slub.c revision fdaa45e95d2ef59a140d2fb2e487141f83f5a07c
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/swap.h> /* struct reclaim_state */
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
18#include <linux/proc_fs.h>
19#include <linux/seq_file.h>
20#include <linux/kmemtrace.h>
21#include <linux/kmemcheck.h>
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
26#include <linux/debugobjects.h>
27#include <linux/kallsyms.h>
28#include <linux/memory.h>
29#include <linux/math64.h>
30#include <linux/fault-inject.h>
31
32/*
33 * Lock order:
34 *   1. slab_lock(page)
35 *   2. slab->list_lock
36 *
37 *   The slab_lock protects operations on the object of a particular
38 *   slab and its metadata in the page struct. If the slab lock
39 *   has been taken then no allocations nor frees can be performed
40 *   on the objects in the slab nor can the slab be added or removed
41 *   from the partial or full lists since this would mean modifying
42 *   the page_struct of the slab.
43 *
44 *   The list_lock protects the partial and full list on each node and
45 *   the partial slab counter. If taken then no new slabs may be added or
46 *   removed from the lists nor make the number of partial slabs be modified.
47 *   (Note that the total number of slabs is an atomic value that may be
48 *   modified without taking the list lock).
49 *
50 *   The list_lock is a centralized lock and thus we avoid taking it as
51 *   much as possible. As long as SLUB does not have to handle partial
52 *   slabs, operations can continue without any centralized lock. F.e.
53 *   allocating a long series of objects that fill up slabs does not require
54 *   the list lock.
55 *
56 *   The lock order is sometimes inverted when we are trying to get a slab
57 *   off a list. We take the list_lock and then look for a page on the list
58 *   to use. While we do that objects in the slabs may be freed. We can
59 *   only operate on the slab if we have also taken the slab_lock. So we use
60 *   a slab_trylock() on the slab. If trylock was successful then no frees
61 *   can occur anymore and we can use the slab for allocations etc. If the
62 *   slab_trylock() does not succeed then frees are in progress in the slab and
63 *   we must stay away from it for a while since we may cause a bouncing
64 *   cacheline if we try to acquire the lock. So go onto the next slab.
65 *   If all pages are busy then we may allocate a new slab instead of reusing
66 *   a partial slab. A new slab has noone operating on it and thus there is
67 *   no danger of cacheline contention.
68 *
69 *   Interrupts are disabled during allocation and deallocation in order to
70 *   make the slab allocator safe to use in the context of an irq. In addition
71 *   interrupts are disabled to ensure that the processor does not change
72 *   while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
89 * PageActive 		The slab is frozen and exempt from list processing.
90 * 			This means that the slab is dedicated to a purpose
91 * 			such as satisfying allocations for a specific
92 * 			processor. Objects may be freed in the slab while
93 * 			it is frozen but slab_free will then skip the usual
94 * 			list operations. It is up to the processor holding
95 * 			the slab to integrate the slab into the slab lists
96 * 			when the slab is no longer needed.
97 *
98 * 			One use of this flag is to mark slabs that are
99 * 			used for allocations. Then such a slab becomes a cpu
100 * 			slab. The cpu slab may be equipped with an additional
101 * 			freelist that allows lockless access to
102 * 			free objects in addition to the regular freelist
103 * 			that requires the slab lock.
104 *
105 * PageError		Slab requires special handling due to debug
106 * 			options set. This moves	slab handling out of
107 * 			the fast path and disables lockless freelists.
108 */
109
110#ifdef CONFIG_SLUB_DEBUG
111#define SLABDEBUG 1
112#else
113#define SLABDEBUG 0
114#endif
115
116/*
117 * Issues still to be resolved:
118 *
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
121 * - Variable sizing of the per node arrays
122 */
123
124/* Enable to test recovery from slab corruption on boot */
125#undef SLUB_RESILIENCY_TEST
126
127/*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
131#define MIN_PARTIAL 5
132
133/*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138#define MAX_PARTIAL 10
139
140#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141				SLAB_POISON | SLAB_STORE_USER)
142
143/*
144 * Debugging flags that require metadata to be stored in the slab.  These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
147 */
148#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
149
150/*
151 * Set of flags that will prevent slab merging
152 */
153#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
155
156#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
157		SLAB_CACHE_DMA | SLAB_NOTRACK)
158
159#ifndef ARCH_KMALLOC_MINALIGN
160#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
161#endif
162
163#ifndef ARCH_SLAB_MINALIGN
164#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
165#endif
166
167#define OO_SHIFT	16
168#define OO_MASK		((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
170
171/* Internal SLUB flags */
172#define __OBJECT_POISON		0x80000000 /* Poison object */
173#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
174
175static int kmem_size = sizeof(struct kmem_cache);
176
177#ifdef CONFIG_SMP
178static struct notifier_block slab_notifier;
179#endif
180
181static enum {
182	DOWN,		/* No slab functionality available */
183	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
184	UP,		/* Everything works but does not show up in sysfs */
185	SYSFS		/* Sysfs up */
186} slab_state = DOWN;
187
188/* A list of all slab caches on the system */
189static DECLARE_RWSEM(slub_lock);
190static LIST_HEAD(slab_caches);
191
192/*
193 * Tracking user of a slab.
194 */
195struct track {
196	unsigned long addr;	/* Called from address */
197	int cpu;		/* Was running on cpu */
198	int pid;		/* Pid context */
199	unsigned long when;	/* When did the operation occur */
200};
201
202enum track_item { TRACK_ALLOC, TRACK_FREE };
203
204#ifdef CONFIG_SLUB_DEBUG
205static int sysfs_slab_add(struct kmem_cache *);
206static int sysfs_slab_alias(struct kmem_cache *, const char *);
207static void sysfs_slab_remove(struct kmem_cache *);
208
209#else
210static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212							{ return 0; }
213static inline void sysfs_slab_remove(struct kmem_cache *s)
214{
215	kfree(s);
216}
217
218#endif
219
220static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
221{
222#ifdef CONFIG_SLUB_STATS
223	c->stat[si]++;
224#endif
225}
226
227/********************************************************************
228 * 			Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233	return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
238#ifdef CONFIG_NUMA
239	return s->node[node];
240#else
241	return &s->local_node;
242#endif
243}
244
245static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
246{
247#ifdef CONFIG_SMP
248	return s->cpu_slab[cpu];
249#else
250	return &s->cpu_slab;
251#endif
252}
253
254/* Verify that a pointer has an address that is valid within a slab page */
255static inline int check_valid_pointer(struct kmem_cache *s,
256				struct page *page, const void *object)
257{
258	void *base;
259
260	if (!object)
261		return 1;
262
263	base = page_address(page);
264	if (object < base || object >= base + page->objects * s->size ||
265		(object - base) % s->size) {
266		return 0;
267	}
268
269	return 1;
270}
271
272/*
273 * Slow version of get and set free pointer.
274 *
275 * This version requires touching the cache lines of kmem_cache which
276 * we avoid to do in the fast alloc free paths. There we obtain the offset
277 * from the page struct.
278 */
279static inline void *get_freepointer(struct kmem_cache *s, void *object)
280{
281	return *(void **)(object + s->offset);
282}
283
284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285{
286	*(void **)(object + s->offset) = fp;
287}
288
289/* Loop over all objects in a slab */
290#define for_each_object(__p, __s, __addr, __objects) \
291	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292			__p += (__s)->size)
293
294/* Scan freelist */
295#define for_each_free_object(__p, __s, __free) \
296	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
297
298/* Determine object index from a given position */
299static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
300{
301	return (p - addr) / s->size;
302}
303
304static inline struct kmem_cache_order_objects oo_make(int order,
305						unsigned long size)
306{
307	struct kmem_cache_order_objects x = {
308		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
309	};
310
311	return x;
312}
313
314static inline int oo_order(struct kmem_cache_order_objects x)
315{
316	return x.x >> OO_SHIFT;
317}
318
319static inline int oo_objects(struct kmem_cache_order_objects x)
320{
321	return x.x & OO_MASK;
322}
323
324#ifdef CONFIG_SLUB_DEBUG
325/*
326 * Debug settings:
327 */
328#ifdef CONFIG_SLUB_DEBUG_ON
329static int slub_debug = DEBUG_DEFAULT_FLAGS;
330#else
331static int slub_debug;
332#endif
333
334static char *slub_debug_slabs;
335static int disable_higher_order_debug;
336
337/*
338 * Object debugging
339 */
340static void print_section(char *text, u8 *addr, unsigned int length)
341{
342	int i, offset;
343	int newline = 1;
344	char ascii[17];
345
346	ascii[16] = 0;
347
348	for (i = 0; i < length; i++) {
349		if (newline) {
350			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
351			newline = 0;
352		}
353		printk(KERN_CONT " %02x", addr[i]);
354		offset = i % 16;
355		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
356		if (offset == 15) {
357			printk(KERN_CONT " %s\n", ascii);
358			newline = 1;
359		}
360	}
361	if (!newline) {
362		i %= 16;
363		while (i < 16) {
364			printk(KERN_CONT "   ");
365			ascii[i] = ' ';
366			i++;
367		}
368		printk(KERN_CONT " %s\n", ascii);
369	}
370}
371
372static struct track *get_track(struct kmem_cache *s, void *object,
373	enum track_item alloc)
374{
375	struct track *p;
376
377	if (s->offset)
378		p = object + s->offset + sizeof(void *);
379	else
380		p = object + s->inuse;
381
382	return p + alloc;
383}
384
385static void set_track(struct kmem_cache *s, void *object,
386			enum track_item alloc, unsigned long addr)
387{
388	struct track *p = get_track(s, object, alloc);
389
390	if (addr) {
391		p->addr = addr;
392		p->cpu = smp_processor_id();
393		p->pid = current->pid;
394		p->when = jiffies;
395	} else
396		memset(p, 0, sizeof(struct track));
397}
398
399static void init_tracking(struct kmem_cache *s, void *object)
400{
401	if (!(s->flags & SLAB_STORE_USER))
402		return;
403
404	set_track(s, object, TRACK_FREE, 0UL);
405	set_track(s, object, TRACK_ALLOC, 0UL);
406}
407
408static void print_track(const char *s, struct track *t)
409{
410	if (!t->addr)
411		return;
412
413	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
414		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
415}
416
417static void print_tracking(struct kmem_cache *s, void *object)
418{
419	if (!(s->flags & SLAB_STORE_USER))
420		return;
421
422	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
423	print_track("Freed", get_track(s, object, TRACK_FREE));
424}
425
426static void print_page_info(struct page *page)
427{
428	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
429		page, page->objects, page->inuse, page->freelist, page->flags);
430
431}
432
433static void slab_bug(struct kmem_cache *s, char *fmt, ...)
434{
435	va_list args;
436	char buf[100];
437
438	va_start(args, fmt);
439	vsnprintf(buf, sizeof(buf), fmt, args);
440	va_end(args);
441	printk(KERN_ERR "========================================"
442			"=====================================\n");
443	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
444	printk(KERN_ERR "----------------------------------------"
445			"-------------------------------------\n\n");
446}
447
448static void slab_fix(struct kmem_cache *s, char *fmt, ...)
449{
450	va_list args;
451	char buf[100];
452
453	va_start(args, fmt);
454	vsnprintf(buf, sizeof(buf), fmt, args);
455	va_end(args);
456	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
457}
458
459static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
460{
461	unsigned int off;	/* Offset of last byte */
462	u8 *addr = page_address(page);
463
464	print_tracking(s, p);
465
466	print_page_info(page);
467
468	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
469			p, p - addr, get_freepointer(s, p));
470
471	if (p > addr + 16)
472		print_section("Bytes b4", p - 16, 16);
473
474	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
475
476	if (s->flags & SLAB_RED_ZONE)
477		print_section("Redzone", p + s->objsize,
478			s->inuse - s->objsize);
479
480	if (s->offset)
481		off = s->offset + sizeof(void *);
482	else
483		off = s->inuse;
484
485	if (s->flags & SLAB_STORE_USER)
486		off += 2 * sizeof(struct track);
487
488	if (off != s->size)
489		/* Beginning of the filler is the free pointer */
490		print_section("Padding", p + off, s->size - off);
491
492	dump_stack();
493}
494
495static void object_err(struct kmem_cache *s, struct page *page,
496			u8 *object, char *reason)
497{
498	slab_bug(s, "%s", reason);
499	print_trailer(s, page, object);
500}
501
502static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
503{
504	va_list args;
505	char buf[100];
506
507	va_start(args, fmt);
508	vsnprintf(buf, sizeof(buf), fmt, args);
509	va_end(args);
510	slab_bug(s, "%s", buf);
511	print_page_info(page);
512	dump_stack();
513}
514
515static void init_object(struct kmem_cache *s, void *object, int active)
516{
517	u8 *p = object;
518
519	if (s->flags & __OBJECT_POISON) {
520		memset(p, POISON_FREE, s->objsize - 1);
521		p[s->objsize - 1] = POISON_END;
522	}
523
524	if (s->flags & SLAB_RED_ZONE)
525		memset(p + s->objsize,
526			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
527			s->inuse - s->objsize);
528}
529
530static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
531{
532	while (bytes) {
533		if (*start != (u8)value)
534			return start;
535		start++;
536		bytes--;
537	}
538	return NULL;
539}
540
541static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
542						void *from, void *to)
543{
544	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
545	memset(from, data, to - from);
546}
547
548static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
549			u8 *object, char *what,
550			u8 *start, unsigned int value, unsigned int bytes)
551{
552	u8 *fault;
553	u8 *end;
554
555	fault = check_bytes(start, value, bytes);
556	if (!fault)
557		return 1;
558
559	end = start + bytes;
560	while (end > fault && end[-1] == value)
561		end--;
562
563	slab_bug(s, "%s overwritten", what);
564	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
565					fault, end - 1, fault[0], value);
566	print_trailer(s, page, object);
567
568	restore_bytes(s, what, value, fault, end);
569	return 0;
570}
571
572/*
573 * Object layout:
574 *
575 * object address
576 * 	Bytes of the object to be managed.
577 * 	If the freepointer may overlay the object then the free
578 * 	pointer is the first word of the object.
579 *
580 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
581 * 	0xa5 (POISON_END)
582 *
583 * object + s->objsize
584 * 	Padding to reach word boundary. This is also used for Redzoning.
585 * 	Padding is extended by another word if Redzoning is enabled and
586 * 	objsize == inuse.
587 *
588 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
589 * 	0xcc (RED_ACTIVE) for objects in use.
590 *
591 * object + s->inuse
592 * 	Meta data starts here.
593 *
594 * 	A. Free pointer (if we cannot overwrite object on free)
595 * 	B. Tracking data for SLAB_STORE_USER
596 * 	C. Padding to reach required alignment boundary or at mininum
597 * 		one word if debugging is on to be able to detect writes
598 * 		before the word boundary.
599 *
600 *	Padding is done using 0x5a (POISON_INUSE)
601 *
602 * object + s->size
603 * 	Nothing is used beyond s->size.
604 *
605 * If slabcaches are merged then the objsize and inuse boundaries are mostly
606 * ignored. And therefore no slab options that rely on these boundaries
607 * may be used with merged slabcaches.
608 */
609
610static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
611{
612	unsigned long off = s->inuse;	/* The end of info */
613
614	if (s->offset)
615		/* Freepointer is placed after the object. */
616		off += sizeof(void *);
617
618	if (s->flags & SLAB_STORE_USER)
619		/* We also have user information there */
620		off += 2 * sizeof(struct track);
621
622	if (s->size == off)
623		return 1;
624
625	return check_bytes_and_report(s, page, p, "Object padding",
626				p + off, POISON_INUSE, s->size - off);
627}
628
629/* Check the pad bytes at the end of a slab page */
630static int slab_pad_check(struct kmem_cache *s, struct page *page)
631{
632	u8 *start;
633	u8 *fault;
634	u8 *end;
635	int length;
636	int remainder;
637
638	if (!(s->flags & SLAB_POISON))
639		return 1;
640
641	start = page_address(page);
642	length = (PAGE_SIZE << compound_order(page));
643	end = start + length;
644	remainder = length % s->size;
645	if (!remainder)
646		return 1;
647
648	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
649	if (!fault)
650		return 1;
651	while (end > fault && end[-1] == POISON_INUSE)
652		end--;
653
654	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
655	print_section("Padding", end - remainder, remainder);
656
657	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
658	return 0;
659}
660
661static int check_object(struct kmem_cache *s, struct page *page,
662					void *object, int active)
663{
664	u8 *p = object;
665	u8 *endobject = object + s->objsize;
666
667	if (s->flags & SLAB_RED_ZONE) {
668		unsigned int red =
669			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
670
671		if (!check_bytes_and_report(s, page, object, "Redzone",
672			endobject, red, s->inuse - s->objsize))
673			return 0;
674	} else {
675		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
676			check_bytes_and_report(s, page, p, "Alignment padding",
677				endobject, POISON_INUSE, s->inuse - s->objsize);
678		}
679	}
680
681	if (s->flags & SLAB_POISON) {
682		if (!active && (s->flags & __OBJECT_POISON) &&
683			(!check_bytes_and_report(s, page, p, "Poison", p,
684					POISON_FREE, s->objsize - 1) ||
685			 !check_bytes_and_report(s, page, p, "Poison",
686				p + s->objsize - 1, POISON_END, 1)))
687			return 0;
688		/*
689		 * check_pad_bytes cleans up on its own.
690		 */
691		check_pad_bytes(s, page, p);
692	}
693
694	if (!s->offset && active)
695		/*
696		 * Object and freepointer overlap. Cannot check
697		 * freepointer while object is allocated.
698		 */
699		return 1;
700
701	/* Check free pointer validity */
702	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
703		object_err(s, page, p, "Freepointer corrupt");
704		/*
705		 * No choice but to zap it and thus lose the remainder
706		 * of the free objects in this slab. May cause
707		 * another error because the object count is now wrong.
708		 */
709		set_freepointer(s, p, NULL);
710		return 0;
711	}
712	return 1;
713}
714
715static int check_slab(struct kmem_cache *s, struct page *page)
716{
717	int maxobj;
718
719	VM_BUG_ON(!irqs_disabled());
720
721	if (!PageSlab(page)) {
722		slab_err(s, page, "Not a valid slab page");
723		return 0;
724	}
725
726	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
727	if (page->objects > maxobj) {
728		slab_err(s, page, "objects %u > max %u",
729			s->name, page->objects, maxobj);
730		return 0;
731	}
732	if (page->inuse > page->objects) {
733		slab_err(s, page, "inuse %u > max %u",
734			s->name, page->inuse, page->objects);
735		return 0;
736	}
737	/* Slab_pad_check fixes things up after itself */
738	slab_pad_check(s, page);
739	return 1;
740}
741
742/*
743 * Determine if a certain object on a page is on the freelist. Must hold the
744 * slab lock to guarantee that the chains are in a consistent state.
745 */
746static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
747{
748	int nr = 0;
749	void *fp = page->freelist;
750	void *object = NULL;
751	unsigned long max_objects;
752
753	while (fp && nr <= page->objects) {
754		if (fp == search)
755			return 1;
756		if (!check_valid_pointer(s, page, fp)) {
757			if (object) {
758				object_err(s, page, object,
759					"Freechain corrupt");
760				set_freepointer(s, object, NULL);
761				break;
762			} else {
763				slab_err(s, page, "Freepointer corrupt");
764				page->freelist = NULL;
765				page->inuse = page->objects;
766				slab_fix(s, "Freelist cleared");
767				return 0;
768			}
769			break;
770		}
771		object = fp;
772		fp = get_freepointer(s, object);
773		nr++;
774	}
775
776	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
777	if (max_objects > MAX_OBJS_PER_PAGE)
778		max_objects = MAX_OBJS_PER_PAGE;
779
780	if (page->objects != max_objects) {
781		slab_err(s, page, "Wrong number of objects. Found %d but "
782			"should be %d", page->objects, max_objects);
783		page->objects = max_objects;
784		slab_fix(s, "Number of objects adjusted.");
785	}
786	if (page->inuse != page->objects - nr) {
787		slab_err(s, page, "Wrong object count. Counter is %d but "
788			"counted were %d", page->inuse, page->objects - nr);
789		page->inuse = page->objects - nr;
790		slab_fix(s, "Object count adjusted.");
791	}
792	return search == NULL;
793}
794
795static void trace(struct kmem_cache *s, struct page *page, void *object,
796								int alloc)
797{
798	if (s->flags & SLAB_TRACE) {
799		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
800			s->name,
801			alloc ? "alloc" : "free",
802			object, page->inuse,
803			page->freelist);
804
805		if (!alloc)
806			print_section("Object", (void *)object, s->objsize);
807
808		dump_stack();
809	}
810}
811
812/*
813 * Tracking of fully allocated slabs for debugging purposes.
814 */
815static void add_full(struct kmem_cache_node *n, struct page *page)
816{
817	spin_lock(&n->list_lock);
818	list_add(&page->lru, &n->full);
819	spin_unlock(&n->list_lock);
820}
821
822static void remove_full(struct kmem_cache *s, struct page *page)
823{
824	struct kmem_cache_node *n;
825
826	if (!(s->flags & SLAB_STORE_USER))
827		return;
828
829	n = get_node(s, page_to_nid(page));
830
831	spin_lock(&n->list_lock);
832	list_del(&page->lru);
833	spin_unlock(&n->list_lock);
834}
835
836/* Tracking of the number of slabs for debugging purposes */
837static inline unsigned long slabs_node(struct kmem_cache *s, int node)
838{
839	struct kmem_cache_node *n = get_node(s, node);
840
841	return atomic_long_read(&n->nr_slabs);
842}
843
844static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
845{
846	return atomic_long_read(&n->nr_slabs);
847}
848
849static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
850{
851	struct kmem_cache_node *n = get_node(s, node);
852
853	/*
854	 * May be called early in order to allocate a slab for the
855	 * kmem_cache_node structure. Solve the chicken-egg
856	 * dilemma by deferring the increment of the count during
857	 * bootstrap (see early_kmem_cache_node_alloc).
858	 */
859	if (!NUMA_BUILD || n) {
860		atomic_long_inc(&n->nr_slabs);
861		atomic_long_add(objects, &n->total_objects);
862	}
863}
864static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
865{
866	struct kmem_cache_node *n = get_node(s, node);
867
868	atomic_long_dec(&n->nr_slabs);
869	atomic_long_sub(objects, &n->total_objects);
870}
871
872/* Object debug checks for alloc/free paths */
873static void setup_object_debug(struct kmem_cache *s, struct page *page,
874								void *object)
875{
876	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
877		return;
878
879	init_object(s, object, 0);
880	init_tracking(s, object);
881}
882
883static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
884					void *object, unsigned long addr)
885{
886	if (!check_slab(s, page))
887		goto bad;
888
889	if (!on_freelist(s, page, object)) {
890		object_err(s, page, object, "Object already allocated");
891		goto bad;
892	}
893
894	if (!check_valid_pointer(s, page, object)) {
895		object_err(s, page, object, "Freelist Pointer check fails");
896		goto bad;
897	}
898
899	if (!check_object(s, page, object, 0))
900		goto bad;
901
902	/* Success perform special debug activities for allocs */
903	if (s->flags & SLAB_STORE_USER)
904		set_track(s, object, TRACK_ALLOC, addr);
905	trace(s, page, object, 1);
906	init_object(s, object, 1);
907	return 1;
908
909bad:
910	if (PageSlab(page)) {
911		/*
912		 * If this is a slab page then lets do the best we can
913		 * to avoid issues in the future. Marking all objects
914		 * as used avoids touching the remaining objects.
915		 */
916		slab_fix(s, "Marking all objects used");
917		page->inuse = page->objects;
918		page->freelist = NULL;
919	}
920	return 0;
921}
922
923static int free_debug_processing(struct kmem_cache *s, struct page *page,
924					void *object, unsigned long addr)
925{
926	if (!check_slab(s, page))
927		goto fail;
928
929	if (!check_valid_pointer(s, page, object)) {
930		slab_err(s, page, "Invalid object pointer 0x%p", object);
931		goto fail;
932	}
933
934	if (on_freelist(s, page, object)) {
935		object_err(s, page, object, "Object already free");
936		goto fail;
937	}
938
939	if (!check_object(s, page, object, 1))
940		return 0;
941
942	if (unlikely(s != page->slab)) {
943		if (!PageSlab(page)) {
944			slab_err(s, page, "Attempt to free object(0x%p) "
945				"outside of slab", object);
946		} else if (!page->slab) {
947			printk(KERN_ERR
948				"SLUB <none>: no slab for object 0x%p.\n",
949						object);
950			dump_stack();
951		} else
952			object_err(s, page, object,
953					"page slab pointer corrupt.");
954		goto fail;
955	}
956
957	/* Special debug activities for freeing objects */
958	if (!PageSlubFrozen(page) && !page->freelist)
959		remove_full(s, page);
960	if (s->flags & SLAB_STORE_USER)
961		set_track(s, object, TRACK_FREE, addr);
962	trace(s, page, object, 0);
963	init_object(s, object, 0);
964	return 1;
965
966fail:
967	slab_fix(s, "Object at 0x%p not freed", object);
968	return 0;
969}
970
971static int __init setup_slub_debug(char *str)
972{
973	slub_debug = DEBUG_DEFAULT_FLAGS;
974	if (*str++ != '=' || !*str)
975		/*
976		 * No options specified. Switch on full debugging.
977		 */
978		goto out;
979
980	if (*str == ',')
981		/*
982		 * No options but restriction on slabs. This means full
983		 * debugging for slabs matching a pattern.
984		 */
985		goto check_slabs;
986
987	if (tolower(*str) == 'o') {
988		/*
989		 * Avoid enabling debugging on caches if its minimum order
990		 * would increase as a result.
991		 */
992		disable_higher_order_debug = 1;
993		goto out;
994	}
995
996	slub_debug = 0;
997	if (*str == '-')
998		/*
999		 * Switch off all debugging measures.
1000		 */
1001		goto out;
1002
1003	/*
1004	 * Determine which debug features should be switched on
1005	 */
1006	for (; *str && *str != ','; str++) {
1007		switch (tolower(*str)) {
1008		case 'f':
1009			slub_debug |= SLAB_DEBUG_FREE;
1010			break;
1011		case 'z':
1012			slub_debug |= SLAB_RED_ZONE;
1013			break;
1014		case 'p':
1015			slub_debug |= SLAB_POISON;
1016			break;
1017		case 'u':
1018			slub_debug |= SLAB_STORE_USER;
1019			break;
1020		case 't':
1021			slub_debug |= SLAB_TRACE;
1022			break;
1023		default:
1024			printk(KERN_ERR "slub_debug option '%c' "
1025				"unknown. skipped\n", *str);
1026		}
1027	}
1028
1029check_slabs:
1030	if (*str == ',')
1031		slub_debug_slabs = str + 1;
1032out:
1033	return 1;
1034}
1035
1036__setup("slub_debug", setup_slub_debug);
1037
1038static unsigned long kmem_cache_flags(unsigned long objsize,
1039	unsigned long flags, const char *name,
1040	void (*ctor)(void *))
1041{
1042	/*
1043	 * Enable debugging if selected on the kernel commandline.
1044	 */
1045	if (slub_debug && (!slub_debug_slabs ||
1046		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1047		flags |= slub_debug;
1048
1049	return flags;
1050}
1051#else
1052static inline void setup_object_debug(struct kmem_cache *s,
1053			struct page *page, void *object) {}
1054
1055static inline int alloc_debug_processing(struct kmem_cache *s,
1056	struct page *page, void *object, unsigned long addr) { return 0; }
1057
1058static inline int free_debug_processing(struct kmem_cache *s,
1059	struct page *page, void *object, unsigned long addr) { return 0; }
1060
1061static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1062			{ return 1; }
1063static inline int check_object(struct kmem_cache *s, struct page *page,
1064			void *object, int active) { return 1; }
1065static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1066static inline unsigned long kmem_cache_flags(unsigned long objsize,
1067	unsigned long flags, const char *name,
1068	void (*ctor)(void *))
1069{
1070	return flags;
1071}
1072#define slub_debug 0
1073
1074#define disable_higher_order_debug 0
1075
1076static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1077							{ return 0; }
1078static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1079							{ return 0; }
1080static inline void inc_slabs_node(struct kmem_cache *s, int node,
1081							int objects) {}
1082static inline void dec_slabs_node(struct kmem_cache *s, int node,
1083							int objects) {}
1084#endif
1085
1086/*
1087 * Slab allocation and freeing
1088 */
1089static inline struct page *alloc_slab_page(gfp_t flags, int node,
1090					struct kmem_cache_order_objects oo)
1091{
1092	int order = oo_order(oo);
1093
1094	flags |= __GFP_NOTRACK;
1095
1096	if (node == -1)
1097		return alloc_pages(flags, order);
1098	else
1099		return alloc_pages_node(node, flags, order);
1100}
1101
1102static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1103{
1104	struct page *page;
1105	struct kmem_cache_order_objects oo = s->oo;
1106	gfp_t alloc_gfp;
1107
1108	flags |= s->allocflags;
1109
1110	/*
1111	 * Let the initial higher-order allocation fail under memory pressure
1112	 * so we fall-back to the minimum order allocation.
1113	 */
1114	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1115
1116	page = alloc_slab_page(alloc_gfp, node, oo);
1117	if (unlikely(!page)) {
1118		oo = s->min;
1119		/*
1120		 * Allocation may have failed due to fragmentation.
1121		 * Try a lower order alloc if possible
1122		 */
1123		page = alloc_slab_page(flags, node, oo);
1124		if (!page)
1125			return NULL;
1126
1127		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1128	}
1129
1130	if (kmemcheck_enabled
1131		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1132		int pages = 1 << oo_order(oo);
1133
1134		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1135
1136		/*
1137		 * Objects from caches that have a constructor don't get
1138		 * cleared when they're allocated, so we need to do it here.
1139		 */
1140		if (s->ctor)
1141			kmemcheck_mark_uninitialized_pages(page, pages);
1142		else
1143			kmemcheck_mark_unallocated_pages(page, pages);
1144	}
1145
1146	page->objects = oo_objects(oo);
1147	mod_zone_page_state(page_zone(page),
1148		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1149		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1150		1 << oo_order(oo));
1151
1152	return page;
1153}
1154
1155static void setup_object(struct kmem_cache *s, struct page *page,
1156				void *object)
1157{
1158	setup_object_debug(s, page, object);
1159	if (unlikely(s->ctor))
1160		s->ctor(object);
1161}
1162
1163static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1164{
1165	struct page *page;
1166	void *start;
1167	void *last;
1168	void *p;
1169
1170	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1171
1172	page = allocate_slab(s,
1173		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1174	if (!page)
1175		goto out;
1176
1177	inc_slabs_node(s, page_to_nid(page), page->objects);
1178	page->slab = s;
1179	page->flags |= 1 << PG_slab;
1180	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1181			SLAB_STORE_USER | SLAB_TRACE))
1182		__SetPageSlubDebug(page);
1183
1184	start = page_address(page);
1185
1186	if (unlikely(s->flags & SLAB_POISON))
1187		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1188
1189	last = start;
1190	for_each_object(p, s, start, page->objects) {
1191		setup_object(s, page, last);
1192		set_freepointer(s, last, p);
1193		last = p;
1194	}
1195	setup_object(s, page, last);
1196	set_freepointer(s, last, NULL);
1197
1198	page->freelist = start;
1199	page->inuse = 0;
1200out:
1201	return page;
1202}
1203
1204static void __free_slab(struct kmem_cache *s, struct page *page)
1205{
1206	int order = compound_order(page);
1207	int pages = 1 << order;
1208
1209	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1210		void *p;
1211
1212		slab_pad_check(s, page);
1213		for_each_object(p, s, page_address(page),
1214						page->objects)
1215			check_object(s, page, p, 0);
1216		__ClearPageSlubDebug(page);
1217	}
1218
1219	kmemcheck_free_shadow(page, compound_order(page));
1220
1221	mod_zone_page_state(page_zone(page),
1222		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1223		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1224		-pages);
1225
1226	__ClearPageSlab(page);
1227	reset_page_mapcount(page);
1228	if (current->reclaim_state)
1229		current->reclaim_state->reclaimed_slab += pages;
1230	__free_pages(page, order);
1231}
1232
1233static void rcu_free_slab(struct rcu_head *h)
1234{
1235	struct page *page;
1236
1237	page = container_of((struct list_head *)h, struct page, lru);
1238	__free_slab(page->slab, page);
1239}
1240
1241static void free_slab(struct kmem_cache *s, struct page *page)
1242{
1243	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1244		/*
1245		 * RCU free overloads the RCU head over the LRU
1246		 */
1247		struct rcu_head *head = (void *)&page->lru;
1248
1249		call_rcu(head, rcu_free_slab);
1250	} else
1251		__free_slab(s, page);
1252}
1253
1254static void discard_slab(struct kmem_cache *s, struct page *page)
1255{
1256	dec_slabs_node(s, page_to_nid(page), page->objects);
1257	free_slab(s, page);
1258}
1259
1260/*
1261 * Per slab locking using the pagelock
1262 */
1263static __always_inline void slab_lock(struct page *page)
1264{
1265	bit_spin_lock(PG_locked, &page->flags);
1266}
1267
1268static __always_inline void slab_unlock(struct page *page)
1269{
1270	__bit_spin_unlock(PG_locked, &page->flags);
1271}
1272
1273static __always_inline int slab_trylock(struct page *page)
1274{
1275	int rc = 1;
1276
1277	rc = bit_spin_trylock(PG_locked, &page->flags);
1278	return rc;
1279}
1280
1281/*
1282 * Management of partially allocated slabs
1283 */
1284static void add_partial(struct kmem_cache_node *n,
1285				struct page *page, int tail)
1286{
1287	spin_lock(&n->list_lock);
1288	n->nr_partial++;
1289	if (tail)
1290		list_add_tail(&page->lru, &n->partial);
1291	else
1292		list_add(&page->lru, &n->partial);
1293	spin_unlock(&n->list_lock);
1294}
1295
1296static void remove_partial(struct kmem_cache *s, struct page *page)
1297{
1298	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1299
1300	spin_lock(&n->list_lock);
1301	list_del(&page->lru);
1302	n->nr_partial--;
1303	spin_unlock(&n->list_lock);
1304}
1305
1306/*
1307 * Lock slab and remove from the partial list.
1308 *
1309 * Must hold list_lock.
1310 */
1311static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1312							struct page *page)
1313{
1314	if (slab_trylock(page)) {
1315		list_del(&page->lru);
1316		n->nr_partial--;
1317		__SetPageSlubFrozen(page);
1318		return 1;
1319	}
1320	return 0;
1321}
1322
1323/*
1324 * Try to allocate a partial slab from a specific node.
1325 */
1326static struct page *get_partial_node(struct kmem_cache_node *n)
1327{
1328	struct page *page;
1329
1330	/*
1331	 * Racy check. If we mistakenly see no partial slabs then we
1332	 * just allocate an empty slab. If we mistakenly try to get a
1333	 * partial slab and there is none available then get_partials()
1334	 * will return NULL.
1335	 */
1336	if (!n || !n->nr_partial)
1337		return NULL;
1338
1339	spin_lock(&n->list_lock);
1340	list_for_each_entry(page, &n->partial, lru)
1341		if (lock_and_freeze_slab(n, page))
1342			goto out;
1343	page = NULL;
1344out:
1345	spin_unlock(&n->list_lock);
1346	return page;
1347}
1348
1349/*
1350 * Get a page from somewhere. Search in increasing NUMA distances.
1351 */
1352static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1353{
1354#ifdef CONFIG_NUMA
1355	struct zonelist *zonelist;
1356	struct zoneref *z;
1357	struct zone *zone;
1358	enum zone_type high_zoneidx = gfp_zone(flags);
1359	struct page *page;
1360
1361	/*
1362	 * The defrag ratio allows a configuration of the tradeoffs between
1363	 * inter node defragmentation and node local allocations. A lower
1364	 * defrag_ratio increases the tendency to do local allocations
1365	 * instead of attempting to obtain partial slabs from other nodes.
1366	 *
1367	 * If the defrag_ratio is set to 0 then kmalloc() always
1368	 * returns node local objects. If the ratio is higher then kmalloc()
1369	 * may return off node objects because partial slabs are obtained
1370	 * from other nodes and filled up.
1371	 *
1372	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1373	 * defrag_ratio = 1000) then every (well almost) allocation will
1374	 * first attempt to defrag slab caches on other nodes. This means
1375	 * scanning over all nodes to look for partial slabs which may be
1376	 * expensive if we do it every time we are trying to find a slab
1377	 * with available objects.
1378	 */
1379	if (!s->remote_node_defrag_ratio ||
1380			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1381		return NULL;
1382
1383	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1384	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1385		struct kmem_cache_node *n;
1386
1387		n = get_node(s, zone_to_nid(zone));
1388
1389		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1390				n->nr_partial > s->min_partial) {
1391			page = get_partial_node(n);
1392			if (page)
1393				return page;
1394		}
1395	}
1396#endif
1397	return NULL;
1398}
1399
1400/*
1401 * Get a partial page, lock it and return it.
1402 */
1403static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1404{
1405	struct page *page;
1406	int searchnode = (node == -1) ? numa_node_id() : node;
1407
1408	page = get_partial_node(get_node(s, searchnode));
1409	if (page || (flags & __GFP_THISNODE))
1410		return page;
1411
1412	return get_any_partial(s, flags);
1413}
1414
1415/*
1416 * Move a page back to the lists.
1417 *
1418 * Must be called with the slab lock held.
1419 *
1420 * On exit the slab lock will have been dropped.
1421 */
1422static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1423{
1424	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1425	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1426
1427	__ClearPageSlubFrozen(page);
1428	if (page->inuse) {
1429
1430		if (page->freelist) {
1431			add_partial(n, page, tail);
1432			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1433		} else {
1434			stat(c, DEACTIVATE_FULL);
1435			if (SLABDEBUG && PageSlubDebug(page) &&
1436						(s->flags & SLAB_STORE_USER))
1437				add_full(n, page);
1438		}
1439		slab_unlock(page);
1440	} else {
1441		stat(c, DEACTIVATE_EMPTY);
1442		if (n->nr_partial < s->min_partial) {
1443			/*
1444			 * Adding an empty slab to the partial slabs in order
1445			 * to avoid page allocator overhead. This slab needs
1446			 * to come after the other slabs with objects in
1447			 * so that the others get filled first. That way the
1448			 * size of the partial list stays small.
1449			 *
1450			 * kmem_cache_shrink can reclaim any empty slabs from
1451			 * the partial list.
1452			 */
1453			add_partial(n, page, 1);
1454			slab_unlock(page);
1455		} else {
1456			slab_unlock(page);
1457			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1458			discard_slab(s, page);
1459		}
1460	}
1461}
1462
1463/*
1464 * Remove the cpu slab
1465 */
1466static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1467{
1468	struct page *page = c->page;
1469	int tail = 1;
1470
1471	if (page->freelist)
1472		stat(c, DEACTIVATE_REMOTE_FREES);
1473	/*
1474	 * Merge cpu freelist into slab freelist. Typically we get here
1475	 * because both freelists are empty. So this is unlikely
1476	 * to occur.
1477	 */
1478	while (unlikely(c->freelist)) {
1479		void **object;
1480
1481		tail = 0;	/* Hot objects. Put the slab first */
1482
1483		/* Retrieve object from cpu_freelist */
1484		object = c->freelist;
1485		c->freelist = c->freelist[c->offset];
1486
1487		/* And put onto the regular freelist */
1488		object[c->offset] = page->freelist;
1489		page->freelist = object;
1490		page->inuse--;
1491	}
1492	c->page = NULL;
1493	unfreeze_slab(s, page, tail);
1494}
1495
1496static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1497{
1498	stat(c, CPUSLAB_FLUSH);
1499	slab_lock(c->page);
1500	deactivate_slab(s, c);
1501}
1502
1503/*
1504 * Flush cpu slab.
1505 *
1506 * Called from IPI handler with interrupts disabled.
1507 */
1508static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1509{
1510	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1511
1512	if (likely(c && c->page))
1513		flush_slab(s, c);
1514}
1515
1516static void flush_cpu_slab(void *d)
1517{
1518	struct kmem_cache *s = d;
1519
1520	__flush_cpu_slab(s, smp_processor_id());
1521}
1522
1523static void flush_all(struct kmem_cache *s)
1524{
1525	on_each_cpu(flush_cpu_slab, s, 1);
1526}
1527
1528/*
1529 * Check if the objects in a per cpu structure fit numa
1530 * locality expectations.
1531 */
1532static inline int node_match(struct kmem_cache_cpu *c, int node)
1533{
1534#ifdef CONFIG_NUMA
1535	if (node != -1 && c->node != node)
1536		return 0;
1537#endif
1538	return 1;
1539}
1540
1541static int count_free(struct page *page)
1542{
1543	return page->objects - page->inuse;
1544}
1545
1546static unsigned long count_partial(struct kmem_cache_node *n,
1547					int (*get_count)(struct page *))
1548{
1549	unsigned long flags;
1550	unsigned long x = 0;
1551	struct page *page;
1552
1553	spin_lock_irqsave(&n->list_lock, flags);
1554	list_for_each_entry(page, &n->partial, lru)
1555		x += get_count(page);
1556	spin_unlock_irqrestore(&n->list_lock, flags);
1557	return x;
1558}
1559
1560static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1561{
1562#ifdef CONFIG_SLUB_DEBUG
1563	return atomic_long_read(&n->total_objects);
1564#else
1565	return 0;
1566#endif
1567}
1568
1569static noinline void
1570slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1571{
1572	int node;
1573
1574	printk(KERN_WARNING
1575		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1576		nid, gfpflags);
1577	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1578		"default order: %d, min order: %d\n", s->name, s->objsize,
1579		s->size, oo_order(s->oo), oo_order(s->min));
1580
1581	if (oo_order(s->min) > get_order(s->objsize))
1582		printk(KERN_WARNING "  %s debugging increased min order, use "
1583		       "slub_debug=O to disable.\n", s->name);
1584
1585	for_each_online_node(node) {
1586		struct kmem_cache_node *n = get_node(s, node);
1587		unsigned long nr_slabs;
1588		unsigned long nr_objs;
1589		unsigned long nr_free;
1590
1591		if (!n)
1592			continue;
1593
1594		nr_free  = count_partial(n, count_free);
1595		nr_slabs = node_nr_slabs(n);
1596		nr_objs  = node_nr_objs(n);
1597
1598		printk(KERN_WARNING
1599			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1600			node, nr_slabs, nr_objs, nr_free);
1601	}
1602}
1603
1604/*
1605 * Slow path. The lockless freelist is empty or we need to perform
1606 * debugging duties.
1607 *
1608 * Interrupts are disabled.
1609 *
1610 * Processing is still very fast if new objects have been freed to the
1611 * regular freelist. In that case we simply take over the regular freelist
1612 * as the lockless freelist and zap the regular freelist.
1613 *
1614 * If that is not working then we fall back to the partial lists. We take the
1615 * first element of the freelist as the object to allocate now and move the
1616 * rest of the freelist to the lockless freelist.
1617 *
1618 * And if we were unable to get a new slab from the partial slab lists then
1619 * we need to allocate a new slab. This is the slowest path since it involves
1620 * a call to the page allocator and the setup of a new slab.
1621 */
1622static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1623			  unsigned long addr, struct kmem_cache_cpu *c)
1624{
1625	void **object;
1626	struct page *new;
1627
1628	/* We handle __GFP_ZERO in the caller */
1629	gfpflags &= ~__GFP_ZERO;
1630
1631	if (!c->page)
1632		goto new_slab;
1633
1634	slab_lock(c->page);
1635	if (unlikely(!node_match(c, node)))
1636		goto another_slab;
1637
1638	stat(c, ALLOC_REFILL);
1639
1640load_freelist:
1641	object = c->page->freelist;
1642	if (unlikely(!object))
1643		goto another_slab;
1644	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1645		goto debug;
1646
1647	c->freelist = object[c->offset];
1648	c->page->inuse = c->page->objects;
1649	c->page->freelist = NULL;
1650	c->node = page_to_nid(c->page);
1651unlock_out:
1652	slab_unlock(c->page);
1653	stat(c, ALLOC_SLOWPATH);
1654	return object;
1655
1656another_slab:
1657	deactivate_slab(s, c);
1658
1659new_slab:
1660	new = get_partial(s, gfpflags, node);
1661	if (new) {
1662		c->page = new;
1663		stat(c, ALLOC_FROM_PARTIAL);
1664		goto load_freelist;
1665	}
1666
1667	if (gfpflags & __GFP_WAIT)
1668		local_irq_enable();
1669
1670	new = new_slab(s, gfpflags, node);
1671
1672	if (gfpflags & __GFP_WAIT)
1673		local_irq_disable();
1674
1675	if (new) {
1676		c = get_cpu_slab(s, smp_processor_id());
1677		stat(c, ALLOC_SLAB);
1678		if (c->page)
1679			flush_slab(s, c);
1680		slab_lock(new);
1681		__SetPageSlubFrozen(new);
1682		c->page = new;
1683		goto load_freelist;
1684	}
1685	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1686		slab_out_of_memory(s, gfpflags, node);
1687	return NULL;
1688debug:
1689	if (!alloc_debug_processing(s, c->page, object, addr))
1690		goto another_slab;
1691
1692	c->page->inuse++;
1693	c->page->freelist = object[c->offset];
1694	c->node = -1;
1695	goto unlock_out;
1696}
1697
1698/*
1699 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1700 * have the fastpath folded into their functions. So no function call
1701 * overhead for requests that can be satisfied on the fastpath.
1702 *
1703 * The fastpath works by first checking if the lockless freelist can be used.
1704 * If not then __slab_alloc is called for slow processing.
1705 *
1706 * Otherwise we can simply pick the next object from the lockless free list.
1707 */
1708static __always_inline void *slab_alloc(struct kmem_cache *s,
1709		gfp_t gfpflags, int node, unsigned long addr)
1710{
1711	void **object;
1712	struct kmem_cache_cpu *c;
1713	unsigned long flags;
1714	unsigned int objsize;
1715
1716	gfpflags &= gfp_allowed_mask;
1717
1718	lockdep_trace_alloc(gfpflags);
1719	might_sleep_if(gfpflags & __GFP_WAIT);
1720
1721	if (should_failslab(s->objsize, gfpflags))
1722		return NULL;
1723
1724	local_irq_save(flags);
1725	c = get_cpu_slab(s, smp_processor_id());
1726	objsize = c->objsize;
1727	if (unlikely(!c->freelist || !node_match(c, node)))
1728
1729		object = __slab_alloc(s, gfpflags, node, addr, c);
1730
1731	else {
1732		object = c->freelist;
1733		c->freelist = object[c->offset];
1734		stat(c, ALLOC_FASTPATH);
1735	}
1736	local_irq_restore(flags);
1737
1738	if (unlikely((gfpflags & __GFP_ZERO) && object))
1739		memset(object, 0, objsize);
1740
1741	kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
1742	kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1743
1744	return object;
1745}
1746
1747void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1748{
1749	void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1750
1751	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1752
1753	return ret;
1754}
1755EXPORT_SYMBOL(kmem_cache_alloc);
1756
1757#ifdef CONFIG_KMEMTRACE
1758void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1759{
1760	return slab_alloc(s, gfpflags, -1, _RET_IP_);
1761}
1762EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1763#endif
1764
1765#ifdef CONFIG_NUMA
1766void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1767{
1768	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1769
1770	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1771				    s->objsize, s->size, gfpflags, node);
1772
1773	return ret;
1774}
1775EXPORT_SYMBOL(kmem_cache_alloc_node);
1776#endif
1777
1778#ifdef CONFIG_KMEMTRACE
1779void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1780				    gfp_t gfpflags,
1781				    int node)
1782{
1783	return slab_alloc(s, gfpflags, node, _RET_IP_);
1784}
1785EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1786#endif
1787
1788/*
1789 * Slow patch handling. This may still be called frequently since objects
1790 * have a longer lifetime than the cpu slabs in most processing loads.
1791 *
1792 * So we still attempt to reduce cache line usage. Just take the slab
1793 * lock and free the item. If there is no additional partial page
1794 * handling required then we can return immediately.
1795 */
1796static void __slab_free(struct kmem_cache *s, struct page *page,
1797			void *x, unsigned long addr, unsigned int offset)
1798{
1799	void *prior;
1800	void **object = (void *)x;
1801	struct kmem_cache_cpu *c;
1802
1803	c = get_cpu_slab(s, raw_smp_processor_id());
1804	stat(c, FREE_SLOWPATH);
1805	slab_lock(page);
1806
1807	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1808		goto debug;
1809
1810checks_ok:
1811	prior = object[offset] = page->freelist;
1812	page->freelist = object;
1813	page->inuse--;
1814
1815	if (unlikely(PageSlubFrozen(page))) {
1816		stat(c, FREE_FROZEN);
1817		goto out_unlock;
1818	}
1819
1820	if (unlikely(!page->inuse))
1821		goto slab_empty;
1822
1823	/*
1824	 * Objects left in the slab. If it was not on the partial list before
1825	 * then add it.
1826	 */
1827	if (unlikely(!prior)) {
1828		add_partial(get_node(s, page_to_nid(page)), page, 1);
1829		stat(c, FREE_ADD_PARTIAL);
1830	}
1831
1832out_unlock:
1833	slab_unlock(page);
1834	return;
1835
1836slab_empty:
1837	if (prior) {
1838		/*
1839		 * Slab still on the partial list.
1840		 */
1841		remove_partial(s, page);
1842		stat(c, FREE_REMOVE_PARTIAL);
1843	}
1844	slab_unlock(page);
1845	stat(c, FREE_SLAB);
1846	discard_slab(s, page);
1847	return;
1848
1849debug:
1850	if (!free_debug_processing(s, page, x, addr))
1851		goto out_unlock;
1852	goto checks_ok;
1853}
1854
1855/*
1856 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1857 * can perform fastpath freeing without additional function calls.
1858 *
1859 * The fastpath is only possible if we are freeing to the current cpu slab
1860 * of this processor. This typically the case if we have just allocated
1861 * the item before.
1862 *
1863 * If fastpath is not possible then fall back to __slab_free where we deal
1864 * with all sorts of special processing.
1865 */
1866static __always_inline void slab_free(struct kmem_cache *s,
1867			struct page *page, void *x, unsigned long addr)
1868{
1869	void **object = (void *)x;
1870	struct kmem_cache_cpu *c;
1871	unsigned long flags;
1872
1873	kmemleak_free_recursive(x, s->flags);
1874	local_irq_save(flags);
1875	c = get_cpu_slab(s, smp_processor_id());
1876	kmemcheck_slab_free(s, object, c->objsize);
1877	debug_check_no_locks_freed(object, c->objsize);
1878	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1879		debug_check_no_obj_freed(object, c->objsize);
1880	if (likely(page == c->page && c->node >= 0)) {
1881		object[c->offset] = c->freelist;
1882		c->freelist = object;
1883		stat(c, FREE_FASTPATH);
1884	} else
1885		__slab_free(s, page, x, addr, c->offset);
1886
1887	local_irq_restore(flags);
1888}
1889
1890void kmem_cache_free(struct kmem_cache *s, void *x)
1891{
1892	struct page *page;
1893
1894	page = virt_to_head_page(x);
1895
1896	slab_free(s, page, x, _RET_IP_);
1897
1898	trace_kmem_cache_free(_RET_IP_, x);
1899}
1900EXPORT_SYMBOL(kmem_cache_free);
1901
1902/* Figure out on which slab page the object resides */
1903static struct page *get_object_page(const void *x)
1904{
1905	struct page *page = virt_to_head_page(x);
1906
1907	if (!PageSlab(page))
1908		return NULL;
1909
1910	return page;
1911}
1912
1913/*
1914 * Object placement in a slab is made very easy because we always start at
1915 * offset 0. If we tune the size of the object to the alignment then we can
1916 * get the required alignment by putting one properly sized object after
1917 * another.
1918 *
1919 * Notice that the allocation order determines the sizes of the per cpu
1920 * caches. Each processor has always one slab available for allocations.
1921 * Increasing the allocation order reduces the number of times that slabs
1922 * must be moved on and off the partial lists and is therefore a factor in
1923 * locking overhead.
1924 */
1925
1926/*
1927 * Mininum / Maximum order of slab pages. This influences locking overhead
1928 * and slab fragmentation. A higher order reduces the number of partial slabs
1929 * and increases the number of allocations possible without having to
1930 * take the list_lock.
1931 */
1932static int slub_min_order;
1933static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1934static int slub_min_objects;
1935
1936/*
1937 * Merge control. If this is set then no merging of slab caches will occur.
1938 * (Could be removed. This was introduced to pacify the merge skeptics.)
1939 */
1940static int slub_nomerge;
1941
1942/*
1943 * Calculate the order of allocation given an slab object size.
1944 *
1945 * The order of allocation has significant impact on performance and other
1946 * system components. Generally order 0 allocations should be preferred since
1947 * order 0 does not cause fragmentation in the page allocator. Larger objects
1948 * be problematic to put into order 0 slabs because there may be too much
1949 * unused space left. We go to a higher order if more than 1/16th of the slab
1950 * would be wasted.
1951 *
1952 * In order to reach satisfactory performance we must ensure that a minimum
1953 * number of objects is in one slab. Otherwise we may generate too much
1954 * activity on the partial lists which requires taking the list_lock. This is
1955 * less a concern for large slabs though which are rarely used.
1956 *
1957 * slub_max_order specifies the order where we begin to stop considering the
1958 * number of objects in a slab as critical. If we reach slub_max_order then
1959 * we try to keep the page order as low as possible. So we accept more waste
1960 * of space in favor of a small page order.
1961 *
1962 * Higher order allocations also allow the placement of more objects in a
1963 * slab and thereby reduce object handling overhead. If the user has
1964 * requested a higher mininum order then we start with that one instead of
1965 * the smallest order which will fit the object.
1966 */
1967static inline int slab_order(int size, int min_objects,
1968				int max_order, int fract_leftover)
1969{
1970	int order;
1971	int rem;
1972	int min_order = slub_min_order;
1973
1974	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1975		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1976
1977	for (order = max(min_order,
1978				fls(min_objects * size - 1) - PAGE_SHIFT);
1979			order <= max_order; order++) {
1980
1981		unsigned long slab_size = PAGE_SIZE << order;
1982
1983		if (slab_size < min_objects * size)
1984			continue;
1985
1986		rem = slab_size % size;
1987
1988		if (rem <= slab_size / fract_leftover)
1989			break;
1990
1991	}
1992
1993	return order;
1994}
1995
1996static inline int calculate_order(int size)
1997{
1998	int order;
1999	int min_objects;
2000	int fraction;
2001	int max_objects;
2002
2003	/*
2004	 * Attempt to find best configuration for a slab. This
2005	 * works by first attempting to generate a layout with
2006	 * the best configuration and backing off gradually.
2007	 *
2008	 * First we reduce the acceptable waste in a slab. Then
2009	 * we reduce the minimum objects required in a slab.
2010	 */
2011	min_objects = slub_min_objects;
2012	if (!min_objects)
2013		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2014	max_objects = (PAGE_SIZE << slub_max_order)/size;
2015	min_objects = min(min_objects, max_objects);
2016
2017	while (min_objects > 1) {
2018		fraction = 16;
2019		while (fraction >= 4) {
2020			order = slab_order(size, min_objects,
2021						slub_max_order, fraction);
2022			if (order <= slub_max_order)
2023				return order;
2024			fraction /= 2;
2025		}
2026		min_objects--;
2027	}
2028
2029	/*
2030	 * We were unable to place multiple objects in a slab. Now
2031	 * lets see if we can place a single object there.
2032	 */
2033	order = slab_order(size, 1, slub_max_order, 1);
2034	if (order <= slub_max_order)
2035		return order;
2036
2037	/*
2038	 * Doh this slab cannot be placed using slub_max_order.
2039	 */
2040	order = slab_order(size, 1, MAX_ORDER, 1);
2041	if (order < MAX_ORDER)
2042		return order;
2043	return -ENOSYS;
2044}
2045
2046/*
2047 * Figure out what the alignment of the objects will be.
2048 */
2049static unsigned long calculate_alignment(unsigned long flags,
2050		unsigned long align, unsigned long size)
2051{
2052	/*
2053	 * If the user wants hardware cache aligned objects then follow that
2054	 * suggestion if the object is sufficiently large.
2055	 *
2056	 * The hardware cache alignment cannot override the specified
2057	 * alignment though. If that is greater then use it.
2058	 */
2059	if (flags & SLAB_HWCACHE_ALIGN) {
2060		unsigned long ralign = cache_line_size();
2061		while (size <= ralign / 2)
2062			ralign /= 2;
2063		align = max(align, ralign);
2064	}
2065
2066	if (align < ARCH_SLAB_MINALIGN)
2067		align = ARCH_SLAB_MINALIGN;
2068
2069	return ALIGN(align, sizeof(void *));
2070}
2071
2072static void init_kmem_cache_cpu(struct kmem_cache *s,
2073			struct kmem_cache_cpu *c)
2074{
2075	c->page = NULL;
2076	c->freelist = NULL;
2077	c->node = 0;
2078	c->offset = s->offset / sizeof(void *);
2079	c->objsize = s->objsize;
2080#ifdef CONFIG_SLUB_STATS
2081	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2082#endif
2083}
2084
2085static void
2086init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2087{
2088	n->nr_partial = 0;
2089	spin_lock_init(&n->list_lock);
2090	INIT_LIST_HEAD(&n->partial);
2091#ifdef CONFIG_SLUB_DEBUG
2092	atomic_long_set(&n->nr_slabs, 0);
2093	atomic_long_set(&n->total_objects, 0);
2094	INIT_LIST_HEAD(&n->full);
2095#endif
2096}
2097
2098#ifdef CONFIG_SMP
2099/*
2100 * Per cpu array for per cpu structures.
2101 *
2102 * The per cpu array places all kmem_cache_cpu structures from one processor
2103 * close together meaning that it becomes possible that multiple per cpu
2104 * structures are contained in one cacheline. This may be particularly
2105 * beneficial for the kmalloc caches.
2106 *
2107 * A desktop system typically has around 60-80 slabs. With 100 here we are
2108 * likely able to get per cpu structures for all caches from the array defined
2109 * here. We must be able to cover all kmalloc caches during bootstrap.
2110 *
2111 * If the per cpu array is exhausted then fall back to kmalloc
2112 * of individual cachelines. No sharing is possible then.
2113 */
2114#define NR_KMEM_CACHE_CPU 100
2115
2116static DEFINE_PER_CPU(struct kmem_cache_cpu [NR_KMEM_CACHE_CPU],
2117		      kmem_cache_cpu);
2118
2119static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2120static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2121
2122static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2123							int cpu, gfp_t flags)
2124{
2125	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2126
2127	if (c)
2128		per_cpu(kmem_cache_cpu_free, cpu) =
2129				(void *)c->freelist;
2130	else {
2131		/* Table overflow: So allocate ourselves */
2132		c = kmalloc_node(
2133			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2134			flags, cpu_to_node(cpu));
2135		if (!c)
2136			return NULL;
2137	}
2138
2139	init_kmem_cache_cpu(s, c);
2140	return c;
2141}
2142
2143static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2144{
2145	if (c < per_cpu(kmem_cache_cpu, cpu) ||
2146			c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2147		kfree(c);
2148		return;
2149	}
2150	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2151	per_cpu(kmem_cache_cpu_free, cpu) = c;
2152}
2153
2154static void free_kmem_cache_cpus(struct kmem_cache *s)
2155{
2156	int cpu;
2157
2158	for_each_online_cpu(cpu) {
2159		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2160
2161		if (c) {
2162			s->cpu_slab[cpu] = NULL;
2163			free_kmem_cache_cpu(c, cpu);
2164		}
2165	}
2166}
2167
2168static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2169{
2170	int cpu;
2171
2172	for_each_online_cpu(cpu) {
2173		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2174
2175		if (c)
2176			continue;
2177
2178		c = alloc_kmem_cache_cpu(s, cpu, flags);
2179		if (!c) {
2180			free_kmem_cache_cpus(s);
2181			return 0;
2182		}
2183		s->cpu_slab[cpu] = c;
2184	}
2185	return 1;
2186}
2187
2188/*
2189 * Initialize the per cpu array.
2190 */
2191static void init_alloc_cpu_cpu(int cpu)
2192{
2193	int i;
2194
2195	if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2196		return;
2197
2198	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2199		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2200
2201	cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2202}
2203
2204static void __init init_alloc_cpu(void)
2205{
2206	int cpu;
2207
2208	for_each_online_cpu(cpu)
2209		init_alloc_cpu_cpu(cpu);
2210  }
2211
2212#else
2213static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2214static inline void init_alloc_cpu(void) {}
2215
2216static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2217{
2218	init_kmem_cache_cpu(s, &s->cpu_slab);
2219	return 1;
2220}
2221#endif
2222
2223#ifdef CONFIG_NUMA
2224/*
2225 * No kmalloc_node yet so do it by hand. We know that this is the first
2226 * slab on the node for this slabcache. There are no concurrent accesses
2227 * possible.
2228 *
2229 * Note that this function only works on the kmalloc_node_cache
2230 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2231 * memory on a fresh node that has no slab structures yet.
2232 */
2233static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2234{
2235	struct page *page;
2236	struct kmem_cache_node *n;
2237	unsigned long flags;
2238
2239	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2240
2241	page = new_slab(kmalloc_caches, gfpflags, node);
2242
2243	BUG_ON(!page);
2244	if (page_to_nid(page) != node) {
2245		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2246				"node %d\n", node);
2247		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2248				"in order to be able to continue\n");
2249	}
2250
2251	n = page->freelist;
2252	BUG_ON(!n);
2253	page->freelist = get_freepointer(kmalloc_caches, n);
2254	page->inuse++;
2255	kmalloc_caches->node[node] = n;
2256#ifdef CONFIG_SLUB_DEBUG
2257	init_object(kmalloc_caches, n, 1);
2258	init_tracking(kmalloc_caches, n);
2259#endif
2260	init_kmem_cache_node(n, kmalloc_caches);
2261	inc_slabs_node(kmalloc_caches, node, page->objects);
2262
2263	/*
2264	 * lockdep requires consistent irq usage for each lock
2265	 * so even though there cannot be a race this early in
2266	 * the boot sequence, we still disable irqs.
2267	 */
2268	local_irq_save(flags);
2269	add_partial(n, page, 0);
2270	local_irq_restore(flags);
2271}
2272
2273static void free_kmem_cache_nodes(struct kmem_cache *s)
2274{
2275	int node;
2276
2277	for_each_node_state(node, N_NORMAL_MEMORY) {
2278		struct kmem_cache_node *n = s->node[node];
2279		if (n && n != &s->local_node)
2280			kmem_cache_free(kmalloc_caches, n);
2281		s->node[node] = NULL;
2282	}
2283}
2284
2285static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2286{
2287	int node;
2288	int local_node;
2289
2290	if (slab_state >= UP)
2291		local_node = page_to_nid(virt_to_page(s));
2292	else
2293		local_node = 0;
2294
2295	for_each_node_state(node, N_NORMAL_MEMORY) {
2296		struct kmem_cache_node *n;
2297
2298		if (local_node == node)
2299			n = &s->local_node;
2300		else {
2301			if (slab_state == DOWN) {
2302				early_kmem_cache_node_alloc(gfpflags, node);
2303				continue;
2304			}
2305			n = kmem_cache_alloc_node(kmalloc_caches,
2306							gfpflags, node);
2307
2308			if (!n) {
2309				free_kmem_cache_nodes(s);
2310				return 0;
2311			}
2312
2313		}
2314		s->node[node] = n;
2315		init_kmem_cache_node(n, s);
2316	}
2317	return 1;
2318}
2319#else
2320static void free_kmem_cache_nodes(struct kmem_cache *s)
2321{
2322}
2323
2324static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2325{
2326	init_kmem_cache_node(&s->local_node, s);
2327	return 1;
2328}
2329#endif
2330
2331static void set_min_partial(struct kmem_cache *s, unsigned long min)
2332{
2333	if (min < MIN_PARTIAL)
2334		min = MIN_PARTIAL;
2335	else if (min > MAX_PARTIAL)
2336		min = MAX_PARTIAL;
2337	s->min_partial = min;
2338}
2339
2340/*
2341 * calculate_sizes() determines the order and the distribution of data within
2342 * a slab object.
2343 */
2344static int calculate_sizes(struct kmem_cache *s, int forced_order)
2345{
2346	unsigned long flags = s->flags;
2347	unsigned long size = s->objsize;
2348	unsigned long align = s->align;
2349	int order;
2350
2351	/*
2352	 * Round up object size to the next word boundary. We can only
2353	 * place the free pointer at word boundaries and this determines
2354	 * the possible location of the free pointer.
2355	 */
2356	size = ALIGN(size, sizeof(void *));
2357
2358#ifdef CONFIG_SLUB_DEBUG
2359	/*
2360	 * Determine if we can poison the object itself. If the user of
2361	 * the slab may touch the object after free or before allocation
2362	 * then we should never poison the object itself.
2363	 */
2364	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2365			!s->ctor)
2366		s->flags |= __OBJECT_POISON;
2367	else
2368		s->flags &= ~__OBJECT_POISON;
2369
2370
2371	/*
2372	 * If we are Redzoning then check if there is some space between the
2373	 * end of the object and the free pointer. If not then add an
2374	 * additional word to have some bytes to store Redzone information.
2375	 */
2376	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2377		size += sizeof(void *);
2378#endif
2379
2380	/*
2381	 * With that we have determined the number of bytes in actual use
2382	 * by the object. This is the potential offset to the free pointer.
2383	 */
2384	s->inuse = size;
2385
2386	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2387		s->ctor)) {
2388		/*
2389		 * Relocate free pointer after the object if it is not
2390		 * permitted to overwrite the first word of the object on
2391		 * kmem_cache_free.
2392		 *
2393		 * This is the case if we do RCU, have a constructor or
2394		 * destructor or are poisoning the objects.
2395		 */
2396		s->offset = size;
2397		size += sizeof(void *);
2398	}
2399
2400#ifdef CONFIG_SLUB_DEBUG
2401	if (flags & SLAB_STORE_USER)
2402		/*
2403		 * Need to store information about allocs and frees after
2404		 * the object.
2405		 */
2406		size += 2 * sizeof(struct track);
2407
2408	if (flags & SLAB_RED_ZONE)
2409		/*
2410		 * Add some empty padding so that we can catch
2411		 * overwrites from earlier objects rather than let
2412		 * tracking information or the free pointer be
2413		 * corrupted if a user writes before the start
2414		 * of the object.
2415		 */
2416		size += sizeof(void *);
2417#endif
2418
2419	/*
2420	 * Determine the alignment based on various parameters that the
2421	 * user specified and the dynamic determination of cache line size
2422	 * on bootup.
2423	 */
2424	align = calculate_alignment(flags, align, s->objsize);
2425	s->align = align;
2426
2427	/*
2428	 * SLUB stores one object immediately after another beginning from
2429	 * offset 0. In order to align the objects we have to simply size
2430	 * each object to conform to the alignment.
2431	 */
2432	size = ALIGN(size, align);
2433	s->size = size;
2434	if (forced_order >= 0)
2435		order = forced_order;
2436	else
2437		order = calculate_order(size);
2438
2439	if (order < 0)
2440		return 0;
2441
2442	s->allocflags = 0;
2443	if (order)
2444		s->allocflags |= __GFP_COMP;
2445
2446	if (s->flags & SLAB_CACHE_DMA)
2447		s->allocflags |= SLUB_DMA;
2448
2449	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2450		s->allocflags |= __GFP_RECLAIMABLE;
2451
2452	/*
2453	 * Determine the number of objects per slab
2454	 */
2455	s->oo = oo_make(order, size);
2456	s->min = oo_make(get_order(size), size);
2457	if (oo_objects(s->oo) > oo_objects(s->max))
2458		s->max = s->oo;
2459
2460	return !!oo_objects(s->oo);
2461
2462}
2463
2464static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2465		const char *name, size_t size,
2466		size_t align, unsigned long flags,
2467		void (*ctor)(void *))
2468{
2469	memset(s, 0, kmem_size);
2470	s->name = name;
2471	s->ctor = ctor;
2472	s->objsize = size;
2473	s->align = align;
2474	s->flags = kmem_cache_flags(size, flags, name, ctor);
2475
2476	if (!calculate_sizes(s, -1))
2477		goto error;
2478	if (disable_higher_order_debug) {
2479		/*
2480		 * Disable debugging flags that store metadata if the min slab
2481		 * order increased.
2482		 */
2483		if (get_order(s->size) > get_order(s->objsize)) {
2484			s->flags &= ~DEBUG_METADATA_FLAGS;
2485			s->offset = 0;
2486			if (!calculate_sizes(s, -1))
2487				goto error;
2488		}
2489	}
2490
2491	/*
2492	 * The larger the object size is, the more pages we want on the partial
2493	 * list to avoid pounding the page allocator excessively.
2494	 */
2495	set_min_partial(s, ilog2(s->size));
2496	s->refcount = 1;
2497#ifdef CONFIG_NUMA
2498	s->remote_node_defrag_ratio = 1000;
2499#endif
2500	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2501		goto error;
2502
2503	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2504		return 1;
2505	free_kmem_cache_nodes(s);
2506error:
2507	if (flags & SLAB_PANIC)
2508		panic("Cannot create slab %s size=%lu realsize=%u "
2509			"order=%u offset=%u flags=%lx\n",
2510			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2511			s->offset, flags);
2512	return 0;
2513}
2514
2515/*
2516 * Check if a given pointer is valid
2517 */
2518int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2519{
2520	struct page *page;
2521
2522	page = get_object_page(object);
2523
2524	if (!page || s != page->slab)
2525		/* No slab or wrong slab */
2526		return 0;
2527
2528	if (!check_valid_pointer(s, page, object))
2529		return 0;
2530
2531	/*
2532	 * We could also check if the object is on the slabs freelist.
2533	 * But this would be too expensive and it seems that the main
2534	 * purpose of kmem_ptr_valid() is to check if the object belongs
2535	 * to a certain slab.
2536	 */
2537	return 1;
2538}
2539EXPORT_SYMBOL(kmem_ptr_validate);
2540
2541/*
2542 * Determine the size of a slab object
2543 */
2544unsigned int kmem_cache_size(struct kmem_cache *s)
2545{
2546	return s->objsize;
2547}
2548EXPORT_SYMBOL(kmem_cache_size);
2549
2550const char *kmem_cache_name(struct kmem_cache *s)
2551{
2552	return s->name;
2553}
2554EXPORT_SYMBOL(kmem_cache_name);
2555
2556static void list_slab_objects(struct kmem_cache *s, struct page *page,
2557							const char *text)
2558{
2559#ifdef CONFIG_SLUB_DEBUG
2560	void *addr = page_address(page);
2561	void *p;
2562	DECLARE_BITMAP(map, page->objects);
2563
2564	bitmap_zero(map, page->objects);
2565	slab_err(s, page, "%s", text);
2566	slab_lock(page);
2567	for_each_free_object(p, s, page->freelist)
2568		set_bit(slab_index(p, s, addr), map);
2569
2570	for_each_object(p, s, addr, page->objects) {
2571
2572		if (!test_bit(slab_index(p, s, addr), map)) {
2573			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2574							p, p - addr);
2575			print_tracking(s, p);
2576		}
2577	}
2578	slab_unlock(page);
2579#endif
2580}
2581
2582/*
2583 * Attempt to free all partial slabs on a node.
2584 */
2585static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2586{
2587	unsigned long flags;
2588	struct page *page, *h;
2589
2590	spin_lock_irqsave(&n->list_lock, flags);
2591	list_for_each_entry_safe(page, h, &n->partial, lru) {
2592		if (!page->inuse) {
2593			list_del(&page->lru);
2594			discard_slab(s, page);
2595			n->nr_partial--;
2596		} else {
2597			list_slab_objects(s, page,
2598				"Objects remaining on kmem_cache_close()");
2599		}
2600	}
2601	spin_unlock_irqrestore(&n->list_lock, flags);
2602}
2603
2604/*
2605 * Release all resources used by a slab cache.
2606 */
2607static inline int kmem_cache_close(struct kmem_cache *s)
2608{
2609	int node;
2610
2611	flush_all(s);
2612
2613	/* Attempt to free all objects */
2614	free_kmem_cache_cpus(s);
2615	for_each_node_state(node, N_NORMAL_MEMORY) {
2616		struct kmem_cache_node *n = get_node(s, node);
2617
2618		free_partial(s, n);
2619		if (n->nr_partial || slabs_node(s, node))
2620			return 1;
2621	}
2622	free_kmem_cache_nodes(s);
2623	return 0;
2624}
2625
2626/*
2627 * Close a cache and release the kmem_cache structure
2628 * (must be used for caches created using kmem_cache_create)
2629 */
2630void kmem_cache_destroy(struct kmem_cache *s)
2631{
2632	down_write(&slub_lock);
2633	s->refcount--;
2634	if (!s->refcount) {
2635		list_del(&s->list);
2636		up_write(&slub_lock);
2637		if (kmem_cache_close(s)) {
2638			printk(KERN_ERR "SLUB %s: %s called for cache that "
2639				"still has objects.\n", s->name, __func__);
2640			dump_stack();
2641		}
2642		if (s->flags & SLAB_DESTROY_BY_RCU)
2643			rcu_barrier();
2644		sysfs_slab_remove(s);
2645	} else
2646		up_write(&slub_lock);
2647}
2648EXPORT_SYMBOL(kmem_cache_destroy);
2649
2650/********************************************************************
2651 *		Kmalloc subsystem
2652 *******************************************************************/
2653
2654struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2655EXPORT_SYMBOL(kmalloc_caches);
2656
2657static int __init setup_slub_min_order(char *str)
2658{
2659	get_option(&str, &slub_min_order);
2660
2661	return 1;
2662}
2663
2664__setup("slub_min_order=", setup_slub_min_order);
2665
2666static int __init setup_slub_max_order(char *str)
2667{
2668	get_option(&str, &slub_max_order);
2669	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2670
2671	return 1;
2672}
2673
2674__setup("slub_max_order=", setup_slub_max_order);
2675
2676static int __init setup_slub_min_objects(char *str)
2677{
2678	get_option(&str, &slub_min_objects);
2679
2680	return 1;
2681}
2682
2683__setup("slub_min_objects=", setup_slub_min_objects);
2684
2685static int __init setup_slub_nomerge(char *str)
2686{
2687	slub_nomerge = 1;
2688	return 1;
2689}
2690
2691__setup("slub_nomerge", setup_slub_nomerge);
2692
2693static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2694		const char *name, int size, gfp_t gfp_flags)
2695{
2696	unsigned int flags = 0;
2697
2698	if (gfp_flags & SLUB_DMA)
2699		flags = SLAB_CACHE_DMA;
2700
2701	/*
2702	 * This function is called with IRQs disabled during early-boot on
2703	 * single CPU so there's no need to take slub_lock here.
2704	 */
2705	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2706								flags, NULL))
2707		goto panic;
2708
2709	list_add(&s->list, &slab_caches);
2710
2711	if (sysfs_slab_add(s))
2712		goto panic;
2713	return s;
2714
2715panic:
2716	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2717}
2718
2719#ifdef CONFIG_ZONE_DMA
2720static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2721
2722static void sysfs_add_func(struct work_struct *w)
2723{
2724	struct kmem_cache *s;
2725
2726	down_write(&slub_lock);
2727	list_for_each_entry(s, &slab_caches, list) {
2728		if (s->flags & __SYSFS_ADD_DEFERRED) {
2729			s->flags &= ~__SYSFS_ADD_DEFERRED;
2730			sysfs_slab_add(s);
2731		}
2732	}
2733	up_write(&slub_lock);
2734}
2735
2736static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2737
2738static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2739{
2740	struct kmem_cache *s;
2741	char *text;
2742	size_t realsize;
2743	unsigned long slabflags;
2744
2745	s = kmalloc_caches_dma[index];
2746	if (s)
2747		return s;
2748
2749	/* Dynamically create dma cache */
2750	if (flags & __GFP_WAIT)
2751		down_write(&slub_lock);
2752	else {
2753		if (!down_write_trylock(&slub_lock))
2754			goto out;
2755	}
2756
2757	if (kmalloc_caches_dma[index])
2758		goto unlock_out;
2759
2760	realsize = kmalloc_caches[index].objsize;
2761	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2762			 (unsigned int)realsize);
2763	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2764
2765	/*
2766	 * Must defer sysfs creation to a workqueue because we don't know
2767	 * what context we are called from. Before sysfs comes up, we don't
2768	 * need to do anything because our sysfs initcall will start by
2769	 * adding all existing slabs to sysfs.
2770	 */
2771	slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2772	if (slab_state >= SYSFS)
2773		slabflags |= __SYSFS_ADD_DEFERRED;
2774
2775	if (!s || !text || !kmem_cache_open(s, flags, text,
2776			realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2777		kfree(s);
2778		kfree(text);
2779		goto unlock_out;
2780	}
2781
2782	list_add(&s->list, &slab_caches);
2783	kmalloc_caches_dma[index] = s;
2784
2785	if (slab_state >= SYSFS)
2786		schedule_work(&sysfs_add_work);
2787
2788unlock_out:
2789	up_write(&slub_lock);
2790out:
2791	return kmalloc_caches_dma[index];
2792}
2793#endif
2794
2795/*
2796 * Conversion table for small slabs sizes / 8 to the index in the
2797 * kmalloc array. This is necessary for slabs < 192 since we have non power
2798 * of two cache sizes there. The size of larger slabs can be determined using
2799 * fls.
2800 */
2801static s8 size_index[24] = {
2802	3,	/* 8 */
2803	4,	/* 16 */
2804	5,	/* 24 */
2805	5,	/* 32 */
2806	6,	/* 40 */
2807	6,	/* 48 */
2808	6,	/* 56 */
2809	6,	/* 64 */
2810	1,	/* 72 */
2811	1,	/* 80 */
2812	1,	/* 88 */
2813	1,	/* 96 */
2814	7,	/* 104 */
2815	7,	/* 112 */
2816	7,	/* 120 */
2817	7,	/* 128 */
2818	2,	/* 136 */
2819	2,	/* 144 */
2820	2,	/* 152 */
2821	2,	/* 160 */
2822	2,	/* 168 */
2823	2,	/* 176 */
2824	2,	/* 184 */
2825	2	/* 192 */
2826};
2827
2828static inline int size_index_elem(size_t bytes)
2829{
2830	return (bytes - 1) / 8;
2831}
2832
2833static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2834{
2835	int index;
2836
2837	if (size <= 192) {
2838		if (!size)
2839			return ZERO_SIZE_PTR;
2840
2841		index = size_index[size_index_elem(size)];
2842	} else
2843		index = fls(size - 1);
2844
2845#ifdef CONFIG_ZONE_DMA
2846	if (unlikely((flags & SLUB_DMA)))
2847		return dma_kmalloc_cache(index, flags);
2848
2849#endif
2850	return &kmalloc_caches[index];
2851}
2852
2853void *__kmalloc(size_t size, gfp_t flags)
2854{
2855	struct kmem_cache *s;
2856	void *ret;
2857
2858	if (unlikely(size > SLUB_MAX_SIZE))
2859		return kmalloc_large(size, flags);
2860
2861	s = get_slab(size, flags);
2862
2863	if (unlikely(ZERO_OR_NULL_PTR(s)))
2864		return s;
2865
2866	ret = slab_alloc(s, flags, -1, _RET_IP_);
2867
2868	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2869
2870	return ret;
2871}
2872EXPORT_SYMBOL(__kmalloc);
2873
2874static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2875{
2876	struct page *page;
2877	void *ptr = NULL;
2878
2879	flags |= __GFP_COMP | __GFP_NOTRACK;
2880	page = alloc_pages_node(node, flags, get_order(size));
2881	if (page)
2882		ptr = page_address(page);
2883
2884	kmemleak_alloc(ptr, size, 1, flags);
2885	return ptr;
2886}
2887
2888#ifdef CONFIG_NUMA
2889void *__kmalloc_node(size_t size, gfp_t flags, int node)
2890{
2891	struct kmem_cache *s;
2892	void *ret;
2893
2894	if (unlikely(size > SLUB_MAX_SIZE)) {
2895		ret = kmalloc_large_node(size, flags, node);
2896
2897		trace_kmalloc_node(_RET_IP_, ret,
2898				   size, PAGE_SIZE << get_order(size),
2899				   flags, node);
2900
2901		return ret;
2902	}
2903
2904	s = get_slab(size, flags);
2905
2906	if (unlikely(ZERO_OR_NULL_PTR(s)))
2907		return s;
2908
2909	ret = slab_alloc(s, flags, node, _RET_IP_);
2910
2911	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2912
2913	return ret;
2914}
2915EXPORT_SYMBOL(__kmalloc_node);
2916#endif
2917
2918size_t ksize(const void *object)
2919{
2920	struct page *page;
2921	struct kmem_cache *s;
2922
2923	if (unlikely(object == ZERO_SIZE_PTR))
2924		return 0;
2925
2926	page = virt_to_head_page(object);
2927
2928	if (unlikely(!PageSlab(page))) {
2929		WARN_ON(!PageCompound(page));
2930		return PAGE_SIZE << compound_order(page);
2931	}
2932	s = page->slab;
2933
2934#ifdef CONFIG_SLUB_DEBUG
2935	/*
2936	 * Debugging requires use of the padding between object
2937	 * and whatever may come after it.
2938	 */
2939	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2940		return s->objsize;
2941
2942#endif
2943	/*
2944	 * If we have the need to store the freelist pointer
2945	 * back there or track user information then we can
2946	 * only use the space before that information.
2947	 */
2948	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2949		return s->inuse;
2950	/*
2951	 * Else we can use all the padding etc for the allocation
2952	 */
2953	return s->size;
2954}
2955EXPORT_SYMBOL(ksize);
2956
2957void kfree(const void *x)
2958{
2959	struct page *page;
2960	void *object = (void *)x;
2961
2962	trace_kfree(_RET_IP_, x);
2963
2964	if (unlikely(ZERO_OR_NULL_PTR(x)))
2965		return;
2966
2967	page = virt_to_head_page(x);
2968	if (unlikely(!PageSlab(page))) {
2969		BUG_ON(!PageCompound(page));
2970		kmemleak_free(x);
2971		put_page(page);
2972		return;
2973	}
2974	slab_free(page->slab, page, object, _RET_IP_);
2975}
2976EXPORT_SYMBOL(kfree);
2977
2978/*
2979 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2980 * the remaining slabs by the number of items in use. The slabs with the
2981 * most items in use come first. New allocations will then fill those up
2982 * and thus they can be removed from the partial lists.
2983 *
2984 * The slabs with the least items are placed last. This results in them
2985 * being allocated from last increasing the chance that the last objects
2986 * are freed in them.
2987 */
2988int kmem_cache_shrink(struct kmem_cache *s)
2989{
2990	int node;
2991	int i;
2992	struct kmem_cache_node *n;
2993	struct page *page;
2994	struct page *t;
2995	int objects = oo_objects(s->max);
2996	struct list_head *slabs_by_inuse =
2997		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2998	unsigned long flags;
2999
3000	if (!slabs_by_inuse)
3001		return -ENOMEM;
3002
3003	flush_all(s);
3004	for_each_node_state(node, N_NORMAL_MEMORY) {
3005		n = get_node(s, node);
3006
3007		if (!n->nr_partial)
3008			continue;
3009
3010		for (i = 0; i < objects; i++)
3011			INIT_LIST_HEAD(slabs_by_inuse + i);
3012
3013		spin_lock_irqsave(&n->list_lock, flags);
3014
3015		/*
3016		 * Build lists indexed by the items in use in each slab.
3017		 *
3018		 * Note that concurrent frees may occur while we hold the
3019		 * list_lock. page->inuse here is the upper limit.
3020		 */
3021		list_for_each_entry_safe(page, t, &n->partial, lru) {
3022			if (!page->inuse && slab_trylock(page)) {
3023				/*
3024				 * Must hold slab lock here because slab_free
3025				 * may have freed the last object and be
3026				 * waiting to release the slab.
3027				 */
3028				list_del(&page->lru);
3029				n->nr_partial--;
3030				slab_unlock(page);
3031				discard_slab(s, page);
3032			} else {
3033				list_move(&page->lru,
3034				slabs_by_inuse + page->inuse);
3035			}
3036		}
3037
3038		/*
3039		 * Rebuild the partial list with the slabs filled up most
3040		 * first and the least used slabs at the end.
3041		 */
3042		for (i = objects - 1; i >= 0; i--)
3043			list_splice(slabs_by_inuse + i, n->partial.prev);
3044
3045		spin_unlock_irqrestore(&n->list_lock, flags);
3046	}
3047
3048	kfree(slabs_by_inuse);
3049	return 0;
3050}
3051EXPORT_SYMBOL(kmem_cache_shrink);
3052
3053#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3054static int slab_mem_going_offline_callback(void *arg)
3055{
3056	struct kmem_cache *s;
3057
3058	down_read(&slub_lock);
3059	list_for_each_entry(s, &slab_caches, list)
3060		kmem_cache_shrink(s);
3061	up_read(&slub_lock);
3062
3063	return 0;
3064}
3065
3066static void slab_mem_offline_callback(void *arg)
3067{
3068	struct kmem_cache_node *n;
3069	struct kmem_cache *s;
3070	struct memory_notify *marg = arg;
3071	int offline_node;
3072
3073	offline_node = marg->status_change_nid;
3074
3075	/*
3076	 * If the node still has available memory. we need kmem_cache_node
3077	 * for it yet.
3078	 */
3079	if (offline_node < 0)
3080		return;
3081
3082	down_read(&slub_lock);
3083	list_for_each_entry(s, &slab_caches, list) {
3084		n = get_node(s, offline_node);
3085		if (n) {
3086			/*
3087			 * if n->nr_slabs > 0, slabs still exist on the node
3088			 * that is going down. We were unable to free them,
3089			 * and offline_pages() function shoudn't call this
3090			 * callback. So, we must fail.
3091			 */
3092			BUG_ON(slabs_node(s, offline_node));
3093
3094			s->node[offline_node] = NULL;
3095			kmem_cache_free(kmalloc_caches, n);
3096		}
3097	}
3098	up_read(&slub_lock);
3099}
3100
3101static int slab_mem_going_online_callback(void *arg)
3102{
3103	struct kmem_cache_node *n;
3104	struct kmem_cache *s;
3105	struct memory_notify *marg = arg;
3106	int nid = marg->status_change_nid;
3107	int ret = 0;
3108
3109	/*
3110	 * If the node's memory is already available, then kmem_cache_node is
3111	 * already created. Nothing to do.
3112	 */
3113	if (nid < 0)
3114		return 0;
3115
3116	/*
3117	 * We are bringing a node online. No memory is available yet. We must
3118	 * allocate a kmem_cache_node structure in order to bring the node
3119	 * online.
3120	 */
3121	down_read(&slub_lock);
3122	list_for_each_entry(s, &slab_caches, list) {
3123		/*
3124		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3125		 *      since memory is not yet available from the node that
3126		 *      is brought up.
3127		 */
3128		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3129		if (!n) {
3130			ret = -ENOMEM;
3131			goto out;
3132		}
3133		init_kmem_cache_node(n, s);
3134		s->node[nid] = n;
3135	}
3136out:
3137	up_read(&slub_lock);
3138	return ret;
3139}
3140
3141static int slab_memory_callback(struct notifier_block *self,
3142				unsigned long action, void *arg)
3143{
3144	int ret = 0;
3145
3146	switch (action) {
3147	case MEM_GOING_ONLINE:
3148		ret = slab_mem_going_online_callback(arg);
3149		break;
3150	case MEM_GOING_OFFLINE:
3151		ret = slab_mem_going_offline_callback(arg);
3152		break;
3153	case MEM_OFFLINE:
3154	case MEM_CANCEL_ONLINE:
3155		slab_mem_offline_callback(arg);
3156		break;
3157	case MEM_ONLINE:
3158	case MEM_CANCEL_OFFLINE:
3159		break;
3160	}
3161	if (ret)
3162		ret = notifier_from_errno(ret);
3163	else
3164		ret = NOTIFY_OK;
3165	return ret;
3166}
3167
3168#endif /* CONFIG_MEMORY_HOTPLUG */
3169
3170/********************************************************************
3171 *			Basic setup of slabs
3172 *******************************************************************/
3173
3174void __init kmem_cache_init(void)
3175{
3176	int i;
3177	int caches = 0;
3178
3179	init_alloc_cpu();
3180
3181#ifdef CONFIG_NUMA
3182	/*
3183	 * Must first have the slab cache available for the allocations of the
3184	 * struct kmem_cache_node's. There is special bootstrap code in
3185	 * kmem_cache_open for slab_state == DOWN.
3186	 */
3187	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3188		sizeof(struct kmem_cache_node), GFP_NOWAIT);
3189	kmalloc_caches[0].refcount = -1;
3190	caches++;
3191
3192	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3193#endif
3194
3195	/* Able to allocate the per node structures */
3196	slab_state = PARTIAL;
3197
3198	/* Caches that are not of the two-to-the-power-of size */
3199	if (KMALLOC_MIN_SIZE <= 32) {
3200		create_kmalloc_cache(&kmalloc_caches[1],
3201				"kmalloc-96", 96, GFP_NOWAIT);
3202		caches++;
3203	}
3204	if (KMALLOC_MIN_SIZE <= 64) {
3205		create_kmalloc_cache(&kmalloc_caches[2],
3206				"kmalloc-192", 192, GFP_NOWAIT);
3207		caches++;
3208	}
3209
3210	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3211		create_kmalloc_cache(&kmalloc_caches[i],
3212			"kmalloc", 1 << i, GFP_NOWAIT);
3213		caches++;
3214	}
3215
3216
3217	/*
3218	 * Patch up the size_index table if we have strange large alignment
3219	 * requirements for the kmalloc array. This is only the case for
3220	 * MIPS it seems. The standard arches will not generate any code here.
3221	 *
3222	 * Largest permitted alignment is 256 bytes due to the way we
3223	 * handle the index determination for the smaller caches.
3224	 *
3225	 * Make sure that nothing crazy happens if someone starts tinkering
3226	 * around with ARCH_KMALLOC_MINALIGN
3227	 */
3228	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3229		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3230
3231	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3232		int elem = size_index_elem(i);
3233		if (elem >= ARRAY_SIZE(size_index))
3234			break;
3235		size_index[elem] = KMALLOC_SHIFT_LOW;
3236	}
3237
3238	if (KMALLOC_MIN_SIZE == 64) {
3239		/*
3240		 * The 96 byte size cache is not used if the alignment
3241		 * is 64 byte.
3242		 */
3243		for (i = 64 + 8; i <= 96; i += 8)
3244			size_index[size_index_elem(i)] = 7;
3245	} else if (KMALLOC_MIN_SIZE == 128) {
3246		/*
3247		 * The 192 byte sized cache is not used if the alignment
3248		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3249		 * instead.
3250		 */
3251		for (i = 128 + 8; i <= 192; i += 8)
3252			size_index[size_index_elem(i)] = 8;
3253	}
3254
3255	slab_state = UP;
3256
3257	/* Provide the correct kmalloc names now that the caches are up */
3258	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3259		kmalloc_caches[i]. name =
3260			kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3261
3262#ifdef CONFIG_SMP
3263	register_cpu_notifier(&slab_notifier);
3264	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3265				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3266#else
3267	kmem_size = sizeof(struct kmem_cache);
3268#endif
3269
3270	printk(KERN_INFO
3271		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3272		" CPUs=%d, Nodes=%d\n",
3273		caches, cache_line_size(),
3274		slub_min_order, slub_max_order, slub_min_objects,
3275		nr_cpu_ids, nr_node_ids);
3276}
3277
3278void __init kmem_cache_init_late(void)
3279{
3280}
3281
3282/*
3283 * Find a mergeable slab cache
3284 */
3285static int slab_unmergeable(struct kmem_cache *s)
3286{
3287	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3288		return 1;
3289
3290	if (s->ctor)
3291		return 1;
3292
3293	/*
3294	 * We may have set a slab to be unmergeable during bootstrap.
3295	 */
3296	if (s->refcount < 0)
3297		return 1;
3298
3299	return 0;
3300}
3301
3302static struct kmem_cache *find_mergeable(size_t size,
3303		size_t align, unsigned long flags, const char *name,
3304		void (*ctor)(void *))
3305{
3306	struct kmem_cache *s;
3307
3308	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3309		return NULL;
3310
3311	if (ctor)
3312		return NULL;
3313
3314	size = ALIGN(size, sizeof(void *));
3315	align = calculate_alignment(flags, align, size);
3316	size = ALIGN(size, align);
3317	flags = kmem_cache_flags(size, flags, name, NULL);
3318
3319	list_for_each_entry(s, &slab_caches, list) {
3320		if (slab_unmergeable(s))
3321			continue;
3322
3323		if (size > s->size)
3324			continue;
3325
3326		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3327				continue;
3328		/*
3329		 * Check if alignment is compatible.
3330		 * Courtesy of Adrian Drzewiecki
3331		 */
3332		if ((s->size & ~(align - 1)) != s->size)
3333			continue;
3334
3335		if (s->size - size >= sizeof(void *))
3336			continue;
3337
3338		return s;
3339	}
3340	return NULL;
3341}
3342
3343struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3344		size_t align, unsigned long flags, void (*ctor)(void *))
3345{
3346	struct kmem_cache *s;
3347
3348	down_write(&slub_lock);
3349	s = find_mergeable(size, align, flags, name, ctor);
3350	if (s) {
3351		int cpu;
3352
3353		s->refcount++;
3354		/*
3355		 * Adjust the object sizes so that we clear
3356		 * the complete object on kzalloc.
3357		 */
3358		s->objsize = max(s->objsize, (int)size);
3359
3360		/*
3361		 * And then we need to update the object size in the
3362		 * per cpu structures
3363		 */
3364		for_each_online_cpu(cpu)
3365			get_cpu_slab(s, cpu)->objsize = s->objsize;
3366
3367		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3368		up_write(&slub_lock);
3369
3370		if (sysfs_slab_alias(s, name)) {
3371			down_write(&slub_lock);
3372			s->refcount--;
3373			up_write(&slub_lock);
3374			goto err;
3375		}
3376		return s;
3377	}
3378
3379	s = kmalloc(kmem_size, GFP_KERNEL);
3380	if (s) {
3381		if (kmem_cache_open(s, GFP_KERNEL, name,
3382				size, align, flags, ctor)) {
3383			list_add(&s->list, &slab_caches);
3384			up_write(&slub_lock);
3385			if (sysfs_slab_add(s)) {
3386				down_write(&slub_lock);
3387				list_del(&s->list);
3388				up_write(&slub_lock);
3389				kfree(s);
3390				goto err;
3391			}
3392			return s;
3393		}
3394		kfree(s);
3395	}
3396	up_write(&slub_lock);
3397
3398err:
3399	if (flags & SLAB_PANIC)
3400		panic("Cannot create slabcache %s\n", name);
3401	else
3402		s = NULL;
3403	return s;
3404}
3405EXPORT_SYMBOL(kmem_cache_create);
3406
3407#ifdef CONFIG_SMP
3408/*
3409 * Use the cpu notifier to insure that the cpu slabs are flushed when
3410 * necessary.
3411 */
3412static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3413		unsigned long action, void *hcpu)
3414{
3415	long cpu = (long)hcpu;
3416	struct kmem_cache *s;
3417	unsigned long flags;
3418
3419	switch (action) {
3420	case CPU_UP_PREPARE:
3421	case CPU_UP_PREPARE_FROZEN:
3422		init_alloc_cpu_cpu(cpu);
3423		down_read(&slub_lock);
3424		list_for_each_entry(s, &slab_caches, list)
3425			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3426							GFP_KERNEL);
3427		up_read(&slub_lock);
3428		break;
3429
3430	case CPU_UP_CANCELED:
3431	case CPU_UP_CANCELED_FROZEN:
3432	case CPU_DEAD:
3433	case CPU_DEAD_FROZEN:
3434		down_read(&slub_lock);
3435		list_for_each_entry(s, &slab_caches, list) {
3436			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3437
3438			local_irq_save(flags);
3439			__flush_cpu_slab(s, cpu);
3440			local_irq_restore(flags);
3441			free_kmem_cache_cpu(c, cpu);
3442			s->cpu_slab[cpu] = NULL;
3443		}
3444		up_read(&slub_lock);
3445		break;
3446	default:
3447		break;
3448	}
3449	return NOTIFY_OK;
3450}
3451
3452static struct notifier_block __cpuinitdata slab_notifier = {
3453	.notifier_call = slab_cpuup_callback
3454};
3455
3456#endif
3457
3458void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3459{
3460	struct kmem_cache *s;
3461	void *ret;
3462
3463	if (unlikely(size > SLUB_MAX_SIZE))
3464		return kmalloc_large(size, gfpflags);
3465
3466	s = get_slab(size, gfpflags);
3467
3468	if (unlikely(ZERO_OR_NULL_PTR(s)))
3469		return s;
3470
3471	ret = slab_alloc(s, gfpflags, -1, caller);
3472
3473	/* Honor the call site pointer we recieved. */
3474	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3475
3476	return ret;
3477}
3478
3479void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3480					int node, unsigned long caller)
3481{
3482	struct kmem_cache *s;
3483	void *ret;
3484
3485	if (unlikely(size > SLUB_MAX_SIZE))
3486		return kmalloc_large_node(size, gfpflags, node);
3487
3488	s = get_slab(size, gfpflags);
3489
3490	if (unlikely(ZERO_OR_NULL_PTR(s)))
3491		return s;
3492
3493	ret = slab_alloc(s, gfpflags, node, caller);
3494
3495	/* Honor the call site pointer we recieved. */
3496	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3497
3498	return ret;
3499}
3500
3501#ifdef CONFIG_SLUB_DEBUG
3502static int count_inuse(struct page *page)
3503{
3504	return page->inuse;
3505}
3506
3507static int count_total(struct page *page)
3508{
3509	return page->objects;
3510}
3511
3512static int validate_slab(struct kmem_cache *s, struct page *page,
3513						unsigned long *map)
3514{
3515	void *p;
3516	void *addr = page_address(page);
3517
3518	if (!check_slab(s, page) ||
3519			!on_freelist(s, page, NULL))
3520		return 0;
3521
3522	/* Now we know that a valid freelist exists */
3523	bitmap_zero(map, page->objects);
3524
3525	for_each_free_object(p, s, page->freelist) {
3526		set_bit(slab_index(p, s, addr), map);
3527		if (!check_object(s, page, p, 0))
3528			return 0;
3529	}
3530
3531	for_each_object(p, s, addr, page->objects)
3532		if (!test_bit(slab_index(p, s, addr), map))
3533			if (!check_object(s, page, p, 1))
3534				return 0;
3535	return 1;
3536}
3537
3538static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3539						unsigned long *map)
3540{
3541	if (slab_trylock(page)) {
3542		validate_slab(s, page, map);
3543		slab_unlock(page);
3544	} else
3545		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3546			s->name, page);
3547
3548	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3549		if (!PageSlubDebug(page))
3550			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3551				"on slab 0x%p\n", s->name, page);
3552	} else {
3553		if (PageSlubDebug(page))
3554			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3555				"slab 0x%p\n", s->name, page);
3556	}
3557}
3558
3559static int validate_slab_node(struct kmem_cache *s,
3560		struct kmem_cache_node *n, unsigned long *map)
3561{
3562	unsigned long count = 0;
3563	struct page *page;
3564	unsigned long flags;
3565
3566	spin_lock_irqsave(&n->list_lock, flags);
3567
3568	list_for_each_entry(page, &n->partial, lru) {
3569		validate_slab_slab(s, page, map);
3570		count++;
3571	}
3572	if (count != n->nr_partial)
3573		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3574			"counter=%ld\n", s->name, count, n->nr_partial);
3575
3576	if (!(s->flags & SLAB_STORE_USER))
3577		goto out;
3578
3579	list_for_each_entry(page, &n->full, lru) {
3580		validate_slab_slab(s, page, map);
3581		count++;
3582	}
3583	if (count != atomic_long_read(&n->nr_slabs))
3584		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3585			"counter=%ld\n", s->name, count,
3586			atomic_long_read(&n->nr_slabs));
3587
3588out:
3589	spin_unlock_irqrestore(&n->list_lock, flags);
3590	return count;
3591}
3592
3593static long validate_slab_cache(struct kmem_cache *s)
3594{
3595	int node;
3596	unsigned long count = 0;
3597	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3598				sizeof(unsigned long), GFP_KERNEL);
3599
3600	if (!map)
3601		return -ENOMEM;
3602
3603	flush_all(s);
3604	for_each_node_state(node, N_NORMAL_MEMORY) {
3605		struct kmem_cache_node *n = get_node(s, node);
3606
3607		count += validate_slab_node(s, n, map);
3608	}
3609	kfree(map);
3610	return count;
3611}
3612
3613#ifdef SLUB_RESILIENCY_TEST
3614static void resiliency_test(void)
3615{
3616	u8 *p;
3617
3618	printk(KERN_ERR "SLUB resiliency testing\n");
3619	printk(KERN_ERR "-----------------------\n");
3620	printk(KERN_ERR "A. Corruption after allocation\n");
3621
3622	p = kzalloc(16, GFP_KERNEL);
3623	p[16] = 0x12;
3624	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3625			" 0x12->0x%p\n\n", p + 16);
3626
3627	validate_slab_cache(kmalloc_caches + 4);
3628
3629	/* Hmmm... The next two are dangerous */
3630	p = kzalloc(32, GFP_KERNEL);
3631	p[32 + sizeof(void *)] = 0x34;
3632	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3633			" 0x34 -> -0x%p\n", p);
3634	printk(KERN_ERR
3635		"If allocated object is overwritten then not detectable\n\n");
3636
3637	validate_slab_cache(kmalloc_caches + 5);
3638	p = kzalloc(64, GFP_KERNEL);
3639	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3640	*p = 0x56;
3641	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3642									p);
3643	printk(KERN_ERR
3644		"If allocated object is overwritten then not detectable\n\n");
3645	validate_slab_cache(kmalloc_caches + 6);
3646
3647	printk(KERN_ERR "\nB. Corruption after free\n");
3648	p = kzalloc(128, GFP_KERNEL);
3649	kfree(p);
3650	*p = 0x78;
3651	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3652	validate_slab_cache(kmalloc_caches + 7);
3653
3654	p = kzalloc(256, GFP_KERNEL);
3655	kfree(p);
3656	p[50] = 0x9a;
3657	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3658			p);
3659	validate_slab_cache(kmalloc_caches + 8);
3660
3661	p = kzalloc(512, GFP_KERNEL);
3662	kfree(p);
3663	p[512] = 0xab;
3664	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3665	validate_slab_cache(kmalloc_caches + 9);
3666}
3667#else
3668static void resiliency_test(void) {};
3669#endif
3670
3671/*
3672 * Generate lists of code addresses where slabcache objects are allocated
3673 * and freed.
3674 */
3675
3676struct location {
3677	unsigned long count;
3678	unsigned long addr;
3679	long long sum_time;
3680	long min_time;
3681	long max_time;
3682	long min_pid;
3683	long max_pid;
3684	DECLARE_BITMAP(cpus, NR_CPUS);
3685	nodemask_t nodes;
3686};
3687
3688struct loc_track {
3689	unsigned long max;
3690	unsigned long count;
3691	struct location *loc;
3692};
3693
3694static void free_loc_track(struct loc_track *t)
3695{
3696	if (t->max)
3697		free_pages((unsigned long)t->loc,
3698			get_order(sizeof(struct location) * t->max));
3699}
3700
3701static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3702{
3703	struct location *l;
3704	int order;
3705
3706	order = get_order(sizeof(struct location) * max);
3707
3708	l = (void *)__get_free_pages(flags, order);
3709	if (!l)
3710		return 0;
3711
3712	if (t->count) {
3713		memcpy(l, t->loc, sizeof(struct location) * t->count);
3714		free_loc_track(t);
3715	}
3716	t->max = max;
3717	t->loc = l;
3718	return 1;
3719}
3720
3721static int add_location(struct loc_track *t, struct kmem_cache *s,
3722				const struct track *track)
3723{
3724	long start, end, pos;
3725	struct location *l;
3726	unsigned long caddr;
3727	unsigned long age = jiffies - track->when;
3728
3729	start = -1;
3730	end = t->count;
3731
3732	for ( ; ; ) {
3733		pos = start + (end - start + 1) / 2;
3734
3735		/*
3736		 * There is nothing at "end". If we end up there
3737		 * we need to add something to before end.
3738		 */
3739		if (pos == end)
3740			break;
3741
3742		caddr = t->loc[pos].addr;
3743		if (track->addr == caddr) {
3744
3745			l = &t->loc[pos];
3746			l->count++;
3747			if (track->when) {
3748				l->sum_time += age;
3749				if (age < l->min_time)
3750					l->min_time = age;
3751				if (age > l->max_time)
3752					l->max_time = age;
3753
3754				if (track->pid < l->min_pid)
3755					l->min_pid = track->pid;
3756				if (track->pid > l->max_pid)
3757					l->max_pid = track->pid;
3758
3759				cpumask_set_cpu(track->cpu,
3760						to_cpumask(l->cpus));
3761			}
3762			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3763			return 1;
3764		}
3765
3766		if (track->addr < caddr)
3767			end = pos;
3768		else
3769			start = pos;
3770	}
3771
3772	/*
3773	 * Not found. Insert new tracking element.
3774	 */
3775	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3776		return 0;
3777
3778	l = t->loc + pos;
3779	if (pos < t->count)
3780		memmove(l + 1, l,
3781			(t->count - pos) * sizeof(struct location));
3782	t->count++;
3783	l->count = 1;
3784	l->addr = track->addr;
3785	l->sum_time = age;
3786	l->min_time = age;
3787	l->max_time = age;
3788	l->min_pid = track->pid;
3789	l->max_pid = track->pid;
3790	cpumask_clear(to_cpumask(l->cpus));
3791	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3792	nodes_clear(l->nodes);
3793	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3794	return 1;
3795}
3796
3797static void process_slab(struct loc_track *t, struct kmem_cache *s,
3798		struct page *page, enum track_item alloc)
3799{
3800	void *addr = page_address(page);
3801	DECLARE_BITMAP(map, page->objects);
3802	void *p;
3803
3804	bitmap_zero(map, page->objects);
3805	for_each_free_object(p, s, page->freelist)
3806		set_bit(slab_index(p, s, addr), map);
3807
3808	for_each_object(p, s, addr, page->objects)
3809		if (!test_bit(slab_index(p, s, addr), map))
3810			add_location(t, s, get_track(s, p, alloc));
3811}
3812
3813static int list_locations(struct kmem_cache *s, char *buf,
3814					enum track_item alloc)
3815{
3816	int len = 0;
3817	unsigned long i;
3818	struct loc_track t = { 0, 0, NULL };
3819	int node;
3820
3821	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3822			GFP_TEMPORARY))
3823		return sprintf(buf, "Out of memory\n");
3824
3825	/* Push back cpu slabs */
3826	flush_all(s);
3827
3828	for_each_node_state(node, N_NORMAL_MEMORY) {
3829		struct kmem_cache_node *n = get_node(s, node);
3830		unsigned long flags;
3831		struct page *page;
3832
3833		if (!atomic_long_read(&n->nr_slabs))
3834			continue;
3835
3836		spin_lock_irqsave(&n->list_lock, flags);
3837		list_for_each_entry(page, &n->partial, lru)
3838			process_slab(&t, s, page, alloc);
3839		list_for_each_entry(page, &n->full, lru)
3840			process_slab(&t, s, page, alloc);
3841		spin_unlock_irqrestore(&n->list_lock, flags);
3842	}
3843
3844	for (i = 0; i < t.count; i++) {
3845		struct location *l = &t.loc[i];
3846
3847		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3848			break;
3849		len += sprintf(buf + len, "%7ld ", l->count);
3850
3851		if (l->addr)
3852			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3853		else
3854			len += sprintf(buf + len, "<not-available>");
3855
3856		if (l->sum_time != l->min_time) {
3857			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3858				l->min_time,
3859				(long)div_u64(l->sum_time, l->count),
3860				l->max_time);
3861		} else
3862			len += sprintf(buf + len, " age=%ld",
3863				l->min_time);
3864
3865		if (l->min_pid != l->max_pid)
3866			len += sprintf(buf + len, " pid=%ld-%ld",
3867				l->min_pid, l->max_pid);
3868		else
3869			len += sprintf(buf + len, " pid=%ld",
3870				l->min_pid);
3871
3872		if (num_online_cpus() > 1 &&
3873				!cpumask_empty(to_cpumask(l->cpus)) &&
3874				len < PAGE_SIZE - 60) {
3875			len += sprintf(buf + len, " cpus=");
3876			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3877						 to_cpumask(l->cpus));
3878		}
3879
3880		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3881				len < PAGE_SIZE - 60) {
3882			len += sprintf(buf + len, " nodes=");
3883			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3884					l->nodes);
3885		}
3886
3887		len += sprintf(buf + len, "\n");
3888	}
3889
3890	free_loc_track(&t);
3891	if (!t.count)
3892		len += sprintf(buf, "No data\n");
3893	return len;
3894}
3895
3896enum slab_stat_type {
3897	SL_ALL,			/* All slabs */
3898	SL_PARTIAL,		/* Only partially allocated slabs */
3899	SL_CPU,			/* Only slabs used for cpu caches */
3900	SL_OBJECTS,		/* Determine allocated objects not slabs */
3901	SL_TOTAL		/* Determine object capacity not slabs */
3902};
3903
3904#define SO_ALL		(1 << SL_ALL)
3905#define SO_PARTIAL	(1 << SL_PARTIAL)
3906#define SO_CPU		(1 << SL_CPU)
3907#define SO_OBJECTS	(1 << SL_OBJECTS)
3908#define SO_TOTAL	(1 << SL_TOTAL)
3909
3910static ssize_t show_slab_objects(struct kmem_cache *s,
3911			    char *buf, unsigned long flags)
3912{
3913	unsigned long total = 0;
3914	int node;
3915	int x;
3916	unsigned long *nodes;
3917	unsigned long *per_cpu;
3918
3919	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3920	if (!nodes)
3921		return -ENOMEM;
3922	per_cpu = nodes + nr_node_ids;
3923
3924	if (flags & SO_CPU) {
3925		int cpu;
3926
3927		for_each_possible_cpu(cpu) {
3928			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3929
3930			if (!c || c->node < 0)
3931				continue;
3932
3933			if (c->page) {
3934					if (flags & SO_TOTAL)
3935						x = c->page->objects;
3936				else if (flags & SO_OBJECTS)
3937					x = c->page->inuse;
3938				else
3939					x = 1;
3940
3941				total += x;
3942				nodes[c->node] += x;
3943			}
3944			per_cpu[c->node]++;
3945		}
3946	}
3947
3948	if (flags & SO_ALL) {
3949		for_each_node_state(node, N_NORMAL_MEMORY) {
3950			struct kmem_cache_node *n = get_node(s, node);
3951
3952		if (flags & SO_TOTAL)
3953			x = atomic_long_read(&n->total_objects);
3954		else if (flags & SO_OBJECTS)
3955			x = atomic_long_read(&n->total_objects) -
3956				count_partial(n, count_free);
3957
3958			else
3959				x = atomic_long_read(&n->nr_slabs);
3960			total += x;
3961			nodes[node] += x;
3962		}
3963
3964	} else if (flags & SO_PARTIAL) {
3965		for_each_node_state(node, N_NORMAL_MEMORY) {
3966			struct kmem_cache_node *n = get_node(s, node);
3967
3968			if (flags & SO_TOTAL)
3969				x = count_partial(n, count_total);
3970			else if (flags & SO_OBJECTS)
3971				x = count_partial(n, count_inuse);
3972			else
3973				x = n->nr_partial;
3974			total += x;
3975			nodes[node] += x;
3976		}
3977	}
3978	x = sprintf(buf, "%lu", total);
3979#ifdef CONFIG_NUMA
3980	for_each_node_state(node, N_NORMAL_MEMORY)
3981		if (nodes[node])
3982			x += sprintf(buf + x, " N%d=%lu",
3983					node, nodes[node]);
3984#endif
3985	kfree(nodes);
3986	return x + sprintf(buf + x, "\n");
3987}
3988
3989static int any_slab_objects(struct kmem_cache *s)
3990{
3991	int node;
3992
3993	for_each_online_node(node) {
3994		struct kmem_cache_node *n = get_node(s, node);
3995
3996		if (!n)
3997			continue;
3998
3999		if (atomic_long_read(&n->total_objects))
4000			return 1;
4001	}
4002	return 0;
4003}
4004
4005#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4006#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4007
4008struct slab_attribute {
4009	struct attribute attr;
4010	ssize_t (*show)(struct kmem_cache *s, char *buf);
4011	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4012};
4013
4014#define SLAB_ATTR_RO(_name) \
4015	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4016
4017#define SLAB_ATTR(_name) \
4018	static struct slab_attribute _name##_attr =  \
4019	__ATTR(_name, 0644, _name##_show, _name##_store)
4020
4021static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4022{
4023	return sprintf(buf, "%d\n", s->size);
4024}
4025SLAB_ATTR_RO(slab_size);
4026
4027static ssize_t align_show(struct kmem_cache *s, char *buf)
4028{
4029	return sprintf(buf, "%d\n", s->align);
4030}
4031SLAB_ATTR_RO(align);
4032
4033static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4034{
4035	return sprintf(buf, "%d\n", s->objsize);
4036}
4037SLAB_ATTR_RO(object_size);
4038
4039static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4040{
4041	return sprintf(buf, "%d\n", oo_objects(s->oo));
4042}
4043SLAB_ATTR_RO(objs_per_slab);
4044
4045static ssize_t order_store(struct kmem_cache *s,
4046				const char *buf, size_t length)
4047{
4048	unsigned long order;
4049	int err;
4050
4051	err = strict_strtoul(buf, 10, &order);
4052	if (err)
4053		return err;
4054
4055	if (order > slub_max_order || order < slub_min_order)
4056		return -EINVAL;
4057
4058	calculate_sizes(s, order);
4059	return length;
4060}
4061
4062static ssize_t order_show(struct kmem_cache *s, char *buf)
4063{
4064	return sprintf(buf, "%d\n", oo_order(s->oo));
4065}
4066SLAB_ATTR(order);
4067
4068static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4069{
4070	return sprintf(buf, "%lu\n", s->min_partial);
4071}
4072
4073static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4074				 size_t length)
4075{
4076	unsigned long min;
4077	int err;
4078
4079	err = strict_strtoul(buf, 10, &min);
4080	if (err)
4081		return err;
4082
4083	set_min_partial(s, min);
4084	return length;
4085}
4086SLAB_ATTR(min_partial);
4087
4088static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4089{
4090	if (s->ctor) {
4091		int n = sprint_symbol(buf, (unsigned long)s->ctor);
4092
4093		return n + sprintf(buf + n, "\n");
4094	}
4095	return 0;
4096}
4097SLAB_ATTR_RO(ctor);
4098
4099static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4100{
4101	return sprintf(buf, "%d\n", s->refcount - 1);
4102}
4103SLAB_ATTR_RO(aliases);
4104
4105static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4106{
4107	return show_slab_objects(s, buf, SO_ALL);
4108}
4109SLAB_ATTR_RO(slabs);
4110
4111static ssize_t partial_show(struct kmem_cache *s, char *buf)
4112{
4113	return show_slab_objects(s, buf, SO_PARTIAL);
4114}
4115SLAB_ATTR_RO(partial);
4116
4117static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4118{
4119	return show_slab_objects(s, buf, SO_CPU);
4120}
4121SLAB_ATTR_RO(cpu_slabs);
4122
4123static ssize_t objects_show(struct kmem_cache *s, char *buf)
4124{
4125	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4126}
4127SLAB_ATTR_RO(objects);
4128
4129static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4130{
4131	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4132}
4133SLAB_ATTR_RO(objects_partial);
4134
4135static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4136{
4137	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4138}
4139SLAB_ATTR_RO(total_objects);
4140
4141static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4142{
4143	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4144}
4145
4146static ssize_t sanity_checks_store(struct kmem_cache *s,
4147				const char *buf, size_t length)
4148{
4149	s->flags &= ~SLAB_DEBUG_FREE;
4150	if (buf[0] == '1')
4151		s->flags |= SLAB_DEBUG_FREE;
4152	return length;
4153}
4154SLAB_ATTR(sanity_checks);
4155
4156static ssize_t trace_show(struct kmem_cache *s, char *buf)
4157{
4158	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4159}
4160
4161static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4162							size_t length)
4163{
4164	s->flags &= ~SLAB_TRACE;
4165	if (buf[0] == '1')
4166		s->flags |= SLAB_TRACE;
4167	return length;
4168}
4169SLAB_ATTR(trace);
4170
4171static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4172{
4173	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4174}
4175
4176static ssize_t reclaim_account_store(struct kmem_cache *s,
4177				const char *buf, size_t length)
4178{
4179	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4180	if (buf[0] == '1')
4181		s->flags |= SLAB_RECLAIM_ACCOUNT;
4182	return length;
4183}
4184SLAB_ATTR(reclaim_account);
4185
4186static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4187{
4188	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4189}
4190SLAB_ATTR_RO(hwcache_align);
4191
4192#ifdef CONFIG_ZONE_DMA
4193static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4194{
4195	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4196}
4197SLAB_ATTR_RO(cache_dma);
4198#endif
4199
4200static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4201{
4202	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4203}
4204SLAB_ATTR_RO(destroy_by_rcu);
4205
4206static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4207{
4208	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4209}
4210
4211static ssize_t red_zone_store(struct kmem_cache *s,
4212				const char *buf, size_t length)
4213{
4214	if (any_slab_objects(s))
4215		return -EBUSY;
4216
4217	s->flags &= ~SLAB_RED_ZONE;
4218	if (buf[0] == '1')
4219		s->flags |= SLAB_RED_ZONE;
4220	calculate_sizes(s, -1);
4221	return length;
4222}
4223SLAB_ATTR(red_zone);
4224
4225static ssize_t poison_show(struct kmem_cache *s, char *buf)
4226{
4227	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4228}
4229
4230static ssize_t poison_store(struct kmem_cache *s,
4231				const char *buf, size_t length)
4232{
4233	if (any_slab_objects(s))
4234		return -EBUSY;
4235
4236	s->flags &= ~SLAB_POISON;
4237	if (buf[0] == '1')
4238		s->flags |= SLAB_POISON;
4239	calculate_sizes(s, -1);
4240	return length;
4241}
4242SLAB_ATTR(poison);
4243
4244static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4245{
4246	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4247}
4248
4249static ssize_t store_user_store(struct kmem_cache *s,
4250				const char *buf, size_t length)
4251{
4252	if (any_slab_objects(s))
4253		return -EBUSY;
4254
4255	s->flags &= ~SLAB_STORE_USER;
4256	if (buf[0] == '1')
4257		s->flags |= SLAB_STORE_USER;
4258	calculate_sizes(s, -1);
4259	return length;
4260}
4261SLAB_ATTR(store_user);
4262
4263static ssize_t validate_show(struct kmem_cache *s, char *buf)
4264{
4265	return 0;
4266}
4267
4268static ssize_t validate_store(struct kmem_cache *s,
4269			const char *buf, size_t length)
4270{
4271	int ret = -EINVAL;
4272
4273	if (buf[0] == '1') {
4274		ret = validate_slab_cache(s);
4275		if (ret >= 0)
4276			ret = length;
4277	}
4278	return ret;
4279}
4280SLAB_ATTR(validate);
4281
4282static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4283{
4284	return 0;
4285}
4286
4287static ssize_t shrink_store(struct kmem_cache *s,
4288			const char *buf, size_t length)
4289{
4290	if (buf[0] == '1') {
4291		int rc = kmem_cache_shrink(s);
4292
4293		if (rc)
4294			return rc;
4295	} else
4296		return -EINVAL;
4297	return length;
4298}
4299SLAB_ATTR(shrink);
4300
4301static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4302{
4303	if (!(s->flags & SLAB_STORE_USER))
4304		return -ENOSYS;
4305	return list_locations(s, buf, TRACK_ALLOC);
4306}
4307SLAB_ATTR_RO(alloc_calls);
4308
4309static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4310{
4311	if (!(s->flags & SLAB_STORE_USER))
4312		return -ENOSYS;
4313	return list_locations(s, buf, TRACK_FREE);
4314}
4315SLAB_ATTR_RO(free_calls);
4316
4317#ifdef CONFIG_NUMA
4318static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4319{
4320	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4321}
4322
4323static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4324				const char *buf, size_t length)
4325{
4326	unsigned long ratio;
4327	int err;
4328
4329	err = strict_strtoul(buf, 10, &ratio);
4330	if (err)
4331		return err;
4332
4333	if (ratio <= 100)
4334		s->remote_node_defrag_ratio = ratio * 10;
4335
4336	return length;
4337}
4338SLAB_ATTR(remote_node_defrag_ratio);
4339#endif
4340
4341#ifdef CONFIG_SLUB_STATS
4342static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4343{
4344	unsigned long sum  = 0;
4345	int cpu;
4346	int len;
4347	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4348
4349	if (!data)
4350		return -ENOMEM;
4351
4352	for_each_online_cpu(cpu) {
4353		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4354
4355		data[cpu] = x;
4356		sum += x;
4357	}
4358
4359	len = sprintf(buf, "%lu", sum);
4360
4361#ifdef CONFIG_SMP
4362	for_each_online_cpu(cpu) {
4363		if (data[cpu] && len < PAGE_SIZE - 20)
4364			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4365	}
4366#endif
4367	kfree(data);
4368	return len + sprintf(buf + len, "\n");
4369}
4370
4371#define STAT_ATTR(si, text) 					\
4372static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4373{								\
4374	return show_stat(s, buf, si);				\
4375}								\
4376SLAB_ATTR_RO(text);						\
4377
4378STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4379STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4380STAT_ATTR(FREE_FASTPATH, free_fastpath);
4381STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4382STAT_ATTR(FREE_FROZEN, free_frozen);
4383STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4384STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4385STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4386STAT_ATTR(ALLOC_SLAB, alloc_slab);
4387STAT_ATTR(ALLOC_REFILL, alloc_refill);
4388STAT_ATTR(FREE_SLAB, free_slab);
4389STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4390STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4391STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4392STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4393STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4394STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4395STAT_ATTR(ORDER_FALLBACK, order_fallback);
4396#endif
4397
4398static struct attribute *slab_attrs[] = {
4399	&slab_size_attr.attr,
4400	&object_size_attr.attr,
4401	&objs_per_slab_attr.attr,
4402	&order_attr.attr,
4403	&min_partial_attr.attr,
4404	&objects_attr.attr,
4405	&objects_partial_attr.attr,
4406	&total_objects_attr.attr,
4407	&slabs_attr.attr,
4408	&partial_attr.attr,
4409	&cpu_slabs_attr.attr,
4410	&ctor_attr.attr,
4411	&aliases_attr.attr,
4412	&align_attr.attr,
4413	&sanity_checks_attr.attr,
4414	&trace_attr.attr,
4415	&hwcache_align_attr.attr,
4416	&reclaim_account_attr.attr,
4417	&destroy_by_rcu_attr.attr,
4418	&red_zone_attr.attr,
4419	&poison_attr.attr,
4420	&store_user_attr.attr,
4421	&validate_attr.attr,
4422	&shrink_attr.attr,
4423	&alloc_calls_attr.attr,
4424	&free_calls_attr.attr,
4425#ifdef CONFIG_ZONE_DMA
4426	&cache_dma_attr.attr,
4427#endif
4428#ifdef CONFIG_NUMA
4429	&remote_node_defrag_ratio_attr.attr,
4430#endif
4431#ifdef CONFIG_SLUB_STATS
4432	&alloc_fastpath_attr.attr,
4433	&alloc_slowpath_attr.attr,
4434	&free_fastpath_attr.attr,
4435	&free_slowpath_attr.attr,
4436	&free_frozen_attr.attr,
4437	&free_add_partial_attr.attr,
4438	&free_remove_partial_attr.attr,
4439	&alloc_from_partial_attr.attr,
4440	&alloc_slab_attr.attr,
4441	&alloc_refill_attr.attr,
4442	&free_slab_attr.attr,
4443	&cpuslab_flush_attr.attr,
4444	&deactivate_full_attr.attr,
4445	&deactivate_empty_attr.attr,
4446	&deactivate_to_head_attr.attr,
4447	&deactivate_to_tail_attr.attr,
4448	&deactivate_remote_frees_attr.attr,
4449	&order_fallback_attr.attr,
4450#endif
4451	NULL
4452};
4453
4454static struct attribute_group slab_attr_group = {
4455	.attrs = slab_attrs,
4456};
4457
4458static ssize_t slab_attr_show(struct kobject *kobj,
4459				struct attribute *attr,
4460				char *buf)
4461{
4462	struct slab_attribute *attribute;
4463	struct kmem_cache *s;
4464	int err;
4465
4466	attribute = to_slab_attr(attr);
4467	s = to_slab(kobj);
4468
4469	if (!attribute->show)
4470		return -EIO;
4471
4472	err = attribute->show(s, buf);
4473
4474	return err;
4475}
4476
4477static ssize_t slab_attr_store(struct kobject *kobj,
4478				struct attribute *attr,
4479				const char *buf, size_t len)
4480{
4481	struct slab_attribute *attribute;
4482	struct kmem_cache *s;
4483	int err;
4484
4485	attribute = to_slab_attr(attr);
4486	s = to_slab(kobj);
4487
4488	if (!attribute->store)
4489		return -EIO;
4490
4491	err = attribute->store(s, buf, len);
4492
4493	return err;
4494}
4495
4496static void kmem_cache_release(struct kobject *kobj)
4497{
4498	struct kmem_cache *s = to_slab(kobj);
4499
4500	kfree(s);
4501}
4502
4503static struct sysfs_ops slab_sysfs_ops = {
4504	.show = slab_attr_show,
4505	.store = slab_attr_store,
4506};
4507
4508static struct kobj_type slab_ktype = {
4509	.sysfs_ops = &slab_sysfs_ops,
4510	.release = kmem_cache_release
4511};
4512
4513static int uevent_filter(struct kset *kset, struct kobject *kobj)
4514{
4515	struct kobj_type *ktype = get_ktype(kobj);
4516
4517	if (ktype == &slab_ktype)
4518		return 1;
4519	return 0;
4520}
4521
4522static struct kset_uevent_ops slab_uevent_ops = {
4523	.filter = uevent_filter,
4524};
4525
4526static struct kset *slab_kset;
4527
4528#define ID_STR_LENGTH 64
4529
4530/* Create a unique string id for a slab cache:
4531 *
4532 * Format	:[flags-]size
4533 */
4534static char *create_unique_id(struct kmem_cache *s)
4535{
4536	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4537	char *p = name;
4538
4539	BUG_ON(!name);
4540
4541	*p++ = ':';
4542	/*
4543	 * First flags affecting slabcache operations. We will only
4544	 * get here for aliasable slabs so we do not need to support
4545	 * too many flags. The flags here must cover all flags that
4546	 * are matched during merging to guarantee that the id is
4547	 * unique.
4548	 */
4549	if (s->flags & SLAB_CACHE_DMA)
4550		*p++ = 'd';
4551	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4552		*p++ = 'a';
4553	if (s->flags & SLAB_DEBUG_FREE)
4554		*p++ = 'F';
4555	if (!(s->flags & SLAB_NOTRACK))
4556		*p++ = 't';
4557	if (p != name + 1)
4558		*p++ = '-';
4559	p += sprintf(p, "%07d", s->size);
4560	BUG_ON(p > name + ID_STR_LENGTH - 1);
4561	return name;
4562}
4563
4564static int sysfs_slab_add(struct kmem_cache *s)
4565{
4566	int err;
4567	const char *name;
4568	int unmergeable;
4569
4570	if (slab_state < SYSFS)
4571		/* Defer until later */
4572		return 0;
4573
4574	unmergeable = slab_unmergeable(s);
4575	if (unmergeable) {
4576		/*
4577		 * Slabcache can never be merged so we can use the name proper.
4578		 * This is typically the case for debug situations. In that
4579		 * case we can catch duplicate names easily.
4580		 */
4581		sysfs_remove_link(&slab_kset->kobj, s->name);
4582		name = s->name;
4583	} else {
4584		/*
4585		 * Create a unique name for the slab as a target
4586		 * for the symlinks.
4587		 */
4588		name = create_unique_id(s);
4589	}
4590
4591	s->kobj.kset = slab_kset;
4592	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4593	if (err) {
4594		kobject_put(&s->kobj);
4595		return err;
4596	}
4597
4598	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4599	if (err) {
4600		kobject_del(&s->kobj);
4601		kobject_put(&s->kobj);
4602		return err;
4603	}
4604	kobject_uevent(&s->kobj, KOBJ_ADD);
4605	if (!unmergeable) {
4606		/* Setup first alias */
4607		sysfs_slab_alias(s, s->name);
4608		kfree(name);
4609	}
4610	return 0;
4611}
4612
4613static void sysfs_slab_remove(struct kmem_cache *s)
4614{
4615	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4616	kobject_del(&s->kobj);
4617	kobject_put(&s->kobj);
4618}
4619
4620/*
4621 * Need to buffer aliases during bootup until sysfs becomes
4622 * available lest we lose that information.
4623 */
4624struct saved_alias {
4625	struct kmem_cache *s;
4626	const char *name;
4627	struct saved_alias *next;
4628};
4629
4630static struct saved_alias *alias_list;
4631
4632static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4633{
4634	struct saved_alias *al;
4635
4636	if (slab_state == SYSFS) {
4637		/*
4638		 * If we have a leftover link then remove it.
4639		 */
4640		sysfs_remove_link(&slab_kset->kobj, name);
4641		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4642	}
4643
4644	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4645	if (!al)
4646		return -ENOMEM;
4647
4648	al->s = s;
4649	al->name = name;
4650	al->next = alias_list;
4651	alias_list = al;
4652	return 0;
4653}
4654
4655static int __init slab_sysfs_init(void)
4656{
4657	struct kmem_cache *s;
4658	int err;
4659
4660	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4661	if (!slab_kset) {
4662		printk(KERN_ERR "Cannot register slab subsystem.\n");
4663		return -ENOSYS;
4664	}
4665
4666	slab_state = SYSFS;
4667
4668	list_for_each_entry(s, &slab_caches, list) {
4669		err = sysfs_slab_add(s);
4670		if (err)
4671			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4672						" to sysfs\n", s->name);
4673	}
4674
4675	while (alias_list) {
4676		struct saved_alias *al = alias_list;
4677
4678		alias_list = alias_list->next;
4679		err = sysfs_slab_alias(al->s, al->name);
4680		if (err)
4681			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4682					" %s to sysfs\n", s->name);
4683		kfree(al);
4684	}
4685
4686	resiliency_test();
4687	return 0;
4688}
4689
4690__initcall(slab_sysfs_init);
4691#endif
4692
4693/*
4694 * The /proc/slabinfo ABI
4695 */
4696#ifdef CONFIG_SLABINFO
4697static void print_slabinfo_header(struct seq_file *m)
4698{
4699	seq_puts(m, "slabinfo - version: 2.1\n");
4700	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4701		 "<objperslab> <pagesperslab>");
4702	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4703	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4704	seq_putc(m, '\n');
4705}
4706
4707static void *s_start(struct seq_file *m, loff_t *pos)
4708{
4709	loff_t n = *pos;
4710
4711	down_read(&slub_lock);
4712	if (!n)
4713		print_slabinfo_header(m);
4714
4715	return seq_list_start(&slab_caches, *pos);
4716}
4717
4718static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4719{
4720	return seq_list_next(p, &slab_caches, pos);
4721}
4722
4723static void s_stop(struct seq_file *m, void *p)
4724{
4725	up_read(&slub_lock);
4726}
4727
4728static int s_show(struct seq_file *m, void *p)
4729{
4730	unsigned long nr_partials = 0;
4731	unsigned long nr_slabs = 0;
4732	unsigned long nr_inuse = 0;
4733	unsigned long nr_objs = 0;
4734	unsigned long nr_free = 0;
4735	struct kmem_cache *s;
4736	int node;
4737
4738	s = list_entry(p, struct kmem_cache, list);
4739
4740	for_each_online_node(node) {
4741		struct kmem_cache_node *n = get_node(s, node);
4742
4743		if (!n)
4744			continue;
4745
4746		nr_partials += n->nr_partial;
4747		nr_slabs += atomic_long_read(&n->nr_slabs);
4748		nr_objs += atomic_long_read(&n->total_objects);
4749		nr_free += count_partial(n, count_free);
4750	}
4751
4752	nr_inuse = nr_objs - nr_free;
4753
4754	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4755		   nr_objs, s->size, oo_objects(s->oo),
4756		   (1 << oo_order(s->oo)));
4757	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4758	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4759		   0UL);
4760	seq_putc(m, '\n');
4761	return 0;
4762}
4763
4764static const struct seq_operations slabinfo_op = {
4765	.start = s_start,
4766	.next = s_next,
4767	.stop = s_stop,
4768	.show = s_show,
4769};
4770
4771static int slabinfo_open(struct inode *inode, struct file *file)
4772{
4773	return seq_open(file, &slabinfo_op);
4774}
4775
4776static const struct file_operations proc_slabinfo_operations = {
4777	.open		= slabinfo_open,
4778	.read		= seq_read,
4779	.llseek		= seq_lseek,
4780	.release	= seq_release,
4781};
4782
4783static int __init slab_proc_init(void)
4784{
4785	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4786	return 0;
4787}
4788module_init(slab_proc_init);
4789#endif /* CONFIG_SLABINFO */
4790