slub.c revision dfb4f09609827301740ef0a11b37530d190f1681
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 *   1. slab_lock(page)
27 *   2. slab->list_lock
28 *
29 *   The slab_lock protects operations on the object of a particular
30 *   slab and its metadata in the page struct. If the slab lock
31 *   has been taken then no allocations nor frees can be performed
32 *   on the objects in the slab nor can the slab be added or removed
33 *   from the partial or full lists since this would mean modifying
34 *   the page_struct of the slab.
35 *
36 *   The list_lock protects the partial and full list on each node and
37 *   the partial slab counter. If taken then no new slabs may be added or
38 *   removed from the lists nor make the number of partial slabs be modified.
39 *   (Note that the total number of slabs is an atomic value that may be
40 *   modified without taking the list lock).
41 *
42 *   The list_lock is a centralized lock and thus we avoid taking it as
43 *   much as possible. As long as SLUB does not have to handle partial
44 *   slabs, operations can continue without any centralized lock. F.e.
45 *   allocating a long series of objects that fill up slabs does not require
46 *   the list lock.
47 *
48 *   The lock order is sometimes inverted when we are trying to get a slab
49 *   off a list. We take the list_lock and then look for a page on the list
50 *   to use. While we do that objects in the slabs may be freed. We can
51 *   only operate on the slab if we have also taken the slab_lock. So we use
52 *   a slab_trylock() on the slab. If trylock was successful then no frees
53 *   can occur anymore and we can use the slab for allocations etc. If the
54 *   slab_trylock() does not succeed then frees are in progress in the slab and
55 *   we must stay away from it for a while since we may cause a bouncing
56 *   cacheline if we try to acquire the lock. So go onto the next slab.
57 *   If all pages are busy then we may allocate a new slab instead of reusing
58 *   a partial slab. A new slab has noone operating on it and thus there is
59 *   no danger of cacheline contention.
60 *
61 *   Interrupts are disabled during allocation and deallocation in order to
62 *   make the slab allocator safe to use in the context of an irq. In addition
63 *   interrupts are disabled to ensure that the processor does not change
64 *   while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive 		The slab is frozen and exempt from list processing.
82 * 			This means that the slab is dedicated to a purpose
83 * 			such as satisfying allocations for a specific
84 * 			processor. Objects may be freed in the slab while
85 * 			it is frozen but slab_free will then skip the usual
86 * 			list operations. It is up to the processor holding
87 * 			the slab to integrate the slab into the slab lists
88 * 			when the slab is no longer needed.
89 *
90 * 			One use of this flag is to mark slabs that are
91 * 			used for allocations. Then such a slab becomes a cpu
92 * 			slab. The cpu slab may be equipped with an additional
93 * 			freelist that allows lockless access to
94 * 			free objects in addition to the regular freelist
95 * 			that requires the slab lock.
96 *
97 * PageError		Slab requires special handling due to debug
98 * 			options set. This moves	slab handling out of
99 * 			the fast path and disables lockless freelists.
100 */
101
102#define FROZEN (1 << PG_active)
103
104#ifdef CONFIG_SLUB_DEBUG
105#define SLABDEBUG (1 << PG_error)
106#else
107#define SLABDEBUG 0
108#endif
109
110static inline int SlabFrozen(struct page *page)
111{
112	return page->flags & FROZEN;
113}
114
115static inline void SetSlabFrozen(struct page *page)
116{
117	page->flags |= FROZEN;
118}
119
120static inline void ClearSlabFrozen(struct page *page)
121{
122	page->flags &= ~FROZEN;
123}
124
125static inline int SlabDebug(struct page *page)
126{
127	return page->flags & SLABDEBUG;
128}
129
130static inline void SetSlabDebug(struct page *page)
131{
132	page->flags |= SLABDEBUG;
133}
134
135static inline void ClearSlabDebug(struct page *page)
136{
137	page->flags &= ~SLABDEBUG;
138}
139
140/*
141 * Issues still to be resolved:
142 *
143 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
144 *
145 * - Variable sizing of the per node arrays
146 */
147
148/* Enable to test recovery from slab corruption on boot */
149#undef SLUB_RESILIENCY_TEST
150
151#if PAGE_SHIFT <= 12
152
153/*
154 * Small page size. Make sure that we do not fragment memory
155 */
156#define DEFAULT_MAX_ORDER 1
157#define DEFAULT_MIN_OBJECTS 4
158
159#else
160
161/*
162 * Large page machines are customarily able to handle larger
163 * page orders.
164 */
165#define DEFAULT_MAX_ORDER 2
166#define DEFAULT_MIN_OBJECTS 8
167
168#endif
169
170/*
171 * Mininum number of partial slabs. These will be left on the partial
172 * lists even if they are empty. kmem_cache_shrink may reclaim them.
173 */
174#define MIN_PARTIAL 2
175
176/*
177 * Maximum number of desirable partial slabs.
178 * The existence of more partial slabs makes kmem_cache_shrink
179 * sort the partial list by the number of objects in the.
180 */
181#define MAX_PARTIAL 10
182
183#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
184				SLAB_POISON | SLAB_STORE_USER)
185
186/*
187 * Set of flags that will prevent slab merging
188 */
189#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
190		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
191
192#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
193		SLAB_CACHE_DMA)
194
195#ifndef ARCH_KMALLOC_MINALIGN
196#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
197#endif
198
199#ifndef ARCH_SLAB_MINALIGN
200#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
201#endif
202
203/*
204 * The page->inuse field is 16 bit thus we have this limitation
205 */
206#define MAX_OBJECTS_PER_SLAB 65535
207
208/* Internal SLUB flags */
209#define __OBJECT_POISON		0x80000000 /* Poison object */
210#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
211
212/* Not all arches define cache_line_size */
213#ifndef cache_line_size
214#define cache_line_size()	L1_CACHE_BYTES
215#endif
216
217static int kmem_size = sizeof(struct kmem_cache);
218
219#ifdef CONFIG_SMP
220static struct notifier_block slab_notifier;
221#endif
222
223static enum {
224	DOWN,		/* No slab functionality available */
225	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
226	UP,		/* Everything works but does not show up in sysfs */
227	SYSFS		/* Sysfs up */
228} slab_state = DOWN;
229
230/* A list of all slab caches on the system */
231static DECLARE_RWSEM(slub_lock);
232static LIST_HEAD(slab_caches);
233
234/*
235 * Tracking user of a slab.
236 */
237struct track {
238	void *addr;		/* Called from address */
239	int cpu;		/* Was running on cpu */
240	int pid;		/* Pid context */
241	unsigned long when;	/* When did the operation occur */
242};
243
244enum track_item { TRACK_ALLOC, TRACK_FREE };
245
246#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
247static int sysfs_slab_add(struct kmem_cache *);
248static int sysfs_slab_alias(struct kmem_cache *, const char *);
249static void sysfs_slab_remove(struct kmem_cache *);
250#else
251static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
252static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
253							{ return 0; }
254static inline void sysfs_slab_remove(struct kmem_cache *s) {}
255#endif
256
257/********************************************************************
258 * 			Core slab cache functions
259 *******************************************************************/
260
261int slab_is_available(void)
262{
263	return slab_state >= UP;
264}
265
266static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
267{
268#ifdef CONFIG_NUMA
269	return s->node[node];
270#else
271	return &s->local_node;
272#endif
273}
274
275static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
276{
277	return &s->cpu_slab[cpu];
278}
279
280static inline int check_valid_pointer(struct kmem_cache *s,
281				struct page *page, const void *object)
282{
283	void *base;
284
285	if (!object)
286		return 1;
287
288	base = page_address(page);
289	if (object < base || object >= base + s->objects * s->size ||
290		(object - base) % s->size) {
291		return 0;
292	}
293
294	return 1;
295}
296
297/*
298 * Slow version of get and set free pointer.
299 *
300 * This version requires touching the cache lines of kmem_cache which
301 * we avoid to do in the fast alloc free paths. There we obtain the offset
302 * from the page struct.
303 */
304static inline void *get_freepointer(struct kmem_cache *s, void *object)
305{
306	return *(void **)(object + s->offset);
307}
308
309static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310{
311	*(void **)(object + s->offset) = fp;
312}
313
314/* Loop over all objects in a slab */
315#define for_each_object(__p, __s, __addr) \
316	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
317			__p += (__s)->size)
318
319/* Scan freelist */
320#define for_each_free_object(__p, __s, __free) \
321	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
322
323/* Determine object index from a given position */
324static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
325{
326	return (p - addr) / s->size;
327}
328
329#ifdef CONFIG_SLUB_DEBUG
330/*
331 * Debug settings:
332 */
333#ifdef CONFIG_SLUB_DEBUG_ON
334static int slub_debug = DEBUG_DEFAULT_FLAGS;
335#else
336static int slub_debug;
337#endif
338
339static char *slub_debug_slabs;
340
341/*
342 * Object debugging
343 */
344static void print_section(char *text, u8 *addr, unsigned int length)
345{
346	int i, offset;
347	int newline = 1;
348	char ascii[17];
349
350	ascii[16] = 0;
351
352	for (i = 0; i < length; i++) {
353		if (newline) {
354			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
355			newline = 0;
356		}
357		printk(" %02x", addr[i]);
358		offset = i % 16;
359		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
360		if (offset == 15) {
361			printk(" %s\n",ascii);
362			newline = 1;
363		}
364	}
365	if (!newline) {
366		i %= 16;
367		while (i < 16) {
368			printk("   ");
369			ascii[i] = ' ';
370			i++;
371		}
372		printk(" %s\n", ascii);
373	}
374}
375
376static struct track *get_track(struct kmem_cache *s, void *object,
377	enum track_item alloc)
378{
379	struct track *p;
380
381	if (s->offset)
382		p = object + s->offset + sizeof(void *);
383	else
384		p = object + s->inuse;
385
386	return p + alloc;
387}
388
389static void set_track(struct kmem_cache *s, void *object,
390				enum track_item alloc, void *addr)
391{
392	struct track *p;
393
394	if (s->offset)
395		p = object + s->offset + sizeof(void *);
396	else
397		p = object + s->inuse;
398
399	p += alloc;
400	if (addr) {
401		p->addr = addr;
402		p->cpu = smp_processor_id();
403		p->pid = current ? current->pid : -1;
404		p->when = jiffies;
405	} else
406		memset(p, 0, sizeof(struct track));
407}
408
409static void init_tracking(struct kmem_cache *s, void *object)
410{
411	if (!(s->flags & SLAB_STORE_USER))
412		return;
413
414	set_track(s, object, TRACK_FREE, NULL);
415	set_track(s, object, TRACK_ALLOC, NULL);
416}
417
418static void print_track(const char *s, struct track *t)
419{
420	if (!t->addr)
421		return;
422
423	printk(KERN_ERR "INFO: %s in ", s);
424	__print_symbol("%s", (unsigned long)t->addr);
425	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
426}
427
428static void print_tracking(struct kmem_cache *s, void *object)
429{
430	if (!(s->flags & SLAB_STORE_USER))
431		return;
432
433	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
434	print_track("Freed", get_track(s, object, TRACK_FREE));
435}
436
437static void print_page_info(struct page *page)
438{
439	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440		page, page->inuse, page->freelist, page->flags);
441
442}
443
444static void slab_bug(struct kmem_cache *s, char *fmt, ...)
445{
446	va_list args;
447	char buf[100];
448
449	va_start(args, fmt);
450	vsnprintf(buf, sizeof(buf), fmt, args);
451	va_end(args);
452	printk(KERN_ERR "========================================"
453			"=====================================\n");
454	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
455	printk(KERN_ERR "----------------------------------------"
456			"-------------------------------------\n\n");
457}
458
459static void slab_fix(struct kmem_cache *s, char *fmt, ...)
460{
461	va_list args;
462	char buf[100];
463
464	va_start(args, fmt);
465	vsnprintf(buf, sizeof(buf), fmt, args);
466	va_end(args);
467	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
468}
469
470static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
471{
472	unsigned int off;	/* Offset of last byte */
473	u8 *addr = page_address(page);
474
475	print_tracking(s, p);
476
477	print_page_info(page);
478
479	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480			p, p - addr, get_freepointer(s, p));
481
482	if (p > addr + 16)
483		print_section("Bytes b4", p - 16, 16);
484
485	print_section("Object", p, min(s->objsize, 128));
486
487	if (s->flags & SLAB_RED_ZONE)
488		print_section("Redzone", p + s->objsize,
489			s->inuse - s->objsize);
490
491	if (s->offset)
492		off = s->offset + sizeof(void *);
493	else
494		off = s->inuse;
495
496	if (s->flags & SLAB_STORE_USER)
497		off += 2 * sizeof(struct track);
498
499	if (off != s->size)
500		/* Beginning of the filler is the free pointer */
501		print_section("Padding", p + off, s->size - off);
502
503	dump_stack();
504}
505
506static void object_err(struct kmem_cache *s, struct page *page,
507			u8 *object, char *reason)
508{
509	slab_bug(s, reason);
510	print_trailer(s, page, object);
511}
512
513static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
514{
515	va_list args;
516	char buf[100];
517
518	va_start(args, fmt);
519	vsnprintf(buf, sizeof(buf), fmt, args);
520	va_end(args);
521	slab_bug(s, fmt);
522	print_page_info(page);
523	dump_stack();
524}
525
526static void init_object(struct kmem_cache *s, void *object, int active)
527{
528	u8 *p = object;
529
530	if (s->flags & __OBJECT_POISON) {
531		memset(p, POISON_FREE, s->objsize - 1);
532		p[s->objsize -1] = POISON_END;
533	}
534
535	if (s->flags & SLAB_RED_ZONE)
536		memset(p + s->objsize,
537			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
538			s->inuse - s->objsize);
539}
540
541static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
542{
543	while (bytes) {
544		if (*start != (u8)value)
545			return start;
546		start++;
547		bytes--;
548	}
549	return NULL;
550}
551
552static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
553						void *from, void *to)
554{
555	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
556	memset(from, data, to - from);
557}
558
559static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
560			u8 *object, char *what,
561			u8* start, unsigned int value, unsigned int bytes)
562{
563	u8 *fault;
564	u8 *end;
565
566	fault = check_bytes(start, value, bytes);
567	if (!fault)
568		return 1;
569
570	end = start + bytes;
571	while (end > fault && end[-1] == value)
572		end--;
573
574	slab_bug(s, "%s overwritten", what);
575	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576					fault, end - 1, fault[0], value);
577	print_trailer(s, page, object);
578
579	restore_bytes(s, what, value, fault, end);
580	return 0;
581}
582
583/*
584 * Object layout:
585 *
586 * object address
587 * 	Bytes of the object to be managed.
588 * 	If the freepointer may overlay the object then the free
589 * 	pointer is the first word of the object.
590 *
591 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
592 * 	0xa5 (POISON_END)
593 *
594 * object + s->objsize
595 * 	Padding to reach word boundary. This is also used for Redzoning.
596 * 	Padding is extended by another word if Redzoning is enabled and
597 * 	objsize == inuse.
598 *
599 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600 * 	0xcc (RED_ACTIVE) for objects in use.
601 *
602 * object + s->inuse
603 * 	Meta data starts here.
604 *
605 * 	A. Free pointer (if we cannot overwrite object on free)
606 * 	B. Tracking data for SLAB_STORE_USER
607 * 	C. Padding to reach required alignment boundary or at mininum
608 * 		one word if debuggin is on to be able to detect writes
609 * 		before the word boundary.
610 *
611 *	Padding is done using 0x5a (POISON_INUSE)
612 *
613 * object + s->size
614 * 	Nothing is used beyond s->size.
615 *
616 * If slabcaches are merged then the objsize and inuse boundaries are mostly
617 * ignored. And therefore no slab options that rely on these boundaries
618 * may be used with merged slabcaches.
619 */
620
621static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
622{
623	unsigned long off = s->inuse;	/* The end of info */
624
625	if (s->offset)
626		/* Freepointer is placed after the object. */
627		off += sizeof(void *);
628
629	if (s->flags & SLAB_STORE_USER)
630		/* We also have user information there */
631		off += 2 * sizeof(struct track);
632
633	if (s->size == off)
634		return 1;
635
636	return check_bytes_and_report(s, page, p, "Object padding",
637				p + off, POISON_INUSE, s->size - off);
638}
639
640static int slab_pad_check(struct kmem_cache *s, struct page *page)
641{
642	u8 *start;
643	u8 *fault;
644	u8 *end;
645	int length;
646	int remainder;
647
648	if (!(s->flags & SLAB_POISON))
649		return 1;
650
651	start = page_address(page);
652	end = start + (PAGE_SIZE << s->order);
653	length = s->objects * s->size;
654	remainder = end - (start + length);
655	if (!remainder)
656		return 1;
657
658	fault = check_bytes(start + length, POISON_INUSE, remainder);
659	if (!fault)
660		return 1;
661	while (end > fault && end[-1] == POISON_INUSE)
662		end--;
663
664	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
665	print_section("Padding", start, length);
666
667	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
668	return 0;
669}
670
671static int check_object(struct kmem_cache *s, struct page *page,
672					void *object, int active)
673{
674	u8 *p = object;
675	u8 *endobject = object + s->objsize;
676
677	if (s->flags & SLAB_RED_ZONE) {
678		unsigned int red =
679			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
680
681		if (!check_bytes_and_report(s, page, object, "Redzone",
682			endobject, red, s->inuse - s->objsize))
683			return 0;
684	} else {
685		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
686			check_bytes_and_report(s, page, p, "Alignment padding", endobject,
687				POISON_INUSE, s->inuse - s->objsize);
688	}
689
690	if (s->flags & SLAB_POISON) {
691		if (!active && (s->flags & __OBJECT_POISON) &&
692			(!check_bytes_and_report(s, page, p, "Poison", p,
693					POISON_FREE, s->objsize - 1) ||
694			 !check_bytes_and_report(s, page, p, "Poison",
695			 	p + s->objsize -1, POISON_END, 1)))
696			return 0;
697		/*
698		 * check_pad_bytes cleans up on its own.
699		 */
700		check_pad_bytes(s, page, p);
701	}
702
703	if (!s->offset && active)
704		/*
705		 * Object and freepointer overlap. Cannot check
706		 * freepointer while object is allocated.
707		 */
708		return 1;
709
710	/* Check free pointer validity */
711	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
712		object_err(s, page, p, "Freepointer corrupt");
713		/*
714		 * No choice but to zap it and thus loose the remainder
715		 * of the free objects in this slab. May cause
716		 * another error because the object count is now wrong.
717		 */
718		set_freepointer(s, p, NULL);
719		return 0;
720	}
721	return 1;
722}
723
724static int check_slab(struct kmem_cache *s, struct page *page)
725{
726	VM_BUG_ON(!irqs_disabled());
727
728	if (!PageSlab(page)) {
729		slab_err(s, page, "Not a valid slab page");
730		return 0;
731	}
732	if (page->offset * sizeof(void *) != s->offset) {
733		slab_err(s, page, "Corrupted offset %lu",
734			(unsigned long)(page->offset * sizeof(void *)));
735		return 0;
736	}
737	if (page->inuse > s->objects) {
738		slab_err(s, page, "inuse %u > max %u",
739			s->name, page->inuse, s->objects);
740		return 0;
741	}
742	/* Slab_pad_check fixes things up after itself */
743	slab_pad_check(s, page);
744	return 1;
745}
746
747/*
748 * Determine if a certain object on a page is on the freelist. Must hold the
749 * slab lock to guarantee that the chains are in a consistent state.
750 */
751static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
752{
753	int nr = 0;
754	void *fp = page->freelist;
755	void *object = NULL;
756
757	while (fp && nr <= s->objects) {
758		if (fp == search)
759			return 1;
760		if (!check_valid_pointer(s, page, fp)) {
761			if (object) {
762				object_err(s, page, object,
763					"Freechain corrupt");
764				set_freepointer(s, object, NULL);
765				break;
766			} else {
767				slab_err(s, page, "Freepointer corrupt");
768				page->freelist = NULL;
769				page->inuse = s->objects;
770				slab_fix(s, "Freelist cleared");
771				return 0;
772			}
773			break;
774		}
775		object = fp;
776		fp = get_freepointer(s, object);
777		nr++;
778	}
779
780	if (page->inuse != s->objects - nr) {
781		slab_err(s, page, "Wrong object count. Counter is %d but "
782			"counted were %d", page->inuse, s->objects - nr);
783		page->inuse = s->objects - nr;
784		slab_fix(s, "Object count adjusted.");
785	}
786	return search == NULL;
787}
788
789static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
790{
791	if (s->flags & SLAB_TRACE) {
792		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
793			s->name,
794			alloc ? "alloc" : "free",
795			object, page->inuse,
796			page->freelist);
797
798		if (!alloc)
799			print_section("Object", (void *)object, s->objsize);
800
801		dump_stack();
802	}
803}
804
805/*
806 * Tracking of fully allocated slabs for debugging purposes.
807 */
808static void add_full(struct kmem_cache_node *n, struct page *page)
809{
810	spin_lock(&n->list_lock);
811	list_add(&page->lru, &n->full);
812	spin_unlock(&n->list_lock);
813}
814
815static void remove_full(struct kmem_cache *s, struct page *page)
816{
817	struct kmem_cache_node *n;
818
819	if (!(s->flags & SLAB_STORE_USER))
820		return;
821
822	n = get_node(s, page_to_nid(page));
823
824	spin_lock(&n->list_lock);
825	list_del(&page->lru);
826	spin_unlock(&n->list_lock);
827}
828
829static void setup_object_debug(struct kmem_cache *s, struct page *page,
830								void *object)
831{
832	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
833		return;
834
835	init_object(s, object, 0);
836	init_tracking(s, object);
837}
838
839static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
840						void *object, void *addr)
841{
842	if (!check_slab(s, page))
843		goto bad;
844
845	if (object && !on_freelist(s, page, object)) {
846		object_err(s, page, object, "Object already allocated");
847		goto bad;
848	}
849
850	if (!check_valid_pointer(s, page, object)) {
851		object_err(s, page, object, "Freelist Pointer check fails");
852		goto bad;
853	}
854
855	if (object && !check_object(s, page, object, 0))
856		goto bad;
857
858	/* Success perform special debug activities for allocs */
859	if (s->flags & SLAB_STORE_USER)
860		set_track(s, object, TRACK_ALLOC, addr);
861	trace(s, page, object, 1);
862	init_object(s, object, 1);
863	return 1;
864
865bad:
866	if (PageSlab(page)) {
867		/*
868		 * If this is a slab page then lets do the best we can
869		 * to avoid issues in the future. Marking all objects
870		 * as used avoids touching the remaining objects.
871		 */
872		slab_fix(s, "Marking all objects used");
873		page->inuse = s->objects;
874		page->freelist = NULL;
875		/* Fix up fields that may be corrupted */
876		page->offset = s->offset / sizeof(void *);
877	}
878	return 0;
879}
880
881static int free_debug_processing(struct kmem_cache *s, struct page *page,
882						void *object, void *addr)
883{
884	if (!check_slab(s, page))
885		goto fail;
886
887	if (!check_valid_pointer(s, page, object)) {
888		slab_err(s, page, "Invalid object pointer 0x%p", object);
889		goto fail;
890	}
891
892	if (on_freelist(s, page, object)) {
893		object_err(s, page, object, "Object already free");
894		goto fail;
895	}
896
897	if (!check_object(s, page, object, 1))
898		return 0;
899
900	if (unlikely(s != page->slab)) {
901		if (!PageSlab(page))
902			slab_err(s, page, "Attempt to free object(0x%p) "
903				"outside of slab", object);
904		else
905		if (!page->slab) {
906			printk(KERN_ERR
907				"SLUB <none>: no slab for object 0x%p.\n",
908						object);
909			dump_stack();
910		}
911		else
912			object_err(s, page, object,
913					"page slab pointer corrupt.");
914		goto fail;
915	}
916
917	/* Special debug activities for freeing objects */
918	if (!SlabFrozen(page) && !page->freelist)
919		remove_full(s, page);
920	if (s->flags & SLAB_STORE_USER)
921		set_track(s, object, TRACK_FREE, addr);
922	trace(s, page, object, 0);
923	init_object(s, object, 0);
924	return 1;
925
926fail:
927	slab_fix(s, "Object at 0x%p not freed", object);
928	return 0;
929}
930
931static int __init setup_slub_debug(char *str)
932{
933	slub_debug = DEBUG_DEFAULT_FLAGS;
934	if (*str++ != '=' || !*str)
935		/*
936		 * No options specified. Switch on full debugging.
937		 */
938		goto out;
939
940	if (*str == ',')
941		/*
942		 * No options but restriction on slabs. This means full
943		 * debugging for slabs matching a pattern.
944		 */
945		goto check_slabs;
946
947	slub_debug = 0;
948	if (*str == '-')
949		/*
950		 * Switch off all debugging measures.
951		 */
952		goto out;
953
954	/*
955	 * Determine which debug features should be switched on
956	 */
957	for ( ;*str && *str != ','; str++) {
958		switch (tolower(*str)) {
959		case 'f':
960			slub_debug |= SLAB_DEBUG_FREE;
961			break;
962		case 'z':
963			slub_debug |= SLAB_RED_ZONE;
964			break;
965		case 'p':
966			slub_debug |= SLAB_POISON;
967			break;
968		case 'u':
969			slub_debug |= SLAB_STORE_USER;
970			break;
971		case 't':
972			slub_debug |= SLAB_TRACE;
973			break;
974		default:
975			printk(KERN_ERR "slub_debug option '%c' "
976				"unknown. skipped\n",*str);
977		}
978	}
979
980check_slabs:
981	if (*str == ',')
982		slub_debug_slabs = str + 1;
983out:
984	return 1;
985}
986
987__setup("slub_debug", setup_slub_debug);
988
989static unsigned long kmem_cache_flags(unsigned long objsize,
990	unsigned long flags, const char *name,
991	void (*ctor)(void *, struct kmem_cache *, unsigned long))
992{
993	/*
994	 * The page->offset field is only 16 bit wide. This is an offset
995	 * in units of words from the beginning of an object. If the slab
996	 * size is bigger then we cannot move the free pointer behind the
997	 * object anymore.
998	 *
999	 * On 32 bit platforms the limit is 256k. On 64bit platforms
1000	 * the limit is 512k.
1001	 *
1002	 * Debugging or ctor may create a need to move the free
1003	 * pointer. Fail if this happens.
1004	 */
1005	if (objsize >= 65535 * sizeof(void *)) {
1006		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1007				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1008		BUG_ON(ctor);
1009	} else {
1010		/*
1011		 * Enable debugging if selected on the kernel commandline.
1012		 */
1013		if (slub_debug && (!slub_debug_slabs ||
1014		    strncmp(slub_debug_slabs, name,
1015		    	strlen(slub_debug_slabs)) == 0))
1016				flags |= slub_debug;
1017	}
1018
1019	return flags;
1020}
1021#else
1022static inline void setup_object_debug(struct kmem_cache *s,
1023			struct page *page, void *object) {}
1024
1025static inline int alloc_debug_processing(struct kmem_cache *s,
1026	struct page *page, void *object, void *addr) { return 0; }
1027
1028static inline int free_debug_processing(struct kmem_cache *s,
1029	struct page *page, void *object, void *addr) { return 0; }
1030
1031static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1032			{ return 1; }
1033static inline int check_object(struct kmem_cache *s, struct page *page,
1034			void *object, int active) { return 1; }
1035static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1036static inline unsigned long kmem_cache_flags(unsigned long objsize,
1037	unsigned long flags, const char *name,
1038	void (*ctor)(void *, struct kmem_cache *, unsigned long))
1039{
1040	return flags;
1041}
1042#define slub_debug 0
1043#endif
1044/*
1045 * Slab allocation and freeing
1046 */
1047static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1048{
1049	struct page * page;
1050	int pages = 1 << s->order;
1051
1052	if (s->order)
1053		flags |= __GFP_COMP;
1054
1055	if (s->flags & SLAB_CACHE_DMA)
1056		flags |= SLUB_DMA;
1057
1058	if (s->flags & SLAB_RECLAIM_ACCOUNT)
1059		flags |= __GFP_RECLAIMABLE;
1060
1061	if (node == -1)
1062		page = alloc_pages(flags, s->order);
1063	else
1064		page = alloc_pages_node(node, flags, s->order);
1065
1066	if (!page)
1067		return NULL;
1068
1069	mod_zone_page_state(page_zone(page),
1070		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1071		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1072		pages);
1073
1074	return page;
1075}
1076
1077static void setup_object(struct kmem_cache *s, struct page *page,
1078				void *object)
1079{
1080	setup_object_debug(s, page, object);
1081	if (unlikely(s->ctor))
1082		s->ctor(object, s, 0);
1083}
1084
1085static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1086{
1087	struct page *page;
1088	struct kmem_cache_node *n;
1089	void *start;
1090	void *end;
1091	void *last;
1092	void *p;
1093
1094	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1095
1096	if (flags & __GFP_WAIT)
1097		local_irq_enable();
1098
1099	page = allocate_slab(s,
1100		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1101	if (!page)
1102		goto out;
1103
1104	n = get_node(s, page_to_nid(page));
1105	if (n)
1106		atomic_long_inc(&n->nr_slabs);
1107	page->offset = s->offset / sizeof(void *);
1108	page->slab = s;
1109	page->flags |= 1 << PG_slab;
1110	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1111			SLAB_STORE_USER | SLAB_TRACE))
1112		SetSlabDebug(page);
1113
1114	start = page_address(page);
1115	end = start + s->objects * s->size;
1116
1117	if (unlikely(s->flags & SLAB_POISON))
1118		memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1119
1120	last = start;
1121	for_each_object(p, s, start) {
1122		setup_object(s, page, last);
1123		set_freepointer(s, last, p);
1124		last = p;
1125	}
1126	setup_object(s, page, last);
1127	set_freepointer(s, last, NULL);
1128
1129	page->freelist = start;
1130	page->lockless_freelist = NULL;
1131	page->inuse = 0;
1132out:
1133	if (flags & __GFP_WAIT)
1134		local_irq_disable();
1135	return page;
1136}
1137
1138static void __free_slab(struct kmem_cache *s, struct page *page)
1139{
1140	int pages = 1 << s->order;
1141
1142	if (unlikely(SlabDebug(page))) {
1143		void *p;
1144
1145		slab_pad_check(s, page);
1146		for_each_object(p, s, page_address(page))
1147			check_object(s, page, p, 0);
1148		ClearSlabDebug(page);
1149	}
1150
1151	mod_zone_page_state(page_zone(page),
1152		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1153		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1154		- pages);
1155
1156	page->mapping = NULL;
1157	__free_pages(page, s->order);
1158}
1159
1160static void rcu_free_slab(struct rcu_head *h)
1161{
1162	struct page *page;
1163
1164	page = container_of((struct list_head *)h, struct page, lru);
1165	__free_slab(page->slab, page);
1166}
1167
1168static void free_slab(struct kmem_cache *s, struct page *page)
1169{
1170	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1171		/*
1172		 * RCU free overloads the RCU head over the LRU
1173		 */
1174		struct rcu_head *head = (void *)&page->lru;
1175
1176		call_rcu(head, rcu_free_slab);
1177	} else
1178		__free_slab(s, page);
1179}
1180
1181static void discard_slab(struct kmem_cache *s, struct page *page)
1182{
1183	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1184
1185	atomic_long_dec(&n->nr_slabs);
1186	reset_page_mapcount(page);
1187	__ClearPageSlab(page);
1188	free_slab(s, page);
1189}
1190
1191/*
1192 * Per slab locking using the pagelock
1193 */
1194static __always_inline void slab_lock(struct page *page)
1195{
1196	bit_spin_lock(PG_locked, &page->flags);
1197}
1198
1199static __always_inline void slab_unlock(struct page *page)
1200{
1201	bit_spin_unlock(PG_locked, &page->flags);
1202}
1203
1204static __always_inline int slab_trylock(struct page *page)
1205{
1206	int rc = 1;
1207
1208	rc = bit_spin_trylock(PG_locked, &page->flags);
1209	return rc;
1210}
1211
1212/*
1213 * Management of partially allocated slabs
1214 */
1215static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1216{
1217	spin_lock(&n->list_lock);
1218	n->nr_partial++;
1219	list_add_tail(&page->lru, &n->partial);
1220	spin_unlock(&n->list_lock);
1221}
1222
1223static void add_partial(struct kmem_cache_node *n, struct page *page)
1224{
1225	spin_lock(&n->list_lock);
1226	n->nr_partial++;
1227	list_add(&page->lru, &n->partial);
1228	spin_unlock(&n->list_lock);
1229}
1230
1231static void remove_partial(struct kmem_cache *s,
1232						struct page *page)
1233{
1234	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1235
1236	spin_lock(&n->list_lock);
1237	list_del(&page->lru);
1238	n->nr_partial--;
1239	spin_unlock(&n->list_lock);
1240}
1241
1242/*
1243 * Lock slab and remove from the partial list.
1244 *
1245 * Must hold list_lock.
1246 */
1247static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1248{
1249	if (slab_trylock(page)) {
1250		list_del(&page->lru);
1251		n->nr_partial--;
1252		SetSlabFrozen(page);
1253		return 1;
1254	}
1255	return 0;
1256}
1257
1258/*
1259 * Try to allocate a partial slab from a specific node.
1260 */
1261static struct page *get_partial_node(struct kmem_cache_node *n)
1262{
1263	struct page *page;
1264
1265	/*
1266	 * Racy check. If we mistakenly see no partial slabs then we
1267	 * just allocate an empty slab. If we mistakenly try to get a
1268	 * partial slab and there is none available then get_partials()
1269	 * will return NULL.
1270	 */
1271	if (!n || !n->nr_partial)
1272		return NULL;
1273
1274	spin_lock(&n->list_lock);
1275	list_for_each_entry(page, &n->partial, lru)
1276		if (lock_and_freeze_slab(n, page))
1277			goto out;
1278	page = NULL;
1279out:
1280	spin_unlock(&n->list_lock);
1281	return page;
1282}
1283
1284/*
1285 * Get a page from somewhere. Search in increasing NUMA distances.
1286 */
1287static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1288{
1289#ifdef CONFIG_NUMA
1290	struct zonelist *zonelist;
1291	struct zone **z;
1292	struct page *page;
1293
1294	/*
1295	 * The defrag ratio allows a configuration of the tradeoffs between
1296	 * inter node defragmentation and node local allocations. A lower
1297	 * defrag_ratio increases the tendency to do local allocations
1298	 * instead of attempting to obtain partial slabs from other nodes.
1299	 *
1300	 * If the defrag_ratio is set to 0 then kmalloc() always
1301	 * returns node local objects. If the ratio is higher then kmalloc()
1302	 * may return off node objects because partial slabs are obtained
1303	 * from other nodes and filled up.
1304	 *
1305	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1306	 * defrag_ratio = 1000) then every (well almost) allocation will
1307	 * first attempt to defrag slab caches on other nodes. This means
1308	 * scanning over all nodes to look for partial slabs which may be
1309	 * expensive if we do it every time we are trying to find a slab
1310	 * with available objects.
1311	 */
1312	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1313		return NULL;
1314
1315	zonelist = &NODE_DATA(slab_node(current->mempolicy))
1316					->node_zonelists[gfp_zone(flags)];
1317	for (z = zonelist->zones; *z; z++) {
1318		struct kmem_cache_node *n;
1319
1320		n = get_node(s, zone_to_nid(*z));
1321
1322		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1323				n->nr_partial > MIN_PARTIAL) {
1324			page = get_partial_node(n);
1325			if (page)
1326				return page;
1327		}
1328	}
1329#endif
1330	return NULL;
1331}
1332
1333/*
1334 * Get a partial page, lock it and return it.
1335 */
1336static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1337{
1338	struct page *page;
1339	int searchnode = (node == -1) ? numa_node_id() : node;
1340
1341	page = get_partial_node(get_node(s, searchnode));
1342	if (page || (flags & __GFP_THISNODE))
1343		return page;
1344
1345	return get_any_partial(s, flags);
1346}
1347
1348/*
1349 * Move a page back to the lists.
1350 *
1351 * Must be called with the slab lock held.
1352 *
1353 * On exit the slab lock will have been dropped.
1354 */
1355static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1356{
1357	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1358
1359	ClearSlabFrozen(page);
1360	if (page->inuse) {
1361
1362		if (page->freelist)
1363			add_partial(n, page);
1364		else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1365			add_full(n, page);
1366		slab_unlock(page);
1367
1368	} else {
1369		if (n->nr_partial < MIN_PARTIAL) {
1370			/*
1371			 * Adding an empty slab to the partial slabs in order
1372			 * to avoid page allocator overhead. This slab needs
1373			 * to come after the other slabs with objects in
1374			 * order to fill them up. That way the size of the
1375			 * partial list stays small. kmem_cache_shrink can
1376			 * reclaim empty slabs from the partial list.
1377			 */
1378			add_partial_tail(n, page);
1379			slab_unlock(page);
1380		} else {
1381			slab_unlock(page);
1382			discard_slab(s, page);
1383		}
1384	}
1385}
1386
1387/*
1388 * Remove the cpu slab
1389 */
1390static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1391{
1392	struct page *page = c->page;
1393	/*
1394	 * Merge cpu freelist into freelist. Typically we get here
1395	 * because both freelists are empty. So this is unlikely
1396	 * to occur.
1397	 */
1398	while (unlikely(c->freelist)) {
1399		void **object;
1400
1401		/* Retrieve object from cpu_freelist */
1402		object = c->freelist;
1403		c->freelist = c->freelist[page->offset];
1404
1405		/* And put onto the regular freelist */
1406		object[page->offset] = page->freelist;
1407		page->freelist = object;
1408		page->inuse--;
1409	}
1410	c->page = NULL;
1411	unfreeze_slab(s, page);
1412}
1413
1414static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1415{
1416	slab_lock(c->page);
1417	deactivate_slab(s, c);
1418}
1419
1420/*
1421 * Flush cpu slab.
1422 * Called from IPI handler with interrupts disabled.
1423 */
1424static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1425{
1426	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1427
1428	if (likely(c && c->page))
1429		flush_slab(s, c);
1430}
1431
1432static void flush_cpu_slab(void *d)
1433{
1434	struct kmem_cache *s = d;
1435
1436	__flush_cpu_slab(s, smp_processor_id());
1437}
1438
1439static void flush_all(struct kmem_cache *s)
1440{
1441#ifdef CONFIG_SMP
1442	on_each_cpu(flush_cpu_slab, s, 1, 1);
1443#else
1444	unsigned long flags;
1445
1446	local_irq_save(flags);
1447	flush_cpu_slab(s);
1448	local_irq_restore(flags);
1449#endif
1450}
1451
1452/*
1453 * Check if the objects in a per cpu structure fit numa
1454 * locality expectations.
1455 */
1456static inline int node_match(struct kmem_cache_cpu *c, int node)
1457{
1458#ifdef CONFIG_NUMA
1459	if (node != -1 && c->node != node)
1460		return 0;
1461#endif
1462	return 1;
1463}
1464
1465/*
1466 * Slow path. The lockless freelist is empty or we need to perform
1467 * debugging duties.
1468 *
1469 * Interrupts are disabled.
1470 *
1471 * Processing is still very fast if new objects have been freed to the
1472 * regular freelist. In that case we simply take over the regular freelist
1473 * as the lockless freelist and zap the regular freelist.
1474 *
1475 * If that is not working then we fall back to the partial lists. We take the
1476 * first element of the freelist as the object to allocate now and move the
1477 * rest of the freelist to the lockless freelist.
1478 *
1479 * And if we were unable to get a new slab from the partial slab lists then
1480 * we need to allocate a new slab. This is slowest path since we may sleep.
1481 */
1482static void *__slab_alloc(struct kmem_cache *s,
1483		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1484{
1485	void **object;
1486	struct page *new;
1487
1488	if (!c->page)
1489		goto new_slab;
1490
1491	slab_lock(c->page);
1492	if (unlikely(!node_match(c, node)))
1493		goto another_slab;
1494load_freelist:
1495	object = c->page->freelist;
1496	if (unlikely(!object))
1497		goto another_slab;
1498	if (unlikely(SlabDebug(c->page)))
1499		goto debug;
1500
1501	object = c->page->freelist;
1502	c->freelist = object[c->page->offset];
1503	c->page->inuse = s->objects;
1504	c->page->freelist = NULL;
1505	c->node = page_to_nid(c->page);
1506	slab_unlock(c->page);
1507	return object;
1508
1509another_slab:
1510	deactivate_slab(s, c);
1511
1512new_slab:
1513	new = get_partial(s, gfpflags, node);
1514	if (new) {
1515		c->page = new;
1516		goto load_freelist;
1517	}
1518
1519	new = new_slab(s, gfpflags, node);
1520	if (new) {
1521		c = get_cpu_slab(s, smp_processor_id());
1522		if (c->page) {
1523			/*
1524			 * Someone else populated the cpu_slab while we
1525			 * enabled interrupts, or we have gotten scheduled
1526			 * on another cpu. The page may not be on the
1527			 * requested node even if __GFP_THISNODE was
1528			 * specified. So we need to recheck.
1529			 */
1530			if (node_match(c, node)) {
1531				/*
1532				 * Current cpuslab is acceptable and we
1533				 * want the current one since its cache hot
1534				 */
1535				discard_slab(s, new);
1536				slab_lock(c->page);
1537				goto load_freelist;
1538			}
1539			/* New slab does not fit our expectations */
1540			flush_slab(s, c);
1541		}
1542		slab_lock(new);
1543		SetSlabFrozen(new);
1544		c->page = new;
1545		goto load_freelist;
1546	}
1547	return NULL;
1548debug:
1549	object = c->page->freelist;
1550	if (!alloc_debug_processing(s, c->page, object, addr))
1551		goto another_slab;
1552
1553	c->page->inuse++;
1554	c->page->freelist = object[c->page->offset];
1555	slab_unlock(c->page);
1556	return object;
1557}
1558
1559/*
1560 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1561 * have the fastpath folded into their functions. So no function call
1562 * overhead for requests that can be satisfied on the fastpath.
1563 *
1564 * The fastpath works by first checking if the lockless freelist can be used.
1565 * If not then __slab_alloc is called for slow processing.
1566 *
1567 * Otherwise we can simply pick the next object from the lockless free list.
1568 */
1569static void __always_inline *slab_alloc(struct kmem_cache *s,
1570		gfp_t gfpflags, int node, void *addr)
1571{
1572	void **object;
1573	unsigned long flags;
1574	struct kmem_cache_cpu *c;
1575
1576	local_irq_save(flags);
1577	c = get_cpu_slab(s, smp_processor_id());
1578	if (unlikely(!c->page || !c->freelist ||
1579					!node_match(c, node)))
1580
1581		object = __slab_alloc(s, gfpflags, node, addr, c);
1582
1583	else {
1584		object = c->freelist;
1585		c->freelist = object[c->page->offset];
1586	}
1587	local_irq_restore(flags);
1588
1589	if (unlikely((gfpflags & __GFP_ZERO) && object))
1590		memset(object, 0, s->objsize);
1591
1592	return object;
1593}
1594
1595void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1596{
1597	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1598}
1599EXPORT_SYMBOL(kmem_cache_alloc);
1600
1601#ifdef CONFIG_NUMA
1602void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1603{
1604	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1605}
1606EXPORT_SYMBOL(kmem_cache_alloc_node);
1607#endif
1608
1609/*
1610 * Slow patch handling. This may still be called frequently since objects
1611 * have a longer lifetime than the cpu slabs in most processing loads.
1612 *
1613 * So we still attempt to reduce cache line usage. Just take the slab
1614 * lock and free the item. If there is no additional partial page
1615 * handling required then we can return immediately.
1616 */
1617static void __slab_free(struct kmem_cache *s, struct page *page,
1618					void *x, void *addr)
1619{
1620	void *prior;
1621	void **object = (void *)x;
1622
1623	slab_lock(page);
1624
1625	if (unlikely(SlabDebug(page)))
1626		goto debug;
1627checks_ok:
1628	prior = object[page->offset] = page->freelist;
1629	page->freelist = object;
1630	page->inuse--;
1631
1632	if (unlikely(SlabFrozen(page)))
1633		goto out_unlock;
1634
1635	if (unlikely(!page->inuse))
1636		goto slab_empty;
1637
1638	/*
1639	 * Objects left in the slab. If it
1640	 * was not on the partial list before
1641	 * then add it.
1642	 */
1643	if (unlikely(!prior))
1644		add_partial(get_node(s, page_to_nid(page)), page);
1645
1646out_unlock:
1647	slab_unlock(page);
1648	return;
1649
1650slab_empty:
1651	if (prior)
1652		/*
1653		 * Slab still on the partial list.
1654		 */
1655		remove_partial(s, page);
1656
1657	slab_unlock(page);
1658	discard_slab(s, page);
1659	return;
1660
1661debug:
1662	if (!free_debug_processing(s, page, x, addr))
1663		goto out_unlock;
1664	goto checks_ok;
1665}
1666
1667/*
1668 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1669 * can perform fastpath freeing without additional function calls.
1670 *
1671 * The fastpath is only possible if we are freeing to the current cpu slab
1672 * of this processor. This typically the case if we have just allocated
1673 * the item before.
1674 *
1675 * If fastpath is not possible then fall back to __slab_free where we deal
1676 * with all sorts of special processing.
1677 */
1678static void __always_inline slab_free(struct kmem_cache *s,
1679			struct page *page, void *x, void *addr)
1680{
1681	void **object = (void *)x;
1682	unsigned long flags;
1683	struct kmem_cache_cpu *c;
1684
1685	local_irq_save(flags);
1686	debug_check_no_locks_freed(object, s->objsize);
1687	c = get_cpu_slab(s, smp_processor_id());
1688	if (likely(page == c->page && !SlabDebug(page))) {
1689		object[page->offset] = c->freelist;
1690		c->freelist = object;
1691	} else
1692		__slab_free(s, page, x, addr);
1693
1694	local_irq_restore(flags);
1695}
1696
1697void kmem_cache_free(struct kmem_cache *s, void *x)
1698{
1699	struct page *page;
1700
1701	page = virt_to_head_page(x);
1702
1703	slab_free(s, page, x, __builtin_return_address(0));
1704}
1705EXPORT_SYMBOL(kmem_cache_free);
1706
1707/* Figure out on which slab object the object resides */
1708static struct page *get_object_page(const void *x)
1709{
1710	struct page *page = virt_to_head_page(x);
1711
1712	if (!PageSlab(page))
1713		return NULL;
1714
1715	return page;
1716}
1717
1718/*
1719 * Object placement in a slab is made very easy because we always start at
1720 * offset 0. If we tune the size of the object to the alignment then we can
1721 * get the required alignment by putting one properly sized object after
1722 * another.
1723 *
1724 * Notice that the allocation order determines the sizes of the per cpu
1725 * caches. Each processor has always one slab available for allocations.
1726 * Increasing the allocation order reduces the number of times that slabs
1727 * must be moved on and off the partial lists and is therefore a factor in
1728 * locking overhead.
1729 */
1730
1731/*
1732 * Mininum / Maximum order of slab pages. This influences locking overhead
1733 * and slab fragmentation. A higher order reduces the number of partial slabs
1734 * and increases the number of allocations possible without having to
1735 * take the list_lock.
1736 */
1737static int slub_min_order;
1738static int slub_max_order = DEFAULT_MAX_ORDER;
1739static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1740
1741/*
1742 * Merge control. If this is set then no merging of slab caches will occur.
1743 * (Could be removed. This was introduced to pacify the merge skeptics.)
1744 */
1745static int slub_nomerge;
1746
1747/*
1748 * Calculate the order of allocation given an slab object size.
1749 *
1750 * The order of allocation has significant impact on performance and other
1751 * system components. Generally order 0 allocations should be preferred since
1752 * order 0 does not cause fragmentation in the page allocator. Larger objects
1753 * be problematic to put into order 0 slabs because there may be too much
1754 * unused space left. We go to a higher order if more than 1/8th of the slab
1755 * would be wasted.
1756 *
1757 * In order to reach satisfactory performance we must ensure that a minimum
1758 * number of objects is in one slab. Otherwise we may generate too much
1759 * activity on the partial lists which requires taking the list_lock. This is
1760 * less a concern for large slabs though which are rarely used.
1761 *
1762 * slub_max_order specifies the order where we begin to stop considering the
1763 * number of objects in a slab as critical. If we reach slub_max_order then
1764 * we try to keep the page order as low as possible. So we accept more waste
1765 * of space in favor of a small page order.
1766 *
1767 * Higher order allocations also allow the placement of more objects in a
1768 * slab and thereby reduce object handling overhead. If the user has
1769 * requested a higher mininum order then we start with that one instead of
1770 * the smallest order which will fit the object.
1771 */
1772static inline int slab_order(int size, int min_objects,
1773				int max_order, int fract_leftover)
1774{
1775	int order;
1776	int rem;
1777	int min_order = slub_min_order;
1778
1779	/*
1780	 * If we would create too many object per slab then reduce
1781	 * the slab order even if it goes below slub_min_order.
1782	 */
1783	while (min_order > 0 &&
1784		(PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
1785			min_order--;
1786
1787	for (order = max(min_order,
1788				fls(min_objects * size - 1) - PAGE_SHIFT);
1789			order <= max_order; order++) {
1790
1791		unsigned long slab_size = PAGE_SIZE << order;
1792
1793		if (slab_size < min_objects * size)
1794			continue;
1795
1796		rem = slab_size % size;
1797
1798		if (rem <= slab_size / fract_leftover)
1799			break;
1800
1801		/* If the next size is too high then exit now */
1802		if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
1803			break;
1804	}
1805
1806	return order;
1807}
1808
1809static inline int calculate_order(int size)
1810{
1811	int order;
1812	int min_objects;
1813	int fraction;
1814
1815	/*
1816	 * Attempt to find best configuration for a slab. This
1817	 * works by first attempting to generate a layout with
1818	 * the best configuration and backing off gradually.
1819	 *
1820	 * First we reduce the acceptable waste in a slab. Then
1821	 * we reduce the minimum objects required in a slab.
1822	 */
1823	min_objects = slub_min_objects;
1824	while (min_objects > 1) {
1825		fraction = 8;
1826		while (fraction >= 4) {
1827			order = slab_order(size, min_objects,
1828						slub_max_order, fraction);
1829			if (order <= slub_max_order)
1830				return order;
1831			fraction /= 2;
1832		}
1833		min_objects /= 2;
1834	}
1835
1836	/*
1837	 * We were unable to place multiple objects in a slab. Now
1838	 * lets see if we can place a single object there.
1839	 */
1840	order = slab_order(size, 1, slub_max_order, 1);
1841	if (order <= slub_max_order)
1842		return order;
1843
1844	/*
1845	 * Doh this slab cannot be placed using slub_max_order.
1846	 */
1847	order = slab_order(size, 1, MAX_ORDER, 1);
1848	if (order <= MAX_ORDER)
1849		return order;
1850	return -ENOSYS;
1851}
1852
1853/*
1854 * Figure out what the alignment of the objects will be.
1855 */
1856static unsigned long calculate_alignment(unsigned long flags,
1857		unsigned long align, unsigned long size)
1858{
1859	/*
1860	 * If the user wants hardware cache aligned objects then
1861	 * follow that suggestion if the object is sufficiently
1862	 * large.
1863	 *
1864	 * The hardware cache alignment cannot override the
1865	 * specified alignment though. If that is greater
1866	 * then use it.
1867	 */
1868	if ((flags & SLAB_HWCACHE_ALIGN) &&
1869			size > cache_line_size() / 2)
1870		return max_t(unsigned long, align, cache_line_size());
1871
1872	if (align < ARCH_SLAB_MINALIGN)
1873		return ARCH_SLAB_MINALIGN;
1874
1875	return ALIGN(align, sizeof(void *));
1876}
1877
1878static void init_kmem_cache_cpu(struct kmem_cache *s,
1879			struct kmem_cache_cpu *c)
1880{
1881	c->page = NULL;
1882	c->freelist = NULL;
1883	c->node = 0;
1884}
1885
1886static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1887{
1888	int cpu;
1889
1890	for_each_possible_cpu(cpu)
1891		init_kmem_cache_cpu(s, get_cpu_slab(s, cpu));
1892
1893	return 1;
1894}
1895
1896static void init_kmem_cache_node(struct kmem_cache_node *n)
1897{
1898	n->nr_partial = 0;
1899	atomic_long_set(&n->nr_slabs, 0);
1900	spin_lock_init(&n->list_lock);
1901	INIT_LIST_HEAD(&n->partial);
1902#ifdef CONFIG_SLUB_DEBUG
1903	INIT_LIST_HEAD(&n->full);
1904#endif
1905}
1906
1907#ifdef CONFIG_NUMA
1908/*
1909 * No kmalloc_node yet so do it by hand. We know that this is the first
1910 * slab on the node for this slabcache. There are no concurrent accesses
1911 * possible.
1912 *
1913 * Note that this function only works on the kmalloc_node_cache
1914 * when allocating for the kmalloc_node_cache.
1915 */
1916static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
1917							   int node)
1918{
1919	struct page *page;
1920	struct kmem_cache_node *n;
1921
1922	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1923
1924	page = new_slab(kmalloc_caches, gfpflags, node);
1925
1926	BUG_ON(!page);
1927	if (page_to_nid(page) != node) {
1928		printk(KERN_ERR "SLUB: Unable to allocate memory from "
1929				"node %d\n", node);
1930		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
1931				"in order to be able to continue\n");
1932	}
1933
1934	n = page->freelist;
1935	BUG_ON(!n);
1936	page->freelist = get_freepointer(kmalloc_caches, n);
1937	page->inuse++;
1938	kmalloc_caches->node[node] = n;
1939#ifdef CONFIG_SLUB_DEBUG
1940	init_object(kmalloc_caches, n, 1);
1941	init_tracking(kmalloc_caches, n);
1942#endif
1943	init_kmem_cache_node(n);
1944	atomic_long_inc(&n->nr_slabs);
1945	add_partial(n, page);
1946
1947	/*
1948	 * new_slab() disables interupts. If we do not reenable interrupts here
1949	 * then bootup would continue with interrupts disabled.
1950	 */
1951	local_irq_enable();
1952	return n;
1953}
1954
1955static void free_kmem_cache_nodes(struct kmem_cache *s)
1956{
1957	int node;
1958
1959	for_each_node_state(node, N_NORMAL_MEMORY) {
1960		struct kmem_cache_node *n = s->node[node];
1961		if (n && n != &s->local_node)
1962			kmem_cache_free(kmalloc_caches, n);
1963		s->node[node] = NULL;
1964	}
1965}
1966
1967static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1968{
1969	int node;
1970	int local_node;
1971
1972	if (slab_state >= UP)
1973		local_node = page_to_nid(virt_to_page(s));
1974	else
1975		local_node = 0;
1976
1977	for_each_node_state(node, N_NORMAL_MEMORY) {
1978		struct kmem_cache_node *n;
1979
1980		if (local_node == node)
1981			n = &s->local_node;
1982		else {
1983			if (slab_state == DOWN) {
1984				n = early_kmem_cache_node_alloc(gfpflags,
1985								node);
1986				continue;
1987			}
1988			n = kmem_cache_alloc_node(kmalloc_caches,
1989							gfpflags, node);
1990
1991			if (!n) {
1992				free_kmem_cache_nodes(s);
1993				return 0;
1994			}
1995
1996		}
1997		s->node[node] = n;
1998		init_kmem_cache_node(n);
1999	}
2000	return 1;
2001}
2002#else
2003static void free_kmem_cache_nodes(struct kmem_cache *s)
2004{
2005}
2006
2007static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2008{
2009	init_kmem_cache_node(&s->local_node);
2010	return 1;
2011}
2012#endif
2013
2014/*
2015 * calculate_sizes() determines the order and the distribution of data within
2016 * a slab object.
2017 */
2018static int calculate_sizes(struct kmem_cache *s)
2019{
2020	unsigned long flags = s->flags;
2021	unsigned long size = s->objsize;
2022	unsigned long align = s->align;
2023
2024	/*
2025	 * Determine if we can poison the object itself. If the user of
2026	 * the slab may touch the object after free or before allocation
2027	 * then we should never poison the object itself.
2028	 */
2029	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2030			!s->ctor)
2031		s->flags |= __OBJECT_POISON;
2032	else
2033		s->flags &= ~__OBJECT_POISON;
2034
2035	/*
2036	 * Round up object size to the next word boundary. We can only
2037	 * place the free pointer at word boundaries and this determines
2038	 * the possible location of the free pointer.
2039	 */
2040	size = ALIGN(size, sizeof(void *));
2041
2042#ifdef CONFIG_SLUB_DEBUG
2043	/*
2044	 * If we are Redzoning then check if there is some space between the
2045	 * end of the object and the free pointer. If not then add an
2046	 * additional word to have some bytes to store Redzone information.
2047	 */
2048	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2049		size += sizeof(void *);
2050#endif
2051
2052	/*
2053	 * With that we have determined the number of bytes in actual use
2054	 * by the object. This is the potential offset to the free pointer.
2055	 */
2056	s->inuse = size;
2057
2058	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2059		s->ctor)) {
2060		/*
2061		 * Relocate free pointer after the object if it is not
2062		 * permitted to overwrite the first word of the object on
2063		 * kmem_cache_free.
2064		 *
2065		 * This is the case if we do RCU, have a constructor or
2066		 * destructor or are poisoning the objects.
2067		 */
2068		s->offset = size;
2069		size += sizeof(void *);
2070	}
2071
2072#ifdef CONFIG_SLUB_DEBUG
2073	if (flags & SLAB_STORE_USER)
2074		/*
2075		 * Need to store information about allocs and frees after
2076		 * the object.
2077		 */
2078		size += 2 * sizeof(struct track);
2079
2080	if (flags & SLAB_RED_ZONE)
2081		/*
2082		 * Add some empty padding so that we can catch
2083		 * overwrites from earlier objects rather than let
2084		 * tracking information or the free pointer be
2085		 * corrupted if an user writes before the start
2086		 * of the object.
2087		 */
2088		size += sizeof(void *);
2089#endif
2090
2091	/*
2092	 * Determine the alignment based on various parameters that the
2093	 * user specified and the dynamic determination of cache line size
2094	 * on bootup.
2095	 */
2096	align = calculate_alignment(flags, align, s->objsize);
2097
2098	/*
2099	 * SLUB stores one object immediately after another beginning from
2100	 * offset 0. In order to align the objects we have to simply size
2101	 * each object to conform to the alignment.
2102	 */
2103	size = ALIGN(size, align);
2104	s->size = size;
2105
2106	s->order = calculate_order(size);
2107	if (s->order < 0)
2108		return 0;
2109
2110	/*
2111	 * Determine the number of objects per slab
2112	 */
2113	s->objects = (PAGE_SIZE << s->order) / size;
2114
2115	/*
2116	 * Verify that the number of objects is within permitted limits.
2117	 * The page->inuse field is only 16 bit wide! So we cannot have
2118	 * more than 64k objects per slab.
2119	 */
2120	if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
2121		return 0;
2122	return 1;
2123
2124}
2125
2126static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2127		const char *name, size_t size,
2128		size_t align, unsigned long flags,
2129		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2130{
2131	memset(s, 0, kmem_size);
2132	s->name = name;
2133	s->ctor = ctor;
2134	s->objsize = size;
2135	s->align = align;
2136	s->flags = kmem_cache_flags(size, flags, name, ctor);
2137
2138	if (!calculate_sizes(s))
2139		goto error;
2140
2141	s->refcount = 1;
2142#ifdef CONFIG_NUMA
2143	s->defrag_ratio = 100;
2144#endif
2145	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2146		goto error;
2147
2148	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2149		return 1;
2150error:
2151	if (flags & SLAB_PANIC)
2152		panic("Cannot create slab %s size=%lu realsize=%u "
2153			"order=%u offset=%u flags=%lx\n",
2154			s->name, (unsigned long)size, s->size, s->order,
2155			s->offset, flags);
2156	return 0;
2157}
2158
2159/*
2160 * Check if a given pointer is valid
2161 */
2162int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2163{
2164	struct page * page;
2165
2166	page = get_object_page(object);
2167
2168	if (!page || s != page->slab)
2169		/* No slab or wrong slab */
2170		return 0;
2171
2172	if (!check_valid_pointer(s, page, object))
2173		return 0;
2174
2175	/*
2176	 * We could also check if the object is on the slabs freelist.
2177	 * But this would be too expensive and it seems that the main
2178	 * purpose of kmem_ptr_valid is to check if the object belongs
2179	 * to a certain slab.
2180	 */
2181	return 1;
2182}
2183EXPORT_SYMBOL(kmem_ptr_validate);
2184
2185/*
2186 * Determine the size of a slab object
2187 */
2188unsigned int kmem_cache_size(struct kmem_cache *s)
2189{
2190	return s->objsize;
2191}
2192EXPORT_SYMBOL(kmem_cache_size);
2193
2194const char *kmem_cache_name(struct kmem_cache *s)
2195{
2196	return s->name;
2197}
2198EXPORT_SYMBOL(kmem_cache_name);
2199
2200/*
2201 * Attempt to free all slabs on a node. Return the number of slabs we
2202 * were unable to free.
2203 */
2204static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2205			struct list_head *list)
2206{
2207	int slabs_inuse = 0;
2208	unsigned long flags;
2209	struct page *page, *h;
2210
2211	spin_lock_irqsave(&n->list_lock, flags);
2212	list_for_each_entry_safe(page, h, list, lru)
2213		if (!page->inuse) {
2214			list_del(&page->lru);
2215			discard_slab(s, page);
2216		} else
2217			slabs_inuse++;
2218	spin_unlock_irqrestore(&n->list_lock, flags);
2219	return slabs_inuse;
2220}
2221
2222/*
2223 * Release all resources used by a slab cache.
2224 */
2225static inline int kmem_cache_close(struct kmem_cache *s)
2226{
2227	int node;
2228
2229	flush_all(s);
2230
2231	/* Attempt to free all objects */
2232	for_each_node_state(node, N_NORMAL_MEMORY) {
2233		struct kmem_cache_node *n = get_node(s, node);
2234
2235		n->nr_partial -= free_list(s, n, &n->partial);
2236		if (atomic_long_read(&n->nr_slabs))
2237			return 1;
2238	}
2239	free_kmem_cache_nodes(s);
2240	return 0;
2241}
2242
2243/*
2244 * Close a cache and release the kmem_cache structure
2245 * (must be used for caches created using kmem_cache_create)
2246 */
2247void kmem_cache_destroy(struct kmem_cache *s)
2248{
2249	down_write(&slub_lock);
2250	s->refcount--;
2251	if (!s->refcount) {
2252		list_del(&s->list);
2253		up_write(&slub_lock);
2254		if (kmem_cache_close(s))
2255			WARN_ON(1);
2256		sysfs_slab_remove(s);
2257		kfree(s);
2258	} else
2259		up_write(&slub_lock);
2260}
2261EXPORT_SYMBOL(kmem_cache_destroy);
2262
2263/********************************************************************
2264 *		Kmalloc subsystem
2265 *******************************************************************/
2266
2267struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2268EXPORT_SYMBOL(kmalloc_caches);
2269
2270#ifdef CONFIG_ZONE_DMA
2271static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2272#endif
2273
2274static int __init setup_slub_min_order(char *str)
2275{
2276	get_option (&str, &slub_min_order);
2277
2278	return 1;
2279}
2280
2281__setup("slub_min_order=", setup_slub_min_order);
2282
2283static int __init setup_slub_max_order(char *str)
2284{
2285	get_option (&str, &slub_max_order);
2286
2287	return 1;
2288}
2289
2290__setup("slub_max_order=", setup_slub_max_order);
2291
2292static int __init setup_slub_min_objects(char *str)
2293{
2294	get_option (&str, &slub_min_objects);
2295
2296	return 1;
2297}
2298
2299__setup("slub_min_objects=", setup_slub_min_objects);
2300
2301static int __init setup_slub_nomerge(char *str)
2302{
2303	slub_nomerge = 1;
2304	return 1;
2305}
2306
2307__setup("slub_nomerge", setup_slub_nomerge);
2308
2309static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2310		const char *name, int size, gfp_t gfp_flags)
2311{
2312	unsigned int flags = 0;
2313
2314	if (gfp_flags & SLUB_DMA)
2315		flags = SLAB_CACHE_DMA;
2316
2317	down_write(&slub_lock);
2318	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2319			flags, NULL))
2320		goto panic;
2321
2322	list_add(&s->list, &slab_caches);
2323	up_write(&slub_lock);
2324	if (sysfs_slab_add(s))
2325		goto panic;
2326	return s;
2327
2328panic:
2329	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2330}
2331
2332#ifdef CONFIG_ZONE_DMA
2333
2334static void sysfs_add_func(struct work_struct *w)
2335{
2336	struct kmem_cache *s;
2337
2338	down_write(&slub_lock);
2339	list_for_each_entry(s, &slab_caches, list) {
2340		if (s->flags & __SYSFS_ADD_DEFERRED) {
2341			s->flags &= ~__SYSFS_ADD_DEFERRED;
2342			sysfs_slab_add(s);
2343		}
2344	}
2345	up_write(&slub_lock);
2346}
2347
2348static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2349
2350static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2351{
2352	struct kmem_cache *s;
2353	char *text;
2354	size_t realsize;
2355
2356	s = kmalloc_caches_dma[index];
2357	if (s)
2358		return s;
2359
2360	/* Dynamically create dma cache */
2361	if (flags & __GFP_WAIT)
2362		down_write(&slub_lock);
2363	else {
2364		if (!down_write_trylock(&slub_lock))
2365			goto out;
2366	}
2367
2368	if (kmalloc_caches_dma[index])
2369		goto unlock_out;
2370
2371	realsize = kmalloc_caches[index].objsize;
2372	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2373	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2374
2375	if (!s || !text || !kmem_cache_open(s, flags, text,
2376			realsize, ARCH_KMALLOC_MINALIGN,
2377			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2378		kfree(s);
2379		kfree(text);
2380		goto unlock_out;
2381	}
2382
2383	list_add(&s->list, &slab_caches);
2384	kmalloc_caches_dma[index] = s;
2385
2386	schedule_work(&sysfs_add_work);
2387
2388unlock_out:
2389	up_write(&slub_lock);
2390out:
2391	return kmalloc_caches_dma[index];
2392}
2393#endif
2394
2395/*
2396 * Conversion table for small slabs sizes / 8 to the index in the
2397 * kmalloc array. This is necessary for slabs < 192 since we have non power
2398 * of two cache sizes there. The size of larger slabs can be determined using
2399 * fls.
2400 */
2401static s8 size_index[24] = {
2402	3,	/* 8 */
2403	4,	/* 16 */
2404	5,	/* 24 */
2405	5,	/* 32 */
2406	6,	/* 40 */
2407	6,	/* 48 */
2408	6,	/* 56 */
2409	6,	/* 64 */
2410	1,	/* 72 */
2411	1,	/* 80 */
2412	1,	/* 88 */
2413	1,	/* 96 */
2414	7,	/* 104 */
2415	7,	/* 112 */
2416	7,	/* 120 */
2417	7,	/* 128 */
2418	2,	/* 136 */
2419	2,	/* 144 */
2420	2,	/* 152 */
2421	2,	/* 160 */
2422	2,	/* 168 */
2423	2,	/* 176 */
2424	2,	/* 184 */
2425	2	/* 192 */
2426};
2427
2428static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2429{
2430	int index;
2431
2432	if (size <= 192) {
2433		if (!size)
2434			return ZERO_SIZE_PTR;
2435
2436		index = size_index[(size - 1) / 8];
2437	} else
2438		index = fls(size - 1);
2439
2440#ifdef CONFIG_ZONE_DMA
2441	if (unlikely((flags & SLUB_DMA)))
2442		return dma_kmalloc_cache(index, flags);
2443
2444#endif
2445	return &kmalloc_caches[index];
2446}
2447
2448void *__kmalloc(size_t size, gfp_t flags)
2449{
2450	struct kmem_cache *s;
2451
2452	if (unlikely(size > PAGE_SIZE / 2))
2453		return (void *)__get_free_pages(flags | __GFP_COMP,
2454							get_order(size));
2455
2456	s = get_slab(size, flags);
2457
2458	if (unlikely(ZERO_OR_NULL_PTR(s)))
2459		return s;
2460
2461	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2462}
2463EXPORT_SYMBOL(__kmalloc);
2464
2465#ifdef CONFIG_NUMA
2466void *__kmalloc_node(size_t size, gfp_t flags, int node)
2467{
2468	struct kmem_cache *s;
2469
2470	if (unlikely(size > PAGE_SIZE / 2))
2471		return (void *)__get_free_pages(flags | __GFP_COMP,
2472							get_order(size));
2473
2474	s = get_slab(size, flags);
2475
2476	if (unlikely(ZERO_OR_NULL_PTR(s)))
2477		return s;
2478
2479	return slab_alloc(s, flags, node, __builtin_return_address(0));
2480}
2481EXPORT_SYMBOL(__kmalloc_node);
2482#endif
2483
2484size_t ksize(const void *object)
2485{
2486	struct page *page;
2487	struct kmem_cache *s;
2488
2489	BUG_ON(!object);
2490	if (unlikely(object == ZERO_SIZE_PTR))
2491		return 0;
2492
2493	page = get_object_page(object);
2494	BUG_ON(!page);
2495	s = page->slab;
2496	BUG_ON(!s);
2497
2498	/*
2499	 * Debugging requires use of the padding between object
2500	 * and whatever may come after it.
2501	 */
2502	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2503		return s->objsize;
2504
2505	/*
2506	 * If we have the need to store the freelist pointer
2507	 * back there or track user information then we can
2508	 * only use the space before that information.
2509	 */
2510	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2511		return s->inuse;
2512
2513	/*
2514	 * Else we can use all the padding etc for the allocation
2515	 */
2516	return s->size;
2517}
2518EXPORT_SYMBOL(ksize);
2519
2520void kfree(const void *x)
2521{
2522	struct page *page;
2523
2524	if (unlikely(ZERO_OR_NULL_PTR(x)))
2525		return;
2526
2527	page = virt_to_head_page(x);
2528	if (unlikely(!PageSlab(page))) {
2529		put_page(page);
2530		return;
2531	}
2532	slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2533}
2534EXPORT_SYMBOL(kfree);
2535
2536/*
2537 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2538 * the remaining slabs by the number of items in use. The slabs with the
2539 * most items in use come first. New allocations will then fill those up
2540 * and thus they can be removed from the partial lists.
2541 *
2542 * The slabs with the least items are placed last. This results in them
2543 * being allocated from last increasing the chance that the last objects
2544 * are freed in them.
2545 */
2546int kmem_cache_shrink(struct kmem_cache *s)
2547{
2548	int node;
2549	int i;
2550	struct kmem_cache_node *n;
2551	struct page *page;
2552	struct page *t;
2553	struct list_head *slabs_by_inuse =
2554		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2555	unsigned long flags;
2556
2557	if (!slabs_by_inuse)
2558		return -ENOMEM;
2559
2560	flush_all(s);
2561	for_each_node_state(node, N_NORMAL_MEMORY) {
2562		n = get_node(s, node);
2563
2564		if (!n->nr_partial)
2565			continue;
2566
2567		for (i = 0; i < s->objects; i++)
2568			INIT_LIST_HEAD(slabs_by_inuse + i);
2569
2570		spin_lock_irqsave(&n->list_lock, flags);
2571
2572		/*
2573		 * Build lists indexed by the items in use in each slab.
2574		 *
2575		 * Note that concurrent frees may occur while we hold the
2576		 * list_lock. page->inuse here is the upper limit.
2577		 */
2578		list_for_each_entry_safe(page, t, &n->partial, lru) {
2579			if (!page->inuse && slab_trylock(page)) {
2580				/*
2581				 * Must hold slab lock here because slab_free
2582				 * may have freed the last object and be
2583				 * waiting to release the slab.
2584				 */
2585				list_del(&page->lru);
2586				n->nr_partial--;
2587				slab_unlock(page);
2588				discard_slab(s, page);
2589			} else {
2590				list_move(&page->lru,
2591				slabs_by_inuse + page->inuse);
2592			}
2593		}
2594
2595		/*
2596		 * Rebuild the partial list with the slabs filled up most
2597		 * first and the least used slabs at the end.
2598		 */
2599		for (i = s->objects - 1; i >= 0; i--)
2600			list_splice(slabs_by_inuse + i, n->partial.prev);
2601
2602		spin_unlock_irqrestore(&n->list_lock, flags);
2603	}
2604
2605	kfree(slabs_by_inuse);
2606	return 0;
2607}
2608EXPORT_SYMBOL(kmem_cache_shrink);
2609
2610/********************************************************************
2611 *			Basic setup of slabs
2612 *******************************************************************/
2613
2614void __init kmem_cache_init(void)
2615{
2616	int i;
2617	int caches = 0;
2618
2619#ifdef CONFIG_NUMA
2620	/*
2621	 * Must first have the slab cache available for the allocations of the
2622	 * struct kmem_cache_node's. There is special bootstrap code in
2623	 * kmem_cache_open for slab_state == DOWN.
2624	 */
2625	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2626		sizeof(struct kmem_cache_node), GFP_KERNEL);
2627	kmalloc_caches[0].refcount = -1;
2628	caches++;
2629#endif
2630
2631	/* Able to allocate the per node structures */
2632	slab_state = PARTIAL;
2633
2634	/* Caches that are not of the two-to-the-power-of size */
2635	if (KMALLOC_MIN_SIZE <= 64) {
2636		create_kmalloc_cache(&kmalloc_caches[1],
2637				"kmalloc-96", 96, GFP_KERNEL);
2638		caches++;
2639	}
2640	if (KMALLOC_MIN_SIZE <= 128) {
2641		create_kmalloc_cache(&kmalloc_caches[2],
2642				"kmalloc-192", 192, GFP_KERNEL);
2643		caches++;
2644	}
2645
2646	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2647		create_kmalloc_cache(&kmalloc_caches[i],
2648			"kmalloc", 1 << i, GFP_KERNEL);
2649		caches++;
2650	}
2651
2652
2653	/*
2654	 * Patch up the size_index table if we have strange large alignment
2655	 * requirements for the kmalloc array. This is only the case for
2656	 * mips it seems. The standard arches will not generate any code here.
2657	 *
2658	 * Largest permitted alignment is 256 bytes due to the way we
2659	 * handle the index determination for the smaller caches.
2660	 *
2661	 * Make sure that nothing crazy happens if someone starts tinkering
2662	 * around with ARCH_KMALLOC_MINALIGN
2663	 */
2664	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2665		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2666
2667	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2668		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2669
2670	slab_state = UP;
2671
2672	/* Provide the correct kmalloc names now that the caches are up */
2673	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2674		kmalloc_caches[i]. name =
2675			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2676
2677#ifdef CONFIG_SMP
2678	register_cpu_notifier(&slab_notifier);
2679#endif
2680
2681	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2682				nr_cpu_ids * sizeof(struct kmem_cache_cpu);
2683
2684	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2685		" CPUs=%d, Nodes=%d\n",
2686		caches, cache_line_size(),
2687		slub_min_order, slub_max_order, slub_min_objects,
2688		nr_cpu_ids, nr_node_ids);
2689}
2690
2691/*
2692 * Find a mergeable slab cache
2693 */
2694static int slab_unmergeable(struct kmem_cache *s)
2695{
2696	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2697		return 1;
2698
2699	if (s->ctor)
2700		return 1;
2701
2702	/*
2703	 * We may have set a slab to be unmergeable during bootstrap.
2704	 */
2705	if (s->refcount < 0)
2706		return 1;
2707
2708	return 0;
2709}
2710
2711static struct kmem_cache *find_mergeable(size_t size,
2712		size_t align, unsigned long flags, const char *name,
2713		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2714{
2715	struct kmem_cache *s;
2716
2717	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2718		return NULL;
2719
2720	if (ctor)
2721		return NULL;
2722
2723	size = ALIGN(size, sizeof(void *));
2724	align = calculate_alignment(flags, align, size);
2725	size = ALIGN(size, align);
2726	flags = kmem_cache_flags(size, flags, name, NULL);
2727
2728	list_for_each_entry(s, &slab_caches, list) {
2729		if (slab_unmergeable(s))
2730			continue;
2731
2732		if (size > s->size)
2733			continue;
2734
2735		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2736				continue;
2737		/*
2738		 * Check if alignment is compatible.
2739		 * Courtesy of Adrian Drzewiecki
2740		 */
2741		if ((s->size & ~(align -1)) != s->size)
2742			continue;
2743
2744		if (s->size - size >= sizeof(void *))
2745			continue;
2746
2747		return s;
2748	}
2749	return NULL;
2750}
2751
2752struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2753		size_t align, unsigned long flags,
2754		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2755{
2756	struct kmem_cache *s;
2757
2758	down_write(&slub_lock);
2759	s = find_mergeable(size, align, flags, name, ctor);
2760	if (s) {
2761		s->refcount++;
2762		/*
2763		 * Adjust the object sizes so that we clear
2764		 * the complete object on kzalloc.
2765		 */
2766		s->objsize = max(s->objsize, (int)size);
2767		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2768		up_write(&slub_lock);
2769		if (sysfs_slab_alias(s, name))
2770			goto err;
2771		return s;
2772	}
2773	s = kmalloc(kmem_size, GFP_KERNEL);
2774	if (s) {
2775		if (kmem_cache_open(s, GFP_KERNEL, name,
2776				size, align, flags, ctor)) {
2777			list_add(&s->list, &slab_caches);
2778			up_write(&slub_lock);
2779			if (sysfs_slab_add(s))
2780				goto err;
2781			return s;
2782		}
2783		kfree(s);
2784	}
2785	up_write(&slub_lock);
2786
2787err:
2788	if (flags & SLAB_PANIC)
2789		panic("Cannot create slabcache %s\n", name);
2790	else
2791		s = NULL;
2792	return s;
2793}
2794EXPORT_SYMBOL(kmem_cache_create);
2795
2796#ifdef CONFIG_SMP
2797/*
2798 * Use the cpu notifier to insure that the cpu slabs are flushed when
2799 * necessary.
2800 */
2801static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2802		unsigned long action, void *hcpu)
2803{
2804	long cpu = (long)hcpu;
2805	struct kmem_cache *s;
2806	unsigned long flags;
2807
2808	switch (action) {
2809	case CPU_UP_CANCELED:
2810	case CPU_UP_CANCELED_FROZEN:
2811	case CPU_DEAD:
2812	case CPU_DEAD_FROZEN:
2813		down_read(&slub_lock);
2814		list_for_each_entry(s, &slab_caches, list) {
2815			local_irq_save(flags);
2816			__flush_cpu_slab(s, cpu);
2817			local_irq_restore(flags);
2818		}
2819		up_read(&slub_lock);
2820		break;
2821	default:
2822		break;
2823	}
2824	return NOTIFY_OK;
2825}
2826
2827static struct notifier_block __cpuinitdata slab_notifier =
2828	{ &slab_cpuup_callback, NULL, 0 };
2829
2830#endif
2831
2832void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2833{
2834	struct kmem_cache *s;
2835
2836	if (unlikely(size > PAGE_SIZE / 2))
2837		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2838							get_order(size));
2839	s = get_slab(size, gfpflags);
2840
2841	if (unlikely(ZERO_OR_NULL_PTR(s)))
2842		return s;
2843
2844	return slab_alloc(s, gfpflags, -1, caller);
2845}
2846
2847void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2848					int node, void *caller)
2849{
2850	struct kmem_cache *s;
2851
2852	if (unlikely(size > PAGE_SIZE / 2))
2853		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2854							get_order(size));
2855	s = get_slab(size, gfpflags);
2856
2857	if (unlikely(ZERO_OR_NULL_PTR(s)))
2858		return s;
2859
2860	return slab_alloc(s, gfpflags, node, caller);
2861}
2862
2863#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2864static int validate_slab(struct kmem_cache *s, struct page *page,
2865						unsigned long *map)
2866{
2867	void *p;
2868	void *addr = page_address(page);
2869
2870	if (!check_slab(s, page) ||
2871			!on_freelist(s, page, NULL))
2872		return 0;
2873
2874	/* Now we know that a valid freelist exists */
2875	bitmap_zero(map, s->objects);
2876
2877	for_each_free_object(p, s, page->freelist) {
2878		set_bit(slab_index(p, s, addr), map);
2879		if (!check_object(s, page, p, 0))
2880			return 0;
2881	}
2882
2883	for_each_object(p, s, addr)
2884		if (!test_bit(slab_index(p, s, addr), map))
2885			if (!check_object(s, page, p, 1))
2886				return 0;
2887	return 1;
2888}
2889
2890static void validate_slab_slab(struct kmem_cache *s, struct page *page,
2891						unsigned long *map)
2892{
2893	if (slab_trylock(page)) {
2894		validate_slab(s, page, map);
2895		slab_unlock(page);
2896	} else
2897		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2898			s->name, page);
2899
2900	if (s->flags & DEBUG_DEFAULT_FLAGS) {
2901		if (!SlabDebug(page))
2902			printk(KERN_ERR "SLUB %s: SlabDebug not set "
2903				"on slab 0x%p\n", s->name, page);
2904	} else {
2905		if (SlabDebug(page))
2906			printk(KERN_ERR "SLUB %s: SlabDebug set on "
2907				"slab 0x%p\n", s->name, page);
2908	}
2909}
2910
2911static int validate_slab_node(struct kmem_cache *s,
2912		struct kmem_cache_node *n, unsigned long *map)
2913{
2914	unsigned long count = 0;
2915	struct page *page;
2916	unsigned long flags;
2917
2918	spin_lock_irqsave(&n->list_lock, flags);
2919
2920	list_for_each_entry(page, &n->partial, lru) {
2921		validate_slab_slab(s, page, map);
2922		count++;
2923	}
2924	if (count != n->nr_partial)
2925		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2926			"counter=%ld\n", s->name, count, n->nr_partial);
2927
2928	if (!(s->flags & SLAB_STORE_USER))
2929		goto out;
2930
2931	list_for_each_entry(page, &n->full, lru) {
2932		validate_slab_slab(s, page, map);
2933		count++;
2934	}
2935	if (count != atomic_long_read(&n->nr_slabs))
2936		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2937			"counter=%ld\n", s->name, count,
2938			atomic_long_read(&n->nr_slabs));
2939
2940out:
2941	spin_unlock_irqrestore(&n->list_lock, flags);
2942	return count;
2943}
2944
2945static long validate_slab_cache(struct kmem_cache *s)
2946{
2947	int node;
2948	unsigned long count = 0;
2949	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
2950				sizeof(unsigned long), GFP_KERNEL);
2951
2952	if (!map)
2953		return -ENOMEM;
2954
2955	flush_all(s);
2956	for_each_node_state(node, N_NORMAL_MEMORY) {
2957		struct kmem_cache_node *n = get_node(s, node);
2958
2959		count += validate_slab_node(s, n, map);
2960	}
2961	kfree(map);
2962	return count;
2963}
2964
2965#ifdef SLUB_RESILIENCY_TEST
2966static void resiliency_test(void)
2967{
2968	u8 *p;
2969
2970	printk(KERN_ERR "SLUB resiliency testing\n");
2971	printk(KERN_ERR "-----------------------\n");
2972	printk(KERN_ERR "A. Corruption after allocation\n");
2973
2974	p = kzalloc(16, GFP_KERNEL);
2975	p[16] = 0x12;
2976	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2977			" 0x12->0x%p\n\n", p + 16);
2978
2979	validate_slab_cache(kmalloc_caches + 4);
2980
2981	/* Hmmm... The next two are dangerous */
2982	p = kzalloc(32, GFP_KERNEL);
2983	p[32 + sizeof(void *)] = 0x34;
2984	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2985		 	" 0x34 -> -0x%p\n", p);
2986	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2987
2988	validate_slab_cache(kmalloc_caches + 5);
2989	p = kzalloc(64, GFP_KERNEL);
2990	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2991	*p = 0x56;
2992	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2993									p);
2994	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2995	validate_slab_cache(kmalloc_caches + 6);
2996
2997	printk(KERN_ERR "\nB. Corruption after free\n");
2998	p = kzalloc(128, GFP_KERNEL);
2999	kfree(p);
3000	*p = 0x78;
3001	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3002	validate_slab_cache(kmalloc_caches + 7);
3003
3004	p = kzalloc(256, GFP_KERNEL);
3005	kfree(p);
3006	p[50] = 0x9a;
3007	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3008	validate_slab_cache(kmalloc_caches + 8);
3009
3010	p = kzalloc(512, GFP_KERNEL);
3011	kfree(p);
3012	p[512] = 0xab;
3013	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3014	validate_slab_cache(kmalloc_caches + 9);
3015}
3016#else
3017static void resiliency_test(void) {};
3018#endif
3019
3020/*
3021 * Generate lists of code addresses where slabcache objects are allocated
3022 * and freed.
3023 */
3024
3025struct location {
3026	unsigned long count;
3027	void *addr;
3028	long long sum_time;
3029	long min_time;
3030	long max_time;
3031	long min_pid;
3032	long max_pid;
3033	cpumask_t cpus;
3034	nodemask_t nodes;
3035};
3036
3037struct loc_track {
3038	unsigned long max;
3039	unsigned long count;
3040	struct location *loc;
3041};
3042
3043static void free_loc_track(struct loc_track *t)
3044{
3045	if (t->max)
3046		free_pages((unsigned long)t->loc,
3047			get_order(sizeof(struct location) * t->max));
3048}
3049
3050static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3051{
3052	struct location *l;
3053	int order;
3054
3055	order = get_order(sizeof(struct location) * max);
3056
3057	l = (void *)__get_free_pages(flags, order);
3058	if (!l)
3059		return 0;
3060
3061	if (t->count) {
3062		memcpy(l, t->loc, sizeof(struct location) * t->count);
3063		free_loc_track(t);
3064	}
3065	t->max = max;
3066	t->loc = l;
3067	return 1;
3068}
3069
3070static int add_location(struct loc_track *t, struct kmem_cache *s,
3071				const struct track *track)
3072{
3073	long start, end, pos;
3074	struct location *l;
3075	void *caddr;
3076	unsigned long age = jiffies - track->when;
3077
3078	start = -1;
3079	end = t->count;
3080
3081	for ( ; ; ) {
3082		pos = start + (end - start + 1) / 2;
3083
3084		/*
3085		 * There is nothing at "end". If we end up there
3086		 * we need to add something to before end.
3087		 */
3088		if (pos == end)
3089			break;
3090
3091		caddr = t->loc[pos].addr;
3092		if (track->addr == caddr) {
3093
3094			l = &t->loc[pos];
3095			l->count++;
3096			if (track->when) {
3097				l->sum_time += age;
3098				if (age < l->min_time)
3099					l->min_time = age;
3100				if (age > l->max_time)
3101					l->max_time = age;
3102
3103				if (track->pid < l->min_pid)
3104					l->min_pid = track->pid;
3105				if (track->pid > l->max_pid)
3106					l->max_pid = track->pid;
3107
3108				cpu_set(track->cpu, l->cpus);
3109			}
3110			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3111			return 1;
3112		}
3113
3114		if (track->addr < caddr)
3115			end = pos;
3116		else
3117			start = pos;
3118	}
3119
3120	/*
3121	 * Not found. Insert new tracking element.
3122	 */
3123	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3124		return 0;
3125
3126	l = t->loc + pos;
3127	if (pos < t->count)
3128		memmove(l + 1, l,
3129			(t->count - pos) * sizeof(struct location));
3130	t->count++;
3131	l->count = 1;
3132	l->addr = track->addr;
3133	l->sum_time = age;
3134	l->min_time = age;
3135	l->max_time = age;
3136	l->min_pid = track->pid;
3137	l->max_pid = track->pid;
3138	cpus_clear(l->cpus);
3139	cpu_set(track->cpu, l->cpus);
3140	nodes_clear(l->nodes);
3141	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3142	return 1;
3143}
3144
3145static void process_slab(struct loc_track *t, struct kmem_cache *s,
3146		struct page *page, enum track_item alloc)
3147{
3148	void *addr = page_address(page);
3149	DECLARE_BITMAP(map, s->objects);
3150	void *p;
3151
3152	bitmap_zero(map, s->objects);
3153	for_each_free_object(p, s, page->freelist)
3154		set_bit(slab_index(p, s, addr), map);
3155
3156	for_each_object(p, s, addr)
3157		if (!test_bit(slab_index(p, s, addr), map))
3158			add_location(t, s, get_track(s, p, alloc));
3159}
3160
3161static int list_locations(struct kmem_cache *s, char *buf,
3162					enum track_item alloc)
3163{
3164	int n = 0;
3165	unsigned long i;
3166	struct loc_track t = { 0, 0, NULL };
3167	int node;
3168
3169	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3170			GFP_KERNEL))
3171		return sprintf(buf, "Out of memory\n");
3172
3173	/* Push back cpu slabs */
3174	flush_all(s);
3175
3176	for_each_node_state(node, N_NORMAL_MEMORY) {
3177		struct kmem_cache_node *n = get_node(s, node);
3178		unsigned long flags;
3179		struct page *page;
3180
3181		if (!atomic_long_read(&n->nr_slabs))
3182			continue;
3183
3184		spin_lock_irqsave(&n->list_lock, flags);
3185		list_for_each_entry(page, &n->partial, lru)
3186			process_slab(&t, s, page, alloc);
3187		list_for_each_entry(page, &n->full, lru)
3188			process_slab(&t, s, page, alloc);
3189		spin_unlock_irqrestore(&n->list_lock, flags);
3190	}
3191
3192	for (i = 0; i < t.count; i++) {
3193		struct location *l = &t.loc[i];
3194
3195		if (n > PAGE_SIZE - 100)
3196			break;
3197		n += sprintf(buf + n, "%7ld ", l->count);
3198
3199		if (l->addr)
3200			n += sprint_symbol(buf + n, (unsigned long)l->addr);
3201		else
3202			n += sprintf(buf + n, "<not-available>");
3203
3204		if (l->sum_time != l->min_time) {
3205			unsigned long remainder;
3206
3207			n += sprintf(buf + n, " age=%ld/%ld/%ld",
3208			l->min_time,
3209			div_long_long_rem(l->sum_time, l->count, &remainder),
3210			l->max_time);
3211		} else
3212			n += sprintf(buf + n, " age=%ld",
3213				l->min_time);
3214
3215		if (l->min_pid != l->max_pid)
3216			n += sprintf(buf + n, " pid=%ld-%ld",
3217				l->min_pid, l->max_pid);
3218		else
3219			n += sprintf(buf + n, " pid=%ld",
3220				l->min_pid);
3221
3222		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3223				n < PAGE_SIZE - 60) {
3224			n += sprintf(buf + n, " cpus=");
3225			n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3226					l->cpus);
3227		}
3228
3229		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3230				n < PAGE_SIZE - 60) {
3231			n += sprintf(buf + n, " nodes=");
3232			n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3233					l->nodes);
3234		}
3235
3236		n += sprintf(buf + n, "\n");
3237	}
3238
3239	free_loc_track(&t);
3240	if (!t.count)
3241		n += sprintf(buf, "No data\n");
3242	return n;
3243}
3244
3245static unsigned long count_partial(struct kmem_cache_node *n)
3246{
3247	unsigned long flags;
3248	unsigned long x = 0;
3249	struct page *page;
3250
3251	spin_lock_irqsave(&n->list_lock, flags);
3252	list_for_each_entry(page, &n->partial, lru)
3253		x += page->inuse;
3254	spin_unlock_irqrestore(&n->list_lock, flags);
3255	return x;
3256}
3257
3258enum slab_stat_type {
3259	SL_FULL,
3260	SL_PARTIAL,
3261	SL_CPU,
3262	SL_OBJECTS
3263};
3264
3265#define SO_FULL		(1 << SL_FULL)
3266#define SO_PARTIAL	(1 << SL_PARTIAL)
3267#define SO_CPU		(1 << SL_CPU)
3268#define SO_OBJECTS	(1 << SL_OBJECTS)
3269
3270static unsigned long slab_objects(struct kmem_cache *s,
3271			char *buf, unsigned long flags)
3272{
3273	unsigned long total = 0;
3274	int cpu;
3275	int node;
3276	int x;
3277	unsigned long *nodes;
3278	unsigned long *per_cpu;
3279
3280	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3281	per_cpu = nodes + nr_node_ids;
3282
3283	for_each_possible_cpu(cpu) {
3284		struct page *page;
3285		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3286
3287		if (!c)
3288			continue;
3289
3290		page = c->page;
3291		if (page) {
3292			if (flags & SO_CPU) {
3293				int x = 0;
3294
3295				if (flags & SO_OBJECTS)
3296					x = page->inuse;
3297				else
3298					x = 1;
3299				total += x;
3300				nodes[c->node] += x;
3301			}
3302			per_cpu[c->node]++;
3303		}
3304	}
3305
3306	for_each_node_state(node, N_NORMAL_MEMORY) {
3307		struct kmem_cache_node *n = get_node(s, node);
3308
3309		if (flags & SO_PARTIAL) {
3310			if (flags & SO_OBJECTS)
3311				x = count_partial(n);
3312			else
3313				x = n->nr_partial;
3314			total += x;
3315			nodes[node] += x;
3316		}
3317
3318		if (flags & SO_FULL) {
3319			int full_slabs = atomic_long_read(&n->nr_slabs)
3320					- per_cpu[node]
3321					- n->nr_partial;
3322
3323			if (flags & SO_OBJECTS)
3324				x = full_slabs * s->objects;
3325			else
3326				x = full_slabs;
3327			total += x;
3328			nodes[node] += x;
3329		}
3330	}
3331
3332	x = sprintf(buf, "%lu", total);
3333#ifdef CONFIG_NUMA
3334	for_each_node_state(node, N_NORMAL_MEMORY)
3335		if (nodes[node])
3336			x += sprintf(buf + x, " N%d=%lu",
3337					node, nodes[node]);
3338#endif
3339	kfree(nodes);
3340	return x + sprintf(buf + x, "\n");
3341}
3342
3343static int any_slab_objects(struct kmem_cache *s)
3344{
3345	int node;
3346	int cpu;
3347
3348	for_each_possible_cpu(cpu) {
3349		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3350
3351		if (c && c->page)
3352			return 1;
3353	}
3354
3355	for_each_online_node(node) {
3356		struct kmem_cache_node *n = get_node(s, node);
3357
3358		if (!n)
3359			continue;
3360
3361		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3362			return 1;
3363	}
3364	return 0;
3365}
3366
3367#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3368#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3369
3370struct slab_attribute {
3371	struct attribute attr;
3372	ssize_t (*show)(struct kmem_cache *s, char *buf);
3373	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3374};
3375
3376#define SLAB_ATTR_RO(_name) \
3377	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3378
3379#define SLAB_ATTR(_name) \
3380	static struct slab_attribute _name##_attr =  \
3381	__ATTR(_name, 0644, _name##_show, _name##_store)
3382
3383static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3384{
3385	return sprintf(buf, "%d\n", s->size);
3386}
3387SLAB_ATTR_RO(slab_size);
3388
3389static ssize_t align_show(struct kmem_cache *s, char *buf)
3390{
3391	return sprintf(buf, "%d\n", s->align);
3392}
3393SLAB_ATTR_RO(align);
3394
3395static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3396{
3397	return sprintf(buf, "%d\n", s->objsize);
3398}
3399SLAB_ATTR_RO(object_size);
3400
3401static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3402{
3403	return sprintf(buf, "%d\n", s->objects);
3404}
3405SLAB_ATTR_RO(objs_per_slab);
3406
3407static ssize_t order_show(struct kmem_cache *s, char *buf)
3408{
3409	return sprintf(buf, "%d\n", s->order);
3410}
3411SLAB_ATTR_RO(order);
3412
3413static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3414{
3415	if (s->ctor) {
3416		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3417
3418		return n + sprintf(buf + n, "\n");
3419	}
3420	return 0;
3421}
3422SLAB_ATTR_RO(ctor);
3423
3424static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3425{
3426	return sprintf(buf, "%d\n", s->refcount - 1);
3427}
3428SLAB_ATTR_RO(aliases);
3429
3430static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3431{
3432	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3433}
3434SLAB_ATTR_RO(slabs);
3435
3436static ssize_t partial_show(struct kmem_cache *s, char *buf)
3437{
3438	return slab_objects(s, buf, SO_PARTIAL);
3439}
3440SLAB_ATTR_RO(partial);
3441
3442static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3443{
3444	return slab_objects(s, buf, SO_CPU);
3445}
3446SLAB_ATTR_RO(cpu_slabs);
3447
3448static ssize_t objects_show(struct kmem_cache *s, char *buf)
3449{
3450	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3451}
3452SLAB_ATTR_RO(objects);
3453
3454static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3455{
3456	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3457}
3458
3459static ssize_t sanity_checks_store(struct kmem_cache *s,
3460				const char *buf, size_t length)
3461{
3462	s->flags &= ~SLAB_DEBUG_FREE;
3463	if (buf[0] == '1')
3464		s->flags |= SLAB_DEBUG_FREE;
3465	return length;
3466}
3467SLAB_ATTR(sanity_checks);
3468
3469static ssize_t trace_show(struct kmem_cache *s, char *buf)
3470{
3471	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3472}
3473
3474static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3475							size_t length)
3476{
3477	s->flags &= ~SLAB_TRACE;
3478	if (buf[0] == '1')
3479		s->flags |= SLAB_TRACE;
3480	return length;
3481}
3482SLAB_ATTR(trace);
3483
3484static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3485{
3486	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3487}
3488
3489static ssize_t reclaim_account_store(struct kmem_cache *s,
3490				const char *buf, size_t length)
3491{
3492	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3493	if (buf[0] == '1')
3494		s->flags |= SLAB_RECLAIM_ACCOUNT;
3495	return length;
3496}
3497SLAB_ATTR(reclaim_account);
3498
3499static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3500{
3501	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3502}
3503SLAB_ATTR_RO(hwcache_align);
3504
3505#ifdef CONFIG_ZONE_DMA
3506static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3507{
3508	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3509}
3510SLAB_ATTR_RO(cache_dma);
3511#endif
3512
3513static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3514{
3515	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3516}
3517SLAB_ATTR_RO(destroy_by_rcu);
3518
3519static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3520{
3521	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3522}
3523
3524static ssize_t red_zone_store(struct kmem_cache *s,
3525				const char *buf, size_t length)
3526{
3527	if (any_slab_objects(s))
3528		return -EBUSY;
3529
3530	s->flags &= ~SLAB_RED_ZONE;
3531	if (buf[0] == '1')
3532		s->flags |= SLAB_RED_ZONE;
3533	calculate_sizes(s);
3534	return length;
3535}
3536SLAB_ATTR(red_zone);
3537
3538static ssize_t poison_show(struct kmem_cache *s, char *buf)
3539{
3540	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3541}
3542
3543static ssize_t poison_store(struct kmem_cache *s,
3544				const char *buf, size_t length)
3545{
3546	if (any_slab_objects(s))
3547		return -EBUSY;
3548
3549	s->flags &= ~SLAB_POISON;
3550	if (buf[0] == '1')
3551		s->flags |= SLAB_POISON;
3552	calculate_sizes(s);
3553	return length;
3554}
3555SLAB_ATTR(poison);
3556
3557static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3558{
3559	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3560}
3561
3562static ssize_t store_user_store(struct kmem_cache *s,
3563				const char *buf, size_t length)
3564{
3565	if (any_slab_objects(s))
3566		return -EBUSY;
3567
3568	s->flags &= ~SLAB_STORE_USER;
3569	if (buf[0] == '1')
3570		s->flags |= SLAB_STORE_USER;
3571	calculate_sizes(s);
3572	return length;
3573}
3574SLAB_ATTR(store_user);
3575
3576static ssize_t validate_show(struct kmem_cache *s, char *buf)
3577{
3578	return 0;
3579}
3580
3581static ssize_t validate_store(struct kmem_cache *s,
3582			const char *buf, size_t length)
3583{
3584	int ret = -EINVAL;
3585
3586	if (buf[0] == '1') {
3587		ret = validate_slab_cache(s);
3588		if (ret >= 0)
3589			ret = length;
3590	}
3591	return ret;
3592}
3593SLAB_ATTR(validate);
3594
3595static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3596{
3597	return 0;
3598}
3599
3600static ssize_t shrink_store(struct kmem_cache *s,
3601			const char *buf, size_t length)
3602{
3603	if (buf[0] == '1') {
3604		int rc = kmem_cache_shrink(s);
3605
3606		if (rc)
3607			return rc;
3608	} else
3609		return -EINVAL;
3610	return length;
3611}
3612SLAB_ATTR(shrink);
3613
3614static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3615{
3616	if (!(s->flags & SLAB_STORE_USER))
3617		return -ENOSYS;
3618	return list_locations(s, buf, TRACK_ALLOC);
3619}
3620SLAB_ATTR_RO(alloc_calls);
3621
3622static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3623{
3624	if (!(s->flags & SLAB_STORE_USER))
3625		return -ENOSYS;
3626	return list_locations(s, buf, TRACK_FREE);
3627}
3628SLAB_ATTR_RO(free_calls);
3629
3630#ifdef CONFIG_NUMA
3631static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3632{
3633	return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3634}
3635
3636static ssize_t defrag_ratio_store(struct kmem_cache *s,
3637				const char *buf, size_t length)
3638{
3639	int n = simple_strtoul(buf, NULL, 10);
3640
3641	if (n < 100)
3642		s->defrag_ratio = n * 10;
3643	return length;
3644}
3645SLAB_ATTR(defrag_ratio);
3646#endif
3647
3648static struct attribute * slab_attrs[] = {
3649	&slab_size_attr.attr,
3650	&object_size_attr.attr,
3651	&objs_per_slab_attr.attr,
3652	&order_attr.attr,
3653	&objects_attr.attr,
3654	&slabs_attr.attr,
3655	&partial_attr.attr,
3656	&cpu_slabs_attr.attr,
3657	&ctor_attr.attr,
3658	&aliases_attr.attr,
3659	&align_attr.attr,
3660	&sanity_checks_attr.attr,
3661	&trace_attr.attr,
3662	&hwcache_align_attr.attr,
3663	&reclaim_account_attr.attr,
3664	&destroy_by_rcu_attr.attr,
3665	&red_zone_attr.attr,
3666	&poison_attr.attr,
3667	&store_user_attr.attr,
3668	&validate_attr.attr,
3669	&shrink_attr.attr,
3670	&alloc_calls_attr.attr,
3671	&free_calls_attr.attr,
3672#ifdef CONFIG_ZONE_DMA
3673	&cache_dma_attr.attr,
3674#endif
3675#ifdef CONFIG_NUMA
3676	&defrag_ratio_attr.attr,
3677#endif
3678	NULL
3679};
3680
3681static struct attribute_group slab_attr_group = {
3682	.attrs = slab_attrs,
3683};
3684
3685static ssize_t slab_attr_show(struct kobject *kobj,
3686				struct attribute *attr,
3687				char *buf)
3688{
3689	struct slab_attribute *attribute;
3690	struct kmem_cache *s;
3691	int err;
3692
3693	attribute = to_slab_attr(attr);
3694	s = to_slab(kobj);
3695
3696	if (!attribute->show)
3697		return -EIO;
3698
3699	err = attribute->show(s, buf);
3700
3701	return err;
3702}
3703
3704static ssize_t slab_attr_store(struct kobject *kobj,
3705				struct attribute *attr,
3706				const char *buf, size_t len)
3707{
3708	struct slab_attribute *attribute;
3709	struct kmem_cache *s;
3710	int err;
3711
3712	attribute = to_slab_attr(attr);
3713	s = to_slab(kobj);
3714
3715	if (!attribute->store)
3716		return -EIO;
3717
3718	err = attribute->store(s, buf, len);
3719
3720	return err;
3721}
3722
3723static struct sysfs_ops slab_sysfs_ops = {
3724	.show = slab_attr_show,
3725	.store = slab_attr_store,
3726};
3727
3728static struct kobj_type slab_ktype = {
3729	.sysfs_ops = &slab_sysfs_ops,
3730};
3731
3732static int uevent_filter(struct kset *kset, struct kobject *kobj)
3733{
3734	struct kobj_type *ktype = get_ktype(kobj);
3735
3736	if (ktype == &slab_ktype)
3737		return 1;
3738	return 0;
3739}
3740
3741static struct kset_uevent_ops slab_uevent_ops = {
3742	.filter = uevent_filter,
3743};
3744
3745static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3746
3747#define ID_STR_LENGTH 64
3748
3749/* Create a unique string id for a slab cache:
3750 * format
3751 * :[flags-]size:[memory address of kmemcache]
3752 */
3753static char *create_unique_id(struct kmem_cache *s)
3754{
3755	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3756	char *p = name;
3757
3758	BUG_ON(!name);
3759
3760	*p++ = ':';
3761	/*
3762	 * First flags affecting slabcache operations. We will only
3763	 * get here for aliasable slabs so we do not need to support
3764	 * too many flags. The flags here must cover all flags that
3765	 * are matched during merging to guarantee that the id is
3766	 * unique.
3767	 */
3768	if (s->flags & SLAB_CACHE_DMA)
3769		*p++ = 'd';
3770	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3771		*p++ = 'a';
3772	if (s->flags & SLAB_DEBUG_FREE)
3773		*p++ = 'F';
3774	if (p != name + 1)
3775		*p++ = '-';
3776	p += sprintf(p, "%07d", s->size);
3777	BUG_ON(p > name + ID_STR_LENGTH - 1);
3778	return name;
3779}
3780
3781static int sysfs_slab_add(struct kmem_cache *s)
3782{
3783	int err;
3784	const char *name;
3785	int unmergeable;
3786
3787	if (slab_state < SYSFS)
3788		/* Defer until later */
3789		return 0;
3790
3791	unmergeable = slab_unmergeable(s);
3792	if (unmergeable) {
3793		/*
3794		 * Slabcache can never be merged so we can use the name proper.
3795		 * This is typically the case for debug situations. In that
3796		 * case we can catch duplicate names easily.
3797		 */
3798		sysfs_remove_link(&slab_subsys.kobj, s->name);
3799		name = s->name;
3800	} else {
3801		/*
3802		 * Create a unique name for the slab as a target
3803		 * for the symlinks.
3804		 */
3805		name = create_unique_id(s);
3806	}
3807
3808	kobj_set_kset_s(s, slab_subsys);
3809	kobject_set_name(&s->kobj, name);
3810	kobject_init(&s->kobj);
3811	err = kobject_add(&s->kobj);
3812	if (err)
3813		return err;
3814
3815	err = sysfs_create_group(&s->kobj, &slab_attr_group);
3816	if (err)
3817		return err;
3818	kobject_uevent(&s->kobj, KOBJ_ADD);
3819	if (!unmergeable) {
3820		/* Setup first alias */
3821		sysfs_slab_alias(s, s->name);
3822		kfree(name);
3823	}
3824	return 0;
3825}
3826
3827static void sysfs_slab_remove(struct kmem_cache *s)
3828{
3829	kobject_uevent(&s->kobj, KOBJ_REMOVE);
3830	kobject_del(&s->kobj);
3831}
3832
3833/*
3834 * Need to buffer aliases during bootup until sysfs becomes
3835 * available lest we loose that information.
3836 */
3837struct saved_alias {
3838	struct kmem_cache *s;
3839	const char *name;
3840	struct saved_alias *next;
3841};
3842
3843static struct saved_alias *alias_list;
3844
3845static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3846{
3847	struct saved_alias *al;
3848
3849	if (slab_state == SYSFS) {
3850		/*
3851		 * If we have a leftover link then remove it.
3852		 */
3853		sysfs_remove_link(&slab_subsys.kobj, name);
3854		return sysfs_create_link(&slab_subsys.kobj,
3855						&s->kobj, name);
3856	}
3857
3858	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3859	if (!al)
3860		return -ENOMEM;
3861
3862	al->s = s;
3863	al->name = name;
3864	al->next = alias_list;
3865	alias_list = al;
3866	return 0;
3867}
3868
3869static int __init slab_sysfs_init(void)
3870{
3871	struct kmem_cache *s;
3872	int err;
3873
3874	err = subsystem_register(&slab_subsys);
3875	if (err) {
3876		printk(KERN_ERR "Cannot register slab subsystem.\n");
3877		return -ENOSYS;
3878	}
3879
3880	slab_state = SYSFS;
3881
3882	list_for_each_entry(s, &slab_caches, list) {
3883		err = sysfs_slab_add(s);
3884		if (err)
3885			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
3886						" to sysfs\n", s->name);
3887	}
3888
3889	while (alias_list) {
3890		struct saved_alias *al = alias_list;
3891
3892		alias_list = alias_list->next;
3893		err = sysfs_slab_alias(al->s, al->name);
3894		if (err)
3895			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
3896					" %s to sysfs\n", s->name);
3897		kfree(al);
3898	}
3899
3900	resiliency_test();
3901	return 0;
3902}
3903
3904__initcall(slab_sysfs_init);
3905#endif
3906