99 * 			One use of this flag is to mark slabs that are
100 * 			used for allocations. Then such a slab becomes a cpu
101 * 			slab. The cpu slab may be equipped with an additional
102 * 			freelist that allows lockless access to
103 * 			free objects in addition to the regular freelist
104 * 			that requires the slab lock.
105 *
106 * PageError		Slab requires special handling due to debug
107 * 			options set. This moves	slab handling out of
108 * 			the fast path and disables lockless freelists.
109 */
110
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112		SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
116#ifdef CONFIG_SLUB_DEBUG
117	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118#else
119	return 0;
120#endif
121}
122
123/*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
138#define MIN_PARTIAL 5
139
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148				SLAB_POISON | SLAB_STORE_USER)
149
150/*
151 * Debugging flags that require metadata to be stored in the slab.  These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
154 */
155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
156
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162		SLAB_FAILSLAB)
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165		SLAB_CACHE_DMA | SLAB_NOTRACK)
166
167#define OO_SHIFT	16
168#define OO_MASK		((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
170
171/* Internal SLUB flags */
172#define __OBJECT_POISON		0x80000000UL /* Poison object */
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181	DOWN,		/* No slab functionality available */
182	PARTIAL,	/* Kmem_cache_node works */
183	UP,		/* Everything works but does not show up in sysfs */
184	SYSFS		/* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
189static LIST_HEAD(slab_caches);
190
191/*
192 * Tracking user of a slab.
193 */
194struct track {
195	unsigned long addr;	/* Called from address */
196	int cpu;		/* Was running on cpu */
197	int pid;		/* Pid context */
198	unsigned long when;	/* When did the operation occur */
199};
200
201enum track_item { TRACK_ALLOC, TRACK_FREE };
202
203#ifdef CONFIG_SYSFS
204static int sysfs_slab_add(struct kmem_cache *);
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
207
208#else
209static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211							{ return 0; }
212static inline void sysfs_slab_remove(struct kmem_cache *s)
213{
214	kfree(s->name);
215	kfree(s);
216}
217
218#endif
219
220static inline void stat(const struct kmem_cache *s, enum stat_item si)
221{
222#ifdef CONFIG_SLUB_STATS
223	__this_cpu_inc(s->cpu_slab->stat[si]);
224#endif
225}
226
227/********************************************************************
228 * 			Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233	return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
238	return s->node[node];
239}
240
241/* Verify that a pointer has an address that is valid within a slab page */
242static inline int check_valid_pointer(struct kmem_cache *s,
243				struct page *page, const void *object)
244{
245	void *base;
246
247	if (!object)
248		return 1;
249
250	base = page_address(page);
251	if (object < base || object >= base + page->objects * s->size ||
252		(object - base) % s->size) {
253		return 0;
254	}
255
256	return 1;
257}
258
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261	return *(void **)(object + s->offset);
262}
263
264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265{
266	*(void **)(object + s->offset) = fp;
267}
268
269/* Loop over all objects in a slab */
270#define for_each_object(__p, __s, __addr, __objects) \
271	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
272			__p += (__s)->size)
273
274/* Determine object index from a given position */
275static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
276{
277	return (p - addr) / s->size;
278}
279
280static inline size_t slab_ksize(const struct kmem_cache *s)
281{
282#ifdef CONFIG_SLUB_DEBUG
283	/*
284	 * Debugging requires use of the padding between object
285	 * and whatever may come after it.
286	 */
287	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
288		return s->objsize;
289
290#endif
291	/*
292	 * If we have the need to store the freelist pointer
293	 * back there or track user information then we can
294	 * only use the space before that information.
295	 */
296	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
297		return s->inuse;
298	/*
299	 * Else we can use all the padding etc for the allocation
300	 */
301	return s->size;
302}
303
304static inline int order_objects(int order, unsigned long size, int reserved)
305{
306	return ((PAGE_SIZE << order) - reserved) / size;
307}
308
309static inline struct kmem_cache_order_objects oo_make(int order,
310		unsigned long size, int reserved)
311{
312	struct kmem_cache_order_objects x = {
313		(order << OO_SHIFT) + order_objects(order, size, reserved)
314	};
315
316	return x;
317}
318
319static inline int oo_order(struct kmem_cache_order_objects x)
320{
321	return x.x >> OO_SHIFT;
322}
323
324static inline int oo_objects(struct kmem_cache_order_objects x)
325{
326	return x.x & OO_MASK;
327}
328
329/*
330 * Determine a map of object in use on a page.
331 *
332 * Slab lock or node listlock must be held to guarantee that the page does
333 * not vanish from under us.
334 */
335static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
336{
337	void *p;
338	void *addr = page_address(page);
339
340	for (p = page->freelist; p; p = get_freepointer(s, p))
341		set_bit(slab_index(p, s, addr), map);
342}
343
344#ifdef CONFIG_SLUB_DEBUG
345/*
346 * Debug settings:
347 */
348#ifdef CONFIG_SLUB_DEBUG_ON
349static int slub_debug = DEBUG_DEFAULT_FLAGS;
350#else
351static int slub_debug;
352#endif
353
354static char *slub_debug_slabs;
355static int disable_higher_order_debug;
356
357/*
358 * Object debugging
359 */
360static void print_section(char *text, u8 *addr, unsigned int length)
361{
362	int i, offset;
363	int newline = 1;
364	char ascii[17];
365
366	ascii[16] = 0;
367
368	for (i = 0; i < length; i++) {
369		if (newline) {
370			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
371			newline = 0;
372		}
373		printk(KERN_CONT " %02x", addr[i]);
374		offset = i % 16;
375		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
376		if (offset == 15) {
377			printk(KERN_CONT " %s\n", ascii);
378			newline = 1;
379		}
380	}
381	if (!newline) {
382		i %= 16;
383		while (i < 16) {
384			printk(KERN_CONT "   ");
385			ascii[i] = ' ';
386			i++;
387		}
388		printk(KERN_CONT " %s\n", ascii);
389	}
390}
391
392static struct track *get_track(struct kmem_cache *s, void *object,
393	enum track_item alloc)
394{
395	struct track *p;
396
397	if (s->offset)
398		p = object + s->offset + sizeof(void *);
399	else
400		p = object + s->inuse;
401
402	return p + alloc;
403}
404
405static void set_track(struct kmem_cache *s, void *object,
406			enum track_item alloc, unsigned long addr)
407{
408	struct track *p = get_track(s, object, alloc);
409
410	if (addr) {
411		p->addr = addr;
412		p->cpu = smp_processor_id();
413		p->pid = current->pid;
414		p->when = jiffies;
415	} else
416		memset(p, 0, sizeof(struct track));
417}
418
419static void init_tracking(struct kmem_cache *s, void *object)
420{
421	if (!(s->flags & SLAB_STORE_USER))
422		return;
423
424	set_track(s, object, TRACK_FREE, 0UL);
425	set_track(s, object, TRACK_ALLOC, 0UL);
426}
427
428static void print_track(const char *s, struct track *t)
429{
430	if (!t->addr)
431		return;
432
433	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
434		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
435}
436
437static void print_tracking(struct kmem_cache *s, void *object)
438{
439	if (!(s->flags & SLAB_STORE_USER))
440		return;
441
442	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
443	print_track("Freed", get_track(s, object, TRACK_FREE));
444}
445
446static void print_page_info(struct page *page)
447{
448	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
449		page, page->objects, page->inuse, page->freelist, page->flags);
450
451}
452
453static void slab_bug(struct kmem_cache *s, char *fmt, ...)
454{
455	va_list args;
456	char buf[100];
457
458	va_start(args, fmt);
459	vsnprintf(buf, sizeof(buf), fmt, args);
460	va_end(args);
461	printk(KERN_ERR "========================================"
462			"=====================================\n");
463	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
464	printk(KERN_ERR "----------------------------------------"
465			"-------------------------------------\n\n");
466}
467
468static void slab_fix(struct kmem_cache *s, char *fmt, ...)
469{
470	va_list args;
471	char buf[100];
472
473	va_start(args, fmt);
474	vsnprintf(buf, sizeof(buf), fmt, args);
475	va_end(args);
476	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
477}
478
479static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
480{
481	unsigned int off;	/* Offset of last byte */
482	u8 *addr = page_address(page);
483
484	print_tracking(s, p);
485
486	print_page_info(page);
487
488	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
489			p, p - addr, get_freepointer(s, p));
490
491	if (p > addr + 16)
492		print_section("Bytes b4", p - 16, 16);
493
494	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
495
496	if (s->flags & SLAB_RED_ZONE)
497		print_section("Redzone", p + s->objsize,
498			s->inuse - s->objsize);
499
500	if (s->offset)
501		off = s->offset + sizeof(void *);
502	else
503		off = s->inuse;
504
505	if (s->flags & SLAB_STORE_USER)
506		off += 2 * sizeof(struct track);
507
508	if (off != s->size)
509		/* Beginning of the filler is the free pointer */
510		print_section("Padding", p + off, s->size - off);
511
512	dump_stack();
513}
514
515static void object_err(struct kmem_cache *s, struct page *page,
516			u8 *object, char *reason)
517{
518	slab_bug(s, "%s", reason);
519	print_trailer(s, page, object);
520}
521
522static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
523{
524	va_list args;
525	char buf[100];
526
527	va_start(args, fmt);
528	vsnprintf(buf, sizeof(buf), fmt, args);
529	va_end(args);
530	slab_bug(s, "%s", buf);
531	print_page_info(page);
532	dump_stack();
533}
534
535static void init_object(struct kmem_cache *s, void *object, u8 val)
536{
537	u8 *p = object;
538
539	if (s->flags & __OBJECT_POISON) {
540		memset(p, POISON_FREE, s->objsize - 1);
541		p[s->objsize - 1] = POISON_END;
542	}
543
544	if (s->flags & SLAB_RED_ZONE)
545		memset(p + s->objsize, val, s->inuse - s->objsize);
546}
547
548static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
549{
550	while (bytes) {
551		if (*start != (u8)value)
552			return start;
553		start++;
554		bytes--;
555	}
556	return NULL;
557}
558
559static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
560						void *from, void *to)
561{
562	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
563	memset(from, data, to - from);
564}
565
566static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
567			u8 *object, char *what,
568			u8 *start, unsigned int value, unsigned int bytes)
569{
570	u8 *fault;
571	u8 *end;
572
573	fault = check_bytes(start, value, bytes);
574	if (!fault)
575		return 1;
576
577	end = start + bytes;
578	while (end > fault && end[-1] == value)
579		end--;
580
581	slab_bug(s, "%s overwritten", what);
582	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
583					fault, end - 1, fault[0], value);
584	print_trailer(s, page, object);
585
586	restore_bytes(s, what, value, fault, end);
587	return 0;
588}
589
590/*
591 * Object layout:
592 *
593 * object address
594 * 	Bytes of the object to be managed.
595 * 	If the freepointer may overlay the object then the free
596 * 	pointer is the first word of the object.
597 *
598 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
599 * 	0xa5 (POISON_END)
600 *
601 * object + s->objsize
602 * 	Padding to reach word boundary. This is also used for Redzoning.
603 * 	Padding is extended by another word if Redzoning is enabled and
604 * 	objsize == inuse.
605 *
606 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
607 * 	0xcc (RED_ACTIVE) for objects in use.
608 *
609 * object + s->inuse
610 * 	Meta data starts here.
611 *
612 * 	A. Free pointer (if we cannot overwrite object on free)
613 * 	B. Tracking data for SLAB_STORE_USER
614 * 	C. Padding to reach required alignment boundary or at mininum
615 * 		one word if debugging is on to be able to detect writes
616 * 		before the word boundary.
617 *
618 *	Padding is done using 0x5a (POISON_INUSE)
619 *
620 * object + s->size
621 * 	Nothing is used beyond s->size.
622 *
623 * If slabcaches are merged then the objsize and inuse boundaries are mostly
624 * ignored. And therefore no slab options that rely on these boundaries
625 * may be used with merged slabcaches.
626 */
627
628static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
629{
630	unsigned long off = s->inuse;	/* The end of info */
631
632	if (s->offset)
633		/* Freepointer is placed after the object. */
634		off += sizeof(void *);
635
636	if (s->flags & SLAB_STORE_USER)
637		/* We also have user information there */
638		off += 2 * sizeof(struct track);
639
640	if (s->size == off)
641		return 1;
642
643	return check_bytes_and_report(s, page, p, "Object padding",
644				p + off, POISON_INUSE, s->size - off);
645}
646
647/* Check the pad bytes at the end of a slab page */
648static int slab_pad_check(struct kmem_cache *s, struct page *page)
649{
650	u8 *start;
651	u8 *fault;
652	u8 *end;
653	int length;
654	int remainder;
655
656	if (!(s->flags & SLAB_POISON))
657		return 1;
658
659	start = page_address(page);
660	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
661	end = start + length;
662	remainder = length % s->size;
663	if (!remainder)
664		return 1;
665
666	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
667	if (!fault)
668		return 1;
669	while (end > fault && end[-1] == POISON_INUSE)
670		end--;
671
672	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
673	print_section("Padding", end - remainder, remainder);
674
675	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
676	return 0;
677}
678
679static int check_object(struct kmem_cache *s, struct page *page,
680					void *object, u8 val)
681{
682	u8 *p = object;
683	u8 *endobject = object + s->objsize;
684
685	if (s->flags & SLAB_RED_ZONE) {
686		if (!check_bytes_and_report(s, page, object, "Redzone",
687			endobject, val, s->inuse - s->objsize))
688			return 0;
689	} else {
690		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
691			check_bytes_and_report(s, page, p, "Alignment padding",
692				endobject, POISON_INUSE, s->inuse - s->objsize);
693		}
694	}
695
696	if (s->flags & SLAB_POISON) {
697		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
698			(!check_bytes_and_report(s, page, p, "Poison", p,
699					POISON_FREE, s->objsize - 1) ||
700			 !check_bytes_and_report(s, page, p, "Poison",
701				p + s->objsize - 1, POISON_END, 1)))
702			return 0;
703		/*
704		 * check_pad_bytes cleans up on its own.
705		 */
706		check_pad_bytes(s, page, p);
707	}
708
709	if (!s->offset && val == SLUB_RED_ACTIVE)
710		/*
711		 * Object and freepointer overlap. Cannot check
712		 * freepointer while object is allocated.
713		 */
714		return 1;
715
716	/* Check free pointer validity */
717	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
718		object_err(s, page, p, "Freepointer corrupt");
719		/*
720		 * No choice but to zap it and thus lose the remainder
721		 * of the free objects in this slab. May cause
722		 * another error because the object count is now wrong.
723		 */
724		set_freepointer(s, p, NULL);
725		return 0;
726	}
727	return 1;
728}
729
730static int check_slab(struct kmem_cache *s, struct page *page)
731{
732	int maxobj;
733
734	VM_BUG_ON(!irqs_disabled());
735
736	if (!PageSlab(page)) {
737		slab_err(s, page, "Not a valid slab page");
738		return 0;
739	}
740
741	maxobj = order_objects(compound_order(page), s->size, s->reserved);
742	if (page->objects > maxobj) {
743		slab_err(s, page, "objects %u > max %u",
744			s->name, page->objects, maxobj);
745		return 0;
746	}
747	if (page->inuse > page->objects) {
748		slab_err(s, page, "inuse %u > max %u",
749			s->name, page->inuse, page->objects);
750		return 0;
751	}
752	/* Slab_pad_check fixes things up after itself */
753	slab_pad_check(s, page);
754	return 1;
755}
756
757/*
758 * Determine if a certain object on a page is on the freelist. Must hold the
759 * slab lock to guarantee that the chains are in a consistent state.
760 */
761static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
762{
763	int nr = 0;
764	void *fp = page->freelist;
765	void *object = NULL;
766	unsigned long max_objects;
767
768	while (fp && nr <= page->objects) {
769		if (fp == search)
770			return 1;
771		if (!check_valid_pointer(s, page, fp)) {
772			if (object) {
773				object_err(s, page, object,
774					"Freechain corrupt");
775				set_freepointer(s, object, NULL);
776				break;
777			} else {
778				slab_err(s, page, "Freepointer corrupt");
779				page->freelist = NULL;
780				page->inuse = page->objects;
781				slab_fix(s, "Freelist cleared");
782				return 0;
783			}
784			break;
785		}
786		object = fp;
787		fp = get_freepointer(s, object);
788		nr++;
789	}
790
791	max_objects = order_objects(compound_order(page), s->size, s->reserved);
792	if (max_objects > MAX_OBJS_PER_PAGE)
793		max_objects = MAX_OBJS_PER_PAGE;
794
795	if (page->objects != max_objects) {
796		slab_err(s, page, "Wrong number of objects. Found %d but "
797			"should be %d", page->objects, max_objects);
798		page->objects = max_objects;
799		slab_fix(s, "Number of objects adjusted.");
800	}
801	if (page->inuse != page->objects - nr) {
802		slab_err(s, page, "Wrong object count. Counter is %d but "
803			"counted were %d", page->inuse, page->objects - nr);
804		page->inuse = page->objects - nr;
805		slab_fix(s, "Object count adjusted.");
806	}
807	return search == NULL;
808}
809
810static void trace(struct kmem_cache *s, struct page *page, void *object,
811								int alloc)
812{
813	if (s->flags & SLAB_TRACE) {
814		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
815			s->name,
816			alloc ? "alloc" : "free",
817			object, page->inuse,
818			page->freelist);
819
820		if (!alloc)
821			print_section("Object", (void *)object, s->objsize);
822
823		dump_stack();
824	}
825}
826
827/*
828 * Hooks for other subsystems that check memory allocations. In a typical
829 * production configuration these hooks all should produce no code at all.
830 */
831static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
832{
833	flags &= gfp_allowed_mask;
834	lockdep_trace_alloc(flags);
835	might_sleep_if(flags & __GFP_WAIT);
836
837	return should_failslab(s->objsize, flags, s->flags);
838}
839
840static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
841{
842	flags &= gfp_allowed_mask;
843	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
844	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
845}
846
847static inline void slab_free_hook(struct kmem_cache *s, void *x)
848{
849	kmemleak_free_recursive(x, s->flags);
850
851	/*
852	 * Trouble is that we may no longer disable interupts in the fast path
853	 * So in order to make the debug calls that expect irqs to be
854	 * disabled we need to disable interrupts temporarily.
855	 */
856#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
857	{
858		unsigned long flags;
859
860		local_irq_save(flags);
861		kmemcheck_slab_free(s, x, s->objsize);
862		debug_check_no_locks_freed(x, s->objsize);
863		local_irq_restore(flags);
864	}
865#endif
866	if (!(s->flags & SLAB_DEBUG_OBJECTS))
867		debug_check_no_obj_freed(x, s->objsize);
868}
869
870/*
871 * Tracking of fully allocated slabs for debugging purposes.
872 */
873static void add_full(struct kmem_cache_node *n, struct page *page)
874{
875	spin_lock(&n->list_lock);
876	list_add(&page->lru, &n->full);
877	spin_unlock(&n->list_lock);
878}
879
880static void remove_full(struct kmem_cache *s, struct page *page)
881{
882	struct kmem_cache_node *n;
883
884	if (!(s->flags & SLAB_STORE_USER))
885		return;
886
887	n = get_node(s, page_to_nid(page));
888
889	spin_lock(&n->list_lock);
890	list_del(&page->lru);
891	spin_unlock(&n->list_lock);
892}
893
894/* Tracking of the number of slabs for debugging purposes */
895static inline unsigned long slabs_node(struct kmem_cache *s, int node)
896{
897	struct kmem_cache_node *n = get_node(s, node);
898
899	return atomic_long_read(&n->nr_slabs);
900}
901
902static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
903{
904	return atomic_long_read(&n->nr_slabs);
905}
906
907static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
908{
909	struct kmem_cache_node *n = get_node(s, node);
910
911	/*
912	 * May be called early in order to allocate a slab for the
913	 * kmem_cache_node structure. Solve the chicken-egg
914	 * dilemma by deferring the increment of the count during
915	 * bootstrap (see early_kmem_cache_node_alloc).
916	 */
917	if (n) {
918		atomic_long_inc(&n->nr_slabs);
919		atomic_long_add(objects, &n->total_objects);
920	}
921}
922static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
923{
924	struct kmem_cache_node *n = get_node(s, node);
925
926	atomic_long_dec(&n->nr_slabs);
927	atomic_long_sub(objects, &n->total_objects);
928}
929
930/* Object debug checks for alloc/free paths */
931static void setup_object_debug(struct kmem_cache *s, struct page *page,
932								void *object)
933{
934	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
935		return;
936
937	init_object(s, object, SLUB_RED_INACTIVE);
938	init_tracking(s, object);
939}
940
941static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
942					void *object, unsigned long addr)
943{
944	if (!check_slab(s, page))
945		goto bad;
946
947	if (!on_freelist(s, page, object)) {
948		object_err(s, page, object, "Object already allocated");
949		goto bad;
950	}
951
952	if (!check_valid_pointer(s, page, object)) {
953		object_err(s, page, object, "Freelist Pointer check fails");
954		goto bad;
955	}
956
957	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
958		goto bad;
959
960	/* Success perform special debug activities for allocs */
961	if (s->flags & SLAB_STORE_USER)
962		set_track(s, object, TRACK_ALLOC, addr);
963	trace(s, page, object, 1);
964	init_object(s, object, SLUB_RED_ACTIVE);
965	return 1;
966
967bad:
968	if (PageSlab(page)) {
969		/*
970		 * If this is a slab page then lets do the best we can
971		 * to avoid issues in the future. Marking all objects
972		 * as used avoids touching the remaining objects.
973		 */
974		slab_fix(s, "Marking all objects used");
975		page->inuse = page->objects;
976		page->freelist = NULL;
977	}
978	return 0;
979}
980
981static noinline int free_debug_processing(struct kmem_cache *s,
982		 struct page *page, void *object, unsigned long addr)
983{
984	if (!check_slab(s, page))
985		goto fail;
986
987	if (!check_valid_pointer(s, page, object)) {
988		slab_err(s, page, "Invalid object pointer 0x%p", object);
989		goto fail;
990	}
991
992	if (on_freelist(s, page, object)) {
993		object_err(s, page, object, "Object already free");
994		goto fail;
995	}
996
997	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
998		return 0;
999
1000	if (unlikely(s != page->slab)) {
1001		if (!PageSlab(page)) {
1002			slab_err(s, page, "Attempt to free object(0x%p) "
1003				"outside of slab", object);
1004		} else if (!page->slab) {
1005			printk(KERN_ERR
1006				"SLUB <none>: no slab for object 0x%p.\n",
1007						object);
1008			dump_stack();
1009		} else
1010			object_err(s, page, object,
1011					"page slab pointer corrupt.");
1012		goto fail;
1013	}
1014
1015	/* Special debug activities for freeing objects */
1016	if (!PageSlubFrozen(page) && !page->freelist)
1017		remove_full(s, page);
1018	if (s->flags & SLAB_STORE_USER)
1019		set_track(s, object, TRACK_FREE, addr);
1020	trace(s, page, object, 0);
1021	init_object(s, object, SLUB_RED_INACTIVE);
1022	return 1;
1023
1024fail:
1025	slab_fix(s, "Object at 0x%p not freed", object);
1026	return 0;
1027}
1028
1029static int __init setup_slub_debug(char *str)
1030{
1031	slub_debug = DEBUG_DEFAULT_FLAGS;
1032	if (*str++ != '=' || !*str)
1033		/*
1034		 * No options specified. Switch on full debugging.
1035		 */
1036		goto out;
1037
1038	if (*str == ',')
1039		/*
1040		 * No options but restriction on slabs. This means full
1041		 * debugging for slabs matching a pattern.
1042		 */
1043		goto check_slabs;
1044
1045	if (tolower(*str) == 'o') {
1046		/*
1047		 * Avoid enabling debugging on caches if its minimum order
1048		 * would increase as a result.
1049		 */
1050		disable_higher_order_debug = 1;
1051		goto out;
1052	}
1053
1054	slub_debug = 0;
1055	if (*str == '-')
1056		/*
1057		 * Switch off all debugging measures.
1058		 */
1059		goto out;
1060
1061	/*
1062	 * Determine which debug features should be switched on
1063	 */
1064	for (; *str && *str != ','; str++) {
1065		switch (tolower(*str)) {
1066		case 'f':
1067			slub_debug |= SLAB_DEBUG_FREE;
1068			break;
1069		case 'z':
1070			slub_debug |= SLAB_RED_ZONE;
1071			break;
1072		case 'p':
1073			slub_debug |= SLAB_POISON;
1074			break;
1075		case 'u':
1076			slub_debug |= SLAB_STORE_USER;
1077			break;
1078		case 't':
1079			slub_debug |= SLAB_TRACE;
1080			break;
1081		case 'a':
1082			slub_debug |= SLAB_FAILSLAB;
1083			break;
1084		default:
1085			printk(KERN_ERR "slub_debug option '%c' "
1086				"unknown. skipped\n", *str);
1087		}
1088	}
1089
1090check_slabs:
1091	if (*str == ',')
1092		slub_debug_slabs = str + 1;
1093out:
1094	return 1;
1095}
1096
1097__setup("slub_debug", setup_slub_debug);
1098
1099static unsigned long kmem_cache_flags(unsigned long objsize,
1100	unsigned long flags, const char *name,
1101	void (*ctor)(void *))
1102{
1103	/*
1104	 * Enable debugging if selected on the kernel commandline.
1105	 */
1106	if (slub_debug && (!slub_debug_slabs ||
1107		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1108		flags |= slub_debug;
1109
1110	return flags;
1111}
1112#else
1113static inline void setup_object_debug(struct kmem_cache *s,
1114			struct page *page, void *object) {}
1115
1116static inline int alloc_debug_processing(struct kmem_cache *s,
1117	struct page *page, void *object, unsigned long addr) { return 0; }
1118
1119static inline int free_debug_processing(struct kmem_cache *s,
1120	struct page *page, void *object, unsigned long addr) { return 0; }
1121
1122static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1123			{ return 1; }
1124static inline int check_object(struct kmem_cache *s, struct page *page,
1125			void *object, u8 val) { return 1; }
1126static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1127static inline unsigned long kmem_cache_flags(unsigned long objsize,
1128	unsigned long flags, const char *name,
1129	void (*ctor)(void *))
1130{
1131	return flags;
1132}
1133#define slub_debug 0
1134
1135#define disable_higher_order_debug 0
1136
1137static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1138							{ return 0; }
1139static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1140							{ return 0; }
1141static inline void inc_slabs_node(struct kmem_cache *s, int node,
1142							int objects) {}
1143static inline void dec_slabs_node(struct kmem_cache *s, int node,
1144							int objects) {}
1145
1146static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1147							{ return 0; }
1148
1149static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1150		void *object) {}
1151
1152static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1153
1154#endif /* CONFIG_SLUB_DEBUG */
1155
1156/*
1157 * Slab allocation and freeing
1158 */
1159static inline struct page *alloc_slab_page(gfp_t flags, int node,
1160					struct kmem_cache_order_objects oo)
1161{
1162	int order = oo_order(oo);
1163
1164	flags |= __GFP_NOTRACK;
1165
1166	if (node == NUMA_NO_NODE)
1167		return alloc_pages(flags, order);
1168	else
1169		return alloc_pages_exact_node(node, flags, order);
1170}
1171
1172static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1173{
1174	struct page *page;
1175	struct kmem_cache_order_objects oo = s->oo;
1176	gfp_t alloc_gfp;
1177
1178	flags |= s->allocflags;
1179
1180	/*
1181	 * Let the initial higher-order allocation fail under memory pressure
1182	 * so we fall-back to the minimum order allocation.
1183	 */
1184	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1185
1186	page = alloc_slab_page(alloc_gfp, node, oo);
1187	if (unlikely(!page)) {
1188		oo = s->min;
1189		/*
1190		 * Allocation may have failed due to fragmentation.
1191		 * Try a lower order alloc if possible
1192		 */
1193		page = alloc_slab_page(flags, node, oo);
1194		if (!page)
1195			return NULL;
1196
1197		stat(s, ORDER_FALLBACK);
1198	}
1199
1200	if (kmemcheck_enabled
1201		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1202		int pages = 1 << oo_order(oo);
1203
1204		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1205
1206		/*
1207		 * Objects from caches that have a constructor don't get
1208		 * cleared when they're allocated, so we need to do it here.
1209		 */
1210		if (s->ctor)
1211			kmemcheck_mark_uninitialized_pages(page, pages);
1212		else
1213			kmemcheck_mark_unallocated_pages(page, pages);
1214	}
1215
1216	page->objects = oo_objects(oo);
1217	mod_zone_page_state(page_zone(page),
1218		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1219		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1220		1 << oo_order(oo));
1221
1222	return page;
1223}
1224
1225static void setup_object(struct kmem_cache *s, struct page *page,
1226				void *object)
1227{
1228	setup_object_debug(s, page, object);
1229	if (unlikely(s->ctor))
1230		s->ctor(object);
1231}
1232
1233static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1234{
1235	struct page *page;
1236	void *start;
1237	void *last;
1238	void *p;
1239
1240	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1241
1242	page = allocate_slab(s,
1243		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1244	if (!page)
1245		goto out;
1246
1247	inc_slabs_node(s, page_to_nid(page), page->objects);
1248	page->slab = s;
1249	page->flags |= 1 << PG_slab;
1250
1251	start = page_address(page);
1252
1253	if (unlikely(s->flags & SLAB_POISON))
1254		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1255
1256	last = start;
1257	for_each_object(p, s, start, page->objects) {
1258		setup_object(s, page, last);
1259		set_freepointer(s, last, p);
1260		last = p;
1261	}
1262	setup_object(s, page, last);
1263	set_freepointer(s, last, NULL);
1264
1265	page->freelist = start;
1266	page->inuse = 0;
1267out:
1268	return page;
1269}
1270
1271static void __free_slab(struct kmem_cache *s, struct page *page)
1272{
1273	int order = compound_order(page);
1274	int pages = 1 << order;
1275
1276	if (kmem_cache_debug(s)) {
1277		void *p;
1278
1279		slab_pad_check(s, page);
1280		for_each_object(p, s, page_address(page),
1281						page->objects)
1282			check_object(s, page, p, SLUB_RED_INACTIVE);
1283	}
1284
1285	kmemcheck_free_shadow(page, compound_order(page));
1286
1287	mod_zone_page_state(page_zone(page),
1288		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1289		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1290		-pages);
1291
1292	__ClearPageSlab(page);
1293	reset_page_mapcount(page);
1294	if (current->reclaim_state)
1295		current->reclaim_state->reclaimed_slab += pages;
1296	__free_pages(page, order);
1297}
1298
1299#define need_reserve_slab_rcu						\
1300	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1301
1302static void rcu_free_slab(struct rcu_head *h)
1303{
1304	struct page *page;
1305
1306	if (need_reserve_slab_rcu)
1307		page = virt_to_head_page(h);
1308	else
1309		page = container_of((struct list_head *)h, struct page, lru);
1310
1311	__free_slab(page->slab, page);
1312}
1313
1314static void free_slab(struct kmem_cache *s, struct page *page)
1315{
1316	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1317		struct rcu_head *head;
1318
1319		if (need_reserve_slab_rcu) {
1320			int order = compound_order(page);
1321			int offset = (PAGE_SIZE << order) - s->reserved;
1322
1323			VM_BUG_ON(s->reserved != sizeof(*head));
1324			head = page_address(page) + offset;
1325		} else {
1326			/*
1327			 * RCU free overloads the RCU head over the LRU
1328			 */
1329			head = (void *)&page->lru;
1330		}
1331
1332		call_rcu(head, rcu_free_slab);
1333	} else
1334		__free_slab(s, page);
1335}
1336
1337static void discard_slab(struct kmem_cache *s, struct page *page)
1338{
1339	dec_slabs_node(s, page_to_nid(page), page->objects);
1340	free_slab(s, page);
1341}
1342
1343/*
1344 * Per slab locking using the pagelock
1345 */
1346static __always_inline void slab_lock(struct page *page)
1347{
1348	bit_spin_lock(PG_locked, &page->flags);
1349}
1350
1351static __always_inline void slab_unlock(struct page *page)
1352{
1353	__bit_spin_unlock(PG_locked, &page->flags);
1354}
1355
1356static __always_inline int slab_trylock(struct page *page)
1357{
1358	int rc = 1;
1359
1360	rc = bit_spin_trylock(PG_locked, &page->flags);
1361	return rc;
1362}
1363
1364/*
1365 * Management of partially allocated slabs
1366 */
1367static void add_partial(struct kmem_cache_node *n,
1368				struct page *page, int tail)
1369{
1370	spin_lock(&n->list_lock);
1371	n->nr_partial++;
1372	if (tail)
1373		list_add_tail(&page->lru, &n->partial);
1374	else
1375		list_add(&page->lru, &n->partial);
1376	spin_unlock(&n->list_lock);
1377}
1378
1379static inline void __remove_partial(struct kmem_cache_node *n,
1380					struct page *page)
1381{
1382	list_del(&page->lru);
1383	n->nr_partial--;
1384}
1385
1386static void remove_partial(struct kmem_cache *s, struct page *page)
1387{
1388	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1389
1390	spin_lock(&n->list_lock);
1391	__remove_partial(n, page);
1392	spin_unlock(&n->list_lock);
1393}
1394
1395/*
1396 * Lock slab and remove from the partial list.
1397 *
1398 * Must hold list_lock.
1399 */
1400static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1401							struct page *page)
1402{
1403	if (slab_trylock(page)) {
1404		__remove_partial(n, page);
1405		__SetPageSlubFrozen(page);
1406		return 1;
1407	}
1408	return 0;
1409}
1410
1411/*
1412 * Try to allocate a partial slab from a specific node.
1413 */
1414static struct page *get_partial_node(struct kmem_cache_node *n)
1415{
1416	struct page *page;
1417
1418	/*
1419	 * Racy check. If we mistakenly see no partial slabs then we
1420	 * just allocate an empty slab. If we mistakenly try to get a
1421	 * partial slab and there is none available then get_partials()
1422	 * will return NULL.
1423	 */
1424	if (!n || !n->nr_partial)
1425		return NULL;
1426
1427	spin_lock(&n->list_lock);
1428	list_for_each_entry(page, &n->partial, lru)
1429		if (lock_and_freeze_slab(n, page))
1430			goto out;
1431	page = NULL;
1432out:
1433	spin_unlock(&n->list_lock);
1434	return page;
1435}
1436
1437/*
1438 * Get a page from somewhere. Search in increasing NUMA distances.
1439 */
1440static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1441{
1442#ifdef CONFIG_NUMA
1443	struct zonelist *zonelist;
1444	struct zoneref *z;
1445	struct zone *zone;
1446	enum zone_type high_zoneidx = gfp_zone(flags);
1447	struct page *page;
1448
1449	/*
1450	 * The defrag ratio allows a configuration of the tradeoffs between
1451	 * inter node defragmentation and node local allocations. A lower
1452	 * defrag_ratio increases the tendency to do local allocations
1453	 * instead of attempting to obtain partial slabs from other nodes.
1454	 *
1455	 * If the defrag_ratio is set to 0 then kmalloc() always
1456	 * returns node local objects. If the ratio is higher then kmalloc()
1457	 * may return off node objects because partial slabs are obtained
1458	 * from other nodes and filled up.
1459	 *
1460	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1461	 * defrag_ratio = 1000) then every (well almost) allocation will
1462	 * first attempt to defrag slab caches on other nodes. This means
1463	 * scanning over all nodes to look for partial slabs which may be
1464	 * expensive if we do it every time we are trying to find a slab
1465	 * with available objects.
1466	 */
1467	if (!s->remote_node_defrag_ratio ||
1468			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1469		return NULL;
1470
1471	get_mems_allowed();
1472	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1473	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1474		struct kmem_cache_node *n;
1475
1476		n = get_node(s, zone_to_nid(zone));
1477
1478		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1479				n->nr_partial > s->min_partial) {
1480			page = get_partial_node(n);
1481			if (page) {
1482				put_mems_allowed();
1483				return page;
1484			}
1485		}
1486	}
1487	put_mems_allowed();
1488#endif
1489	return NULL;
1490}
1491
1492/*
1493 * Get a partial page, lock it and return it.
1494 */
1495static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1496{
1497	struct page *page;
1498	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1499
1500	page = get_partial_node(get_node(s, searchnode));
1501	if (page || node != NUMA_NO_NODE)
1502		return page;
1503
1504	return get_any_partial(s, flags);
1505}
1506
1507/*
1508 * Move a page back to the lists.
1509 *
1510 * Must be called with the slab lock held.
1511 *
1512 * On exit the slab lock will have been dropped.
1513 */
1514static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1515	__releases(bitlock)
1516{
1517	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1518
1519	__ClearPageSlubFrozen(page);
1520	if (page->inuse) {
1521
1522		if (page->freelist) {
1523			add_partial(n, page, tail);
1524			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1525		} else {
1526			stat(s, DEACTIVATE_FULL);
1527			if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1528				add_full(n, page);
1529		}
1530		slab_unlock(page);
1531	} else {
1532		stat(s, DEACTIVATE_EMPTY);
1533		if (n->nr_partial < s->min_partial) {
1534			/*
1535			 * Adding an empty slab to the partial slabs in order
1536			 * to avoid page allocator overhead. This slab needs
1537			 * to come after the other slabs with objects in
1538			 * so that the others get filled first. That way the
1539			 * size of the partial list stays small.
1540			 *
1541			 * kmem_cache_shrink can reclaim any empty slabs from
1542			 * the partial list.
1543			 */
1544			add_partial(n, page, 1);
1545			slab_unlock(page);
1546		} else {
1547			slab_unlock(page);
1548			stat(s, FREE_SLAB);
1549			discard_slab(s, page);
1550		}
1551	}
1552}
1553
1554#ifdef CONFIG_CMPXCHG_LOCAL
1555#ifdef CONFIG_PREEMPT
1556/*
1557 * Calculate the next globally unique transaction for disambiguiation
1558 * during cmpxchg. The transactions start with the cpu number and are then
1559 * incremented by CONFIG_NR_CPUS.
1560 */
1561#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1562#else
1563/*
1564 * No preemption supported therefore also no need to check for
1565 * different cpus.
1566 */
1567#define TID_STEP 1
1568#endif
1569
1570static inline unsigned long next_tid(unsigned long tid)
1571{
1572	return tid + TID_STEP;
1573}
1574
1575static inline unsigned int tid_to_cpu(unsigned long tid)
1576{
1577	return tid % TID_STEP;
1578}
1579
1580static inline unsigned long tid_to_event(unsigned long tid)
1581{
1582	return tid / TID_STEP;
1583}
1584
1585static inline unsigned int init_tid(int cpu)
1586{
1587	return cpu;
1588}
1589
1590static inline void note_cmpxchg_failure(const char *n,
1591		const struct kmem_cache *s, unsigned long tid)
1592{
1593#ifdef SLUB_DEBUG_CMPXCHG
1594	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1595
1596	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1597
1598#ifdef CONFIG_PREEMPT
1599	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1600		printk("due to cpu change %d -> %d\n",
1601			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1602	else
1603#endif
1604	if (tid_to_event(tid) != tid_to_event(actual_tid))
1605		printk("due to cpu running other code. Event %ld->%ld\n",
1606			tid_to_event(tid), tid_to_event(actual_tid));
1607	else
1608		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1609			actual_tid, tid, next_tid(tid));
1610#endif
1611	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1612}
1613
1614#endif
1615
1616void init_kmem_cache_cpus(struct kmem_cache *s)
1617{
1618#ifdef CONFIG_CMPXCHG_LOCAL
1619	int cpu;
1620
1621	for_each_possible_cpu(cpu)
1622		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1623#endif
1624
1625}
1626/*
1627 * Remove the cpu slab
1628 */
1629static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1630	__releases(bitlock)
1631{
1632	struct page *page = c->page;
1633	int tail = 1;
1634
1635	if (page->freelist)
1636		stat(s, DEACTIVATE_REMOTE_FREES);
1637	/*
1638	 * Merge cpu freelist into slab freelist. Typically we get here
1639	 * because both freelists are empty. So this is unlikely
1640	 * to occur.
1641	 */
1642	while (unlikely(c->freelist)) {
1643		void **object;
1644
1645		tail = 0;	/* Hot objects. Put the slab first */
1646
1647		/* Retrieve object from cpu_freelist */
1648		object = c->freelist;
1649		c->freelist = get_freepointer(s, c->freelist);
1650
1651		/* And put onto the regular freelist */
1652		set_freepointer(s, object, page->freelist);
1653		page->freelist = object;
1654		page->inuse--;
1655	}
1656	c->page = NULL;
1657#ifdef CONFIG_CMPXCHG_LOCAL
1658	c->tid = next_tid(c->tid);
1659#endif
1660	unfreeze_slab(s, page, tail);
1661}
1662
1663static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1664{
1665	stat(s, CPUSLAB_FLUSH);
1666	slab_lock(c->page);
1667	deactivate_slab(s, c);
1668}
1669
1670/*
1671 * Flush cpu slab.
1672 *
1673 * Called from IPI handler with interrupts disabled.
1674 */
1675static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1676{
1677	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1678
1679	if (likely(c && c->page))
1680		flush_slab(s, c);
1681}
1682
1683static void flush_cpu_slab(void *d)
1684{
1685	struct kmem_cache *s = d;
1686
1687	__flush_cpu_slab(s, smp_processor_id());
1688}
1689
1690static void flush_all(struct kmem_cache *s)
1691{
1692	on_each_cpu(flush_cpu_slab, s, 1);
1693}
1694
1695/*
1696 * Check if the objects in a per cpu structure fit numa
1697 * locality expectations.
1698 */
1699static inline int node_match(struct kmem_cache_cpu *c, int node)
1700{
1701#ifdef CONFIG_NUMA
1702	if (node != NUMA_NO_NODE && c->node != node)
1703		return 0;
1704#endif
1705	return 1;
1706}
1707
1708static int count_free(struct page *page)
1709{
1710	return page->objects - page->inuse;
1711}
1712
1713static unsigned long count_partial(struct kmem_cache_node *n,
1714					int (*get_count)(struct page *))
1715{
1716	unsigned long flags;
1717	unsigned long x = 0;
1718	struct page *page;
1719
1720	spin_lock_irqsave(&n->list_lock, flags);
1721	list_for_each_entry(page, &n->partial, lru)
1722		x += get_count(page);
1723	spin_unlock_irqrestore(&n->list_lock, flags);
1724	return x;
1725}
1726
1727static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1728{
1729#ifdef CONFIG_SLUB_DEBUG
1730	return atomic_long_read(&n->total_objects);
1731#else
1732	return 0;
1733#endif
1734}
1735
1736static noinline void
1737slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1738{
1739	int node;
1740
1741	printk(KERN_WARNING
1742		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1743		nid, gfpflags);
1744	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1745		"default order: %d, min order: %d\n", s->name, s->objsize,
1746		s->size, oo_order(s->oo), oo_order(s->min));
1747
1748	if (oo_order(s->min) > get_order(s->objsize))
1749		printk(KERN_WARNING "  %s debugging increased min order, use "
1750		       "slub_debug=O to disable.\n", s->name);
1751
1752	for_each_online_node(node) {
1753		struct kmem_cache_node *n = get_node(s, node);
1754		unsigned long nr_slabs;
1755		unsigned long nr_objs;
1756		unsigned long nr_free;
1757
1758		if (!n)
1759			continue;
1760
1761		nr_free  = count_partial(n, count_free);
1762		nr_slabs = node_nr_slabs(n);
1763		nr_objs  = node_nr_objs(n);
1764
1765		printk(KERN_WARNING
1766			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1767			node, nr_slabs, nr_objs, nr_free);
1768	}
1769}
1770
1771/*
1772 * Slow path. The lockless freelist is empty or we need to perform
1773 * debugging duties.
1774 *
1775 * Interrupts are disabled.
1776 *
1777 * Processing is still very fast if new objects have been freed to the
1778 * regular freelist. In that case we simply take over the regular freelist
1779 * as the lockless freelist and zap the regular freelist.
1780 *
1781 * If that is not working then we fall back to the partial lists. We take the
1782 * first element of the freelist as the object to allocate now and move the
1783 * rest of the freelist to the lockless freelist.
1784 *
1785 * And if we were unable to get a new slab from the partial slab lists then
1786 * we need to allocate a new slab. This is the slowest path since it involves
1787 * a call to the page allocator and the setup of a new slab.
1788 */
1789static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1790			  unsigned long addr, struct kmem_cache_cpu *c)
1791{
1792	void **object;
1793	struct page *page;
1794#ifdef CONFIG_CMPXCHG_LOCAL
1795	unsigned long flags;
1796
1797	local_irq_save(flags);
1798#ifdef CONFIG_PREEMPT
1799	/*
1800	 * We may have been preempted and rescheduled on a different
1801	 * cpu before disabling interrupts. Need to reload cpu area
1802	 * pointer.
1803	 */
1804	c = this_cpu_ptr(s->cpu_slab);
1805#endif
1806#endif
1807
1808	/* We handle __GFP_ZERO in the caller */
1809	gfpflags &= ~__GFP_ZERO;
1810
1811	page = c->page;
1812	if (!page)
1813		goto new_slab;
1814
1815	slab_lock(page);
1816	if (unlikely(!node_match(c, node)))
1817		goto another_slab;
1818
1819	stat(s, ALLOC_REFILL);
1820
1821load_freelist:
1822	object = page->freelist;
1823	if (unlikely(!object))
1824		goto another_slab;
1825	if (kmem_cache_debug(s))
1826		goto debug;
1827
1828	c->freelist = get_freepointer(s, object);
1829	page->inuse = page->objects;
1830	page->freelist = NULL;
1831
1832unlock_out:
1833	slab_unlock(page);
1834#ifdef CONFIG_CMPXCHG_LOCAL
1835	c->tid = next_tid(c->tid);
1836	local_irq_restore(flags);
1837#endif
1838	stat(s, ALLOC_SLOWPATH);
1839	return object;
1840
1841another_slab:
1842	deactivate_slab(s, c);
1843
1844new_slab:
1845	page = get_partial(s, gfpflags, node);
1846	if (page) {
1847		stat(s, ALLOC_FROM_PARTIAL);
1848load_from_page:
1849		c->node = page_to_nid(page);
1850		c->page = page;
1851		goto load_freelist;
1852	}
1853
1854	gfpflags &= gfp_allowed_mask;
1855	if (gfpflags & __GFP_WAIT)
1856		local_irq_enable();
1857
1858	page = new_slab(s, gfpflags, node);
1859
1860	if (gfpflags & __GFP_WAIT)
1861		local_irq_disable();
1862
1863	if (page) {
1864		c = __this_cpu_ptr(s->cpu_slab);
1865		stat(s, ALLOC_SLAB);
1866		if (c->page)
1867			flush_slab(s, c);
1868
1869		slab_lock(page);
1870		__SetPageSlubFrozen(page);
1871
1872		goto load_from_page;
1873	}
1874	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1875		slab_out_of_memory(s, gfpflags, node);
1876#ifdef CONFIG_CMPXCHG_LOCAL
1877	local_irq_restore(flags);
1878#endif
1879	return NULL;
1880debug:
1881	if (!alloc_debug_processing(s, page, object, addr))
1882		goto another_slab;
1883
1884	page->inuse++;
1885	page->freelist = get_freepointer(s, object);
1886	c->node = NUMA_NO_NODE;
1887	goto unlock_out;
1888}
1889
1890/*
1891 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1892 * have the fastpath folded into their functions. So no function call
1893 * overhead for requests that can be satisfied on the fastpath.
1894 *
1895 * The fastpath works by first checking if the lockless freelist can be used.
1896 * If not then __slab_alloc is called for slow processing.
1897 *
1898 * Otherwise we can simply pick the next object from the lockless free list.
1899 */
1900static __always_inline void *slab_alloc(struct kmem_cache *s,
1901		gfp_t gfpflags, int node, unsigned long addr)
1902{
1903	void **object;
1904	struct kmem_cache_cpu *c;
1905#ifdef CONFIG_CMPXCHG_LOCAL
1906	unsigned long tid;
1907#else
1908	unsigned long flags;
1909#endif
1910
1911	if (slab_pre_alloc_hook(s, gfpflags))
1912		return NULL;
1913
1914#ifndef CONFIG_CMPXCHG_LOCAL
1915	local_irq_save(flags);
1916#else
1917redo:
1918#endif
1919
1920	/*
1921	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1922	 * enabled. We may switch back and forth between cpus while
1923	 * reading from one cpu area. That does not matter as long
1924	 * as we end up on the original cpu again when doing the cmpxchg.
1925	 */
1926	c = __this_cpu_ptr(s->cpu_slab);
1927
1928#ifdef CONFIG_CMPXCHG_LOCAL
1929	/*
1930	 * The transaction ids are globally unique per cpu and per operation on
1931	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1932	 * occurs on the right processor and that there was no operation on the
1933	 * linked list in between.
1934	 */
1935	tid = c->tid;
1936	barrier();
1937#endif
1938
1939	object = c->freelist;
1940	if (unlikely(!object || !node_match(c, node)))
1941
1942		object = __slab_alloc(s, gfpflags, node, addr, c);
1943
1944	else {
1945#ifdef CONFIG_CMPXCHG_LOCAL
1946		/*
1947		 * The cmpxchg will only match if there was no additonal
1948		 * operation and if we are on the right processor.
1949		 *
1950		 * The cmpxchg does the following atomically (without lock semantics!)
1951		 * 1. Relocate first pointer to the current per cpu area.
1952		 * 2. Verify that tid and freelist have not been changed
1953		 * 3. If they were not changed replace tid and freelist
1954		 *
1955		 * Since this is without lock semantics the protection is only against
1956		 * code executing on this cpu *not* from access by other cpus.
1957		 */
1958		if (unlikely(!this_cpu_cmpxchg_double(
1959				s->cpu_slab->freelist, s->cpu_slab->tid,
1960				object, tid,
1961				get_freepointer(s, object), next_tid(tid)))) {
1962
1963			note_cmpxchg_failure("slab_alloc", s, tid);
1964			goto redo;
1965		}
1966#else
1967		c->freelist = get_freepointer(s, object);
1968#endif
1969		stat(s, ALLOC_FASTPATH);
1970	}
1971
1972#ifndef CONFIG_CMPXCHG_LOCAL
1973	local_irq_restore(flags);
1974#endif
1975
1976	if (unlikely(gfpflags & __GFP_ZERO) && object)
1977		memset(object, 0, s->objsize);
1978
1979	slab_post_alloc_hook(s, gfpflags, object);
1980
1981	return object;
1982}
1983
1984void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1985{
1986	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1987
1988	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1989
1990	return ret;
1991}
1992EXPORT_SYMBOL(kmem_cache_alloc);
1993
1994#ifdef CONFIG_TRACING
1995void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1996{
1997	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1998	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1999	return ret;
2000}
2001EXPORT_SYMBOL(kmem_cache_alloc_trace);
2002
2003void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2004{
2005	void *ret = kmalloc_order(size, flags, order);
2006	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2007	return ret;
2008}
2009EXPORT_SYMBOL(kmalloc_order_trace);
2010#endif
2011
2012#ifdef CONFIG_NUMA
2013void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2014{
2015	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2016
2017	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2018				    s->objsize, s->size, gfpflags, node);
2019
2020	return ret;
2021}
2022EXPORT_SYMBOL(kmem_cache_alloc_node);
2023
2024#ifdef CONFIG_TRACING
2025void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2026				    gfp_t gfpflags,
2027				    int node, size_t size)
2028{
2029	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2030
2031	trace_kmalloc_node(_RET_IP_, ret,
2032			   size, s->size, gfpflags, node);
2033	return ret;
2034}
2035EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2036#endif
2037#endif
2038
2039/*
2040 * Slow patch handling. This may still be called frequently since objects
2041 * have a longer lifetime than the cpu slabs in most processing loads.
2042 *
2043 * So we still attempt to reduce cache line usage. Just take the slab
2044 * lock and free the item. If there is no additional partial page
2045 * handling required then we can return immediately.
2046 */
2047static void __slab_free(struct kmem_cache *s, struct page *page,
2048			void *x, unsigned long addr)
2049{
2050	void *prior;
2051	void **object = (void *)x;
2052#ifdef CONFIG_CMPXCHG_LOCAL
2053	unsigned long flags;
2054
2055	local_irq_save(flags);
2056#endif
2057	slab_lock(page);
2058	stat(s, FREE_SLOWPATH);
2059
2060	if (kmem_cache_debug(s))
2061		goto debug;
2062
2063checks_ok:
2064	prior = page->freelist;
2065	set_freepointer(s, object, prior);
2066	page->freelist = object;
2067	page->inuse--;
2068
2069	if (unlikely(PageSlubFrozen(page))) {
2070		stat(s, FREE_FROZEN);
2071		goto out_unlock;
2072	}
2073
2074	if (unlikely(!page->inuse))
2075		goto slab_empty;
2076
2077	/*
2078	 * Objects left in the slab. If it was not on the partial list before
2079	 * then add it.
2080	 */
2081	if (unlikely(!prior)) {
2082		add_partial(get_node(s, page_to_nid(page)), page, 1);
2083		stat(s, FREE_ADD_PARTIAL);
2084	}
2085
2086out_unlock:
2087	slab_unlock(page);
2088#ifdef CONFIG_CMPXCHG_LOCAL
2089	local_irq_restore(flags);
2090#endif
2091	return;
2092
2093slab_empty:
2094	if (prior) {
2095		/*
2096		 * Slab still on the partial list.
2097		 */
2098		remove_partial(s, page);
2099		stat(s, FREE_REMOVE_PARTIAL);
2100	}
2101	slab_unlock(page);
2102#ifdef CONFIG_CMPXCHG_LOCAL
2103	local_irq_restore(flags);
2104#endif
2105	stat(s, FREE_SLAB);
2106	discard_slab(s, page);
2107	return;
2108
2109debug:
2110	if (!free_debug_processing(s, page, x, addr))
2111		goto out_unlock;
2112	goto checks_ok;
2113}
2114
2115/*
2116 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2117 * can perform fastpath freeing without additional function calls.
2118 *
2119 * The fastpath is only possible if we are freeing to the current cpu slab
2120 * of this processor. This typically the case if we have just allocated
2121 * the item before.
2122 *
2123 * If fastpath is not possible then fall back to __slab_free where we deal
2124 * with all sorts of special processing.
2125 */
2126static __always_inline void slab_free(struct kmem_cache *s,
2127			struct page *page, void *x, unsigned long addr)
2128{
2129	void **object = (void *)x;
2130	struct kmem_cache_cpu *c;
2131#ifdef CONFIG_CMPXCHG_LOCAL
2132	unsigned long tid;
2133#else
2134	unsigned long flags;
2135#endif
2136
2137	slab_free_hook(s, x);
2138
2139#ifndef CONFIG_CMPXCHG_LOCAL
2140	local_irq_save(flags);
2141
2142#else
2143redo:
2144#endif
2145
2146	/*
2147	 * Determine the currently cpus per cpu slab.
2148	 * The cpu may change afterward. However that does not matter since
2149	 * data is retrieved via this pointer. If we are on the same cpu
2150	 * during the cmpxchg then the free will succedd.
2151	 */
2152	c = __this_cpu_ptr(s->cpu_slab);
2153
2154#ifdef CONFIG_CMPXCHG_LOCAL
2155	tid = c->tid;
2156	barrier();
2157#endif
2158
2159	if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
2160		set_freepointer(s, object, c->freelist);
2161
2162#ifdef CONFIG_CMPXCHG_LOCAL
2163		if (unlikely(!this_cpu_cmpxchg_double(
2164				s->cpu_slab->freelist, s->cpu_slab->tid,
2165				c->freelist, tid,
2166				object, next_tid(tid)))) {
2167
2168			note_cmpxchg_failure("slab_free", s, tid);
2169			goto redo;
2170		}
2171#else
2172		c->freelist = object;
2173#endif
2174		stat(s, FREE_FASTPATH);
2175	} else
2176		__slab_free(s, page, x, addr);
2177
2178#ifndef CONFIG_CMPXCHG_LOCAL
2179	local_irq_restore(flags);
2180#endif
2181}
2182
2183void kmem_cache_free(struct kmem_cache *s, void *x)
2184{
2185	struct page *page;
2186
2187	page = virt_to_head_page(x);
2188
2189	slab_free(s, page, x, _RET_IP_);
2190
2191	trace_kmem_cache_free(_RET_IP_, x);
2192}
2193EXPORT_SYMBOL(kmem_cache_free);
2194
2195/*
2196 * Object placement in a slab is made very easy because we always start at
2197 * offset 0. If we tune the size of the object to the alignment then we can
2198 * get the required alignment by putting one properly sized object after
2199 * another.
2200 *
2201 * Notice that the allocation order determines the sizes of the per cpu
2202 * caches. Each processor has always one slab available for allocations.
2203 * Increasing the allocation order reduces the number of times that slabs
2204 * must be moved on and off the partial lists and is therefore a factor in
2205 * locking overhead.
2206 */
2207
2208/*
2209 * Mininum / Maximum order of slab pages. This influences locking overhead
2210 * and slab fragmentation. A higher order reduces the number of partial slabs
2211 * and increases the number of allocations possible without having to
2212 * take the list_lock.
2213 */
2214static int slub_min_order;
2215static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2216static int slub_min_objects;
2217
2218/*
2219 * Merge control. If this is set then no merging of slab caches will occur.
2220 * (Could be removed. This was introduced to pacify the merge skeptics.)
2221 */
2222static int slub_nomerge;
2223
2224/*
2225 * Calculate the order of allocation given an slab object size.
2226 *
2227 * The order of allocation has significant impact on performance and other
2228 * system components. Generally order 0 allocations should be preferred since
2229 * order 0 does not cause fragmentation in the page allocator. Larger objects
2230 * be problematic to put into order 0 slabs because there may be too much
2231 * unused space left. We go to a higher order if more than 1/16th of the slab
2232 * would be wasted.
2233 *
2234 * In order to reach satisfactory performance we must ensure that a minimum
2235 * number of objects is in one slab. Otherwise we may generate too much
2236 * activity on the partial lists which requires taking the list_lock. This is
2237 * less a concern for large slabs though which are rarely used.
2238 *
2239 * slub_max_order specifies the order where we begin to stop considering the
2240 * number of objects in a slab as critical. If we reach slub_max_order then
2241 * we try to keep the page order as low as possible. So we accept more waste
2242 * of space in favor of a small page order.
2243 *
2244 * Higher order allocations also allow the placement of more objects in a
2245 * slab and thereby reduce object handling overhead. If the user has
2246 * requested a higher mininum order then we start with that one instead of
2247 * the smallest order which will fit the object.
2248 */
2249static inline int slab_order(int size, int min_objects,
2250				int max_order, int fract_leftover, int reserved)
2251{
2252	int order;
2253	int rem;
2254	int min_order = slub_min_order;
2255
2256	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2257		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2258
2259	for (order = max(min_order,
2260				fls(min_objects * size - 1) - PAGE_SHIFT);
2261			order <= max_order; order++) {
2262
2263		unsigned long slab_size = PAGE_SIZE << order;
2264
2265		if (slab_size < min_objects * size + reserved)
2266			continue;
2267
2268		rem = (slab_size - reserved) % size;
2269
2270		if (rem <= slab_size / fract_leftover)
2271			break;
2272
2273	}
2274
2275	return order;
2276}
2277
2278static inline int calculate_order(int size, int reserved)
2279{
2280	int order;
2281	int min_objects;
2282	int fraction;
2283	int max_objects;
2284
2285	/*
2286	 * Attempt to find best configuration for a slab. This
2287	 * works by first attempting to generate a layout with
2288	 * the best configuration and backing off gradually.
2289	 *
2290	 * First we reduce the acceptable waste in a slab. Then
2291	 * we reduce the minimum objects required in a slab.
2292	 */
2293	min_objects = slub_min_objects;
2294	if (!min_objects)
2295		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2296	max_objects = order_objects(slub_max_order, size, reserved);
2297	min_objects = min(min_objects, max_objects);
2298
2299	while (min_objects > 1) {
2300		fraction = 16;
2301		while (fraction >= 4) {
2302			order = slab_order(size, min_objects,
2303					slub_max_order, fraction, reserved);
2304			if (order <= slub_max_order)
2305				return order;
2306			fraction /= 2;
2307		}
2308		min_objects--;
2309	}
2310
2311	/*
2312	 * We were unable to place multiple objects in a slab. Now
2313	 * lets see if we can place a single object there.
2314	 */
2315	order = slab_order(size, 1, slub_max_order, 1, reserved);
2316	if (order <= slub_max_order)
2317		return order;
2318
2319	/*
2320	 * Doh this slab cannot be placed using slub_max_order.
2321	 */
2322	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2323	if (order < MAX_ORDER)
2324		return order;
2325	return -ENOSYS;
2326}
2327
2328/*
2329 * Figure out what the alignment of the objects will be.
2330 */
2331static unsigned long calculate_alignment(unsigned long flags,
2332		unsigned long align, unsigned long size)
2333{
2334	/*
2335	 * If the user wants hardware cache aligned objects then follow that
2336	 * suggestion if the object is sufficiently large.
2337	 *
2338	 * The hardware cache alignment cannot override the specified
2339	 * alignment though. If that is greater then use it.
2340	 */
2341	if (flags & SLAB_HWCACHE_ALIGN) {
2342		unsigned long ralign = cache_line_size();
2343		while (size <= ralign / 2)
2344			ralign /= 2;
2345		align = max(align, ralign);
2346	}
2347
2348	if (align < ARCH_SLAB_MINALIGN)
2349		align = ARCH_SLAB_MINALIGN;
2350
2351	return ALIGN(align, sizeof(void *));
2352}
2353
2354static void
2355init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2356{
2357	n->nr_partial = 0;
2358	spin_lock_init(&n->list_lock);
2359	INIT_LIST_HEAD(&n->partial);
2360#ifdef CONFIG_SLUB_DEBUG
2361	atomic_long_set(&n->nr_slabs, 0);
2362	atomic_long_set(&n->total_objects, 0);
2363	INIT_LIST_HEAD(&n->full);
2364#endif
2365}
2366
2367static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2368{
2369	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2370			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2371
2372#ifdef CONFIG_CMPXCHG_LOCAL
2373	/*
2374	 * Must align to double word boundary for the double cmpxchg instructions
2375	 * to work.
2376	 */
2377	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
2378#else
2379	/* Regular alignment is sufficient */
2380	s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2381#endif
2382
2383	if (!s->cpu_slab)
2384		return 0;
2385
2386	init_kmem_cache_cpus(s);
2387
2388	return 1;
2389}
2390
2391static struct kmem_cache *kmem_cache_node;
2392
2393/*
2394 * No kmalloc_node yet so do it by hand. We know that this is the first
2395 * slab on the node for this slabcache. There are no concurrent accesses
2396 * possible.
2397 *
2398 * Note that this function only works on the kmalloc_node_cache
2399 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2400 * memory on a fresh node that has no slab structures yet.
2401 */
2402static void early_kmem_cache_node_alloc(int node)
2403{
2404	struct page *page;
2405	struct kmem_cache_node *n;
2406	unsigned long flags;
2407
2408	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2409
2410	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2411
2412	BUG_ON(!page);
2413	if (page_to_nid(page) != node) {
2414		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2415				"node %d\n", node);
2416		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2417				"in order to be able to continue\n");
2418	}
2419
2420	n = page->freelist;
2421	BUG_ON(!n);
2422	page->freelist = get_freepointer(kmem_cache_node, n);
2423	page->inuse++;
2424	kmem_cache_node->node[node] = n;
2425#ifdef CONFIG_SLUB_DEBUG
2426	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2427	init_tracking(kmem_cache_node, n);
2428#endif
2429	init_kmem_cache_node(n, kmem_cache_node);
2430	inc_slabs_node(kmem_cache_node, node, page->objects);
2431
2432	/*
2433	 * lockdep requires consistent irq usage for each lock
2434	 * so even though there cannot be a race this early in
2435	 * the boot sequence, we still disable irqs.
2436	 */
2437	local_irq_save(flags);
2438	add_partial(n, page, 0);
2439	local_irq_restore(flags);
2440}
2441
2442static void free_kmem_cache_nodes(struct kmem_cache *s)
2443{
2444	int node;
2445
2446	for_each_node_state(node, N_NORMAL_MEMORY) {
2447		struct kmem_cache_node *n = s->node[node];
2448
2449		if (n)
2450			kmem_cache_free(kmem_cache_node, n);
2451
2452		s->node[node] = NULL;
2453	}
2454}
2455
2456static int init_kmem_cache_nodes(struct kmem_cache *s)
2457{
2458	int node;
2459
2460	for_each_node_state(node, N_NORMAL_MEMORY) {
2461		struct kmem_cache_node *n;
2462
2463		if (slab_state == DOWN) {
2464			early_kmem_cache_node_alloc(node);
2465			continue;
2466		}
2467		n = kmem_cache_alloc_node(kmem_cache_node,
2468						GFP_KERNEL, node);
2469
2470		if (!n) {
2471			free_kmem_cache_nodes(s);
2472			return 0;
2473		}
2474
2475		s->node[node] = n;
2476		init_kmem_cache_node(n, s);
2477	}
2478	return 1;
2479}
2480
2481static void set_min_partial(struct kmem_cache *s, unsigned long min)
2482{
2483	if (min < MIN_PARTIAL)
2484		min = MIN_PARTIAL;
2485	else if (min > MAX_PARTIAL)
2486		min = MAX_PARTIAL;
2487	s->min_partial = min;
2488}
2489
2490/*
2491 * calculate_sizes() determines the order and the distribution of data within
2492 * a slab object.
2493 */
2494static int calculate_sizes(struct kmem_cache *s, int forced_order)
2495{
2496	unsigned long flags = s->flags;
2497	unsigned long size = s->objsize;
2498	unsigned long align = s->align;
2499	int order;
2500
2501	/*
2502	 * Round up object size to the next word boundary. We can only
2503	 * place the free pointer at word boundaries and this determines
2504	 * the possible location of the free pointer.
2505	 */
2506	size = ALIGN(size, sizeof(void *));
2507
2508#ifdef CONFIG_SLUB_DEBUG
2509	/*
2510	 * Determine if we can poison the object itself. If the user of
2511	 * the slab may touch the object after free or before allocation
2512	 * then we should never poison the object itself.
2513	 */
2514	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2515			!s->ctor)
2516		s->flags |= __OBJECT_POISON;
2517	else
2518		s->flags &= ~__OBJECT_POISON;
2519
2520
2521	/*
2522	 * If we are Redzoning then check if there is some space between the
2523	 * end of the object and the free pointer. If not then add an
2524	 * additional word to have some bytes to store Redzone information.
2525	 */
2526	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2527		size += sizeof(void *);
2528#endif
2529
2530	/*
2531	 * With that we have determined the number of bytes in actual use
2532	 * by the object. This is the potential offset to the free pointer.
2533	 */
2534	s->inuse = size;
2535
2536	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2537		s->ctor)) {
2538		/*
2539		 * Relocate free pointer after the object if it is not
2540		 * permitted to overwrite the first word of the object on
2541		 * kmem_cache_free.
2542		 *
2543		 * This is the case if we do RCU, have a constructor or
2544		 * destructor or are poisoning the objects.
2545		 */
2546		s->offset = size;
2547		size += sizeof(void *);
2548	}
2549
2550#ifdef CONFIG_SLUB_DEBUG
2551	if (flags & SLAB_STORE_USER)
2552		/*
2553		 * Need to store information about allocs and frees after
2554		 * the object.
2555		 */
2556		size += 2 * sizeof(struct track);
2557
2558	if (flags & SLAB_RED_ZONE)
2559		/*
2560		 * Add some empty padding so that we can catch
2561		 * overwrites from earlier objects rather than let
2562		 * tracking information or the free pointer be
2563		 * corrupted if a user writes before the start
2564		 * of the object.
2565		 */
2566		size += sizeof(void *);
2567#endif
2568
2569	/*
2570	 * Determine the alignment based on various parameters that the
2571	 * user specified and the dynamic determination of cache line size
2572	 * on bootup.
2573	 */
2574	align = calculate_alignment(flags, align, s->objsize);
2575	s->align = align;
2576
2577	/*
2578	 * SLUB stores one object immediately after another beginning from
2579	 * offset 0. In order to align the objects we have to simply size
2580	 * each object to conform to the alignment.
2581	 */
2582	size = ALIGN(size, align);
2583	s->size = size;
2584	if (forced_order >= 0)
2585		order = forced_order;
2586	else
2587		order = calculate_order(size, s->reserved);
2588
2589	if (order < 0)
2590		return 0;
2591
2592	s->allocflags = 0;
2593	if (order)
2594		s->allocflags |= __GFP_COMP;
2595
2596	if (s->flags & SLAB_CACHE_DMA)
2597		s->allocflags |= SLUB_DMA;
2598
2599	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2600		s->allocflags |= __GFP_RECLAIMABLE;
2601
2602	/*
2603	 * Determine the number of objects per slab
2604	 */
2605	s->oo = oo_make(order, size, s->reserved);
2606	s->min = oo_make(get_order(size), size, s->reserved);
2607	if (oo_objects(s->oo) > oo_objects(s->max))
2608		s->max = s->oo;
2609
2610	return !!oo_objects(s->oo);
2611
2612}
2613
2614static int kmem_cache_open(struct kmem_cache *s,
2615		const char *name, size_t size,
2616		size_t align, unsigned long flags,
2617		void (*ctor)(void *))
2618{
2619	memset(s, 0, kmem_size);
2620	s->name = name;
2621	s->ctor = ctor;
2622	s->objsize = size;
2623	s->align = align;
2624	s->flags = kmem_cache_flags(size, flags, name, ctor);
2625	s->reserved = 0;
2626
2627	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2628		s->reserved = sizeof(struct rcu_head);
2629
2630	if (!calculate_sizes(s, -1))
2631		goto error;
2632	if (disable_higher_order_debug) {
2633		/*
2634		 * Disable debugging flags that store metadata if the min slab
2635		 * order increased.
2636		 */
2637		if (get_order(s->size) > get_order(s->objsize)) {
2638			s->flags &= ~DEBUG_METADATA_FLAGS;
2639			s->offset = 0;
2640			if (!calculate_sizes(s, -1))
2641				goto error;
2642		}
2643	}
2644
2645	/*
2646	 * The larger the object size is, the more pages we want on the partial
2647	 * list to avoid pounding the page allocator excessively.
2648	 */
2649	set_min_partial(s, ilog2(s->size));
2650	s->refcount = 1;
2651#ifdef CONFIG_NUMA
2652	s->remote_node_defrag_ratio = 1000;
2653#endif
2654	if (!init_kmem_cache_nodes(s))
2655		goto error;
2656
2657	if (alloc_kmem_cache_cpus(s))
2658		return 1;
2659
2660	free_kmem_cache_nodes(s);
2661error:
2662	if (flags & SLAB_PANIC)
2663		panic("Cannot create slab %s size=%lu realsize=%u "
2664			"order=%u offset=%u flags=%lx\n",
2665			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2666			s->offset, flags);
2667	return 0;
2668}
2669
2670/*
2671 * Determine the size of a slab object
2672 */
2673unsigned int kmem_cache_size(struct kmem_cache *s)
2674{
2675	return s->objsize;
2676}
2677EXPORT_SYMBOL(kmem_cache_size);
2678
2679static void list_slab_objects(struct kmem_cache *s, struct page *page,
2680							const char *text)
2681{
2682#ifdef CONFIG_SLUB_DEBUG
2683	void *addr = page_address(page);
2684	void *p;
2685	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2686				     sizeof(long), GFP_ATOMIC);
2687	if (!map)
2688		return;
2689	slab_err(s, page, "%s", text);
2690	slab_lock(page);
2691
2692	get_map(s, page, map);
2693	for_each_object(p, s, addr, page->objects) {
2694
2695		if (!test_bit(slab_index(p, s, addr), map)) {
2696			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2697							p, p - addr);
2698			print_tracking(s, p);
2699		}
2700	}
2701	slab_unlock(page);
2702	kfree(map);
2703#endif
2704}
2705
2706/*
2707 * Attempt to free all partial slabs on a node.
2708 */
2709static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2710{
2711	unsigned long flags;
2712	struct page *page, *h;
2713
2714	spin_lock_irqsave(&n->list_lock, flags);
2715	list_for_each_entry_safe(page, h, &n->partial, lru) {
2716		if (!page->inuse) {
2717			__remove_partial(n, page);
2718			discard_slab(s, page);
2719		} else {
2720			list_slab_objects(s, page,
2721				"Objects remaining on kmem_cache_close()");
2722		}
2723	}
2724	spin_unlock_irqrestore(&n->list_lock, flags);
2725}
2726
2727/*
2728 * Release all resources used by a slab cache.
2729 */
2730static inline int kmem_cache_close(struct kmem_cache *s)
2731{
2732	int node;
2733
2734	flush_all(s);
2735	free_percpu(s->cpu_slab);
2736	/* Attempt to free all objects */
2737	for_each_node_state(node, N_NORMAL_MEMORY) {
2738		struct kmem_cache_node *n = get_node(s, node);
2739
2740		free_partial(s, n);
2741		if (n->nr_partial || slabs_node(s, node))
2742			return 1;
2743	}
2744	free_kmem_cache_nodes(s);
2745	return 0;
2746}
2747
2748/*
2749 * Close a cache and release the kmem_cache structure
2750 * (must be used for caches created using kmem_cache_create)
2751 */
2752void kmem_cache_destroy(struct kmem_cache *s)
2753{
2754	down_write(&slub_lock);
2755	s->refcount--;
2756	if (!s->refcount) {
2757		list_del(&s->list);
2758		if (kmem_cache_close(s)) {
2759			printk(KERN_ERR "SLUB %s: %s called for cache that "
2760				"still has objects.\n", s->name, __func__);
2761			dump_stack();
2762		}
2763		if (s->flags & SLAB_DESTROY_BY_RCU)
2764			rcu_barrier();
2765		sysfs_slab_remove(s);
2766	}
2767	up_write(&slub_lock);
2768}
2769EXPORT_SYMBOL(kmem_cache_destroy);
2770
2771/********************************************************************
2772 *		Kmalloc subsystem
2773 *******************************************************************/
2774
2775struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2776EXPORT_SYMBOL(kmalloc_caches);
2777
2778static struct kmem_cache *kmem_cache;
2779
2780#ifdef CONFIG_ZONE_DMA
2781static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2782#endif
2783
2784static int __init setup_slub_min_order(char *str)
2785{
2786	get_option(&str, &slub_min_order);
2787
2788	return 1;
2789}
2790
2791__setup("slub_min_order=", setup_slub_min_order);
2792
2793static int __init setup_slub_max_order(char *str)
2794{
2795	get_option(&str, &slub_max_order);
2796	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2797
2798	return 1;
2799}
2800
2801__setup("slub_max_order=", setup_slub_max_order);
2802
2803static int __init setup_slub_min_objects(char *str)
2804{
2805	get_option(&str, &slub_min_objects);
2806
2807	return 1;
2808}
2809
2810__setup("slub_min_objects=", setup_slub_min_objects);
2811
2812static int __init setup_slub_nomerge(char *str)
2813{
2814	slub_nomerge = 1;
2815	return 1;
2816}
2817
2818__setup("slub_nomerge", setup_slub_nomerge);
2819
2820static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2821						int size, unsigned int flags)
2822{
2823	struct kmem_cache *s;
2824
2825	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2826
2827	/*
2828	 * This function is called with IRQs disabled during early-boot on
2829	 * single CPU so there's no need to take slub_lock here.
2830	 */
2831	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2832								flags, NULL))
2833		goto panic;
2834
2835	list_add(&s->list, &slab_caches);
2836	return s;
2837
2838panic:
2839	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2840	return NULL;
2841}
2842
2843/*
2844 * Conversion table for small slabs sizes / 8 to the index in the
2845 * kmalloc array. This is necessary for slabs < 192 since we have non power
2846 * of two cache sizes there. The size of larger slabs can be determined using
2847 * fls.
2848 */
2849static s8 size_index[24] = {
2850	3,	/* 8 */
2851	4,	/* 16 */
2852	5,	/* 24 */
2853	5,	/* 32 */
2854	6,	/* 40 */
2855	6,	/* 48 */
2856	6,	/* 56 */
2857	6,	/* 64 */
2858	1,	/* 72 */
2859	1,	/* 80 */
2860	1,	/* 88 */
2861	1,	/* 96 */
2862	7,	/* 104 */
2863	7,	/* 112 */
2864	7,	/* 120 */
2865	7,	/* 128 */
2866	2,	/* 136 */
2867	2,	/* 144 */
2868	2,	/* 152 */
2869	2,	/* 160 */
2870	2,	/* 168 */
2871	2,	/* 176 */
2872	2,	/* 184 */
2873	2	/* 192 */
2874};
2875
2876static inline int size_index_elem(size_t bytes)
2877{
2878	return (bytes - 1) / 8;
2879}
2880
2881static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2882{
2883	int index;
2884
2885	if (size <= 192) {
2886		if (!size)
2887			return ZERO_SIZE_PTR;
2888
2889		index = size_index[size_index_elem(size)];
2890	} else
2891		index = fls(size - 1);
2892
2893#ifdef CONFIG_ZONE_DMA
2894	if (unlikely((flags & SLUB_DMA)))
2895		return kmalloc_dma_caches[index];
2896
2897#endif
2898	return kmalloc_caches[index];
2899}
2900
2901void *__kmalloc(size_t size, gfp_t flags)
2902{
2903	struct kmem_cache *s;
2904	void *ret;
2905
2906	if (unlikely(size > SLUB_MAX_SIZE))
2907		return kmalloc_large(size, flags);
2908
2909	s = get_slab(size, flags);
2910
2911	if (unlikely(ZERO_OR_NULL_PTR(s)))
2912		return s;
2913
2914	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2915
2916	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2917
2918	return ret;
2919}
2920EXPORT_SYMBOL(__kmalloc);
2921
2922#ifdef CONFIG_NUMA
2923static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2924{
2925	struct page *page;
2926	void *ptr = NULL;
2927
2928	flags |= __GFP_COMP | __GFP_NOTRACK;
2929	page = alloc_pages_node(node, flags, get_order(size));
2930	if (page)
2931		ptr = page_address(page);
2932
2933	kmemleak_alloc(ptr, size, 1, flags);
2934	return ptr;
2935}
2936
2937void *__kmalloc_node(size_t size, gfp_t flags, int node)
2938{
2939	struct kmem_cache *s;
2940	void *ret;
2941
2942	if (unlikely(size > SLUB_MAX_SIZE)) {
2943		ret = kmalloc_large_node(size, flags, node);
2944
2945		trace_kmalloc_node(_RET_IP_, ret,
2946				   size, PAGE_SIZE << get_order(size),
2947				   flags, node);
2948
2949		return ret;
2950	}
2951
2952	s = get_slab(size, flags);
2953
2954	if (unlikely(ZERO_OR_NULL_PTR(s)))
2955		return s;
2956
2957	ret = slab_alloc(s, flags, node, _RET_IP_);
2958
2959	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2960
2961	return ret;
2962}
2963EXPORT_SYMBOL(__kmalloc_node);
2964#endif
2965
2966size_t ksize(const void *object)
2967{
2968	struct page *page;
2969
2970	if (unlikely(object == ZERO_SIZE_PTR))
2971		return 0;
2972
2973	page = virt_to_head_page(object);
2974
2975	if (unlikely(!PageSlab(page))) {
2976		WARN_ON(!PageCompound(page));
2977		return PAGE_SIZE << compound_order(page);
2978	}
2979
2980	return slab_ksize(page->slab);
2981}
2982EXPORT_SYMBOL(ksize);
2983
2984void kfree(const void *x)
2985{
2986	struct page *page;
2987	void *object = (void *)x;
2988
2989	trace_kfree(_RET_IP_, x);
2990
2991	if (unlikely(ZERO_OR_NULL_PTR(x)))
2992		return;
2993
2994	page = virt_to_head_page(x);
2995	if (unlikely(!PageSlab(page))) {
2996		BUG_ON(!PageCompound(page));
2997		kmemleak_free(x);
2998		put_page(page);
2999		return;
3000	}
3001	slab_free(page->slab, page, object, _RET_IP_);
3002}
3003EXPORT_SYMBOL(kfree);
3004
3005/*
3006 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3007 * the remaining slabs by the number of items in use. The slabs with the
3008 * most items in use come first. New allocations will then fill those up
3009 * and thus they can be removed from the partial lists.
3010 *
3011 * The slabs with the least items are placed last. This results in them
3012 * being allocated from last increasing the chance that the last objects
3013 * are freed in them.
3014 */
3015int kmem_cache_shrink(struct kmem_cache *s)
3016{
3017	int node;
3018	int i;
3019	struct kmem_cache_node *n;
3020	struct page *page;
3021	struct page *t;
3022	int objects = oo_objects(s->max);
3023	struct list_head *slabs_by_inuse =
3024		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3025	unsigned long flags;
3026
3027	if (!slabs_by_inuse)
3028		return -ENOMEM;
3029
3030	flush_all(s);
3031	for_each_node_state(node, N_NORMAL_MEMORY) {
3032		n = get_node(s, node);
3033
3034		if (!n->nr_partial)
3035			continue;
3036
3037		for (i = 0; i < objects; i++)
3038			INIT_LIST_HEAD(slabs_by_inuse + i);
3039
3040		spin_lock_irqsave(&n->list_lock, flags);
3041
3042		/*
3043		 * Build lists indexed by the items in use in each slab.
3044		 *
3045		 * Note that concurrent frees may occur while we hold the
3046		 * list_lock. page->inuse here is the upper limit.
3047		 */
3048		list_for_each_entry_safe(page, t, &n->partial, lru) {
3049			if (!page->inuse && slab_trylock(page)) {
3050				/*
3051				 * Must hold slab lock here because slab_free
3052				 * may have freed the last object and be
3053				 * waiting to release the slab.
3054				 */
3055				__remove_partial(n, page);
3056				slab_unlock(page);
3057				discard_slab(s, page);
3058			} else {
3059				list_move(&page->lru,
3060				slabs_by_inuse + page->inuse);
3061			}
3062		}
3063
3064		/*
3065		 * Rebuild the partial list with the slabs filled up most
3066		 * first and the least used slabs at the end.
3067		 */
3068		for (i = objects - 1; i >= 0; i--)
3069			list_splice(slabs_by_inuse + i, n->partial.prev);
3070
3071		spin_unlock_irqrestore(&n->list_lock, flags);
3072	}
3073
3074	kfree(slabs_by_inuse);
3075	return 0;
3076}
3077EXPORT_SYMBOL(kmem_cache_shrink);
3078
3079#if defined(CONFIG_MEMORY_HOTPLUG)
3080static int slab_mem_going_offline_callback(void *arg)
3081{
3082	struct kmem_cache *s;
3083
3084	down_read(&slub_lock);
3085	list_for_each_entry(s, &slab_caches, list)
3086		kmem_cache_shrink(s);
3087	up_read(&slub_lock);
3088
3089	return 0;
3090}
3091
3092static void slab_mem_offline_callback(void *arg)
3093{
3094	struct kmem_cache_node *n;
3095	struct kmem_cache *s;
3096	struct memory_notify *marg = arg;
3097	int offline_node;
3098
3099	offline_node = marg->status_change_nid;
3100
3101	/*
3102	 * If the node still has available memory. we need kmem_cache_node
3103	 * for it yet.
3104	 */
3105	if (offline_node < 0)
3106		return;
3107
3108	down_read(&slub_lock);
3109	list_for_each_entry(s, &slab_caches, list) {
3110		n = get_node(s, offline_node);
3111		if (n) {
3112			/*
3113			 * if n->nr_slabs > 0, slabs still exist on the node
3114			 * that is going down. We were unable to free them,
3115			 * and offline_pages() function shouldn't call this
3116			 * callback. So, we must fail.
3117			 */
3118			BUG_ON(slabs_node(s, offline_node));
3119
3120			s->node[offline_node] = NULL;
3121			kmem_cache_free(kmem_cache_node, n);
3122		}
3123	}
3124	up_read(&slub_lock);
3125}
3126
3127static int slab_mem_going_online_callback(void *arg)
3128{
3129	struct kmem_cache_node *n;
3130	struct kmem_cache *s;
3131	struct memory_notify *marg = arg;
3132	int nid = marg->status_change_nid;
3133	int ret = 0;
3134
3135	/*
3136	 * If the node's memory is already available, then kmem_cache_node is
3137	 * already created. Nothing to do.
3138	 */
3139	if (nid < 0)
3140		return 0;
3141
3142	/*
3143	 * We are bringing a node online. No memory is available yet. We must
3144	 * allocate a kmem_cache_node structure in order to bring the node
3145	 * online.
3146	 */
3147	down_read(&slub_lock);
3148	list_for_each_entry(s, &slab_caches, list) {
3149		/*
3150		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3151		 *      since memory is not yet available from the node that
3152		 *      is brought up.
3153		 */
3154		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3155		if (!n) {
3156			ret = -ENOMEM;
3157			goto out;
3158		}
3159		init_kmem_cache_node(n, s);
3160		s->node[nid] = n;
3161	}
3162out:
3163	up_read(&slub_lock);
3164	return ret;
3165}
3166
3167static int slab_memory_callback(struct notifier_block *self,
3168				unsigned long action, void *arg)
3169{
3170	int ret = 0;
3171
3172	switch (action) {
3173	case MEM_GOING_ONLINE:
3174		ret = slab_mem_going_online_callback(arg);
3175		break;
3176	case MEM_GOING_OFFLINE:
3177		ret = slab_mem_going_offline_callback(arg);
3178		break;
3179	case MEM_OFFLINE:
3180	case MEM_CANCEL_ONLINE:
3181		slab_mem_offline_callback(arg);
3182		break;
3183	case MEM_ONLINE:
3184	case MEM_CANCEL_OFFLINE:
3185		break;
3186	}
3187	if (ret)
3188		ret = notifier_from_errno(ret);
3189	else
3190		ret = NOTIFY_OK;
3191	return ret;
3192}
3193
3194#endif /* CONFIG_MEMORY_HOTPLUG */
3195
3196/********************************************************************
3197 *			Basic setup of slabs
3198 *******************************************************************/
3199
3200/*
3201 * Used for early kmem_cache structures that were allocated using
3202 * the page allocator
3203 */
3204
3205static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3206{
3207	int node;
3208
3209	list_add(&s->list, &slab_caches);
3210	s->refcount = -1;
3211
3212	for_each_node_state(node, N_NORMAL_MEMORY) {
3213		struct kmem_cache_node *n = get_node(s, node);
3214		struct page *p;
3215
3216		if (n) {
3217			list_for_each_entry(p, &n->partial, lru)
3218				p->slab = s;
3219
3220#ifdef CONFIG_SLUB_DEBUG
3221			list_for_each_entry(p, &n->full, lru)
3222				p->slab = s;
3223#endif
3224		}
3225	}
3226}
3227
3228void __init kmem_cache_init(void)
3229{
3230	int i;
3231	int caches = 0;
3232	struct kmem_cache *temp_kmem_cache;
3233	int order;
3234	struct kmem_cache *temp_kmem_cache_node;
3235	unsigned long kmalloc_size;
3236
3237	kmem_size = offsetof(struct kmem_cache, node) +
3238				nr_node_ids * sizeof(struct kmem_cache_node *);
3239
3240	/* Allocate two kmem_caches from the page allocator */
3241	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3242	order = get_order(2 * kmalloc_size);
3243	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3244
3245	/*
3246	 * Must first have the slab cache available for the allocations of the
3247	 * struct kmem_cache_node's. There is special bootstrap code in
3248	 * kmem_cache_open for slab_state == DOWN.
3249	 */
3250	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3251
3252	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3253		sizeof(struct kmem_cache_node),
3254		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3255
3256	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3257
3258	/* Able to allocate the per node structures */
3259	slab_state = PARTIAL;
3260
3261	temp_kmem_cache = kmem_cache;
3262	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3263		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3264	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3265	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3266
3267	/*
3268	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3269	 * kmem_cache_node is separately allocated so no need to
3270	 * update any list pointers.
3271	 */
3272	temp_kmem_cache_node = kmem_cache_node;
3273
3274	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3275	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3276
3277	kmem_cache_bootstrap_fixup(kmem_cache_node);
3278
3279	caches++;
3280	kmem_cache_bootstrap_fixup(kmem_cache);
3281	caches++;
3282	/* Free temporary boot structure */
3283	free_pages((unsigned long)temp_kmem_cache, order);
3284
3285	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3286
3287	/*
3288	 * Patch up the size_index table if we have strange large alignment
3289	 * requirements for the kmalloc array. This is only the case for
3290	 * MIPS it seems. The standard arches will not generate any code here.
3291	 *
3292	 * Largest permitted alignment is 256 bytes due to the way we
3293	 * handle the index determination for the smaller caches.
3294	 *
3295	 * Make sure that nothing crazy happens if someone starts tinkering
3296	 * around with ARCH_KMALLOC_MINALIGN
3297	 */
3298	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3299		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3300
3301	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3302		int elem = size_index_elem(i);
3303		if (elem >= ARRAY_SIZE(size_index))
3304			break;
3305		size_index[elem] = KMALLOC_SHIFT_LOW;
3306	}
3307
3308	if (KMALLOC_MIN_SIZE == 64) {
3309		/*
3310		 * The 96 byte size cache is not used if the alignment
3311		 * is 64 byte.
3312		 */
3313		for (i = 64 + 8; i <= 96; i += 8)
3314			size_index[size_index_elem(i)] = 7;
3315	} else if (KMALLOC_MIN_SIZE == 128) {
3316		/*
3317		 * The 192 byte sized cache is not used if the alignment
3318		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3319		 * instead.
3320		 */
3321		for (i = 128 + 8; i <= 192; i += 8)
3322			size_index[size_index_elem(i)] = 8;
3323	}
3324
3325	/* Caches that are not of the two-to-the-power-of size */
3326	if (KMALLOC_MIN_SIZE <= 32) {
3327		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3328		caches++;
3329	}
3330
3331	if (KMALLOC_MIN_SIZE <= 64) {
3332		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3333		caches++;
3334	}
3335
3336	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3337		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3338		caches++;
3339	}
3340
3341	slab_state = UP;
3342
3343	/* Provide the correct kmalloc names now that the caches are up */
3344	if (KMALLOC_MIN_SIZE <= 32) {
3345		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3346		BUG_ON(!kmalloc_caches[1]->name);
3347	}
3348
3349	if (KMALLOC_MIN_SIZE <= 64) {
3350		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3351		BUG_ON(!kmalloc_caches[2]->name);
3352	}
3353
3354	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3355		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3356
3357		BUG_ON(!s);
3358		kmalloc_caches[i]->name = s;
3359	}
3360
3361#ifdef CONFIG_SMP
3362	register_cpu_notifier(&slab_notifier);
3363#endif
3364
3365#ifdef CONFIG_ZONE_DMA
3366	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3367		struct kmem_cache *s = kmalloc_caches[i];
3368
3369		if (s && s->size) {
3370			char *name = kasprintf(GFP_NOWAIT,
3371				 "dma-kmalloc-%d", s->objsize);
3372
3373			BUG_ON(!name);
3374			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3375				s->objsize, SLAB_CACHE_DMA);
3376		}
3377	}
3378#endif
3379	printk(KERN_INFO
3380		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3381		" CPUs=%d, Nodes=%d\n",
3382		caches, cache_line_size(),
3383		slub_min_order, slub_max_order, slub_min_objects,
3384		nr_cpu_ids, nr_node_ids);
3385}
3386
3387void __init kmem_cache_init_late(void)
3388{
3389}
3390
3391/*
3392 * Find a mergeable slab cache
3393 */
3394static int slab_unmergeable(struct kmem_cache *s)
3395{
3396	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3397		return 1;
3398
3399	if (s->ctor)
3400		return 1;
3401
3402	/*
3403	 * We may have set a slab to be unmergeable during bootstrap.
3404	 */
3405	if (s->refcount < 0)
3406		return 1;
3407
3408	return 0;
3409}
3410
3411static struct kmem_cache *find_mergeable(size_t size,
3412		size_t align, unsigned long flags, const char *name,
3413		void (*ctor)(void *))
3414{
3415	struct kmem_cache *s;
3416
3417	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3418		return NULL;
3419
3420	if (ctor)
3421		return NULL;
3422
3423	size = ALIGN(size, sizeof(void *));
3424	align = calculate_alignment(flags, align, size);
3425	size = ALIGN(size, align);
3426	flags = kmem_cache_flags(size, flags, name, NULL);
3427
3428	list_for_each_entry(s, &slab_caches, list) {
3429		if (slab_unmergeable(s))
3430			continue;
3431
3432		if (size > s->size)
3433			continue;
3434
3435		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3436				continue;
3437		/*
3438		 * Check if alignment is compatible.
3439		 * Courtesy of Adrian Drzewiecki
3440		 */
3441		if ((s->size & ~(align - 1)) != s->size)
3442			continue;
3443
3444		if (s->size - size >= sizeof(void *))
3445			continue;
3446
3447		return s;
3448	}
3449	return NULL;
3450}
3451
3452struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3453		size_t align, unsigned long flags, void (*ctor)(void *))
3454{
3455	struct kmem_cache *s;
3456	char *n;
3457
3458	if (WARN_ON(!name))
3459		return NULL;
3460
3461	down_write(&slub_lock);
3462	s = find_mergeable(size, align, flags, name, ctor);
3463	if (s) {
3464		s->refcount++;
3465		/*
3466		 * Adjust the object sizes so that we clear
3467		 * the complete object on kzalloc.
3468		 */
3469		s->objsize = max(s->objsize, (int)size);
3470		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3471
3472		if (sysfs_slab_alias(s, name)) {
3473			s->refcount--;
3474			goto err;
3475		}
3476		up_write(&slub_lock);
3477		return s;
3478	}
3479
3480	n = kstrdup(name, GFP_KERNEL);
3481	if (!n)
3482		goto err;
3483
3484	s = kmalloc(kmem_size, GFP_KERNEL);
3485	if (s) {
3486		if (kmem_cache_open(s, n,
3487				size, align, flags, ctor)) {
3488			list_add(&s->list, &slab_caches);
3489			if (sysfs_slab_add(s)) {
3490				list_del(&s->list);
3491				kfree(n);
3492				kfree(s);
3493				goto err;
3494			}
3495			up_write(&slub_lock);
3496			return s;
3497		}
3498		kfree(n);
3499		kfree(s);
3500	}
3501err:
3502	up_write(&slub_lock);
3503
3504	if (flags & SLAB_PANIC)
3505		panic("Cannot create slabcache %s\n", name);
3506	else
3507		s = NULL;
3508	return s;
3509}
3510EXPORT_SYMBOL(kmem_cache_create);
3511
3512#ifdef CONFIG_SMP
3513/*
3514 * Use the cpu notifier to insure that the cpu slabs are flushed when
3515 * necessary.
3516 */
3517static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3518		unsigned long action, void *hcpu)
3519{
3520	long cpu = (long)hcpu;
3521	struct kmem_cache *s;
3522	unsigned long flags;
3523
3524	switch (action) {
3525	case CPU_UP_CANCELED:
3526	case CPU_UP_CANCELED_FROZEN:
3527	case CPU_DEAD:
3528	case CPU_DEAD_FROZEN:
3529		down_read(&slub_lock);
3530		list_for_each_entry(s, &slab_caches, list) {
3531			local_irq_save(flags);
3532			__flush_cpu_slab(s, cpu);
3533			local_irq_restore(flags);
3534		}
3535		up_read(&slub_lock);
3536		break;
3537	default:
3538		break;
3539	}
3540	return NOTIFY_OK;
3541}
3542
3543static struct notifier_block __cpuinitdata slab_notifier = {
3544	.notifier_call = slab_cpuup_callback
3545};
3546
3547#endif
3548
3549void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3550{
3551	struct kmem_cache *s;
3552	void *ret;
3553
3554	if (unlikely(size > SLUB_MAX_SIZE))
3555		return kmalloc_large(size, gfpflags);
3556
3557	s = get_slab(size, gfpflags);
3558
3559	if (unlikely(ZERO_OR_NULL_PTR(s)))
3560		return s;
3561
3562	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3563
3564	/* Honor the call site pointer we recieved. */
3565	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3566
3567	return ret;
3568}
3569
3570#ifdef CONFIG_NUMA
3571void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3572					int node, unsigned long caller)
3573{
3574	struct kmem_cache *s;
3575	void *ret;
3576
3577	if (unlikely(size > SLUB_MAX_SIZE)) {
3578		ret = kmalloc_large_node(size, gfpflags, node);
3579
3580		trace_kmalloc_node(caller, ret,
3581				   size, PAGE_SIZE << get_order(size),
3582				   gfpflags, node);
3583
3584		return ret;
3585	}
3586
3587	s = get_slab(size, gfpflags);
3588
3589	if (unlikely(ZERO_OR_NULL_PTR(s)))
3590		return s;
3591
3592	ret = slab_alloc(s, gfpflags, node, caller);
3593
3594	/* Honor the call site pointer we recieved. */
3595	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3596
3597	return ret;
3598}
3599#endif
3600
3601#ifdef CONFIG_SYSFS
3602static int count_inuse(struct page *page)
3603{
3604	return page->inuse;
3605}
3606
3607static int count_total(struct page *page)
3608{
3609	return page->objects;
3610}
3611#endif
3612
3613#ifdef CONFIG_SLUB_DEBUG
3614static int validate_slab(struct kmem_cache *s, struct page *page,
3615						unsigned long *map)
3616{
3617	void *p;
3618	void *addr = page_address(page);
3619
3620	if (!check_slab(s, page) ||
3621			!on_freelist(s, page, NULL))
3622		return 0;
3623
3624	/* Now we know that a valid freelist exists */
3625	bitmap_zero(map, page->objects);
3626
3627	get_map(s, page, map);
3628	for_each_object(p, s, addr, page->objects) {
3629		if (test_bit(slab_index(p, s, addr), map))
3630			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3631				return 0;
3632	}
3633
3634	for_each_object(p, s, addr, page->objects)
3635		if (!test_bit(slab_index(p, s, addr), map))
3636			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3637				return 0;
3638	return 1;
3639}
3640
3641static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3642						unsigned long *map)
3643{
3644	if (slab_trylock(page)) {
3645		validate_slab(s, page, map);
3646		slab_unlock(page);
3647	} else
3648		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3649			s->name, page);
3650}
3651
3652static int validate_slab_node(struct kmem_cache *s,
3653		struct kmem_cache_node *n, unsigned long *map)
3654{
3655	unsigned long count = 0;
3656	struct page *page;
3657	unsigned long flags;
3658
3659	spin_lock_irqsave(&n->list_lock, flags);
3660
3661	list_for_each_entry(page, &n->partial, lru) {
3662		validate_slab_slab(s, page, map);
3663		count++;
3664	}
3665	if (count != n->nr_partial)
3666		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3667			"counter=%ld\n", s->name, count, n->nr_partial);
3668
3669	if (!(s->flags & SLAB_STORE_USER))
3670		goto out;
3671
3672	list_for_each_entry(page, &n->full, lru) {
3673		validate_slab_slab(s, page, map);
3674		count++;
3675	}
3676	if (count != atomic_long_read(&n->nr_slabs))
3677		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3678			"counter=%ld\n", s->name, count,
3679			atomic_long_read(&n->nr_slabs));
3680
3681out:
3682	spin_unlock_irqrestore(&n->list_lock, flags);
3683	return count;
3684}
3685
3686static long validate_slab_cache(struct kmem_cache *s)
3687{
3688	int node;
3689	unsigned long count = 0;
3690	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3691				sizeof(unsigned long), GFP_KERNEL);
3692
3693	if (!map)
3694		return -ENOMEM;
3695
3696	flush_all(s);
3697	for_each_node_state(node, N_NORMAL_MEMORY) {
3698		struct kmem_cache_node *n = get_node(s, node);
3699
3700		count += validate_slab_node(s, n, map);
3701	}
3702	kfree(map);
3703	return count;
3704}
3705/*
3706 * Generate lists of code addresses where slabcache objects are allocated
3707 * and freed.
3708 */
3709
3710struct location {
3711	unsigned long count;
3712	unsigned long addr;
3713	long long sum_time;
3714	long min_time;
3715	long max_time;
3716	long min_pid;
3717	long max_pid;
3718	DECLARE_BITMAP(cpus, NR_CPUS);
3719	nodemask_t nodes;
3720};
3721
3722struct loc_track {
3723	unsigned long max;
3724	unsigned long count;
3725	struct location *loc;
3726};
3727
3728static void free_loc_track(struct loc_track *t)
3729{
3730	if (t->max)
3731		free_pages((unsigned long)t->loc,
3732			get_order(sizeof(struct location) * t->max));
3733}
3734
3735static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3736{
3737	struct location *l;
3738	int order;
3739
3740	order = get_order(sizeof(struct location) * max);
3741
3742	l = (void *)__get_free_pages(flags, order);
3743	if (!l)
3744		return 0;
3745
3746	if (t->count) {
3747		memcpy(l, t->loc, sizeof(struct location) * t->count);
3748		free_loc_track(t);
3749	}
3750	t->max = max;
3751	t->loc = l;
3752	return 1;
3753}
3754
3755static int add_location(struct loc_track *t, struct kmem_cache *s,
3756				const struct track *track)
3757{
3758	long start, end, pos;
3759	struct location *l;
3760	unsigned long caddr;
3761	unsigned long age = jiffies - track->when;
3762
3763	start = -1;
3764	end = t->count;
3765
3766	for ( ; ; ) {
3767		pos = start + (end - start + 1) / 2;
3768
3769		/*
3770		 * There is nothing at "end". If we end up there
3771		 * we need to add something to before end.
3772		 */
3773		if (pos == end)
3774			break;
3775
3776		caddr = t->loc[pos].addr;
3777		if (track->addr == caddr) {
3778
3779			l = &t->loc[pos];
3780			l->count++;
3781			if (track->when) {
3782				l->sum_time += age;
3783				if (age < l->min_time)
3784					l->min_time = age;
3785				if (age > l->max_time)
3786					l->max_time = age;
3787
3788				if (track->pid < l->min_pid)
3789					l->min_pid = track->pid;
3790				if (track->pid > l->max_pid)
3791					l->max_pid = track->pid;
3792
3793				cpumask_set_cpu(track->cpu,
3794						to_cpumask(l->cpus));
3795			}
3796			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3797			return 1;
3798		}
3799
3800		if (track->addr < caddr)
3801			end = pos;
3802		else
3803			start = pos;
3804	}
3805
3806	/*
3807	 * Not found. Insert new tracking element.
3808	 */
3809	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3810		return 0;
3811
3812	l = t->loc + pos;
3813	if (pos < t->count)
3814		memmove(l + 1, l,
3815			(t->count - pos) * sizeof(struct location));
3816	t->count++;
3817	l->count = 1;
3818	l->addr = track->addr;
3819	l->sum_time = age;
3820	l->min_time = age;
3821	l->max_time = age;
3822	l->min_pid = track->pid;
3823	l->max_pid = track->pid;
3824	cpumask_clear(to_cpumask(l->cpus));
3825	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3826	nodes_clear(l->nodes);
3827	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3828	return 1;
3829}
3830
3831static void process_slab(struct loc_track *t, struct kmem_cache *s,
3832		struct page *page, enum track_item alloc,
3833		unsigned long *map)
3834{
3835	void *addr = page_address(page);
3836	void *p;
3837
3838	bitmap_zero(map, page->objects);
3839	get_map(s, page, map);
3840
3841	for_each_object(p, s, addr, page->objects)
3842		if (!test_bit(slab_index(p, s, addr), map))
3843			add_location(t, s, get_track(s, p, alloc));
3844}
3845
3846static int list_locations(struct kmem_cache *s, char *buf,
3847					enum track_item alloc)
3848{
3849	int len = 0;
3850	unsigned long i;
3851	struct loc_track t = { 0, 0, NULL };
3852	int node;
3853	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3854				     sizeof(unsigned long), GFP_KERNEL);
3855
3856	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3857				     GFP_TEMPORARY)) {
3858		kfree(map);
3859		return sprintf(buf, "Out of memory\n");
3860	}
3861	/* Push back cpu slabs */
3862	flush_all(s);
3863
3864	for_each_node_state(node, N_NORMAL_MEMORY) {
3865		struct kmem_cache_node *n = get_node(s, node);
3866		unsigned long flags;
3867		struct page *page;
3868
3869		if (!atomic_long_read(&n->nr_slabs))
3870			continue;
3871
3872		spin_lock_irqsave(&n->list_lock, flags);
3873		list_for_each_entry(page, &n->partial, lru)
3874			process_slab(&t, s, page, alloc, map);
3875		list_for_each_entry(page, &n->full, lru)
3876			process_slab(&t, s, page, alloc, map);
3877		spin_unlock_irqrestore(&n->list_lock, flags);
3878	}
3879
3880	for (i = 0; i < t.count; i++) {
3881		struct location *l = &t.loc[i];
3882
3883		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3884			break;
3885		len += sprintf(buf + len, "%7ld ", l->count);
3886
3887		if (l->addr)
3888			len += sprintf(buf + len, "%pS", (void *)l->addr);
3889		else
3890			len += sprintf(buf + len, "<not-available>");
3891
3892		if (l->sum_time != l->min_time) {
3893			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3894				l->min_time,
3895				(long)div_u64(l->sum_time, l->count),
3896				l->max_time);
3897		} else
3898			len += sprintf(buf + len, " age=%ld",
3899				l->min_time);
3900
3901		if (l->min_pid != l->max_pid)
3902			len += sprintf(buf + len, " pid=%ld-%ld",
3903				l->min_pid, l->max_pid);
3904		else
3905			len += sprintf(buf + len, " pid=%ld",
3906				l->min_pid);
3907
3908		if (num_online_cpus() > 1 &&
3909				!cpumask_empty(to_cpumask(l->cpus)) &&
3910				len < PAGE_SIZE - 60) {
3911			len += sprintf(buf + len, " cpus=");
3912			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3913						 to_cpumask(l->cpus));
3914		}
3915
3916		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3917				len < PAGE_SIZE - 60) {
3918			len += sprintf(buf + len, " nodes=");
3919			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3920					l->nodes);
3921		}
3922
3923		len += sprintf(buf + len, "\n");
3924	}
3925
3926	free_loc_track(&t);
3927	kfree(map);
3928	if (!t.count)
3929		len += sprintf(buf, "No data\n");
3930	return len;
3931}
3932#endif
3933
3934#ifdef SLUB_RESILIENCY_TEST
3935static void resiliency_test(void)
3936{
3937	u8 *p;
3938
3939	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3940
3941	printk(KERN_ERR "SLUB resiliency testing\n");
3942	printk(KERN_ERR "-----------------------\n");
3943	printk(KERN_ERR "A. Corruption after allocation\n");
3944
3945	p = kzalloc(16, GFP_KERNEL);
3946	p[16] = 0x12;
3947	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3948			" 0x12->0x%p\n\n", p + 16);
3949
3950	validate_slab_cache(kmalloc_caches[4]);
3951
3952	/* Hmmm... The next two are dangerous */
3953	p = kzalloc(32, GFP_KERNEL);
3954	p[32 + sizeof(void *)] = 0x34;
3955	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3956			" 0x34 -> -0x%p\n", p);
3957	printk(KERN_ERR
3958		"If allocated object is overwritten then not detectable\n\n");
3959
3960	validate_slab_cache(kmalloc_caches[5]);
3961	p = kzalloc(64, GFP_KERNEL);
3962	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3963	*p = 0x56;
3964	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3965									p);
3966	printk(KERN_ERR
3967		"If allocated object is overwritten then not detectable\n\n");
3968	validate_slab_cache(kmalloc_caches[6]);
3969
3970	printk(KERN_ERR "\nB. Corruption after free\n");
3971	p = kzalloc(128, GFP_KERNEL);
3972	kfree(p);
3973	*p = 0x78;
3974	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3975	validate_slab_cache(kmalloc_caches[7]);
3976
3977	p = kzalloc(256, GFP_KERNEL);
3978	kfree(p);
3979	p[50] = 0x9a;
3980	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3981			p);
3982	validate_slab_cache(kmalloc_caches[8]);
3983
3984	p = kzalloc(512, GFP_KERNEL);
3985	kfree(p);
3986	p[512] = 0xab;
3987	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3988	validate_slab_cache(kmalloc_caches[9]);
3989}
3990#else
3991#ifdef CONFIG_SYSFS
3992static void resiliency_test(void) {};
3993#endif
3994#endif
3995
3996#ifdef CONFIG_SYSFS
3997enum slab_stat_type {
3998	SL_ALL,			/* All slabs */
3999	SL_PARTIAL,		/* Only partially allocated slabs */
4000	SL_CPU,			/* Only slabs used for cpu caches */
4001	SL_OBJECTS,		/* Determine allocated objects not slabs */
4002	SL_TOTAL		/* Determine object capacity not slabs */
4003};
4004
4005#define SO_ALL		(1 << SL_ALL)
4006#define SO_PARTIAL	(1 << SL_PARTIAL)
4007#define SO_CPU		(1 << SL_CPU)
4008#define SO_OBJECTS	(1 << SL_OBJECTS)
4009#define SO_TOTAL	(1 << SL_TOTAL)
4010
4011static ssize_t show_slab_objects(struct kmem_cache *s,
4012			    char *buf, unsigned long flags)
4013{
4014	unsigned long total = 0;
4015	int node;
4016	int x;
4017	unsigned long *nodes;
4018	unsigned long *per_cpu;
4019
4020	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4021	if (!nodes)
4022		return -ENOMEM;
4023	per_cpu = nodes + nr_node_ids;
4024
4025	if (flags & SO_CPU) {
4026		int cpu;
4027
4028		for_each_possible_cpu(cpu) {
4029			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4030
4031			if (!c || c->node < 0)
4032				continue;
4033
4034			if (c->page) {
4035					if (flags & SO_TOTAL)
4036						x = c->page->objects;
4037				else if (flags & SO_OBJECTS)
4038					x = c->page->inuse;
4039				else
4040					x = 1;
4041
4042				total += x;
4043				nodes[c->node] += x;
4044			}
4045			per_cpu[c->node]++;
4046		}
4047	}
4048
4049	lock_memory_hotplug();
4050#ifdef CONFIG_SLUB_DEBUG
4051	if (flags & SO_ALL) {
4052		for_each_node_state(node, N_NORMAL_MEMORY) {
4053			struct kmem_cache_node *n = get_node(s, node);
4054
4055		if (flags & SO_TOTAL)
4056			x = atomic_long_read(&n->total_objects);
4057		else if (flags & SO_OBJECTS)
4058			x = atomic_long_read(&n->total_objects) -
4059				count_partial(n, count_free);
4060
4061			else
4062				x = atomic_long_read(&n->nr_slabs);
4063			total += x;
4064			nodes[node] += x;
4065		}
4066
4067	} else
4068#endif
4069	if (flags & SO_PARTIAL) {
4070		for_each_node_state(node, N_NORMAL_MEMORY) {
4071			struct kmem_cache_node *n = get_node(s, node);
4072
4073			if (flags & SO_TOTAL)
4074				x = count_partial(n, count_total);
4075			else if (flags & SO_OBJECTS)
4076				x = count_partial(n, count_inuse);
4077			else
4078				x = n->nr_partial;
4079			total += x;
4080			nodes[node] += x;
4081		}
4082	}
4083	x = sprintf(buf, "%lu", total);
4084#ifdef CONFIG_NUMA
4085	for_each_node_state(node, N_NORMAL_MEMORY)
4086		if (nodes[node])
4087			x += sprintf(buf + x, " N%d=%lu",
4088					node, nodes[node]);
4089#endif
4090	unlock_memory_hotplug();
4091	kfree(nodes);
4092	return x + sprintf(buf + x, "\n");
4093}
4094
4095#ifdef CONFIG_SLUB_DEBUG
4096static int any_slab_objects(struct kmem_cache *s)
4097{
4098	int node;
4099
4100	for_each_online_node(node) {
4101		struct kmem_cache_node *n = get_node(s, node);
4102
4103		if (!n)
4104			continue;
4105
4106		if (atomic_long_read(&n->total_objects))
4107			return 1;
4108	}
4109	return 0;
4110}
4111#endif
4112
4113#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4114#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4115
4116struct slab_attribute {
4117	struct attribute attr;
4118	ssize_t (*show)(struct kmem_cache *s, char *buf);
4119	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4120};
4121
4122#define SLAB_ATTR_RO(_name) \
4123	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4124
4125#define SLAB_ATTR(_name) \
4126	static struct slab_attribute _name##_attr =  \
4127	__ATTR(_name, 0644, _name##_show, _name##_store)
4128
4129static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4130{
4131	return sprintf(buf, "%d\n", s->size);
4132}
4133SLAB_ATTR_RO(slab_size);
4134
4135static ssize_t align_show(struct kmem_cache *s, char *buf)
4136{
4137	return sprintf(buf, "%d\n", s->align);
4138}
4139SLAB_ATTR_RO(align);
4140
4141static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4142{
4143	return sprintf(buf, "%d\n", s->objsize);
4144}
4145SLAB_ATTR_RO(object_size);
4146
4147static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4148{
4149	return sprintf(buf, "%d\n", oo_objects(s->oo));
4150}
4151SLAB_ATTR_RO(objs_per_slab);
4152
4153static ssize_t order_store(struct kmem_cache *s,
4154				const char *buf, size_t length)
4155{
4156	unsigned long order;
4157	int err;
4158
4159	err = strict_strtoul(buf, 10, &order);
4160	if (err)
4161		return err;
4162
4163	if (order > slub_max_order || order < slub_min_order)
4164		return -EINVAL;
4165
4166	calculate_sizes(s, order);
4167	return length;
4168}
4169
4170static ssize_t order_show(struct kmem_cache *s, char *buf)
4171{
4172	return sprintf(buf, "%d\n", oo_order(s->oo));
4173}
4174SLAB_ATTR(order);
4175
4176static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4177{
4178	return sprintf(buf, "%lu\n", s->min_partial);
4179}
4180
4181static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4182				 size_t length)
4183{
4184	unsigned long min;
4185	int err;
4186
4187	err = strict_strtoul(buf, 10, &min);
4188	if (err)
4189		return err;
4190
4191	set_min_partial(s, min);
4192	return length;
4193}
4194SLAB_ATTR(min_partial);
4195
4196static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4197{
4198	if (!s->ctor)
4199		return 0;
4200	return sprintf(buf, "%pS\n", s->ctor);
4201}
4202SLAB_ATTR_RO(ctor);
4203
4204static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4205{
4206	return sprintf(buf, "%d\n", s->refcount - 1);
4207}
4208SLAB_ATTR_RO(aliases);
4209
4210static ssize_t partial_show(struct kmem_cache *s, char *buf)
4211{
4212	return show_slab_objects(s, buf, SO_PARTIAL);
4213}
4214SLAB_ATTR_RO(partial);
4215
4216static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4217{
4218	return show_slab_objects(s, buf, SO_CPU);
4219}
4220SLAB_ATTR_RO(cpu_slabs);
4221
4222static ssize_t objects_show(struct kmem_cache *s, char *buf)
4223{
4224	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4225}
4226SLAB_ATTR_RO(objects);
4227
4228static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4229{
4230	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4231}
4232SLAB_ATTR_RO(objects_partial);
4233
4234static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4235{
4236	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4237}
4238
4239static ssize_t reclaim_account_store(struct kmem_cache *s,
4240				const char *buf, size_t length)
4241{
4242	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4243	if (buf[0] == '1')
4244		s->flags |= SLAB_RECLAIM_ACCOUNT;
4245	return length;
4246}
4247SLAB_ATTR(reclaim_account);
4248
4249static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4250{
4251	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4252}
4253SLAB_ATTR_RO(hwcache_align);
4254
4255#ifdef CONFIG_ZONE_DMA
4256static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4257{
4258	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4259}
4260SLAB_ATTR_RO(cache_dma);
4261#endif
4262
4263static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4264{
4265	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4266}
4267SLAB_ATTR_RO(destroy_by_rcu);
4268
4269static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4270{
4271	return sprintf(buf, "%d\n", s->reserved);
4272}
4273SLAB_ATTR_RO(reserved);
4274
4275#ifdef CONFIG_SLUB_DEBUG
4276static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4277{
4278	return show_slab_objects(s, buf, SO_ALL);
4279}
4280SLAB_ATTR_RO(slabs);
4281
4282static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4283{
4284	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4285}
4286SLAB_ATTR_RO(total_objects);
4287
4288static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4289{
4290	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4291}
4292
4293static ssize_t sanity_checks_store(struct kmem_cache *s,
4294				const char *buf, size_t length)
4295{
4296	s->flags &= ~SLAB_DEBUG_FREE;
4297	if (buf[0] == '1')
4298		s->flags |= SLAB_DEBUG_FREE;
4299	return length;
4300}
4301SLAB_ATTR(sanity_checks);
4302
4303static ssize_t trace_show(struct kmem_cache *s, char *buf)
4304{
4305	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4306}
4307
4308static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4309							size_t length)
4310{
4311	s->flags &= ~SLAB_TRACE;
4312	if (buf[0] == '1')
4313		s->flags |= SLAB_TRACE;
4314	return length;
4315}
4316SLAB_ATTR(trace);
4317
4318static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4319{
4320	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4321}
4322
4323static ssize_t red_zone_store(struct kmem_cache *s,
4324				const char *buf, size_t length)
4325{
4326	if (any_slab_objects(s))
4327		return -EBUSY;
4328
4329	s->flags &= ~SLAB_RED_ZONE;
4330	if (buf[0] == '1')
4331		s->flags |= SLAB_RED_ZONE;
4332	calculate_sizes(s, -1);
4333	return length;
4334}
4335SLAB_ATTR(red_zone);
4336
4337static ssize_t poison_show(struct kmem_cache *s, char *buf)
4338{
4339	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4340}
4341
4342static ssize_t poison_store(struct kmem_cache *s,
4343				const char *buf, size_t length)
4344{
4345	if (any_slab_objects(s))
4346		return -EBUSY;
4347
4348	s->flags &= ~SLAB_POISON;
4349	if (buf[0] == '1')
4350		s->flags |= SLAB_POISON;
4351	calculate_sizes(s, -1);
4352	return length;
4353}
4354SLAB_ATTR(poison);
4355
4356static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4357{
4358	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4359}
4360
4361static ssize_t store_user_store(struct kmem_cache *s,
4362				const char *buf, size_t length)
4363{
4364	if (any_slab_objects(s))
4365		return -EBUSY;
4366
4367	s->flags &= ~SLAB_STORE_USER;
4368	if (buf[0] == '1')
4369		s->flags |= SLAB_STORE_USER;
4370	calculate_sizes(s, -1);
4371	return length;
4372}
4373SLAB_ATTR(store_user);
4374
4375static ssize_t validate_show(struct kmem_cache *s, char *buf)
4376{
4377	return 0;
4378}
4379
4380static ssize_t validate_store(struct kmem_cache *s,
4381			const char *buf, size_t length)
4382{
4383	int ret = -EINVAL;
4384
4385	if (buf[0] == '1') {
4386		ret = validate_slab_cache(s);
4387		if (ret >= 0)
4388			ret = length;
4389	}
4390	return ret;
4391}
4392SLAB_ATTR(validate);
4393
4394static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4395{
4396	if (!(s->flags & SLAB_STORE_USER))
4397		return -ENOSYS;
4398	return list_locations(s, buf, TRACK_ALLOC);
4399}
4400SLAB_ATTR_RO(alloc_calls);
4401
4402static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4403{
4404	if (!(s->flags & SLAB_STORE_USER))
4405		return -ENOSYS;
4406	return list_locations(s, buf, TRACK_FREE);
4407}
4408SLAB_ATTR_RO(free_calls);
4409#endif /* CONFIG_SLUB_DEBUG */
4410
4411#ifdef CONFIG_FAILSLAB
4412static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4413{
4414	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4415}
4416
4417static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4418							size_t length)
4419{
4420	s->flags &= ~SLAB_FAILSLAB;
4421	if (buf[0] == '1')
4422		s->flags |= SLAB_FAILSLAB;
4423	return length;
4424}
4425SLAB_ATTR(failslab);
4426#endif
4427
4428static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4429{
4430	return 0;
4431}
4432
4433static ssize_t shrink_store(struct kmem_cache *s,
4434			const char *buf, size_t length)
4435{
4436	if (buf[0] == '1') {
4437		int rc = kmem_cache_shrink(s);
4438
4439		if (rc)
4440			return rc;
4441	} else
4442		return -EINVAL;
4443	return length;
4444}
4445SLAB_ATTR(shrink);
4446
4447#ifdef CONFIG_NUMA
4448static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4449{
4450	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4451}
4452
4453static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4454				const char *buf, size_t length)
4455{
4456	unsigned long ratio;
4457	int err;
4458
4459	err = strict_strtoul(buf, 10, &ratio);
4460	if (err)
4461		return err;
4462
4463	if (ratio <= 100)
4464		s->remote_node_defrag_ratio = ratio * 10;
4465
4466	return length;
4467}
4468SLAB_ATTR(remote_node_defrag_ratio);
4469#endif
4470
4471#ifdef CONFIG_SLUB_STATS
4472static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4473{
4474	unsigned long sum  = 0;
4475	int cpu;
4476	int len;
4477	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4478
4479	if (!data)
4480		return -ENOMEM;
4481
4482	for_each_online_cpu(cpu) {
4483		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4484
4485		data[cpu] = x;
4486		sum += x;
4487	}
4488
4489	len = sprintf(buf, "%lu", sum);
4490
4491#ifdef CONFIG_SMP
4492	for_each_online_cpu(cpu) {
4493		if (data[cpu] && len < PAGE_SIZE - 20)
4494			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4495	}
4496#endif
4497	kfree(data);
4498	return len + sprintf(buf + len, "\n");
4499}
4500
4501static void clear_stat(struct kmem_cache *s, enum stat_item si)
4502{
4503	int cpu;
4504
4505	for_each_online_cpu(cpu)
4506		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4507}
4508
4509#define STAT_ATTR(si, text) 					\
4510static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4511{								\
4512	return show_stat(s, buf, si);				\
4513}								\
4514static ssize_t text##_store(struct kmem_cache *s,		\
4515				const char *buf, size_t length)	\
4516{								\
4517	if (buf[0] != '0')					\
4518		return -EINVAL;					\
4519	clear_stat(s, si);					\
4520	return length;						\
4521}								\
4522SLAB_ATTR(text);						\
4523
4524STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4525STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4526STAT_ATTR(FREE_FASTPATH, free_fastpath);
4527STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4528STAT_ATTR(FREE_FROZEN, free_frozen);
4529STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4530STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4531STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4532STAT_ATTR(ALLOC_SLAB, alloc_slab);
4533STAT_ATTR(ALLOC_REFILL, alloc_refill);
4534STAT_ATTR(FREE_SLAB, free_slab);
4535STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4536STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4537STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4538STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4539STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4540STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4541STAT_ATTR(ORDER_FALLBACK, order_fallback);
4542#endif
4543
4544static struct attribute *slab_attrs[] = {
4545	&slab_size_attr.attr,
4546	&object_size_attr.attr,
4547	&objs_per_slab_attr.attr,
4548	&order_attr.attr,
4549	&min_partial_attr.attr,
4550	&objects_attr.attr,
4551	&objects_partial_attr.attr,
4552	&partial_attr.attr,
4553	&cpu_slabs_attr.attr,
4554	&ctor_attr.attr,
4555	&aliases_attr.attr,
4556	&align_attr.attr,
4557	&hwcache_align_attr.attr,
4558	&reclaim_account_attr.attr,
4559	&destroy_by_rcu_attr.attr,
4560	&shrink_attr.attr,
4561	&reserved_attr.attr,
4562#ifdef CONFIG_SLUB_DEBUG
4563	&total_objects_attr.attr,
4564	&slabs_attr.attr,
4565	&sanity_checks_attr.attr,
4566	&trace_attr.attr,
4567	&red_zone_attr.attr,
4568	&poison_attr.attr,
4569	&store_user_attr.attr,
4570	&validate_attr.attr,
4571	&alloc_calls_attr.attr,
4572	&free_calls_attr.attr,
4573#endif
4574#ifdef CONFIG_ZONE_DMA
4575	&cache_dma_attr.attr,
4576#endif
4577#ifdef CONFIG_NUMA
4578	&remote_node_defrag_ratio_attr.attr,
4579#endif
4580#ifdef CONFIG_SLUB_STATS
4581	&alloc_fastpath_attr.attr,
4582	&alloc_slowpath_attr.attr,
4583	&free_fastpath_attr.attr,
4584	&free_slowpath_attr.attr,
4585	&free_frozen_attr.attr,
4586	&free_add_partial_attr.attr,
4587	&free_remove_partial_attr.attr,
4588	&alloc_from_partial_attr.attr,
4589	&alloc_slab_attr.attr,
4590	&alloc_refill_attr.attr,
4591	&free_slab_attr.attr,
4592	&cpuslab_flush_attr.attr,
4593	&deactivate_full_attr.attr,
4594	&deactivate_empty_attr.attr,
4595	&deactivate_to_head_attr.attr,
4596	&deactivate_to_tail_attr.attr,
4597	&deactivate_remote_frees_attr.attr,
4598	&order_fallback_attr.attr,
4599#endif
4600#ifdef CONFIG_FAILSLAB
4601	&failslab_attr.attr,
4602#endif
4603
4604	NULL
4605};
4606
4607static struct attribute_group slab_attr_group = {
4608	.attrs = slab_attrs,
4609};
4610
4611static ssize_t slab_attr_show(struct kobject *kobj,
4612				struct attribute *attr,
4613				char *buf)
4614{
4615	struct slab_attribute *attribute;
4616	struct kmem_cache *s;
4617	int err;
4618
4619	attribute = to_slab_attr(attr);
4620	s = to_slab(kobj);
4621
4622	if (!attribute->show)
4623		return -EIO;
4624
4625	err = attribute->show(s, buf);
4626
4627	return err;
4628}
4629
4630static ssize_t slab_attr_store(struct kobject *kobj,
4631				struct attribute *attr,
4632				const char *buf, size_t len)
4633{
4634	struct slab_attribute *attribute;
4635	struct kmem_cache *s;
4636	int err;
4637
4638	attribute = to_slab_attr(attr);
4639	s = to_slab(kobj);
4640
4641	if (!attribute->store)
4642		return -EIO;
4643
4644	err = attribute->store(s, buf, len);
4645
4646	return err;
4647}
4648
4649static void kmem_cache_release(struct kobject *kobj)
4650{
4651	struct kmem_cache *s = to_slab(kobj);
4652
4653	kfree(s->name);
4654	kfree(s);
4655}
4656
4657static const struct sysfs_ops slab_sysfs_ops = {
4658	.show = slab_attr_show,
4659	.store = slab_attr_store,
4660};
4661
4662static struct kobj_type slab_ktype = {
4663	.sysfs_ops = &slab_sysfs_ops,
4664	.release = kmem_cache_release
4665};
4666
4667static int uevent_filter(struct kset *kset, struct kobject *kobj)
4668{
4669	struct kobj_type *ktype = get_ktype(kobj);
4670
4671	if (ktype == &slab_ktype)
4672		return 1;
4673	return 0;
4674}
4675
4676static const struct kset_uevent_ops slab_uevent_ops = {
4677	.filter = uevent_filter,
4678};
4679
4680static struct kset *slab_kset;
4681
4682#define ID_STR_LENGTH 64
4683
4684/* Create a unique string id for a slab cache:
4685 *
4686 * Format	:[flags-]size
4687 */
4688static char *create_unique_id(struct kmem_cache *s)
4689{
4690	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4691	char *p = name;
4692
4693	BUG_ON(!name);
4694
4695	*p++ = ':';
4696	/*
4697	 * First flags affecting slabcache operations. We will only
4698	 * get here for aliasable slabs so we do not need to support
4699	 * too many flags. The flags here must cover all flags that
4700	 * are matched during merging to guarantee that the id is
4701	 * unique.
4702	 */
4703	if (s->flags & SLAB_CACHE_DMA)
4704		*p++ = 'd';
4705	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4706		*p++ = 'a';
4707	if (s->flags & SLAB_DEBUG_FREE)
4708		*p++ = 'F';
4709	if (!(s->flags & SLAB_NOTRACK))
4710		*p++ = 't';
4711	if (p != name + 1)
4712		*p++ = '-';
4713	p += sprintf(p, "%07d", s->size);
4714	BUG_ON(p > name + ID_STR_LENGTH - 1);
4715	return name;
4716}
4717
4718static int sysfs_slab_add(struct kmem_cache *s)
4719{
4720	int err;
4721	const char *name;
4722	int unmergeable;
4723
4724	if (slab_state < SYSFS)
4725		/* Defer until later */
4726		return 0;
4727
4728	unmergeable = slab_unmergeable(s);
4729	if (unmergeable) {
4730		/*
4731		 * Slabcache can never be merged so we can use the name proper.
4732		 * This is typically the case for debug situations. In that
4733		 * case we can catch duplicate names easily.
4734		 */
4735		sysfs_remove_link(&slab_kset->kobj, s->name);
4736		name = s->name;
4737	} else {
4738		/*
4739		 * Create a unique name for the slab as a target
4740		 * for the symlinks.
4741		 */
4742		name = create_unique_id(s);
4743	}
4744
4745	s->kobj.kset = slab_kset;
4746	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4747	if (err) {
4748		kobject_put(&s->kobj);
4749		return err;
4750	}
4751
4752	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4753	if (err) {
4754		kobject_del(&s->kobj);
4755		kobject_put(&s->kobj);
4756		return err;
4757	}
4758	kobject_uevent(&s->kobj, KOBJ_ADD);
4759	if (!unmergeable) {
4760		/* Setup first alias */
4761		sysfs_slab_alias(s, s->name);
4762		kfree(name);
4763	}
4764	return 0;
4765}
4766
4767static void sysfs_slab_remove(struct kmem_cache *s)
4768{
4769	if (slab_state < SYSFS)
4770		/*
4771		 * Sysfs has not been setup yet so no need to remove the
4772		 * cache from sysfs.
4773		 */
4774		return;
4775
4776	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4777	kobject_del(&s->kobj);
4778	kobject_put(&s->kobj);
4779}
4780
4781/*
4782 * Need to buffer aliases during bootup until sysfs becomes
4783 * available lest we lose that information.
4784 */
4785struct saved_alias {
4786	struct kmem_cache *s;
4787	const char *name;
4788	struct saved_alias *next;
4789};
4790
4791static struct saved_alias *alias_list;
4792
4793static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4794{
4795	struct saved_alias *al;
4796
4797	if (slab_state == SYSFS) {
4798		/*
4799		 * If we have a leftover link then remove it.
4800		 */
4801		sysfs_remove_link(&slab_kset->kobj, name);
4802		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4803	}
4804
4805	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4806	if (!al)
4807		return -ENOMEM;
4808
4809	al->s = s;
4810	al->name = name;
4811	al->next = alias_list;
4812	alias_list = al;
4813	return 0;
4814}
4815
4816static int __init slab_sysfs_init(void)
4817{
4818	struct kmem_cache *s;
4819	int err;
4820
4821	down_write(&slub_lock);
4822
4823	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4824	if (!slab_kset) {
4825		up_write(&slub_lock);
4826		printk(KERN_ERR "Cannot register slab subsystem.\n");
4827		return -ENOSYS;
4828	}
4829
4830	slab_state = SYSFS;
4831
4832	list_for_each_entry(s, &slab_caches, list) {
4833		err = sysfs_slab_add(s);
4834		if (err)
4835			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4836						" to sysfs\n", s->name);
4837	}
4838
4839	while (alias_list) {
4840		struct saved_alias *al = alias_list;
4841
4842		alias_list = alias_list->next;
4843		err = sysfs_slab_alias(al->s, al->name);
4844		if (err)
4845			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4846					" %s to sysfs\n", s->name);
4847		kfree(al);
4848	}
4849
4850	up_write(&slub_lock);
4851	resiliency_test();
4852	return 0;
4853}
4854
4855__initcall(slab_sysfs_init);
4856#endif /* CONFIG_SYSFS */
4857
4858/*
4859 * The /proc/slabinfo ABI
4860 */
4861#ifdef CONFIG_SLABINFO
4862static void print_slabinfo_header(struct seq_file *m)
4863{
4864	seq_puts(m, "slabinfo - version: 2.1\n");
4865	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4866		 "<objperslab> <pagesperslab>");
4867	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4868	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4869	seq_putc(m, '\n');
4870}
4871
4872static void *s_start(struct seq_file *m, loff_t *pos)
4873{
4874	loff_t n = *pos;
4875
4876	down_read(&slub_lock);
4877	if (!n)
4878		print_slabinfo_header(m);
4879
4880	return seq_list_start(&slab_caches, *pos);
4881}
4882
4883static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4884{
4885	return seq_list_next(p, &slab_caches, pos);
4886}
4887
4888static void s_stop(struct seq_file *m, void *p)
4889{
4890	up_read(&slub_lock);
4891}
4892
4893static int s_show(struct seq_file *m, void *p)
4894{
4895	unsigned long nr_partials = 0;
4896	unsigned long nr_slabs = 0;
4897	unsigned long nr_inuse = 0;
4898	unsigned long nr_objs = 0;
4899	unsigned long nr_free = 0;
4900	struct kmem_cache *s;
4901	int node;
4902
4903	s = list_entry(p, struct kmem_cache, list);
4904
4905	for_each_online_node(node) {
4906		struct kmem_cache_node *n = get_node(s, node);
4907
4908		if (!n)
4909			continue;
4910
4911		nr_partials += n->nr_partial;
4912		nr_slabs += atomic_long_read(&n->nr_slabs);
4913		nr_objs += atomic_long_read(&n->total_objects);
4914		nr_free += count_partial(n, count_free);
4915	}
4916
4917	nr_inuse = nr_objs - nr_free;
4918
4919	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4920		   nr_objs, s->size, oo_objects(s->oo),
4921		   (1 << oo_order(s->oo)));
4922	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4923	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4924		   0UL);
4925	seq_putc(m, '\n');
4926	return 0;
4927}
4928
4929static const struct seq_operations slabinfo_op = {
4930	.start = s_start,
4931	.next = s_next,
4932	.stop = s_stop,
4933	.show = s_show,
4934};
4935
4936static int slabinfo_open(struct inode *inode, struct file *file)
4937{
4938	return seq_open(file, &slabinfo_op);
4939}
4940
4941static const struct file_operations proc_slabinfo_operations = {
4942	.open		= slabinfo_open,
4943	.read		= seq_read,
4944	.llseek		= seq_lseek,
4945	.release	= seq_release,
4946};
4947
4948static int __init slab_proc_init(void)
4949{
4950	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4951	return 0;
4952}
4953module_init(slab_proc_init);
4954#endif /* CONFIG_SLABINFO */
4955