slub.c revision e12ba74d8ff3e2f73a583500d7095e406df4d093
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 *   1. slab_lock(page)
27 *   2. slab->list_lock
28 *
29 *   The slab_lock protects operations on the object of a particular
30 *   slab and its metadata in the page struct. If the slab lock
31 *   has been taken then no allocations nor frees can be performed
32 *   on the objects in the slab nor can the slab be added or removed
33 *   from the partial or full lists since this would mean modifying
34 *   the page_struct of the slab.
35 *
36 *   The list_lock protects the partial and full list on each node and
37 *   the partial slab counter. If taken then no new slabs may be added or
38 *   removed from the lists nor make the number of partial slabs be modified.
39 *   (Note that the total number of slabs is an atomic value that may be
40 *   modified without taking the list lock).
41 *
42 *   The list_lock is a centralized lock and thus we avoid taking it as
43 *   much as possible. As long as SLUB does not have to handle partial
44 *   slabs, operations can continue without any centralized lock. F.e.
45 *   allocating a long series of objects that fill up slabs does not require
46 *   the list lock.
47 *
48 *   The lock order is sometimes inverted when we are trying to get a slab
49 *   off a list. We take the list_lock and then look for a page on the list
50 *   to use. While we do that objects in the slabs may be freed. We can
51 *   only operate on the slab if we have also taken the slab_lock. So we use
52 *   a slab_trylock() on the slab. If trylock was successful then no frees
53 *   can occur anymore and we can use the slab for allocations etc. If the
54 *   slab_trylock() does not succeed then frees are in progress in the slab and
55 *   we must stay away from it for a while since we may cause a bouncing
56 *   cacheline if we try to acquire the lock. So go onto the next slab.
57 *   If all pages are busy then we may allocate a new slab instead of reusing
58 *   a partial slab. A new slab has noone operating on it and thus there is
59 *   no danger of cacheline contention.
60 *
61 *   Interrupts are disabled during allocation and deallocation in order to
62 *   make the slab allocator safe to use in the context of an irq. In addition
63 *   interrupts are disabled to ensure that the processor does not change
64 *   while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive 		The slab is frozen and exempt from list processing.
82 * 			This means that the slab is dedicated to a purpose
83 * 			such as satisfying allocations for a specific
84 * 			processor. Objects may be freed in the slab while
85 * 			it is frozen but slab_free will then skip the usual
86 * 			list operations. It is up to the processor holding
87 * 			the slab to integrate the slab into the slab lists
88 * 			when the slab is no longer needed.
89 *
90 * 			One use of this flag is to mark slabs that are
91 * 			used for allocations. Then such a slab becomes a cpu
92 * 			slab. The cpu slab may be equipped with an additional
93 * 			lockless_freelist that allows lockless access to
94 * 			free objects in addition to the regular freelist
95 * 			that requires the slab lock.
96 *
97 * PageError		Slab requires special handling due to debug
98 * 			options set. This moves	slab handling out of
99 * 			the fast path and disables lockless freelists.
100 */
101
102#define FROZEN (1 << PG_active)
103
104#ifdef CONFIG_SLUB_DEBUG
105#define SLABDEBUG (1 << PG_error)
106#else
107#define SLABDEBUG 0
108#endif
109
110static inline int SlabFrozen(struct page *page)
111{
112	return page->flags & FROZEN;
113}
114
115static inline void SetSlabFrozen(struct page *page)
116{
117	page->flags |= FROZEN;
118}
119
120static inline void ClearSlabFrozen(struct page *page)
121{
122	page->flags &= ~FROZEN;
123}
124
125static inline int SlabDebug(struct page *page)
126{
127	return page->flags & SLABDEBUG;
128}
129
130static inline void SetSlabDebug(struct page *page)
131{
132	page->flags |= SLABDEBUG;
133}
134
135static inline void ClearSlabDebug(struct page *page)
136{
137	page->flags &= ~SLABDEBUG;
138}
139
140/*
141 * Issues still to be resolved:
142 *
143 * - The per cpu array is updated for each new slab and and is a remote
144 *   cacheline for most nodes. This could become a bouncing cacheline given
145 *   enough frequent updates. There are 16 pointers in a cacheline, so at
146 *   max 16 cpus could compete for the cacheline which may be okay.
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
156#if PAGE_SHIFT <= 12
157
158/*
159 * Small page size. Make sure that we do not fragment memory
160 */
161#define DEFAULT_MAX_ORDER 1
162#define DEFAULT_MIN_OBJECTS 4
163
164#else
165
166/*
167 * Large page machines are customarily able to handle larger
168 * page orders.
169 */
170#define DEFAULT_MAX_ORDER 2
171#define DEFAULT_MIN_OBJECTS 8
172
173#endif
174
175/*
176 * Mininum number of partial slabs. These will be left on the partial
177 * lists even if they are empty. kmem_cache_shrink may reclaim them.
178 */
179#define MIN_PARTIAL 2
180
181/*
182 * Maximum number of desirable partial slabs.
183 * The existence of more partial slabs makes kmem_cache_shrink
184 * sort the partial list by the number of objects in the.
185 */
186#define MAX_PARTIAL 10
187
188#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
189				SLAB_POISON | SLAB_STORE_USER)
190
191/*
192 * Set of flags that will prevent slab merging
193 */
194#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
195		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
196
197#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
198		SLAB_CACHE_DMA)
199
200#ifndef ARCH_KMALLOC_MINALIGN
201#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
202#endif
203
204#ifndef ARCH_SLAB_MINALIGN
205#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
206#endif
207
208/*
209 * The page->inuse field is 16 bit thus we have this limitation
210 */
211#define MAX_OBJECTS_PER_SLAB 65535
212
213/* Internal SLUB flags */
214#define __OBJECT_POISON		0x80000000 /* Poison object */
215#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
216
217/* Not all arches define cache_line_size */
218#ifndef cache_line_size
219#define cache_line_size()	L1_CACHE_BYTES
220#endif
221
222static int kmem_size = sizeof(struct kmem_cache);
223
224#ifdef CONFIG_SMP
225static struct notifier_block slab_notifier;
226#endif
227
228static enum {
229	DOWN,		/* No slab functionality available */
230	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
231	UP,		/* Everything works but does not show up in sysfs */
232	SYSFS		/* Sysfs up */
233} slab_state = DOWN;
234
235/* A list of all slab caches on the system */
236static DECLARE_RWSEM(slub_lock);
237static LIST_HEAD(slab_caches);
238
239/*
240 * Tracking user of a slab.
241 */
242struct track {
243	void *addr;		/* Called from address */
244	int cpu;		/* Was running on cpu */
245	int pid;		/* Pid context */
246	unsigned long when;	/* When did the operation occur */
247};
248
249enum track_item { TRACK_ALLOC, TRACK_FREE };
250
251#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
252static int sysfs_slab_add(struct kmem_cache *);
253static int sysfs_slab_alias(struct kmem_cache *, const char *);
254static void sysfs_slab_remove(struct kmem_cache *);
255#else
256static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
257static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
258							{ return 0; }
259static inline void sysfs_slab_remove(struct kmem_cache *s) {}
260#endif
261
262/********************************************************************
263 * 			Core slab cache functions
264 *******************************************************************/
265
266int slab_is_available(void)
267{
268	return slab_state >= UP;
269}
270
271static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
272{
273#ifdef CONFIG_NUMA
274	return s->node[node];
275#else
276	return &s->local_node;
277#endif
278}
279
280static inline int check_valid_pointer(struct kmem_cache *s,
281				struct page *page, const void *object)
282{
283	void *base;
284
285	if (!object)
286		return 1;
287
288	base = page_address(page);
289	if (object < base || object >= base + s->objects * s->size ||
290		(object - base) % s->size) {
291		return 0;
292	}
293
294	return 1;
295}
296
297/*
298 * Slow version of get and set free pointer.
299 *
300 * This version requires touching the cache lines of kmem_cache which
301 * we avoid to do in the fast alloc free paths. There we obtain the offset
302 * from the page struct.
303 */
304static inline void *get_freepointer(struct kmem_cache *s, void *object)
305{
306	return *(void **)(object + s->offset);
307}
308
309static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310{
311	*(void **)(object + s->offset) = fp;
312}
313
314/* Loop over all objects in a slab */
315#define for_each_object(__p, __s, __addr) \
316	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
317			__p += (__s)->size)
318
319/* Scan freelist */
320#define for_each_free_object(__p, __s, __free) \
321	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
322
323/* Determine object index from a given position */
324static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
325{
326	return (p - addr) / s->size;
327}
328
329#ifdef CONFIG_SLUB_DEBUG
330/*
331 * Debug settings:
332 */
333#ifdef CONFIG_SLUB_DEBUG_ON
334static int slub_debug = DEBUG_DEFAULT_FLAGS;
335#else
336static int slub_debug;
337#endif
338
339static char *slub_debug_slabs;
340
341/*
342 * Object debugging
343 */
344static void print_section(char *text, u8 *addr, unsigned int length)
345{
346	int i, offset;
347	int newline = 1;
348	char ascii[17];
349
350	ascii[16] = 0;
351
352	for (i = 0; i < length; i++) {
353		if (newline) {
354			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
355			newline = 0;
356		}
357		printk(" %02x", addr[i]);
358		offset = i % 16;
359		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
360		if (offset == 15) {
361			printk(" %s\n",ascii);
362			newline = 1;
363		}
364	}
365	if (!newline) {
366		i %= 16;
367		while (i < 16) {
368			printk("   ");
369			ascii[i] = ' ';
370			i++;
371		}
372		printk(" %s\n", ascii);
373	}
374}
375
376static struct track *get_track(struct kmem_cache *s, void *object,
377	enum track_item alloc)
378{
379	struct track *p;
380
381	if (s->offset)
382		p = object + s->offset + sizeof(void *);
383	else
384		p = object + s->inuse;
385
386	return p + alloc;
387}
388
389static void set_track(struct kmem_cache *s, void *object,
390				enum track_item alloc, void *addr)
391{
392	struct track *p;
393
394	if (s->offset)
395		p = object + s->offset + sizeof(void *);
396	else
397		p = object + s->inuse;
398
399	p += alloc;
400	if (addr) {
401		p->addr = addr;
402		p->cpu = smp_processor_id();
403		p->pid = current ? current->pid : -1;
404		p->when = jiffies;
405	} else
406		memset(p, 0, sizeof(struct track));
407}
408
409static void init_tracking(struct kmem_cache *s, void *object)
410{
411	if (!(s->flags & SLAB_STORE_USER))
412		return;
413
414	set_track(s, object, TRACK_FREE, NULL);
415	set_track(s, object, TRACK_ALLOC, NULL);
416}
417
418static void print_track(const char *s, struct track *t)
419{
420	if (!t->addr)
421		return;
422
423	printk(KERN_ERR "INFO: %s in ", s);
424	__print_symbol("%s", (unsigned long)t->addr);
425	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
426}
427
428static void print_tracking(struct kmem_cache *s, void *object)
429{
430	if (!(s->flags & SLAB_STORE_USER))
431		return;
432
433	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
434	print_track("Freed", get_track(s, object, TRACK_FREE));
435}
436
437static void print_page_info(struct page *page)
438{
439	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440		page, page->inuse, page->freelist, page->flags);
441
442}
443
444static void slab_bug(struct kmem_cache *s, char *fmt, ...)
445{
446	va_list args;
447	char buf[100];
448
449	va_start(args, fmt);
450	vsnprintf(buf, sizeof(buf), fmt, args);
451	va_end(args);
452	printk(KERN_ERR "========================================"
453			"=====================================\n");
454	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
455	printk(KERN_ERR "----------------------------------------"
456			"-------------------------------------\n\n");
457}
458
459static void slab_fix(struct kmem_cache *s, char *fmt, ...)
460{
461	va_list args;
462	char buf[100];
463
464	va_start(args, fmt);
465	vsnprintf(buf, sizeof(buf), fmt, args);
466	va_end(args);
467	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
468}
469
470static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
471{
472	unsigned int off;	/* Offset of last byte */
473	u8 *addr = page_address(page);
474
475	print_tracking(s, p);
476
477	print_page_info(page);
478
479	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480			p, p - addr, get_freepointer(s, p));
481
482	if (p > addr + 16)
483		print_section("Bytes b4", p - 16, 16);
484
485	print_section("Object", p, min(s->objsize, 128));
486
487	if (s->flags & SLAB_RED_ZONE)
488		print_section("Redzone", p + s->objsize,
489			s->inuse - s->objsize);
490
491	if (s->offset)
492		off = s->offset + sizeof(void *);
493	else
494		off = s->inuse;
495
496	if (s->flags & SLAB_STORE_USER)
497		off += 2 * sizeof(struct track);
498
499	if (off != s->size)
500		/* Beginning of the filler is the free pointer */
501		print_section("Padding", p + off, s->size - off);
502
503	dump_stack();
504}
505
506static void object_err(struct kmem_cache *s, struct page *page,
507			u8 *object, char *reason)
508{
509	slab_bug(s, reason);
510	print_trailer(s, page, object);
511}
512
513static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
514{
515	va_list args;
516	char buf[100];
517
518	va_start(args, fmt);
519	vsnprintf(buf, sizeof(buf), fmt, args);
520	va_end(args);
521	slab_bug(s, fmt);
522	print_page_info(page);
523	dump_stack();
524}
525
526static void init_object(struct kmem_cache *s, void *object, int active)
527{
528	u8 *p = object;
529
530	if (s->flags & __OBJECT_POISON) {
531		memset(p, POISON_FREE, s->objsize - 1);
532		p[s->objsize -1] = POISON_END;
533	}
534
535	if (s->flags & SLAB_RED_ZONE)
536		memset(p + s->objsize,
537			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
538			s->inuse - s->objsize);
539}
540
541static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
542{
543	while (bytes) {
544		if (*start != (u8)value)
545			return start;
546		start++;
547		bytes--;
548	}
549	return NULL;
550}
551
552static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
553						void *from, void *to)
554{
555	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
556	memset(from, data, to - from);
557}
558
559static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
560			u8 *object, char *what,
561			u8* start, unsigned int value, unsigned int bytes)
562{
563	u8 *fault;
564	u8 *end;
565
566	fault = check_bytes(start, value, bytes);
567	if (!fault)
568		return 1;
569
570	end = start + bytes;
571	while (end > fault && end[-1] == value)
572		end--;
573
574	slab_bug(s, "%s overwritten", what);
575	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576					fault, end - 1, fault[0], value);
577	print_trailer(s, page, object);
578
579	restore_bytes(s, what, value, fault, end);
580	return 0;
581}
582
583/*
584 * Object layout:
585 *
586 * object address
587 * 	Bytes of the object to be managed.
588 * 	If the freepointer may overlay the object then the free
589 * 	pointer is the first word of the object.
590 *
591 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
592 * 	0xa5 (POISON_END)
593 *
594 * object + s->objsize
595 * 	Padding to reach word boundary. This is also used for Redzoning.
596 * 	Padding is extended by another word if Redzoning is enabled and
597 * 	objsize == inuse.
598 *
599 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600 * 	0xcc (RED_ACTIVE) for objects in use.
601 *
602 * object + s->inuse
603 * 	Meta data starts here.
604 *
605 * 	A. Free pointer (if we cannot overwrite object on free)
606 * 	B. Tracking data for SLAB_STORE_USER
607 * 	C. Padding to reach required alignment boundary or at mininum
608 * 		one word if debuggin is on to be able to detect writes
609 * 		before the word boundary.
610 *
611 *	Padding is done using 0x5a (POISON_INUSE)
612 *
613 * object + s->size
614 * 	Nothing is used beyond s->size.
615 *
616 * If slabcaches are merged then the objsize and inuse boundaries are mostly
617 * ignored. And therefore no slab options that rely on these boundaries
618 * may be used with merged slabcaches.
619 */
620
621static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
622{
623	unsigned long off = s->inuse;	/* The end of info */
624
625	if (s->offset)
626		/* Freepointer is placed after the object. */
627		off += sizeof(void *);
628
629	if (s->flags & SLAB_STORE_USER)
630		/* We also have user information there */
631		off += 2 * sizeof(struct track);
632
633	if (s->size == off)
634		return 1;
635
636	return check_bytes_and_report(s, page, p, "Object padding",
637				p + off, POISON_INUSE, s->size - off);
638}
639
640static int slab_pad_check(struct kmem_cache *s, struct page *page)
641{
642	u8 *start;
643	u8 *fault;
644	u8 *end;
645	int length;
646	int remainder;
647
648	if (!(s->flags & SLAB_POISON))
649		return 1;
650
651	start = page_address(page);
652	end = start + (PAGE_SIZE << s->order);
653	length = s->objects * s->size;
654	remainder = end - (start + length);
655	if (!remainder)
656		return 1;
657
658	fault = check_bytes(start + length, POISON_INUSE, remainder);
659	if (!fault)
660		return 1;
661	while (end > fault && end[-1] == POISON_INUSE)
662		end--;
663
664	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
665	print_section("Padding", start, length);
666
667	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
668	return 0;
669}
670
671static int check_object(struct kmem_cache *s, struct page *page,
672					void *object, int active)
673{
674	u8 *p = object;
675	u8 *endobject = object + s->objsize;
676
677	if (s->flags & SLAB_RED_ZONE) {
678		unsigned int red =
679			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
680
681		if (!check_bytes_and_report(s, page, object, "Redzone",
682			endobject, red, s->inuse - s->objsize))
683			return 0;
684	} else {
685		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
686			check_bytes_and_report(s, page, p, "Alignment padding", endobject,
687				POISON_INUSE, s->inuse - s->objsize);
688	}
689
690	if (s->flags & SLAB_POISON) {
691		if (!active && (s->flags & __OBJECT_POISON) &&
692			(!check_bytes_and_report(s, page, p, "Poison", p,
693					POISON_FREE, s->objsize - 1) ||
694			 !check_bytes_and_report(s, page, p, "Poison",
695			 	p + s->objsize -1, POISON_END, 1)))
696			return 0;
697		/*
698		 * check_pad_bytes cleans up on its own.
699		 */
700		check_pad_bytes(s, page, p);
701	}
702
703	if (!s->offset && active)
704		/*
705		 * Object and freepointer overlap. Cannot check
706		 * freepointer while object is allocated.
707		 */
708		return 1;
709
710	/* Check free pointer validity */
711	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
712		object_err(s, page, p, "Freepointer corrupt");
713		/*
714		 * No choice but to zap it and thus loose the remainder
715		 * of the free objects in this slab. May cause
716		 * another error because the object count is now wrong.
717		 */
718		set_freepointer(s, p, NULL);
719		return 0;
720	}
721	return 1;
722}
723
724static int check_slab(struct kmem_cache *s, struct page *page)
725{
726	VM_BUG_ON(!irqs_disabled());
727
728	if (!PageSlab(page)) {
729		slab_err(s, page, "Not a valid slab page");
730		return 0;
731	}
732	if (page->offset * sizeof(void *) != s->offset) {
733		slab_err(s, page, "Corrupted offset %lu",
734			(unsigned long)(page->offset * sizeof(void *)));
735		return 0;
736	}
737	if (page->inuse > s->objects) {
738		slab_err(s, page, "inuse %u > max %u",
739			s->name, page->inuse, s->objects);
740		return 0;
741	}
742	/* Slab_pad_check fixes things up after itself */
743	slab_pad_check(s, page);
744	return 1;
745}
746
747/*
748 * Determine if a certain object on a page is on the freelist. Must hold the
749 * slab lock to guarantee that the chains are in a consistent state.
750 */
751static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
752{
753	int nr = 0;
754	void *fp = page->freelist;
755	void *object = NULL;
756
757	while (fp && nr <= s->objects) {
758		if (fp == search)
759			return 1;
760		if (!check_valid_pointer(s, page, fp)) {
761			if (object) {
762				object_err(s, page, object,
763					"Freechain corrupt");
764				set_freepointer(s, object, NULL);
765				break;
766			} else {
767				slab_err(s, page, "Freepointer corrupt");
768				page->freelist = NULL;
769				page->inuse = s->objects;
770				slab_fix(s, "Freelist cleared");
771				return 0;
772			}
773			break;
774		}
775		object = fp;
776		fp = get_freepointer(s, object);
777		nr++;
778	}
779
780	if (page->inuse != s->objects - nr) {
781		slab_err(s, page, "Wrong object count. Counter is %d but "
782			"counted were %d", page->inuse, s->objects - nr);
783		page->inuse = s->objects - nr;
784		slab_fix(s, "Object count adjusted.");
785	}
786	return search == NULL;
787}
788
789static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
790{
791	if (s->flags & SLAB_TRACE) {
792		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
793			s->name,
794			alloc ? "alloc" : "free",
795			object, page->inuse,
796			page->freelist);
797
798		if (!alloc)
799			print_section("Object", (void *)object, s->objsize);
800
801		dump_stack();
802	}
803}
804
805/*
806 * Tracking of fully allocated slabs for debugging purposes.
807 */
808static void add_full(struct kmem_cache_node *n, struct page *page)
809{
810	spin_lock(&n->list_lock);
811	list_add(&page->lru, &n->full);
812	spin_unlock(&n->list_lock);
813}
814
815static void remove_full(struct kmem_cache *s, struct page *page)
816{
817	struct kmem_cache_node *n;
818
819	if (!(s->flags & SLAB_STORE_USER))
820		return;
821
822	n = get_node(s, page_to_nid(page));
823
824	spin_lock(&n->list_lock);
825	list_del(&page->lru);
826	spin_unlock(&n->list_lock);
827}
828
829static void setup_object_debug(struct kmem_cache *s, struct page *page,
830								void *object)
831{
832	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
833		return;
834
835	init_object(s, object, 0);
836	init_tracking(s, object);
837}
838
839static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
840						void *object, void *addr)
841{
842	if (!check_slab(s, page))
843		goto bad;
844
845	if (object && !on_freelist(s, page, object)) {
846		object_err(s, page, object, "Object already allocated");
847		goto bad;
848	}
849
850	if (!check_valid_pointer(s, page, object)) {
851		object_err(s, page, object, "Freelist Pointer check fails");
852		goto bad;
853	}
854
855	if (object && !check_object(s, page, object, 0))
856		goto bad;
857
858	/* Success perform special debug activities for allocs */
859	if (s->flags & SLAB_STORE_USER)
860		set_track(s, object, TRACK_ALLOC, addr);
861	trace(s, page, object, 1);
862	init_object(s, object, 1);
863	return 1;
864
865bad:
866	if (PageSlab(page)) {
867		/*
868		 * If this is a slab page then lets do the best we can
869		 * to avoid issues in the future. Marking all objects
870		 * as used avoids touching the remaining objects.
871		 */
872		slab_fix(s, "Marking all objects used");
873		page->inuse = s->objects;
874		page->freelist = NULL;
875		/* Fix up fields that may be corrupted */
876		page->offset = s->offset / sizeof(void *);
877	}
878	return 0;
879}
880
881static int free_debug_processing(struct kmem_cache *s, struct page *page,
882						void *object, void *addr)
883{
884	if (!check_slab(s, page))
885		goto fail;
886
887	if (!check_valid_pointer(s, page, object)) {
888		slab_err(s, page, "Invalid object pointer 0x%p", object);
889		goto fail;
890	}
891
892	if (on_freelist(s, page, object)) {
893		object_err(s, page, object, "Object already free");
894		goto fail;
895	}
896
897	if (!check_object(s, page, object, 1))
898		return 0;
899
900	if (unlikely(s != page->slab)) {
901		if (!PageSlab(page))
902			slab_err(s, page, "Attempt to free object(0x%p) "
903				"outside of slab", object);
904		else
905		if (!page->slab) {
906			printk(KERN_ERR
907				"SLUB <none>: no slab for object 0x%p.\n",
908						object);
909			dump_stack();
910		}
911		else
912			object_err(s, page, object,
913					"page slab pointer corrupt.");
914		goto fail;
915	}
916
917	/* Special debug activities for freeing objects */
918	if (!SlabFrozen(page) && !page->freelist)
919		remove_full(s, page);
920	if (s->flags & SLAB_STORE_USER)
921		set_track(s, object, TRACK_FREE, addr);
922	trace(s, page, object, 0);
923	init_object(s, object, 0);
924	return 1;
925
926fail:
927	slab_fix(s, "Object at 0x%p not freed", object);
928	return 0;
929}
930
931static int __init setup_slub_debug(char *str)
932{
933	slub_debug = DEBUG_DEFAULT_FLAGS;
934	if (*str++ != '=' || !*str)
935		/*
936		 * No options specified. Switch on full debugging.
937		 */
938		goto out;
939
940	if (*str == ',')
941		/*
942		 * No options but restriction on slabs. This means full
943		 * debugging for slabs matching a pattern.
944		 */
945		goto check_slabs;
946
947	slub_debug = 0;
948	if (*str == '-')
949		/*
950		 * Switch off all debugging measures.
951		 */
952		goto out;
953
954	/*
955	 * Determine which debug features should be switched on
956	 */
957	for ( ;*str && *str != ','; str++) {
958		switch (tolower(*str)) {
959		case 'f':
960			slub_debug |= SLAB_DEBUG_FREE;
961			break;
962		case 'z':
963			slub_debug |= SLAB_RED_ZONE;
964			break;
965		case 'p':
966			slub_debug |= SLAB_POISON;
967			break;
968		case 'u':
969			slub_debug |= SLAB_STORE_USER;
970			break;
971		case 't':
972			slub_debug |= SLAB_TRACE;
973			break;
974		default:
975			printk(KERN_ERR "slub_debug option '%c' "
976				"unknown. skipped\n",*str);
977		}
978	}
979
980check_slabs:
981	if (*str == ',')
982		slub_debug_slabs = str + 1;
983out:
984	return 1;
985}
986
987__setup("slub_debug", setup_slub_debug);
988
989static unsigned long kmem_cache_flags(unsigned long objsize,
990	unsigned long flags, const char *name,
991	void (*ctor)(void *, struct kmem_cache *, unsigned long))
992{
993	/*
994	 * The page->offset field is only 16 bit wide. This is an offset
995	 * in units of words from the beginning of an object. If the slab
996	 * size is bigger then we cannot move the free pointer behind the
997	 * object anymore.
998	 *
999	 * On 32 bit platforms the limit is 256k. On 64bit platforms
1000	 * the limit is 512k.
1001	 *
1002	 * Debugging or ctor may create a need to move the free
1003	 * pointer. Fail if this happens.
1004	 */
1005	if (objsize >= 65535 * sizeof(void *)) {
1006		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1007				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1008		BUG_ON(ctor);
1009	} else {
1010		/*
1011		 * Enable debugging if selected on the kernel commandline.
1012		 */
1013		if (slub_debug && (!slub_debug_slabs ||
1014		    strncmp(slub_debug_slabs, name,
1015		    	strlen(slub_debug_slabs)) == 0))
1016				flags |= slub_debug;
1017	}
1018
1019	return flags;
1020}
1021#else
1022static inline void setup_object_debug(struct kmem_cache *s,
1023			struct page *page, void *object) {}
1024
1025static inline int alloc_debug_processing(struct kmem_cache *s,
1026	struct page *page, void *object, void *addr) { return 0; }
1027
1028static inline int free_debug_processing(struct kmem_cache *s,
1029	struct page *page, void *object, void *addr) { return 0; }
1030
1031static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1032			{ return 1; }
1033static inline int check_object(struct kmem_cache *s, struct page *page,
1034			void *object, int active) { return 1; }
1035static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1036static inline unsigned long kmem_cache_flags(unsigned long objsize,
1037	unsigned long flags, const char *name,
1038	void (*ctor)(void *, struct kmem_cache *, unsigned long))
1039{
1040	return flags;
1041}
1042#define slub_debug 0
1043#endif
1044/*
1045 * Slab allocation and freeing
1046 */
1047static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1048{
1049	struct page * page;
1050	int pages = 1 << s->order;
1051
1052	if (s->order)
1053		flags |= __GFP_COMP;
1054
1055	if (s->flags & SLAB_CACHE_DMA)
1056		flags |= SLUB_DMA;
1057
1058	if (s->flags & SLAB_RECLAIM_ACCOUNT)
1059		flags |= __GFP_RECLAIMABLE;
1060
1061	if (node == -1)
1062		page = alloc_pages(flags, s->order);
1063	else
1064		page = alloc_pages_node(node, flags, s->order);
1065
1066	if (!page)
1067		return NULL;
1068
1069	mod_zone_page_state(page_zone(page),
1070		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1071		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1072		pages);
1073
1074	return page;
1075}
1076
1077static void setup_object(struct kmem_cache *s, struct page *page,
1078				void *object)
1079{
1080	setup_object_debug(s, page, object);
1081	if (unlikely(s->ctor))
1082		s->ctor(object, s, 0);
1083}
1084
1085static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1086{
1087	struct page *page;
1088	struct kmem_cache_node *n;
1089	void *start;
1090	void *end;
1091	void *last;
1092	void *p;
1093
1094	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1095
1096	if (flags & __GFP_WAIT)
1097		local_irq_enable();
1098
1099	page = allocate_slab(s,
1100		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1101	if (!page)
1102		goto out;
1103
1104	n = get_node(s, page_to_nid(page));
1105	if (n)
1106		atomic_long_inc(&n->nr_slabs);
1107	page->offset = s->offset / sizeof(void *);
1108	page->slab = s;
1109	page->flags |= 1 << PG_slab;
1110	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1111			SLAB_STORE_USER | SLAB_TRACE))
1112		SetSlabDebug(page);
1113
1114	start = page_address(page);
1115	end = start + s->objects * s->size;
1116
1117	if (unlikely(s->flags & SLAB_POISON))
1118		memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1119
1120	last = start;
1121	for_each_object(p, s, start) {
1122		setup_object(s, page, last);
1123		set_freepointer(s, last, p);
1124		last = p;
1125	}
1126	setup_object(s, page, last);
1127	set_freepointer(s, last, NULL);
1128
1129	page->freelist = start;
1130	page->lockless_freelist = NULL;
1131	page->inuse = 0;
1132out:
1133	if (flags & __GFP_WAIT)
1134		local_irq_disable();
1135	return page;
1136}
1137
1138static void __free_slab(struct kmem_cache *s, struct page *page)
1139{
1140	int pages = 1 << s->order;
1141
1142	if (unlikely(SlabDebug(page))) {
1143		void *p;
1144
1145		slab_pad_check(s, page);
1146		for_each_object(p, s, page_address(page))
1147			check_object(s, page, p, 0);
1148		ClearSlabDebug(page);
1149	}
1150
1151	mod_zone_page_state(page_zone(page),
1152		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1153		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1154		- pages);
1155
1156	page->mapping = NULL;
1157	__free_pages(page, s->order);
1158}
1159
1160static void rcu_free_slab(struct rcu_head *h)
1161{
1162	struct page *page;
1163
1164	page = container_of((struct list_head *)h, struct page, lru);
1165	__free_slab(page->slab, page);
1166}
1167
1168static void free_slab(struct kmem_cache *s, struct page *page)
1169{
1170	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1171		/*
1172		 * RCU free overloads the RCU head over the LRU
1173		 */
1174		struct rcu_head *head = (void *)&page->lru;
1175
1176		call_rcu(head, rcu_free_slab);
1177	} else
1178		__free_slab(s, page);
1179}
1180
1181static void discard_slab(struct kmem_cache *s, struct page *page)
1182{
1183	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1184
1185	atomic_long_dec(&n->nr_slabs);
1186	reset_page_mapcount(page);
1187	__ClearPageSlab(page);
1188	free_slab(s, page);
1189}
1190
1191/*
1192 * Per slab locking using the pagelock
1193 */
1194static __always_inline void slab_lock(struct page *page)
1195{
1196	bit_spin_lock(PG_locked, &page->flags);
1197}
1198
1199static __always_inline void slab_unlock(struct page *page)
1200{
1201	bit_spin_unlock(PG_locked, &page->flags);
1202}
1203
1204static __always_inline int slab_trylock(struct page *page)
1205{
1206	int rc = 1;
1207
1208	rc = bit_spin_trylock(PG_locked, &page->flags);
1209	return rc;
1210}
1211
1212/*
1213 * Management of partially allocated slabs
1214 */
1215static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1216{
1217	spin_lock(&n->list_lock);
1218	n->nr_partial++;
1219	list_add_tail(&page->lru, &n->partial);
1220	spin_unlock(&n->list_lock);
1221}
1222
1223static void add_partial(struct kmem_cache_node *n, struct page *page)
1224{
1225	spin_lock(&n->list_lock);
1226	n->nr_partial++;
1227	list_add(&page->lru, &n->partial);
1228	spin_unlock(&n->list_lock);
1229}
1230
1231static void remove_partial(struct kmem_cache *s,
1232						struct page *page)
1233{
1234	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1235
1236	spin_lock(&n->list_lock);
1237	list_del(&page->lru);
1238	n->nr_partial--;
1239	spin_unlock(&n->list_lock);
1240}
1241
1242/*
1243 * Lock slab and remove from the partial list.
1244 *
1245 * Must hold list_lock.
1246 */
1247static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1248{
1249	if (slab_trylock(page)) {
1250		list_del(&page->lru);
1251		n->nr_partial--;
1252		SetSlabFrozen(page);
1253		return 1;
1254	}
1255	return 0;
1256}
1257
1258/*
1259 * Try to allocate a partial slab from a specific node.
1260 */
1261static struct page *get_partial_node(struct kmem_cache_node *n)
1262{
1263	struct page *page;
1264
1265	/*
1266	 * Racy check. If we mistakenly see no partial slabs then we
1267	 * just allocate an empty slab. If we mistakenly try to get a
1268	 * partial slab and there is none available then get_partials()
1269	 * will return NULL.
1270	 */
1271	if (!n || !n->nr_partial)
1272		return NULL;
1273
1274	spin_lock(&n->list_lock);
1275	list_for_each_entry(page, &n->partial, lru)
1276		if (lock_and_freeze_slab(n, page))
1277			goto out;
1278	page = NULL;
1279out:
1280	spin_unlock(&n->list_lock);
1281	return page;
1282}
1283
1284/*
1285 * Get a page from somewhere. Search in increasing NUMA distances.
1286 */
1287static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1288{
1289#ifdef CONFIG_NUMA
1290	struct zonelist *zonelist;
1291	struct zone **z;
1292	struct page *page;
1293
1294	/*
1295	 * The defrag ratio allows a configuration of the tradeoffs between
1296	 * inter node defragmentation and node local allocations. A lower
1297	 * defrag_ratio increases the tendency to do local allocations
1298	 * instead of attempting to obtain partial slabs from other nodes.
1299	 *
1300	 * If the defrag_ratio is set to 0 then kmalloc() always
1301	 * returns node local objects. If the ratio is higher then kmalloc()
1302	 * may return off node objects because partial slabs are obtained
1303	 * from other nodes and filled up.
1304	 *
1305	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1306	 * defrag_ratio = 1000) then every (well almost) allocation will
1307	 * first attempt to defrag slab caches on other nodes. This means
1308	 * scanning over all nodes to look for partial slabs which may be
1309	 * expensive if we do it every time we are trying to find a slab
1310	 * with available objects.
1311	 */
1312	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1313		return NULL;
1314
1315	zonelist = &NODE_DATA(slab_node(current->mempolicy))
1316					->node_zonelists[gfp_zone(flags)];
1317	for (z = zonelist->zones; *z; z++) {
1318		struct kmem_cache_node *n;
1319
1320		n = get_node(s, zone_to_nid(*z));
1321
1322		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1323				n->nr_partial > MIN_PARTIAL) {
1324			page = get_partial_node(n);
1325			if (page)
1326				return page;
1327		}
1328	}
1329#endif
1330	return NULL;
1331}
1332
1333/*
1334 * Get a partial page, lock it and return it.
1335 */
1336static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1337{
1338	struct page *page;
1339	int searchnode = (node == -1) ? numa_node_id() : node;
1340
1341	page = get_partial_node(get_node(s, searchnode));
1342	if (page || (flags & __GFP_THISNODE))
1343		return page;
1344
1345	return get_any_partial(s, flags);
1346}
1347
1348/*
1349 * Move a page back to the lists.
1350 *
1351 * Must be called with the slab lock held.
1352 *
1353 * On exit the slab lock will have been dropped.
1354 */
1355static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1356{
1357	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1358
1359	ClearSlabFrozen(page);
1360	if (page->inuse) {
1361
1362		if (page->freelist)
1363			add_partial(n, page);
1364		else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1365			add_full(n, page);
1366		slab_unlock(page);
1367
1368	} else {
1369		if (n->nr_partial < MIN_PARTIAL) {
1370			/*
1371			 * Adding an empty slab to the partial slabs in order
1372			 * to avoid page allocator overhead. This slab needs
1373			 * to come after the other slabs with objects in
1374			 * order to fill them up. That way the size of the
1375			 * partial list stays small. kmem_cache_shrink can
1376			 * reclaim empty slabs from the partial list.
1377			 */
1378			add_partial_tail(n, page);
1379			slab_unlock(page);
1380		} else {
1381			slab_unlock(page);
1382			discard_slab(s, page);
1383		}
1384	}
1385}
1386
1387/*
1388 * Remove the cpu slab
1389 */
1390static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1391{
1392	/*
1393	 * Merge cpu freelist into freelist. Typically we get here
1394	 * because both freelists are empty. So this is unlikely
1395	 * to occur.
1396	 */
1397	while (unlikely(page->lockless_freelist)) {
1398		void **object;
1399
1400		/* Retrieve object from cpu_freelist */
1401		object = page->lockless_freelist;
1402		page->lockless_freelist = page->lockless_freelist[page->offset];
1403
1404		/* And put onto the regular freelist */
1405		object[page->offset] = page->freelist;
1406		page->freelist = object;
1407		page->inuse--;
1408	}
1409	s->cpu_slab[cpu] = NULL;
1410	unfreeze_slab(s, page);
1411}
1412
1413static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1414{
1415	slab_lock(page);
1416	deactivate_slab(s, page, cpu);
1417}
1418
1419/*
1420 * Flush cpu slab.
1421 * Called from IPI handler with interrupts disabled.
1422 */
1423static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1424{
1425	struct page *page = s->cpu_slab[cpu];
1426
1427	if (likely(page))
1428		flush_slab(s, page, cpu);
1429}
1430
1431static void flush_cpu_slab(void *d)
1432{
1433	struct kmem_cache *s = d;
1434	int cpu = smp_processor_id();
1435
1436	__flush_cpu_slab(s, cpu);
1437}
1438
1439static void flush_all(struct kmem_cache *s)
1440{
1441#ifdef CONFIG_SMP
1442	on_each_cpu(flush_cpu_slab, s, 1, 1);
1443#else
1444	unsigned long flags;
1445
1446	local_irq_save(flags);
1447	flush_cpu_slab(s);
1448	local_irq_restore(flags);
1449#endif
1450}
1451
1452/*
1453 * Slow path. The lockless freelist is empty or we need to perform
1454 * debugging duties.
1455 *
1456 * Interrupts are disabled.
1457 *
1458 * Processing is still very fast if new objects have been freed to the
1459 * regular freelist. In that case we simply take over the regular freelist
1460 * as the lockless freelist and zap the regular freelist.
1461 *
1462 * If that is not working then we fall back to the partial lists. We take the
1463 * first element of the freelist as the object to allocate now and move the
1464 * rest of the freelist to the lockless freelist.
1465 *
1466 * And if we were unable to get a new slab from the partial slab lists then
1467 * we need to allocate a new slab. This is slowest path since we may sleep.
1468 */
1469static void *__slab_alloc(struct kmem_cache *s,
1470		gfp_t gfpflags, int node, void *addr, struct page *page)
1471{
1472	void **object;
1473	int cpu = smp_processor_id();
1474
1475	if (!page)
1476		goto new_slab;
1477
1478	slab_lock(page);
1479	if (unlikely(node != -1 && page_to_nid(page) != node))
1480		goto another_slab;
1481load_freelist:
1482	object = page->freelist;
1483	if (unlikely(!object))
1484		goto another_slab;
1485	if (unlikely(SlabDebug(page)))
1486		goto debug;
1487
1488	object = page->freelist;
1489	page->lockless_freelist = object[page->offset];
1490	page->inuse = s->objects;
1491	page->freelist = NULL;
1492	slab_unlock(page);
1493	return object;
1494
1495another_slab:
1496	deactivate_slab(s, page, cpu);
1497
1498new_slab:
1499	page = get_partial(s, gfpflags, node);
1500	if (page) {
1501		s->cpu_slab[cpu] = page;
1502		goto load_freelist;
1503	}
1504
1505	page = new_slab(s, gfpflags, node);
1506	if (page) {
1507		cpu = smp_processor_id();
1508		if (s->cpu_slab[cpu]) {
1509			/*
1510			 * Someone else populated the cpu_slab while we
1511			 * enabled interrupts, or we have gotten scheduled
1512			 * on another cpu. The page may not be on the
1513			 * requested node even if __GFP_THISNODE was
1514			 * specified. So we need to recheck.
1515			 */
1516			if (node == -1 ||
1517				page_to_nid(s->cpu_slab[cpu]) == node) {
1518				/*
1519				 * Current cpuslab is acceptable and we
1520				 * want the current one since its cache hot
1521				 */
1522				discard_slab(s, page);
1523				page = s->cpu_slab[cpu];
1524				slab_lock(page);
1525				goto load_freelist;
1526			}
1527			/* New slab does not fit our expectations */
1528			flush_slab(s, s->cpu_slab[cpu], cpu);
1529		}
1530		slab_lock(page);
1531		SetSlabFrozen(page);
1532		s->cpu_slab[cpu] = page;
1533		goto load_freelist;
1534	}
1535	return NULL;
1536debug:
1537	object = page->freelist;
1538	if (!alloc_debug_processing(s, page, object, addr))
1539		goto another_slab;
1540
1541	page->inuse++;
1542	page->freelist = object[page->offset];
1543	slab_unlock(page);
1544	return object;
1545}
1546
1547/*
1548 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1549 * have the fastpath folded into their functions. So no function call
1550 * overhead for requests that can be satisfied on the fastpath.
1551 *
1552 * The fastpath works by first checking if the lockless freelist can be used.
1553 * If not then __slab_alloc is called for slow processing.
1554 *
1555 * Otherwise we can simply pick the next object from the lockless free list.
1556 */
1557static void __always_inline *slab_alloc(struct kmem_cache *s,
1558		gfp_t gfpflags, int node, void *addr)
1559{
1560	struct page *page;
1561	void **object;
1562	unsigned long flags;
1563
1564	local_irq_save(flags);
1565	page = s->cpu_slab[smp_processor_id()];
1566	if (unlikely(!page || !page->lockless_freelist ||
1567			(node != -1 && page_to_nid(page) != node)))
1568
1569		object = __slab_alloc(s, gfpflags, node, addr, page);
1570
1571	else {
1572		object = page->lockless_freelist;
1573		page->lockless_freelist = object[page->offset];
1574	}
1575	local_irq_restore(flags);
1576
1577	if (unlikely((gfpflags & __GFP_ZERO) && object))
1578		memset(object, 0, s->objsize);
1579
1580	return object;
1581}
1582
1583void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1584{
1585	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1586}
1587EXPORT_SYMBOL(kmem_cache_alloc);
1588
1589#ifdef CONFIG_NUMA
1590void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1591{
1592	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1593}
1594EXPORT_SYMBOL(kmem_cache_alloc_node);
1595#endif
1596
1597/*
1598 * Slow patch handling. This may still be called frequently since objects
1599 * have a longer lifetime than the cpu slabs in most processing loads.
1600 *
1601 * So we still attempt to reduce cache line usage. Just take the slab
1602 * lock and free the item. If there is no additional partial page
1603 * handling required then we can return immediately.
1604 */
1605static void __slab_free(struct kmem_cache *s, struct page *page,
1606					void *x, void *addr)
1607{
1608	void *prior;
1609	void **object = (void *)x;
1610
1611	slab_lock(page);
1612
1613	if (unlikely(SlabDebug(page)))
1614		goto debug;
1615checks_ok:
1616	prior = object[page->offset] = page->freelist;
1617	page->freelist = object;
1618	page->inuse--;
1619
1620	if (unlikely(SlabFrozen(page)))
1621		goto out_unlock;
1622
1623	if (unlikely(!page->inuse))
1624		goto slab_empty;
1625
1626	/*
1627	 * Objects left in the slab. If it
1628	 * was not on the partial list before
1629	 * then add it.
1630	 */
1631	if (unlikely(!prior))
1632		add_partial(get_node(s, page_to_nid(page)), page);
1633
1634out_unlock:
1635	slab_unlock(page);
1636	return;
1637
1638slab_empty:
1639	if (prior)
1640		/*
1641		 * Slab still on the partial list.
1642		 */
1643		remove_partial(s, page);
1644
1645	slab_unlock(page);
1646	discard_slab(s, page);
1647	return;
1648
1649debug:
1650	if (!free_debug_processing(s, page, x, addr))
1651		goto out_unlock;
1652	goto checks_ok;
1653}
1654
1655/*
1656 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1657 * can perform fastpath freeing without additional function calls.
1658 *
1659 * The fastpath is only possible if we are freeing to the current cpu slab
1660 * of this processor. This typically the case if we have just allocated
1661 * the item before.
1662 *
1663 * If fastpath is not possible then fall back to __slab_free where we deal
1664 * with all sorts of special processing.
1665 */
1666static void __always_inline slab_free(struct kmem_cache *s,
1667			struct page *page, void *x, void *addr)
1668{
1669	void **object = (void *)x;
1670	unsigned long flags;
1671
1672	local_irq_save(flags);
1673	debug_check_no_locks_freed(object, s->objsize);
1674	if (likely(page == s->cpu_slab[smp_processor_id()] &&
1675						!SlabDebug(page))) {
1676		object[page->offset] = page->lockless_freelist;
1677		page->lockless_freelist = object;
1678	} else
1679		__slab_free(s, page, x, addr);
1680
1681	local_irq_restore(flags);
1682}
1683
1684void kmem_cache_free(struct kmem_cache *s, void *x)
1685{
1686	struct page *page;
1687
1688	page = virt_to_head_page(x);
1689
1690	slab_free(s, page, x, __builtin_return_address(0));
1691}
1692EXPORT_SYMBOL(kmem_cache_free);
1693
1694/* Figure out on which slab object the object resides */
1695static struct page *get_object_page(const void *x)
1696{
1697	struct page *page = virt_to_head_page(x);
1698
1699	if (!PageSlab(page))
1700		return NULL;
1701
1702	return page;
1703}
1704
1705/*
1706 * Object placement in a slab is made very easy because we always start at
1707 * offset 0. If we tune the size of the object to the alignment then we can
1708 * get the required alignment by putting one properly sized object after
1709 * another.
1710 *
1711 * Notice that the allocation order determines the sizes of the per cpu
1712 * caches. Each processor has always one slab available for allocations.
1713 * Increasing the allocation order reduces the number of times that slabs
1714 * must be moved on and off the partial lists and is therefore a factor in
1715 * locking overhead.
1716 */
1717
1718/*
1719 * Mininum / Maximum order of slab pages. This influences locking overhead
1720 * and slab fragmentation. A higher order reduces the number of partial slabs
1721 * and increases the number of allocations possible without having to
1722 * take the list_lock.
1723 */
1724static int slub_min_order;
1725static int slub_max_order = DEFAULT_MAX_ORDER;
1726static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1727
1728/*
1729 * Merge control. If this is set then no merging of slab caches will occur.
1730 * (Could be removed. This was introduced to pacify the merge skeptics.)
1731 */
1732static int slub_nomerge;
1733
1734/*
1735 * Calculate the order of allocation given an slab object size.
1736 *
1737 * The order of allocation has significant impact on performance and other
1738 * system components. Generally order 0 allocations should be preferred since
1739 * order 0 does not cause fragmentation in the page allocator. Larger objects
1740 * be problematic to put into order 0 slabs because there may be too much
1741 * unused space left. We go to a higher order if more than 1/8th of the slab
1742 * would be wasted.
1743 *
1744 * In order to reach satisfactory performance we must ensure that a minimum
1745 * number of objects is in one slab. Otherwise we may generate too much
1746 * activity on the partial lists which requires taking the list_lock. This is
1747 * less a concern for large slabs though which are rarely used.
1748 *
1749 * slub_max_order specifies the order where we begin to stop considering the
1750 * number of objects in a slab as critical. If we reach slub_max_order then
1751 * we try to keep the page order as low as possible. So we accept more waste
1752 * of space in favor of a small page order.
1753 *
1754 * Higher order allocations also allow the placement of more objects in a
1755 * slab and thereby reduce object handling overhead. If the user has
1756 * requested a higher mininum order then we start with that one instead of
1757 * the smallest order which will fit the object.
1758 */
1759static inline int slab_order(int size, int min_objects,
1760				int max_order, int fract_leftover)
1761{
1762	int order;
1763	int rem;
1764	int min_order = slub_min_order;
1765
1766	/*
1767	 * If we would create too many object per slab then reduce
1768	 * the slab order even if it goes below slub_min_order.
1769	 */
1770	while (min_order > 0 &&
1771		(PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
1772			min_order--;
1773
1774	for (order = max(min_order,
1775				fls(min_objects * size - 1) - PAGE_SHIFT);
1776			order <= max_order; order++) {
1777
1778		unsigned long slab_size = PAGE_SIZE << order;
1779
1780		if (slab_size < min_objects * size)
1781			continue;
1782
1783		rem = slab_size % size;
1784
1785		if (rem <= slab_size / fract_leftover)
1786			break;
1787
1788		/* If the next size is too high then exit now */
1789		if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
1790			break;
1791	}
1792
1793	return order;
1794}
1795
1796static inline int calculate_order(int size)
1797{
1798	int order;
1799	int min_objects;
1800	int fraction;
1801
1802	/*
1803	 * Attempt to find best configuration for a slab. This
1804	 * works by first attempting to generate a layout with
1805	 * the best configuration and backing off gradually.
1806	 *
1807	 * First we reduce the acceptable waste in a slab. Then
1808	 * we reduce the minimum objects required in a slab.
1809	 */
1810	min_objects = slub_min_objects;
1811	while (min_objects > 1) {
1812		fraction = 8;
1813		while (fraction >= 4) {
1814			order = slab_order(size, min_objects,
1815						slub_max_order, fraction);
1816			if (order <= slub_max_order)
1817				return order;
1818			fraction /= 2;
1819		}
1820		min_objects /= 2;
1821	}
1822
1823	/*
1824	 * We were unable to place multiple objects in a slab. Now
1825	 * lets see if we can place a single object there.
1826	 */
1827	order = slab_order(size, 1, slub_max_order, 1);
1828	if (order <= slub_max_order)
1829		return order;
1830
1831	/*
1832	 * Doh this slab cannot be placed using slub_max_order.
1833	 */
1834	order = slab_order(size, 1, MAX_ORDER, 1);
1835	if (order <= MAX_ORDER)
1836		return order;
1837	return -ENOSYS;
1838}
1839
1840/*
1841 * Figure out what the alignment of the objects will be.
1842 */
1843static unsigned long calculate_alignment(unsigned long flags,
1844		unsigned long align, unsigned long size)
1845{
1846	/*
1847	 * If the user wants hardware cache aligned objects then
1848	 * follow that suggestion if the object is sufficiently
1849	 * large.
1850	 *
1851	 * The hardware cache alignment cannot override the
1852	 * specified alignment though. If that is greater
1853	 * then use it.
1854	 */
1855	if ((flags & SLAB_HWCACHE_ALIGN) &&
1856			size > cache_line_size() / 2)
1857		return max_t(unsigned long, align, cache_line_size());
1858
1859	if (align < ARCH_SLAB_MINALIGN)
1860		return ARCH_SLAB_MINALIGN;
1861
1862	return ALIGN(align, sizeof(void *));
1863}
1864
1865static void init_kmem_cache_node(struct kmem_cache_node *n)
1866{
1867	n->nr_partial = 0;
1868	atomic_long_set(&n->nr_slabs, 0);
1869	spin_lock_init(&n->list_lock);
1870	INIT_LIST_HEAD(&n->partial);
1871#ifdef CONFIG_SLUB_DEBUG
1872	INIT_LIST_HEAD(&n->full);
1873#endif
1874}
1875
1876#ifdef CONFIG_NUMA
1877/*
1878 * No kmalloc_node yet so do it by hand. We know that this is the first
1879 * slab on the node for this slabcache. There are no concurrent accesses
1880 * possible.
1881 *
1882 * Note that this function only works on the kmalloc_node_cache
1883 * when allocating for the kmalloc_node_cache.
1884 */
1885static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
1886							   int node)
1887{
1888	struct page *page;
1889	struct kmem_cache_node *n;
1890
1891	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1892
1893	page = new_slab(kmalloc_caches, gfpflags, node);
1894
1895	BUG_ON(!page);
1896	if (page_to_nid(page) != node) {
1897		printk(KERN_ERR "SLUB: Unable to allocate memory from "
1898				"node %d\n", node);
1899		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
1900				"in order to be able to continue\n");
1901	}
1902
1903	n = page->freelist;
1904	BUG_ON(!n);
1905	page->freelist = get_freepointer(kmalloc_caches, n);
1906	page->inuse++;
1907	kmalloc_caches->node[node] = n;
1908#ifdef CONFIG_SLUB_DEBUG
1909	init_object(kmalloc_caches, n, 1);
1910	init_tracking(kmalloc_caches, n);
1911#endif
1912	init_kmem_cache_node(n);
1913	atomic_long_inc(&n->nr_slabs);
1914	add_partial(n, page);
1915
1916	/*
1917	 * new_slab() disables interupts. If we do not reenable interrupts here
1918	 * then bootup would continue with interrupts disabled.
1919	 */
1920	local_irq_enable();
1921	return n;
1922}
1923
1924static void free_kmem_cache_nodes(struct kmem_cache *s)
1925{
1926	int node;
1927
1928	for_each_node_state(node, N_NORMAL_MEMORY) {
1929		struct kmem_cache_node *n = s->node[node];
1930		if (n && n != &s->local_node)
1931			kmem_cache_free(kmalloc_caches, n);
1932		s->node[node] = NULL;
1933	}
1934}
1935
1936static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1937{
1938	int node;
1939	int local_node;
1940
1941	if (slab_state >= UP)
1942		local_node = page_to_nid(virt_to_page(s));
1943	else
1944		local_node = 0;
1945
1946	for_each_node_state(node, N_NORMAL_MEMORY) {
1947		struct kmem_cache_node *n;
1948
1949		if (local_node == node)
1950			n = &s->local_node;
1951		else {
1952			if (slab_state == DOWN) {
1953				n = early_kmem_cache_node_alloc(gfpflags,
1954								node);
1955				continue;
1956			}
1957			n = kmem_cache_alloc_node(kmalloc_caches,
1958							gfpflags, node);
1959
1960			if (!n) {
1961				free_kmem_cache_nodes(s);
1962				return 0;
1963			}
1964
1965		}
1966		s->node[node] = n;
1967		init_kmem_cache_node(n);
1968	}
1969	return 1;
1970}
1971#else
1972static void free_kmem_cache_nodes(struct kmem_cache *s)
1973{
1974}
1975
1976static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1977{
1978	init_kmem_cache_node(&s->local_node);
1979	return 1;
1980}
1981#endif
1982
1983/*
1984 * calculate_sizes() determines the order and the distribution of data within
1985 * a slab object.
1986 */
1987static int calculate_sizes(struct kmem_cache *s)
1988{
1989	unsigned long flags = s->flags;
1990	unsigned long size = s->objsize;
1991	unsigned long align = s->align;
1992
1993	/*
1994	 * Determine if we can poison the object itself. If the user of
1995	 * the slab may touch the object after free or before allocation
1996	 * then we should never poison the object itself.
1997	 */
1998	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1999			!s->ctor)
2000		s->flags |= __OBJECT_POISON;
2001	else
2002		s->flags &= ~__OBJECT_POISON;
2003
2004	/*
2005	 * Round up object size to the next word boundary. We can only
2006	 * place the free pointer at word boundaries and this determines
2007	 * the possible location of the free pointer.
2008	 */
2009	size = ALIGN(size, sizeof(void *));
2010
2011#ifdef CONFIG_SLUB_DEBUG
2012	/*
2013	 * If we are Redzoning then check if there is some space between the
2014	 * end of the object and the free pointer. If not then add an
2015	 * additional word to have some bytes to store Redzone information.
2016	 */
2017	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2018		size += sizeof(void *);
2019#endif
2020
2021	/*
2022	 * With that we have determined the number of bytes in actual use
2023	 * by the object. This is the potential offset to the free pointer.
2024	 */
2025	s->inuse = size;
2026
2027	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2028		s->ctor)) {
2029		/*
2030		 * Relocate free pointer after the object if it is not
2031		 * permitted to overwrite the first word of the object on
2032		 * kmem_cache_free.
2033		 *
2034		 * This is the case if we do RCU, have a constructor or
2035		 * destructor or are poisoning the objects.
2036		 */
2037		s->offset = size;
2038		size += sizeof(void *);
2039	}
2040
2041#ifdef CONFIG_SLUB_DEBUG
2042	if (flags & SLAB_STORE_USER)
2043		/*
2044		 * Need to store information about allocs and frees after
2045		 * the object.
2046		 */
2047		size += 2 * sizeof(struct track);
2048
2049	if (flags & SLAB_RED_ZONE)
2050		/*
2051		 * Add some empty padding so that we can catch
2052		 * overwrites from earlier objects rather than let
2053		 * tracking information or the free pointer be
2054		 * corrupted if an user writes before the start
2055		 * of the object.
2056		 */
2057		size += sizeof(void *);
2058#endif
2059
2060	/*
2061	 * Determine the alignment based on various parameters that the
2062	 * user specified and the dynamic determination of cache line size
2063	 * on bootup.
2064	 */
2065	align = calculate_alignment(flags, align, s->objsize);
2066
2067	/*
2068	 * SLUB stores one object immediately after another beginning from
2069	 * offset 0. In order to align the objects we have to simply size
2070	 * each object to conform to the alignment.
2071	 */
2072	size = ALIGN(size, align);
2073	s->size = size;
2074
2075	s->order = calculate_order(size);
2076	if (s->order < 0)
2077		return 0;
2078
2079	/*
2080	 * Determine the number of objects per slab
2081	 */
2082	s->objects = (PAGE_SIZE << s->order) / size;
2083
2084	/*
2085	 * Verify that the number of objects is within permitted limits.
2086	 * The page->inuse field is only 16 bit wide! So we cannot have
2087	 * more than 64k objects per slab.
2088	 */
2089	if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
2090		return 0;
2091	return 1;
2092
2093}
2094
2095static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2096		const char *name, size_t size,
2097		size_t align, unsigned long flags,
2098		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2099{
2100	memset(s, 0, kmem_size);
2101	s->name = name;
2102	s->ctor = ctor;
2103	s->objsize = size;
2104	s->align = align;
2105	s->flags = kmem_cache_flags(size, flags, name, ctor);
2106
2107	if (!calculate_sizes(s))
2108		goto error;
2109
2110	s->refcount = 1;
2111#ifdef CONFIG_NUMA
2112	s->defrag_ratio = 100;
2113#endif
2114
2115	if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2116		return 1;
2117error:
2118	if (flags & SLAB_PANIC)
2119		panic("Cannot create slab %s size=%lu realsize=%u "
2120			"order=%u offset=%u flags=%lx\n",
2121			s->name, (unsigned long)size, s->size, s->order,
2122			s->offset, flags);
2123	return 0;
2124}
2125
2126/*
2127 * Check if a given pointer is valid
2128 */
2129int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2130{
2131	struct page * page;
2132
2133	page = get_object_page(object);
2134
2135	if (!page || s != page->slab)
2136		/* No slab or wrong slab */
2137		return 0;
2138
2139	if (!check_valid_pointer(s, page, object))
2140		return 0;
2141
2142	/*
2143	 * We could also check if the object is on the slabs freelist.
2144	 * But this would be too expensive and it seems that the main
2145	 * purpose of kmem_ptr_valid is to check if the object belongs
2146	 * to a certain slab.
2147	 */
2148	return 1;
2149}
2150EXPORT_SYMBOL(kmem_ptr_validate);
2151
2152/*
2153 * Determine the size of a slab object
2154 */
2155unsigned int kmem_cache_size(struct kmem_cache *s)
2156{
2157	return s->objsize;
2158}
2159EXPORT_SYMBOL(kmem_cache_size);
2160
2161const char *kmem_cache_name(struct kmem_cache *s)
2162{
2163	return s->name;
2164}
2165EXPORT_SYMBOL(kmem_cache_name);
2166
2167/*
2168 * Attempt to free all slabs on a node. Return the number of slabs we
2169 * were unable to free.
2170 */
2171static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2172			struct list_head *list)
2173{
2174	int slabs_inuse = 0;
2175	unsigned long flags;
2176	struct page *page, *h;
2177
2178	spin_lock_irqsave(&n->list_lock, flags);
2179	list_for_each_entry_safe(page, h, list, lru)
2180		if (!page->inuse) {
2181			list_del(&page->lru);
2182			discard_slab(s, page);
2183		} else
2184			slabs_inuse++;
2185	spin_unlock_irqrestore(&n->list_lock, flags);
2186	return slabs_inuse;
2187}
2188
2189/*
2190 * Release all resources used by a slab cache.
2191 */
2192static inline int kmem_cache_close(struct kmem_cache *s)
2193{
2194	int node;
2195
2196	flush_all(s);
2197
2198	/* Attempt to free all objects */
2199	for_each_node_state(node, N_NORMAL_MEMORY) {
2200		struct kmem_cache_node *n = get_node(s, node);
2201
2202		n->nr_partial -= free_list(s, n, &n->partial);
2203		if (atomic_long_read(&n->nr_slabs))
2204			return 1;
2205	}
2206	free_kmem_cache_nodes(s);
2207	return 0;
2208}
2209
2210/*
2211 * Close a cache and release the kmem_cache structure
2212 * (must be used for caches created using kmem_cache_create)
2213 */
2214void kmem_cache_destroy(struct kmem_cache *s)
2215{
2216	down_write(&slub_lock);
2217	s->refcount--;
2218	if (!s->refcount) {
2219		list_del(&s->list);
2220		up_write(&slub_lock);
2221		if (kmem_cache_close(s))
2222			WARN_ON(1);
2223		sysfs_slab_remove(s);
2224		kfree(s);
2225	} else
2226		up_write(&slub_lock);
2227}
2228EXPORT_SYMBOL(kmem_cache_destroy);
2229
2230/********************************************************************
2231 *		Kmalloc subsystem
2232 *******************************************************************/
2233
2234struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2235EXPORT_SYMBOL(kmalloc_caches);
2236
2237#ifdef CONFIG_ZONE_DMA
2238static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2239#endif
2240
2241static int __init setup_slub_min_order(char *str)
2242{
2243	get_option (&str, &slub_min_order);
2244
2245	return 1;
2246}
2247
2248__setup("slub_min_order=", setup_slub_min_order);
2249
2250static int __init setup_slub_max_order(char *str)
2251{
2252	get_option (&str, &slub_max_order);
2253
2254	return 1;
2255}
2256
2257__setup("slub_max_order=", setup_slub_max_order);
2258
2259static int __init setup_slub_min_objects(char *str)
2260{
2261	get_option (&str, &slub_min_objects);
2262
2263	return 1;
2264}
2265
2266__setup("slub_min_objects=", setup_slub_min_objects);
2267
2268static int __init setup_slub_nomerge(char *str)
2269{
2270	slub_nomerge = 1;
2271	return 1;
2272}
2273
2274__setup("slub_nomerge", setup_slub_nomerge);
2275
2276static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2277		const char *name, int size, gfp_t gfp_flags)
2278{
2279	unsigned int flags = 0;
2280
2281	if (gfp_flags & SLUB_DMA)
2282		flags = SLAB_CACHE_DMA;
2283
2284	down_write(&slub_lock);
2285	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2286			flags, NULL))
2287		goto panic;
2288
2289	list_add(&s->list, &slab_caches);
2290	up_write(&slub_lock);
2291	if (sysfs_slab_add(s))
2292		goto panic;
2293	return s;
2294
2295panic:
2296	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2297}
2298
2299#ifdef CONFIG_ZONE_DMA
2300
2301static void sysfs_add_func(struct work_struct *w)
2302{
2303	struct kmem_cache *s;
2304
2305	down_write(&slub_lock);
2306	list_for_each_entry(s, &slab_caches, list) {
2307		if (s->flags & __SYSFS_ADD_DEFERRED) {
2308			s->flags &= ~__SYSFS_ADD_DEFERRED;
2309			sysfs_slab_add(s);
2310		}
2311	}
2312	up_write(&slub_lock);
2313}
2314
2315static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2316
2317static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2318{
2319	struct kmem_cache *s;
2320	char *text;
2321	size_t realsize;
2322
2323	s = kmalloc_caches_dma[index];
2324	if (s)
2325		return s;
2326
2327	/* Dynamically create dma cache */
2328	if (flags & __GFP_WAIT)
2329		down_write(&slub_lock);
2330	else {
2331		if (!down_write_trylock(&slub_lock))
2332			goto out;
2333	}
2334
2335	if (kmalloc_caches_dma[index])
2336		goto unlock_out;
2337
2338	realsize = kmalloc_caches[index].objsize;
2339	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2340	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2341
2342	if (!s || !text || !kmem_cache_open(s, flags, text,
2343			realsize, ARCH_KMALLOC_MINALIGN,
2344			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2345		kfree(s);
2346		kfree(text);
2347		goto unlock_out;
2348	}
2349
2350	list_add(&s->list, &slab_caches);
2351	kmalloc_caches_dma[index] = s;
2352
2353	schedule_work(&sysfs_add_work);
2354
2355unlock_out:
2356	up_write(&slub_lock);
2357out:
2358	return kmalloc_caches_dma[index];
2359}
2360#endif
2361
2362/*
2363 * Conversion table for small slabs sizes / 8 to the index in the
2364 * kmalloc array. This is necessary for slabs < 192 since we have non power
2365 * of two cache sizes there. The size of larger slabs can be determined using
2366 * fls.
2367 */
2368static s8 size_index[24] = {
2369	3,	/* 8 */
2370	4,	/* 16 */
2371	5,	/* 24 */
2372	5,	/* 32 */
2373	6,	/* 40 */
2374	6,	/* 48 */
2375	6,	/* 56 */
2376	6,	/* 64 */
2377	1,	/* 72 */
2378	1,	/* 80 */
2379	1,	/* 88 */
2380	1,	/* 96 */
2381	7,	/* 104 */
2382	7,	/* 112 */
2383	7,	/* 120 */
2384	7,	/* 128 */
2385	2,	/* 136 */
2386	2,	/* 144 */
2387	2,	/* 152 */
2388	2,	/* 160 */
2389	2,	/* 168 */
2390	2,	/* 176 */
2391	2,	/* 184 */
2392	2	/* 192 */
2393};
2394
2395static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2396{
2397	int index;
2398
2399	if (size <= 192) {
2400		if (!size)
2401			return ZERO_SIZE_PTR;
2402
2403		index = size_index[(size - 1) / 8];
2404	} else
2405		index = fls(size - 1);
2406
2407#ifdef CONFIG_ZONE_DMA
2408	if (unlikely((flags & SLUB_DMA)))
2409		return dma_kmalloc_cache(index, flags);
2410
2411#endif
2412	return &kmalloc_caches[index];
2413}
2414
2415void *__kmalloc(size_t size, gfp_t flags)
2416{
2417	struct kmem_cache *s;
2418
2419	if (unlikely(size > PAGE_SIZE / 2))
2420		return (void *)__get_free_pages(flags | __GFP_COMP,
2421							get_order(size));
2422
2423	s = get_slab(size, flags);
2424
2425	if (unlikely(ZERO_OR_NULL_PTR(s)))
2426		return s;
2427
2428	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2429}
2430EXPORT_SYMBOL(__kmalloc);
2431
2432#ifdef CONFIG_NUMA
2433void *__kmalloc_node(size_t size, gfp_t flags, int node)
2434{
2435	struct kmem_cache *s;
2436
2437	if (unlikely(size > PAGE_SIZE / 2))
2438		return (void *)__get_free_pages(flags | __GFP_COMP,
2439							get_order(size));
2440
2441	s = get_slab(size, flags);
2442
2443	if (unlikely(ZERO_OR_NULL_PTR(s)))
2444		return s;
2445
2446	return slab_alloc(s, flags, node, __builtin_return_address(0));
2447}
2448EXPORT_SYMBOL(__kmalloc_node);
2449#endif
2450
2451size_t ksize(const void *object)
2452{
2453	struct page *page;
2454	struct kmem_cache *s;
2455
2456	BUG_ON(!object);
2457	if (unlikely(object == ZERO_SIZE_PTR))
2458		return 0;
2459
2460	page = get_object_page(object);
2461	BUG_ON(!page);
2462	s = page->slab;
2463	BUG_ON(!s);
2464
2465	/*
2466	 * Debugging requires use of the padding between object
2467	 * and whatever may come after it.
2468	 */
2469	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2470		return s->objsize;
2471
2472	/*
2473	 * If we have the need to store the freelist pointer
2474	 * back there or track user information then we can
2475	 * only use the space before that information.
2476	 */
2477	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2478		return s->inuse;
2479
2480	/*
2481	 * Else we can use all the padding etc for the allocation
2482	 */
2483	return s->size;
2484}
2485EXPORT_SYMBOL(ksize);
2486
2487void kfree(const void *x)
2488{
2489	struct page *page;
2490
2491	if (unlikely(ZERO_OR_NULL_PTR(x)))
2492		return;
2493
2494	page = virt_to_head_page(x);
2495	if (unlikely(!PageSlab(page))) {
2496		put_page(page);
2497		return;
2498	}
2499	slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2500}
2501EXPORT_SYMBOL(kfree);
2502
2503/*
2504 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2505 * the remaining slabs by the number of items in use. The slabs with the
2506 * most items in use come first. New allocations will then fill those up
2507 * and thus they can be removed from the partial lists.
2508 *
2509 * The slabs with the least items are placed last. This results in them
2510 * being allocated from last increasing the chance that the last objects
2511 * are freed in them.
2512 */
2513int kmem_cache_shrink(struct kmem_cache *s)
2514{
2515	int node;
2516	int i;
2517	struct kmem_cache_node *n;
2518	struct page *page;
2519	struct page *t;
2520	struct list_head *slabs_by_inuse =
2521		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2522	unsigned long flags;
2523
2524	if (!slabs_by_inuse)
2525		return -ENOMEM;
2526
2527	flush_all(s);
2528	for_each_node_state(node, N_NORMAL_MEMORY) {
2529		n = get_node(s, node);
2530
2531		if (!n->nr_partial)
2532			continue;
2533
2534		for (i = 0; i < s->objects; i++)
2535			INIT_LIST_HEAD(slabs_by_inuse + i);
2536
2537		spin_lock_irqsave(&n->list_lock, flags);
2538
2539		/*
2540		 * Build lists indexed by the items in use in each slab.
2541		 *
2542		 * Note that concurrent frees may occur while we hold the
2543		 * list_lock. page->inuse here is the upper limit.
2544		 */
2545		list_for_each_entry_safe(page, t, &n->partial, lru) {
2546			if (!page->inuse && slab_trylock(page)) {
2547				/*
2548				 * Must hold slab lock here because slab_free
2549				 * may have freed the last object and be
2550				 * waiting to release the slab.
2551				 */
2552				list_del(&page->lru);
2553				n->nr_partial--;
2554				slab_unlock(page);
2555				discard_slab(s, page);
2556			} else {
2557				list_move(&page->lru,
2558				slabs_by_inuse + page->inuse);
2559			}
2560		}
2561
2562		/*
2563		 * Rebuild the partial list with the slabs filled up most
2564		 * first and the least used slabs at the end.
2565		 */
2566		for (i = s->objects - 1; i >= 0; i--)
2567			list_splice(slabs_by_inuse + i, n->partial.prev);
2568
2569		spin_unlock_irqrestore(&n->list_lock, flags);
2570	}
2571
2572	kfree(slabs_by_inuse);
2573	return 0;
2574}
2575EXPORT_SYMBOL(kmem_cache_shrink);
2576
2577/********************************************************************
2578 *			Basic setup of slabs
2579 *******************************************************************/
2580
2581void __init kmem_cache_init(void)
2582{
2583	int i;
2584	int caches = 0;
2585
2586#ifdef CONFIG_NUMA
2587	/*
2588	 * Must first have the slab cache available for the allocations of the
2589	 * struct kmem_cache_node's. There is special bootstrap code in
2590	 * kmem_cache_open for slab_state == DOWN.
2591	 */
2592	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2593		sizeof(struct kmem_cache_node), GFP_KERNEL);
2594	kmalloc_caches[0].refcount = -1;
2595	caches++;
2596#endif
2597
2598	/* Able to allocate the per node structures */
2599	slab_state = PARTIAL;
2600
2601	/* Caches that are not of the two-to-the-power-of size */
2602	if (KMALLOC_MIN_SIZE <= 64) {
2603		create_kmalloc_cache(&kmalloc_caches[1],
2604				"kmalloc-96", 96, GFP_KERNEL);
2605		caches++;
2606	}
2607	if (KMALLOC_MIN_SIZE <= 128) {
2608		create_kmalloc_cache(&kmalloc_caches[2],
2609				"kmalloc-192", 192, GFP_KERNEL);
2610		caches++;
2611	}
2612
2613	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2614		create_kmalloc_cache(&kmalloc_caches[i],
2615			"kmalloc", 1 << i, GFP_KERNEL);
2616		caches++;
2617	}
2618
2619
2620	/*
2621	 * Patch up the size_index table if we have strange large alignment
2622	 * requirements for the kmalloc array. This is only the case for
2623	 * mips it seems. The standard arches will not generate any code here.
2624	 *
2625	 * Largest permitted alignment is 256 bytes due to the way we
2626	 * handle the index determination for the smaller caches.
2627	 *
2628	 * Make sure that nothing crazy happens if someone starts tinkering
2629	 * around with ARCH_KMALLOC_MINALIGN
2630	 */
2631	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2632		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2633
2634	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2635		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2636
2637	slab_state = UP;
2638
2639	/* Provide the correct kmalloc names now that the caches are up */
2640	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2641		kmalloc_caches[i]. name =
2642			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2643
2644#ifdef CONFIG_SMP
2645	register_cpu_notifier(&slab_notifier);
2646#endif
2647
2648	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2649				nr_cpu_ids * sizeof(struct page *);
2650
2651	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2652		" CPUs=%d, Nodes=%d\n",
2653		caches, cache_line_size(),
2654		slub_min_order, slub_max_order, slub_min_objects,
2655		nr_cpu_ids, nr_node_ids);
2656}
2657
2658/*
2659 * Find a mergeable slab cache
2660 */
2661static int slab_unmergeable(struct kmem_cache *s)
2662{
2663	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2664		return 1;
2665
2666	if (s->ctor)
2667		return 1;
2668
2669	/*
2670	 * We may have set a slab to be unmergeable during bootstrap.
2671	 */
2672	if (s->refcount < 0)
2673		return 1;
2674
2675	return 0;
2676}
2677
2678static struct kmem_cache *find_mergeable(size_t size,
2679		size_t align, unsigned long flags, const char *name,
2680		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2681{
2682	struct kmem_cache *s;
2683
2684	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2685		return NULL;
2686
2687	if (ctor)
2688		return NULL;
2689
2690	size = ALIGN(size, sizeof(void *));
2691	align = calculate_alignment(flags, align, size);
2692	size = ALIGN(size, align);
2693	flags = kmem_cache_flags(size, flags, name, NULL);
2694
2695	list_for_each_entry(s, &slab_caches, list) {
2696		if (slab_unmergeable(s))
2697			continue;
2698
2699		if (size > s->size)
2700			continue;
2701
2702		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2703				continue;
2704		/*
2705		 * Check if alignment is compatible.
2706		 * Courtesy of Adrian Drzewiecki
2707		 */
2708		if ((s->size & ~(align -1)) != s->size)
2709			continue;
2710
2711		if (s->size - size >= sizeof(void *))
2712			continue;
2713
2714		return s;
2715	}
2716	return NULL;
2717}
2718
2719struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2720		size_t align, unsigned long flags,
2721		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2722{
2723	struct kmem_cache *s;
2724
2725	down_write(&slub_lock);
2726	s = find_mergeable(size, align, flags, name, ctor);
2727	if (s) {
2728		s->refcount++;
2729		/*
2730		 * Adjust the object sizes so that we clear
2731		 * the complete object on kzalloc.
2732		 */
2733		s->objsize = max(s->objsize, (int)size);
2734		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2735		up_write(&slub_lock);
2736		if (sysfs_slab_alias(s, name))
2737			goto err;
2738		return s;
2739	}
2740	s = kmalloc(kmem_size, GFP_KERNEL);
2741	if (s) {
2742		if (kmem_cache_open(s, GFP_KERNEL, name,
2743				size, align, flags, ctor)) {
2744			list_add(&s->list, &slab_caches);
2745			up_write(&slub_lock);
2746			if (sysfs_slab_add(s))
2747				goto err;
2748			return s;
2749		}
2750		kfree(s);
2751	}
2752	up_write(&slub_lock);
2753
2754err:
2755	if (flags & SLAB_PANIC)
2756		panic("Cannot create slabcache %s\n", name);
2757	else
2758		s = NULL;
2759	return s;
2760}
2761EXPORT_SYMBOL(kmem_cache_create);
2762
2763#ifdef CONFIG_SMP
2764/*
2765 * Use the cpu notifier to insure that the cpu slabs are flushed when
2766 * necessary.
2767 */
2768static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2769		unsigned long action, void *hcpu)
2770{
2771	long cpu = (long)hcpu;
2772	struct kmem_cache *s;
2773	unsigned long flags;
2774
2775	switch (action) {
2776	case CPU_UP_CANCELED:
2777	case CPU_UP_CANCELED_FROZEN:
2778	case CPU_DEAD:
2779	case CPU_DEAD_FROZEN:
2780		down_read(&slub_lock);
2781		list_for_each_entry(s, &slab_caches, list) {
2782			local_irq_save(flags);
2783			__flush_cpu_slab(s, cpu);
2784			local_irq_restore(flags);
2785		}
2786		up_read(&slub_lock);
2787		break;
2788	default:
2789		break;
2790	}
2791	return NOTIFY_OK;
2792}
2793
2794static struct notifier_block __cpuinitdata slab_notifier =
2795	{ &slab_cpuup_callback, NULL, 0 };
2796
2797#endif
2798
2799void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2800{
2801	struct kmem_cache *s;
2802
2803	if (unlikely(size > PAGE_SIZE / 2))
2804		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2805							get_order(size));
2806	s = get_slab(size, gfpflags);
2807
2808	if (unlikely(ZERO_OR_NULL_PTR(s)))
2809		return s;
2810
2811	return slab_alloc(s, gfpflags, -1, caller);
2812}
2813
2814void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2815					int node, void *caller)
2816{
2817	struct kmem_cache *s;
2818
2819	if (unlikely(size > PAGE_SIZE / 2))
2820		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2821							get_order(size));
2822	s = get_slab(size, gfpflags);
2823
2824	if (unlikely(ZERO_OR_NULL_PTR(s)))
2825		return s;
2826
2827	return slab_alloc(s, gfpflags, node, caller);
2828}
2829
2830#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2831static int validate_slab(struct kmem_cache *s, struct page *page,
2832						unsigned long *map)
2833{
2834	void *p;
2835	void *addr = page_address(page);
2836
2837	if (!check_slab(s, page) ||
2838			!on_freelist(s, page, NULL))
2839		return 0;
2840
2841	/* Now we know that a valid freelist exists */
2842	bitmap_zero(map, s->objects);
2843
2844	for_each_free_object(p, s, page->freelist) {
2845		set_bit(slab_index(p, s, addr), map);
2846		if (!check_object(s, page, p, 0))
2847			return 0;
2848	}
2849
2850	for_each_object(p, s, addr)
2851		if (!test_bit(slab_index(p, s, addr), map))
2852			if (!check_object(s, page, p, 1))
2853				return 0;
2854	return 1;
2855}
2856
2857static void validate_slab_slab(struct kmem_cache *s, struct page *page,
2858						unsigned long *map)
2859{
2860	if (slab_trylock(page)) {
2861		validate_slab(s, page, map);
2862		slab_unlock(page);
2863	} else
2864		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2865			s->name, page);
2866
2867	if (s->flags & DEBUG_DEFAULT_FLAGS) {
2868		if (!SlabDebug(page))
2869			printk(KERN_ERR "SLUB %s: SlabDebug not set "
2870				"on slab 0x%p\n", s->name, page);
2871	} else {
2872		if (SlabDebug(page))
2873			printk(KERN_ERR "SLUB %s: SlabDebug set on "
2874				"slab 0x%p\n", s->name, page);
2875	}
2876}
2877
2878static int validate_slab_node(struct kmem_cache *s,
2879		struct kmem_cache_node *n, unsigned long *map)
2880{
2881	unsigned long count = 0;
2882	struct page *page;
2883	unsigned long flags;
2884
2885	spin_lock_irqsave(&n->list_lock, flags);
2886
2887	list_for_each_entry(page, &n->partial, lru) {
2888		validate_slab_slab(s, page, map);
2889		count++;
2890	}
2891	if (count != n->nr_partial)
2892		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2893			"counter=%ld\n", s->name, count, n->nr_partial);
2894
2895	if (!(s->flags & SLAB_STORE_USER))
2896		goto out;
2897
2898	list_for_each_entry(page, &n->full, lru) {
2899		validate_slab_slab(s, page, map);
2900		count++;
2901	}
2902	if (count != atomic_long_read(&n->nr_slabs))
2903		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2904			"counter=%ld\n", s->name, count,
2905			atomic_long_read(&n->nr_slabs));
2906
2907out:
2908	spin_unlock_irqrestore(&n->list_lock, flags);
2909	return count;
2910}
2911
2912static long validate_slab_cache(struct kmem_cache *s)
2913{
2914	int node;
2915	unsigned long count = 0;
2916	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
2917				sizeof(unsigned long), GFP_KERNEL);
2918
2919	if (!map)
2920		return -ENOMEM;
2921
2922	flush_all(s);
2923	for_each_node_state(node, N_NORMAL_MEMORY) {
2924		struct kmem_cache_node *n = get_node(s, node);
2925
2926		count += validate_slab_node(s, n, map);
2927	}
2928	kfree(map);
2929	return count;
2930}
2931
2932#ifdef SLUB_RESILIENCY_TEST
2933static void resiliency_test(void)
2934{
2935	u8 *p;
2936
2937	printk(KERN_ERR "SLUB resiliency testing\n");
2938	printk(KERN_ERR "-----------------------\n");
2939	printk(KERN_ERR "A. Corruption after allocation\n");
2940
2941	p = kzalloc(16, GFP_KERNEL);
2942	p[16] = 0x12;
2943	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2944			" 0x12->0x%p\n\n", p + 16);
2945
2946	validate_slab_cache(kmalloc_caches + 4);
2947
2948	/* Hmmm... The next two are dangerous */
2949	p = kzalloc(32, GFP_KERNEL);
2950	p[32 + sizeof(void *)] = 0x34;
2951	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2952		 	" 0x34 -> -0x%p\n", p);
2953	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2954
2955	validate_slab_cache(kmalloc_caches + 5);
2956	p = kzalloc(64, GFP_KERNEL);
2957	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2958	*p = 0x56;
2959	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2960									p);
2961	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2962	validate_slab_cache(kmalloc_caches + 6);
2963
2964	printk(KERN_ERR "\nB. Corruption after free\n");
2965	p = kzalloc(128, GFP_KERNEL);
2966	kfree(p);
2967	*p = 0x78;
2968	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2969	validate_slab_cache(kmalloc_caches + 7);
2970
2971	p = kzalloc(256, GFP_KERNEL);
2972	kfree(p);
2973	p[50] = 0x9a;
2974	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2975	validate_slab_cache(kmalloc_caches + 8);
2976
2977	p = kzalloc(512, GFP_KERNEL);
2978	kfree(p);
2979	p[512] = 0xab;
2980	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2981	validate_slab_cache(kmalloc_caches + 9);
2982}
2983#else
2984static void resiliency_test(void) {};
2985#endif
2986
2987/*
2988 * Generate lists of code addresses where slabcache objects are allocated
2989 * and freed.
2990 */
2991
2992struct location {
2993	unsigned long count;
2994	void *addr;
2995	long long sum_time;
2996	long min_time;
2997	long max_time;
2998	long min_pid;
2999	long max_pid;
3000	cpumask_t cpus;
3001	nodemask_t nodes;
3002};
3003
3004struct loc_track {
3005	unsigned long max;
3006	unsigned long count;
3007	struct location *loc;
3008};
3009
3010static void free_loc_track(struct loc_track *t)
3011{
3012	if (t->max)
3013		free_pages((unsigned long)t->loc,
3014			get_order(sizeof(struct location) * t->max));
3015}
3016
3017static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3018{
3019	struct location *l;
3020	int order;
3021
3022	order = get_order(sizeof(struct location) * max);
3023
3024	l = (void *)__get_free_pages(flags, order);
3025	if (!l)
3026		return 0;
3027
3028	if (t->count) {
3029		memcpy(l, t->loc, sizeof(struct location) * t->count);
3030		free_loc_track(t);
3031	}
3032	t->max = max;
3033	t->loc = l;
3034	return 1;
3035}
3036
3037static int add_location(struct loc_track *t, struct kmem_cache *s,
3038				const struct track *track)
3039{
3040	long start, end, pos;
3041	struct location *l;
3042	void *caddr;
3043	unsigned long age = jiffies - track->when;
3044
3045	start = -1;
3046	end = t->count;
3047
3048	for ( ; ; ) {
3049		pos = start + (end - start + 1) / 2;
3050
3051		/*
3052		 * There is nothing at "end". If we end up there
3053		 * we need to add something to before end.
3054		 */
3055		if (pos == end)
3056			break;
3057
3058		caddr = t->loc[pos].addr;
3059		if (track->addr == caddr) {
3060
3061			l = &t->loc[pos];
3062			l->count++;
3063			if (track->when) {
3064				l->sum_time += age;
3065				if (age < l->min_time)
3066					l->min_time = age;
3067				if (age > l->max_time)
3068					l->max_time = age;
3069
3070				if (track->pid < l->min_pid)
3071					l->min_pid = track->pid;
3072				if (track->pid > l->max_pid)
3073					l->max_pid = track->pid;
3074
3075				cpu_set(track->cpu, l->cpus);
3076			}
3077			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3078			return 1;
3079		}
3080
3081		if (track->addr < caddr)
3082			end = pos;
3083		else
3084			start = pos;
3085	}
3086
3087	/*
3088	 * Not found. Insert new tracking element.
3089	 */
3090	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3091		return 0;
3092
3093	l = t->loc + pos;
3094	if (pos < t->count)
3095		memmove(l + 1, l,
3096			(t->count - pos) * sizeof(struct location));
3097	t->count++;
3098	l->count = 1;
3099	l->addr = track->addr;
3100	l->sum_time = age;
3101	l->min_time = age;
3102	l->max_time = age;
3103	l->min_pid = track->pid;
3104	l->max_pid = track->pid;
3105	cpus_clear(l->cpus);
3106	cpu_set(track->cpu, l->cpus);
3107	nodes_clear(l->nodes);
3108	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3109	return 1;
3110}
3111
3112static void process_slab(struct loc_track *t, struct kmem_cache *s,
3113		struct page *page, enum track_item alloc)
3114{
3115	void *addr = page_address(page);
3116	DECLARE_BITMAP(map, s->objects);
3117	void *p;
3118
3119	bitmap_zero(map, s->objects);
3120	for_each_free_object(p, s, page->freelist)
3121		set_bit(slab_index(p, s, addr), map);
3122
3123	for_each_object(p, s, addr)
3124		if (!test_bit(slab_index(p, s, addr), map))
3125			add_location(t, s, get_track(s, p, alloc));
3126}
3127
3128static int list_locations(struct kmem_cache *s, char *buf,
3129					enum track_item alloc)
3130{
3131	int n = 0;
3132	unsigned long i;
3133	struct loc_track t = { 0, 0, NULL };
3134	int node;
3135
3136	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3137			GFP_KERNEL))
3138		return sprintf(buf, "Out of memory\n");
3139
3140	/* Push back cpu slabs */
3141	flush_all(s);
3142
3143	for_each_node_state(node, N_NORMAL_MEMORY) {
3144		struct kmem_cache_node *n = get_node(s, node);
3145		unsigned long flags;
3146		struct page *page;
3147
3148		if (!atomic_long_read(&n->nr_slabs))
3149			continue;
3150
3151		spin_lock_irqsave(&n->list_lock, flags);
3152		list_for_each_entry(page, &n->partial, lru)
3153			process_slab(&t, s, page, alloc);
3154		list_for_each_entry(page, &n->full, lru)
3155			process_slab(&t, s, page, alloc);
3156		spin_unlock_irqrestore(&n->list_lock, flags);
3157	}
3158
3159	for (i = 0; i < t.count; i++) {
3160		struct location *l = &t.loc[i];
3161
3162		if (n > PAGE_SIZE - 100)
3163			break;
3164		n += sprintf(buf + n, "%7ld ", l->count);
3165
3166		if (l->addr)
3167			n += sprint_symbol(buf + n, (unsigned long)l->addr);
3168		else
3169			n += sprintf(buf + n, "<not-available>");
3170
3171		if (l->sum_time != l->min_time) {
3172			unsigned long remainder;
3173
3174			n += sprintf(buf + n, " age=%ld/%ld/%ld",
3175			l->min_time,
3176			div_long_long_rem(l->sum_time, l->count, &remainder),
3177			l->max_time);
3178		} else
3179			n += sprintf(buf + n, " age=%ld",
3180				l->min_time);
3181
3182		if (l->min_pid != l->max_pid)
3183			n += sprintf(buf + n, " pid=%ld-%ld",
3184				l->min_pid, l->max_pid);
3185		else
3186			n += sprintf(buf + n, " pid=%ld",
3187				l->min_pid);
3188
3189		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3190				n < PAGE_SIZE - 60) {
3191			n += sprintf(buf + n, " cpus=");
3192			n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3193					l->cpus);
3194		}
3195
3196		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3197				n < PAGE_SIZE - 60) {
3198			n += sprintf(buf + n, " nodes=");
3199			n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3200					l->nodes);
3201		}
3202
3203		n += sprintf(buf + n, "\n");
3204	}
3205
3206	free_loc_track(&t);
3207	if (!t.count)
3208		n += sprintf(buf, "No data\n");
3209	return n;
3210}
3211
3212static unsigned long count_partial(struct kmem_cache_node *n)
3213{
3214	unsigned long flags;
3215	unsigned long x = 0;
3216	struct page *page;
3217
3218	spin_lock_irqsave(&n->list_lock, flags);
3219	list_for_each_entry(page, &n->partial, lru)
3220		x += page->inuse;
3221	spin_unlock_irqrestore(&n->list_lock, flags);
3222	return x;
3223}
3224
3225enum slab_stat_type {
3226	SL_FULL,
3227	SL_PARTIAL,
3228	SL_CPU,
3229	SL_OBJECTS
3230};
3231
3232#define SO_FULL		(1 << SL_FULL)
3233#define SO_PARTIAL	(1 << SL_PARTIAL)
3234#define SO_CPU		(1 << SL_CPU)
3235#define SO_OBJECTS	(1 << SL_OBJECTS)
3236
3237static unsigned long slab_objects(struct kmem_cache *s,
3238			char *buf, unsigned long flags)
3239{
3240	unsigned long total = 0;
3241	int cpu;
3242	int node;
3243	int x;
3244	unsigned long *nodes;
3245	unsigned long *per_cpu;
3246
3247	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3248	per_cpu = nodes + nr_node_ids;
3249
3250	for_each_possible_cpu(cpu) {
3251		struct page *page = s->cpu_slab[cpu];
3252		int node;
3253
3254		if (page) {
3255			node = page_to_nid(page);
3256			if (flags & SO_CPU) {
3257				int x = 0;
3258
3259				if (flags & SO_OBJECTS)
3260					x = page->inuse;
3261				else
3262					x = 1;
3263				total += x;
3264				nodes[node] += x;
3265			}
3266			per_cpu[node]++;
3267		}
3268	}
3269
3270	for_each_node_state(node, N_NORMAL_MEMORY) {
3271		struct kmem_cache_node *n = get_node(s, node);
3272
3273		if (flags & SO_PARTIAL) {
3274			if (flags & SO_OBJECTS)
3275				x = count_partial(n);
3276			else
3277				x = n->nr_partial;
3278			total += x;
3279			nodes[node] += x;
3280		}
3281
3282		if (flags & SO_FULL) {
3283			int full_slabs = atomic_long_read(&n->nr_slabs)
3284					- per_cpu[node]
3285					- n->nr_partial;
3286
3287			if (flags & SO_OBJECTS)
3288				x = full_slabs * s->objects;
3289			else
3290				x = full_slabs;
3291			total += x;
3292			nodes[node] += x;
3293		}
3294	}
3295
3296	x = sprintf(buf, "%lu", total);
3297#ifdef CONFIG_NUMA
3298	for_each_node_state(node, N_NORMAL_MEMORY)
3299		if (nodes[node])
3300			x += sprintf(buf + x, " N%d=%lu",
3301					node, nodes[node]);
3302#endif
3303	kfree(nodes);
3304	return x + sprintf(buf + x, "\n");
3305}
3306
3307static int any_slab_objects(struct kmem_cache *s)
3308{
3309	int node;
3310	int cpu;
3311
3312	for_each_possible_cpu(cpu)
3313		if (s->cpu_slab[cpu])
3314			return 1;
3315
3316	for_each_node(node) {
3317		struct kmem_cache_node *n = get_node(s, node);
3318
3319		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3320			return 1;
3321	}
3322	return 0;
3323}
3324
3325#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3326#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3327
3328struct slab_attribute {
3329	struct attribute attr;
3330	ssize_t (*show)(struct kmem_cache *s, char *buf);
3331	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3332};
3333
3334#define SLAB_ATTR_RO(_name) \
3335	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3336
3337#define SLAB_ATTR(_name) \
3338	static struct slab_attribute _name##_attr =  \
3339	__ATTR(_name, 0644, _name##_show, _name##_store)
3340
3341static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3342{
3343	return sprintf(buf, "%d\n", s->size);
3344}
3345SLAB_ATTR_RO(slab_size);
3346
3347static ssize_t align_show(struct kmem_cache *s, char *buf)
3348{
3349	return sprintf(buf, "%d\n", s->align);
3350}
3351SLAB_ATTR_RO(align);
3352
3353static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3354{
3355	return sprintf(buf, "%d\n", s->objsize);
3356}
3357SLAB_ATTR_RO(object_size);
3358
3359static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3360{
3361	return sprintf(buf, "%d\n", s->objects);
3362}
3363SLAB_ATTR_RO(objs_per_slab);
3364
3365static ssize_t order_show(struct kmem_cache *s, char *buf)
3366{
3367	return sprintf(buf, "%d\n", s->order);
3368}
3369SLAB_ATTR_RO(order);
3370
3371static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3372{
3373	if (s->ctor) {
3374		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3375
3376		return n + sprintf(buf + n, "\n");
3377	}
3378	return 0;
3379}
3380SLAB_ATTR_RO(ctor);
3381
3382static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3383{
3384	return sprintf(buf, "%d\n", s->refcount - 1);
3385}
3386SLAB_ATTR_RO(aliases);
3387
3388static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3389{
3390	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3391}
3392SLAB_ATTR_RO(slabs);
3393
3394static ssize_t partial_show(struct kmem_cache *s, char *buf)
3395{
3396	return slab_objects(s, buf, SO_PARTIAL);
3397}
3398SLAB_ATTR_RO(partial);
3399
3400static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3401{
3402	return slab_objects(s, buf, SO_CPU);
3403}
3404SLAB_ATTR_RO(cpu_slabs);
3405
3406static ssize_t objects_show(struct kmem_cache *s, char *buf)
3407{
3408	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3409}
3410SLAB_ATTR_RO(objects);
3411
3412static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3413{
3414	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3415}
3416
3417static ssize_t sanity_checks_store(struct kmem_cache *s,
3418				const char *buf, size_t length)
3419{
3420	s->flags &= ~SLAB_DEBUG_FREE;
3421	if (buf[0] == '1')
3422		s->flags |= SLAB_DEBUG_FREE;
3423	return length;
3424}
3425SLAB_ATTR(sanity_checks);
3426
3427static ssize_t trace_show(struct kmem_cache *s, char *buf)
3428{
3429	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3430}
3431
3432static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3433							size_t length)
3434{
3435	s->flags &= ~SLAB_TRACE;
3436	if (buf[0] == '1')
3437		s->flags |= SLAB_TRACE;
3438	return length;
3439}
3440SLAB_ATTR(trace);
3441
3442static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3443{
3444	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3445}
3446
3447static ssize_t reclaim_account_store(struct kmem_cache *s,
3448				const char *buf, size_t length)
3449{
3450	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3451	if (buf[0] == '1')
3452		s->flags |= SLAB_RECLAIM_ACCOUNT;
3453	return length;
3454}
3455SLAB_ATTR(reclaim_account);
3456
3457static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3458{
3459	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3460}
3461SLAB_ATTR_RO(hwcache_align);
3462
3463#ifdef CONFIG_ZONE_DMA
3464static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3465{
3466	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3467}
3468SLAB_ATTR_RO(cache_dma);
3469#endif
3470
3471static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3472{
3473	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3474}
3475SLAB_ATTR_RO(destroy_by_rcu);
3476
3477static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3478{
3479	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3480}
3481
3482static ssize_t red_zone_store(struct kmem_cache *s,
3483				const char *buf, size_t length)
3484{
3485	if (any_slab_objects(s))
3486		return -EBUSY;
3487
3488	s->flags &= ~SLAB_RED_ZONE;
3489	if (buf[0] == '1')
3490		s->flags |= SLAB_RED_ZONE;
3491	calculate_sizes(s);
3492	return length;
3493}
3494SLAB_ATTR(red_zone);
3495
3496static ssize_t poison_show(struct kmem_cache *s, char *buf)
3497{
3498	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3499}
3500
3501static ssize_t poison_store(struct kmem_cache *s,
3502				const char *buf, size_t length)
3503{
3504	if (any_slab_objects(s))
3505		return -EBUSY;
3506
3507	s->flags &= ~SLAB_POISON;
3508	if (buf[0] == '1')
3509		s->flags |= SLAB_POISON;
3510	calculate_sizes(s);
3511	return length;
3512}
3513SLAB_ATTR(poison);
3514
3515static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3516{
3517	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3518}
3519
3520static ssize_t store_user_store(struct kmem_cache *s,
3521				const char *buf, size_t length)
3522{
3523	if (any_slab_objects(s))
3524		return -EBUSY;
3525
3526	s->flags &= ~SLAB_STORE_USER;
3527	if (buf[0] == '1')
3528		s->flags |= SLAB_STORE_USER;
3529	calculate_sizes(s);
3530	return length;
3531}
3532SLAB_ATTR(store_user);
3533
3534static ssize_t validate_show(struct kmem_cache *s, char *buf)
3535{
3536	return 0;
3537}
3538
3539static ssize_t validate_store(struct kmem_cache *s,
3540			const char *buf, size_t length)
3541{
3542	int ret = -EINVAL;
3543
3544	if (buf[0] == '1') {
3545		ret = validate_slab_cache(s);
3546		if (ret >= 0)
3547			ret = length;
3548	}
3549	return ret;
3550}
3551SLAB_ATTR(validate);
3552
3553static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3554{
3555	return 0;
3556}
3557
3558static ssize_t shrink_store(struct kmem_cache *s,
3559			const char *buf, size_t length)
3560{
3561	if (buf[0] == '1') {
3562		int rc = kmem_cache_shrink(s);
3563
3564		if (rc)
3565			return rc;
3566	} else
3567		return -EINVAL;
3568	return length;
3569}
3570SLAB_ATTR(shrink);
3571
3572static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3573{
3574	if (!(s->flags & SLAB_STORE_USER))
3575		return -ENOSYS;
3576	return list_locations(s, buf, TRACK_ALLOC);
3577}
3578SLAB_ATTR_RO(alloc_calls);
3579
3580static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3581{
3582	if (!(s->flags & SLAB_STORE_USER))
3583		return -ENOSYS;
3584	return list_locations(s, buf, TRACK_FREE);
3585}
3586SLAB_ATTR_RO(free_calls);
3587
3588#ifdef CONFIG_NUMA
3589static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3590{
3591	return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3592}
3593
3594static ssize_t defrag_ratio_store(struct kmem_cache *s,
3595				const char *buf, size_t length)
3596{
3597	int n = simple_strtoul(buf, NULL, 10);
3598
3599	if (n < 100)
3600		s->defrag_ratio = n * 10;
3601	return length;
3602}
3603SLAB_ATTR(defrag_ratio);
3604#endif
3605
3606static struct attribute * slab_attrs[] = {
3607	&slab_size_attr.attr,
3608	&object_size_attr.attr,
3609	&objs_per_slab_attr.attr,
3610	&order_attr.attr,
3611	&objects_attr.attr,
3612	&slabs_attr.attr,
3613	&partial_attr.attr,
3614	&cpu_slabs_attr.attr,
3615	&ctor_attr.attr,
3616	&aliases_attr.attr,
3617	&align_attr.attr,
3618	&sanity_checks_attr.attr,
3619	&trace_attr.attr,
3620	&hwcache_align_attr.attr,
3621	&reclaim_account_attr.attr,
3622	&destroy_by_rcu_attr.attr,
3623	&red_zone_attr.attr,
3624	&poison_attr.attr,
3625	&store_user_attr.attr,
3626	&validate_attr.attr,
3627	&shrink_attr.attr,
3628	&alloc_calls_attr.attr,
3629	&free_calls_attr.attr,
3630#ifdef CONFIG_ZONE_DMA
3631	&cache_dma_attr.attr,
3632#endif
3633#ifdef CONFIG_NUMA
3634	&defrag_ratio_attr.attr,
3635#endif
3636	NULL
3637};
3638
3639static struct attribute_group slab_attr_group = {
3640	.attrs = slab_attrs,
3641};
3642
3643static ssize_t slab_attr_show(struct kobject *kobj,
3644				struct attribute *attr,
3645				char *buf)
3646{
3647	struct slab_attribute *attribute;
3648	struct kmem_cache *s;
3649	int err;
3650
3651	attribute = to_slab_attr(attr);
3652	s = to_slab(kobj);
3653
3654	if (!attribute->show)
3655		return -EIO;
3656
3657	err = attribute->show(s, buf);
3658
3659	return err;
3660}
3661
3662static ssize_t slab_attr_store(struct kobject *kobj,
3663				struct attribute *attr,
3664				const char *buf, size_t len)
3665{
3666	struct slab_attribute *attribute;
3667	struct kmem_cache *s;
3668	int err;
3669
3670	attribute = to_slab_attr(attr);
3671	s = to_slab(kobj);
3672
3673	if (!attribute->store)
3674		return -EIO;
3675
3676	err = attribute->store(s, buf, len);
3677
3678	return err;
3679}
3680
3681static struct sysfs_ops slab_sysfs_ops = {
3682	.show = slab_attr_show,
3683	.store = slab_attr_store,
3684};
3685
3686static struct kobj_type slab_ktype = {
3687	.sysfs_ops = &slab_sysfs_ops,
3688};
3689
3690static int uevent_filter(struct kset *kset, struct kobject *kobj)
3691{
3692	struct kobj_type *ktype = get_ktype(kobj);
3693
3694	if (ktype == &slab_ktype)
3695		return 1;
3696	return 0;
3697}
3698
3699static struct kset_uevent_ops slab_uevent_ops = {
3700	.filter = uevent_filter,
3701};
3702
3703static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3704
3705#define ID_STR_LENGTH 64
3706
3707/* Create a unique string id for a slab cache:
3708 * format
3709 * :[flags-]size:[memory address of kmemcache]
3710 */
3711static char *create_unique_id(struct kmem_cache *s)
3712{
3713	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3714	char *p = name;
3715
3716	BUG_ON(!name);
3717
3718	*p++ = ':';
3719	/*
3720	 * First flags affecting slabcache operations. We will only
3721	 * get here for aliasable slabs so we do not need to support
3722	 * too many flags. The flags here must cover all flags that
3723	 * are matched during merging to guarantee that the id is
3724	 * unique.
3725	 */
3726	if (s->flags & SLAB_CACHE_DMA)
3727		*p++ = 'd';
3728	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3729		*p++ = 'a';
3730	if (s->flags & SLAB_DEBUG_FREE)
3731		*p++ = 'F';
3732	if (p != name + 1)
3733		*p++ = '-';
3734	p += sprintf(p, "%07d", s->size);
3735	BUG_ON(p > name + ID_STR_LENGTH - 1);
3736	return name;
3737}
3738
3739static int sysfs_slab_add(struct kmem_cache *s)
3740{
3741	int err;
3742	const char *name;
3743	int unmergeable;
3744
3745	if (slab_state < SYSFS)
3746		/* Defer until later */
3747		return 0;
3748
3749	unmergeable = slab_unmergeable(s);
3750	if (unmergeable) {
3751		/*
3752		 * Slabcache can never be merged so we can use the name proper.
3753		 * This is typically the case for debug situations. In that
3754		 * case we can catch duplicate names easily.
3755		 */
3756		sysfs_remove_link(&slab_subsys.kobj, s->name);
3757		name = s->name;
3758	} else {
3759		/*
3760		 * Create a unique name for the slab as a target
3761		 * for the symlinks.
3762		 */
3763		name = create_unique_id(s);
3764	}
3765
3766	kobj_set_kset_s(s, slab_subsys);
3767	kobject_set_name(&s->kobj, name);
3768	kobject_init(&s->kobj);
3769	err = kobject_add(&s->kobj);
3770	if (err)
3771		return err;
3772
3773	err = sysfs_create_group(&s->kobj, &slab_attr_group);
3774	if (err)
3775		return err;
3776	kobject_uevent(&s->kobj, KOBJ_ADD);
3777	if (!unmergeable) {
3778		/* Setup first alias */
3779		sysfs_slab_alias(s, s->name);
3780		kfree(name);
3781	}
3782	return 0;
3783}
3784
3785static void sysfs_slab_remove(struct kmem_cache *s)
3786{
3787	kobject_uevent(&s->kobj, KOBJ_REMOVE);
3788	kobject_del(&s->kobj);
3789}
3790
3791/*
3792 * Need to buffer aliases during bootup until sysfs becomes
3793 * available lest we loose that information.
3794 */
3795struct saved_alias {
3796	struct kmem_cache *s;
3797	const char *name;
3798	struct saved_alias *next;
3799};
3800
3801static struct saved_alias *alias_list;
3802
3803static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3804{
3805	struct saved_alias *al;
3806
3807	if (slab_state == SYSFS) {
3808		/*
3809		 * If we have a leftover link then remove it.
3810		 */
3811		sysfs_remove_link(&slab_subsys.kobj, name);
3812		return sysfs_create_link(&slab_subsys.kobj,
3813						&s->kobj, name);
3814	}
3815
3816	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3817	if (!al)
3818		return -ENOMEM;
3819
3820	al->s = s;
3821	al->name = name;
3822	al->next = alias_list;
3823	alias_list = al;
3824	return 0;
3825}
3826
3827static int __init slab_sysfs_init(void)
3828{
3829	struct kmem_cache *s;
3830	int err;
3831
3832	err = subsystem_register(&slab_subsys);
3833	if (err) {
3834		printk(KERN_ERR "Cannot register slab subsystem.\n");
3835		return -ENOSYS;
3836	}
3837
3838	slab_state = SYSFS;
3839
3840	list_for_each_entry(s, &slab_caches, list) {
3841		err = sysfs_slab_add(s);
3842		if (err)
3843			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
3844						" to sysfs\n", s->name);
3845	}
3846
3847	while (alias_list) {
3848		struct saved_alias *al = alias_list;
3849
3850		alias_list = alias_list->next;
3851		err = sysfs_slab_alias(al->s, al->name);
3852		if (err)
3853			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
3854					" %s to sysfs\n", s->name);
3855		kfree(al);
3856	}
3857
3858	resiliency_test();
3859	return 0;
3860}
3861
3862__initcall(slab_sysfs_init);
3863#endif
3864