sparse.c revision 25985edcedea6396277003854657b5f3cb31a628
1/*
2 * sparse memory mappings.
3 */
4#include <linux/mm.h>
5#include <linux/slab.h>
6#include <linux/mmzone.h>
7#include <linux/bootmem.h>
8#include <linux/highmem.h>
9#include <linux/module.h>
10#include <linux/spinlock.h>
11#include <linux/vmalloc.h>
12#include "internal.h"
13#include <asm/dma.h>
14#include <asm/pgalloc.h>
15#include <asm/pgtable.h>
16
17/*
18 * Permanent SPARSEMEM data:
19 *
20 * 1) mem_section	- memory sections, mem_map's for valid memory
21 */
22#ifdef CONFIG_SPARSEMEM_EXTREME
23struct mem_section *mem_section[NR_SECTION_ROOTS]
24	____cacheline_internodealigned_in_smp;
25#else
26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27	____cacheline_internodealigned_in_smp;
28#endif
29EXPORT_SYMBOL(mem_section);
30
31#ifdef NODE_NOT_IN_PAGE_FLAGS
32/*
33 * If we did not store the node number in the page then we have to
34 * do a lookup in the section_to_node_table in order to find which
35 * node the page belongs to.
36 */
37#if MAX_NUMNODES <= 256
38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39#else
40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41#endif
42
43int page_to_nid(struct page *page)
44{
45	return section_to_node_table[page_to_section(page)];
46}
47EXPORT_SYMBOL(page_to_nid);
48
49static void set_section_nid(unsigned long section_nr, int nid)
50{
51	section_to_node_table[section_nr] = nid;
52}
53#else /* !NODE_NOT_IN_PAGE_FLAGS */
54static inline void set_section_nid(unsigned long section_nr, int nid)
55{
56}
57#endif
58
59#ifdef CONFIG_SPARSEMEM_EXTREME
60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61{
62	struct mem_section *section = NULL;
63	unsigned long array_size = SECTIONS_PER_ROOT *
64				   sizeof(struct mem_section);
65
66	if (slab_is_available()) {
67		if (node_state(nid, N_HIGH_MEMORY))
68			section = kmalloc_node(array_size, GFP_KERNEL, nid);
69		else
70			section = kmalloc(array_size, GFP_KERNEL);
71	} else
72		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
73
74	if (section)
75		memset(section, 0, array_size);
76
77	return section;
78}
79
80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
81{
82	static DEFINE_SPINLOCK(index_init_lock);
83	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84	struct mem_section *section;
85	int ret = 0;
86
87	if (mem_section[root])
88		return -EEXIST;
89
90	section = sparse_index_alloc(nid);
91	if (!section)
92		return -ENOMEM;
93	/*
94	 * This lock keeps two different sections from
95	 * reallocating for the same index
96	 */
97	spin_lock(&index_init_lock);
98
99	if (mem_section[root]) {
100		ret = -EEXIST;
101		goto out;
102	}
103
104	mem_section[root] = section;
105out:
106	spin_unlock(&index_init_lock);
107	return ret;
108}
109#else /* !SPARSEMEM_EXTREME */
110static inline int sparse_index_init(unsigned long section_nr, int nid)
111{
112	return 0;
113}
114#endif
115
116/*
117 * Although written for the SPARSEMEM_EXTREME case, this happens
118 * to also work for the flat array case because
119 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
120 */
121int __section_nr(struct mem_section* ms)
122{
123	unsigned long root_nr;
124	struct mem_section* root;
125
126	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
127		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
128		if (!root)
129			continue;
130
131		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
132		     break;
133	}
134
135	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
136}
137
138/*
139 * During early boot, before section_mem_map is used for an actual
140 * mem_map, we use section_mem_map to store the section's NUMA
141 * node.  This keeps us from having to use another data structure.  The
142 * node information is cleared just before we store the real mem_map.
143 */
144static inline unsigned long sparse_encode_early_nid(int nid)
145{
146	return (nid << SECTION_NID_SHIFT);
147}
148
149static inline int sparse_early_nid(struct mem_section *section)
150{
151	return (section->section_mem_map >> SECTION_NID_SHIFT);
152}
153
154/* Validate the physical addressing limitations of the model */
155void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156						unsigned long *end_pfn)
157{
158	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159
160	/*
161	 * Sanity checks - do not allow an architecture to pass
162	 * in larger pfns than the maximum scope of sparsemem:
163	 */
164	if (*start_pfn > max_sparsemem_pfn) {
165		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167			*start_pfn, *end_pfn, max_sparsemem_pfn);
168		WARN_ON_ONCE(1);
169		*start_pfn = max_sparsemem_pfn;
170		*end_pfn = max_sparsemem_pfn;
171	} else if (*end_pfn > max_sparsemem_pfn) {
172		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174			*start_pfn, *end_pfn, max_sparsemem_pfn);
175		WARN_ON_ONCE(1);
176		*end_pfn = max_sparsemem_pfn;
177	}
178}
179
180/* Record a memory area against a node. */
181void __init memory_present(int nid, unsigned long start, unsigned long end)
182{
183	unsigned long pfn;
184
185	start &= PAGE_SECTION_MASK;
186	mminit_validate_memmodel_limits(&start, &end);
187	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
188		unsigned long section = pfn_to_section_nr(pfn);
189		struct mem_section *ms;
190
191		sparse_index_init(section, nid);
192		set_section_nid(section, nid);
193
194		ms = __nr_to_section(section);
195		if (!ms->section_mem_map)
196			ms->section_mem_map = sparse_encode_early_nid(nid) |
197							SECTION_MARKED_PRESENT;
198	}
199}
200
201/*
202 * Only used by the i386 NUMA architecures, but relatively
203 * generic code.
204 */
205unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
206						     unsigned long end_pfn)
207{
208	unsigned long pfn;
209	unsigned long nr_pages = 0;
210
211	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
212	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
213		if (nid != early_pfn_to_nid(pfn))
214			continue;
215
216		if (pfn_present(pfn))
217			nr_pages += PAGES_PER_SECTION;
218	}
219
220	return nr_pages * sizeof(struct page);
221}
222
223/*
224 * Subtle, we encode the real pfn into the mem_map such that
225 * the identity pfn - section_mem_map will return the actual
226 * physical page frame number.
227 */
228static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
229{
230	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
231}
232
233/*
234 * Decode mem_map from the coded memmap
235 */
236struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
237{
238	/* mask off the extra low bits of information */
239	coded_mem_map &= SECTION_MAP_MASK;
240	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
241}
242
243static int __meminit sparse_init_one_section(struct mem_section *ms,
244		unsigned long pnum, struct page *mem_map,
245		unsigned long *pageblock_bitmap)
246{
247	if (!present_section(ms))
248		return -EINVAL;
249
250	ms->section_mem_map &= ~SECTION_MAP_MASK;
251	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
252							SECTION_HAS_MEM_MAP;
253 	ms->pageblock_flags = pageblock_bitmap;
254
255	return 1;
256}
257
258unsigned long usemap_size(void)
259{
260	unsigned long size_bytes;
261	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
262	size_bytes = roundup(size_bytes, sizeof(unsigned long));
263	return size_bytes;
264}
265
266#ifdef CONFIG_MEMORY_HOTPLUG
267static unsigned long *__kmalloc_section_usemap(void)
268{
269	return kmalloc(usemap_size(), GFP_KERNEL);
270}
271#endif /* CONFIG_MEMORY_HOTPLUG */
272
273#ifdef CONFIG_MEMORY_HOTREMOVE
274static unsigned long * __init
275sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
276					 unsigned long count)
277{
278	unsigned long section_nr;
279
280	/*
281	 * A page may contain usemaps for other sections preventing the
282	 * page being freed and making a section unremovable while
283	 * other sections referencing the usemap retmain active. Similarly,
284	 * a pgdat can prevent a section being removed. If section A
285	 * contains a pgdat and section B contains the usemap, both
286	 * sections become inter-dependent. This allocates usemaps
287	 * from the same section as the pgdat where possible to avoid
288	 * this problem.
289	 */
290	section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
291	return alloc_bootmem_section(usemap_size() * count, section_nr);
292}
293
294static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
295{
296	unsigned long usemap_snr, pgdat_snr;
297	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299	struct pglist_data *pgdat = NODE_DATA(nid);
300	int usemap_nid;
301
302	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
303	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
304	if (usemap_snr == pgdat_snr)
305		return;
306
307	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308		/* skip redundant message */
309		return;
310
311	old_usemap_snr = usemap_snr;
312	old_pgdat_snr = pgdat_snr;
313
314	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315	if (usemap_nid != nid) {
316		printk(KERN_INFO
317		       "node %d must be removed before remove section %ld\n",
318		       nid, usemap_snr);
319		return;
320	}
321	/*
322	 * There is a circular dependency.
323	 * Some platforms allow un-removable section because they will just
324	 * gather other removable sections for dynamic partitioning.
325	 * Just notify un-removable section's number here.
326	 */
327	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
328	       pgdat_snr, nid);
329	printk(KERN_CONT
330	       " have a circular dependency on usemap and pgdat allocations\n");
331}
332#else
333static unsigned long * __init
334sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
335					 unsigned long count)
336{
337	return NULL;
338}
339
340static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
341{
342}
343#endif /* CONFIG_MEMORY_HOTREMOVE */
344
345static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
346				 unsigned long pnum_begin,
347				 unsigned long pnum_end,
348				 unsigned long usemap_count, int nodeid)
349{
350	void *usemap;
351	unsigned long pnum;
352	int size = usemap_size();
353
354	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
355								 usemap_count);
356	if (usemap) {
357		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
358			if (!present_section_nr(pnum))
359				continue;
360			usemap_map[pnum] = usemap;
361			usemap += size;
362		}
363		return;
364	}
365
366	usemap = alloc_bootmem_node(NODE_DATA(nodeid), size * usemap_count);
367	if (usemap) {
368		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
369			if (!present_section_nr(pnum))
370				continue;
371			usemap_map[pnum] = usemap;
372			usemap += size;
373			check_usemap_section_nr(nodeid, usemap_map[pnum]);
374		}
375		return;
376	}
377
378	printk(KERN_WARNING "%s: allocation failed\n", __func__);
379}
380
381#ifndef CONFIG_SPARSEMEM_VMEMMAP
382struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
383{
384	struct page *map;
385	unsigned long size;
386
387	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
388	if (map)
389		return map;
390
391	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
392	map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
393					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
394	return map;
395}
396void __init sparse_mem_maps_populate_node(struct page **map_map,
397					  unsigned long pnum_begin,
398					  unsigned long pnum_end,
399					  unsigned long map_count, int nodeid)
400{
401	void *map;
402	unsigned long pnum;
403	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
404
405	map = alloc_remap(nodeid, size * map_count);
406	if (map) {
407		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
408			if (!present_section_nr(pnum))
409				continue;
410			map_map[pnum] = map;
411			map += size;
412		}
413		return;
414	}
415
416	size = PAGE_ALIGN(size);
417	map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
418					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
419	if (map) {
420		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
421			if (!present_section_nr(pnum))
422				continue;
423			map_map[pnum] = map;
424			map += size;
425		}
426		return;
427	}
428
429	/* fallback */
430	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
431		struct mem_section *ms;
432
433		if (!present_section_nr(pnum))
434			continue;
435		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
436		if (map_map[pnum])
437			continue;
438		ms = __nr_to_section(pnum);
439		printk(KERN_ERR "%s: sparsemem memory map backing failed "
440			"some memory will not be available.\n", __func__);
441		ms->section_mem_map = 0;
442	}
443}
444#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
445
446#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
447static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
448				 unsigned long pnum_begin,
449				 unsigned long pnum_end,
450				 unsigned long map_count, int nodeid)
451{
452	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
453					 map_count, nodeid);
454}
455#else
456static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
457{
458	struct page *map;
459	struct mem_section *ms = __nr_to_section(pnum);
460	int nid = sparse_early_nid(ms);
461
462	map = sparse_mem_map_populate(pnum, nid);
463	if (map)
464		return map;
465
466	printk(KERN_ERR "%s: sparsemem memory map backing failed "
467			"some memory will not be available.\n", __func__);
468	ms->section_mem_map = 0;
469	return NULL;
470}
471#endif
472
473void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
474{
475}
476
477/*
478 * Allocate the accumulated non-linear sections, allocate a mem_map
479 * for each and record the physical to section mapping.
480 */
481void __init sparse_init(void)
482{
483	unsigned long pnum;
484	struct page *map;
485	unsigned long *usemap;
486	unsigned long **usemap_map;
487	int size;
488	int nodeid_begin = 0;
489	unsigned long pnum_begin = 0;
490	unsigned long usemap_count;
491#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
492	unsigned long map_count;
493	int size2;
494	struct page **map_map;
495#endif
496
497	/*
498	 * map is using big page (aka 2M in x86 64 bit)
499	 * usemap is less one page (aka 24 bytes)
500	 * so alloc 2M (with 2M align) and 24 bytes in turn will
501	 * make next 2M slip to one more 2M later.
502	 * then in big system, the memory will have a lot of holes...
503	 * here try to allocate 2M pages continuously.
504	 *
505	 * powerpc need to call sparse_init_one_section right after each
506	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
507	 */
508	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
509	usemap_map = alloc_bootmem(size);
510	if (!usemap_map)
511		panic("can not allocate usemap_map\n");
512
513	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
514		struct mem_section *ms;
515
516		if (!present_section_nr(pnum))
517			continue;
518		ms = __nr_to_section(pnum);
519		nodeid_begin = sparse_early_nid(ms);
520		pnum_begin = pnum;
521		break;
522	}
523	usemap_count = 1;
524	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
525		struct mem_section *ms;
526		int nodeid;
527
528		if (!present_section_nr(pnum))
529			continue;
530		ms = __nr_to_section(pnum);
531		nodeid = sparse_early_nid(ms);
532		if (nodeid == nodeid_begin) {
533			usemap_count++;
534			continue;
535		}
536		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
537		sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
538						 usemap_count, nodeid_begin);
539		/* new start, update count etc*/
540		nodeid_begin = nodeid;
541		pnum_begin = pnum;
542		usemap_count = 1;
543	}
544	/* ok, last chunk */
545	sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
546					 usemap_count, nodeid_begin);
547
548#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
549	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
550	map_map = alloc_bootmem(size2);
551	if (!map_map)
552		panic("can not allocate map_map\n");
553
554	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
555		struct mem_section *ms;
556
557		if (!present_section_nr(pnum))
558			continue;
559		ms = __nr_to_section(pnum);
560		nodeid_begin = sparse_early_nid(ms);
561		pnum_begin = pnum;
562		break;
563	}
564	map_count = 1;
565	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
566		struct mem_section *ms;
567		int nodeid;
568
569		if (!present_section_nr(pnum))
570			continue;
571		ms = __nr_to_section(pnum);
572		nodeid = sparse_early_nid(ms);
573		if (nodeid == nodeid_begin) {
574			map_count++;
575			continue;
576		}
577		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
578		sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
579						 map_count, nodeid_begin);
580		/* new start, update count etc*/
581		nodeid_begin = nodeid;
582		pnum_begin = pnum;
583		map_count = 1;
584	}
585	/* ok, last chunk */
586	sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
587					 map_count, nodeid_begin);
588#endif
589
590	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
591		if (!present_section_nr(pnum))
592			continue;
593
594		usemap = usemap_map[pnum];
595		if (!usemap)
596			continue;
597
598#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
599		map = map_map[pnum];
600#else
601		map = sparse_early_mem_map_alloc(pnum);
602#endif
603		if (!map)
604			continue;
605
606		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
607								usemap);
608	}
609
610	vmemmap_populate_print_last();
611
612#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
613	free_bootmem(__pa(map_map), size2);
614#endif
615	free_bootmem(__pa(usemap_map), size);
616}
617
618#ifdef CONFIG_MEMORY_HOTPLUG
619#ifdef CONFIG_SPARSEMEM_VMEMMAP
620static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
621						 unsigned long nr_pages)
622{
623	/* This will make the necessary allocations eventually. */
624	return sparse_mem_map_populate(pnum, nid);
625}
626static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
627{
628	return; /* XXX: Not implemented yet */
629}
630static void free_map_bootmem(struct page *page, unsigned long nr_pages)
631{
632}
633#else
634static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
635{
636	struct page *page, *ret;
637	unsigned long memmap_size = sizeof(struct page) * nr_pages;
638
639	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
640	if (page)
641		goto got_map_page;
642
643	ret = vmalloc(memmap_size);
644	if (ret)
645		goto got_map_ptr;
646
647	return NULL;
648got_map_page:
649	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
650got_map_ptr:
651	memset(ret, 0, memmap_size);
652
653	return ret;
654}
655
656static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
657						  unsigned long nr_pages)
658{
659	return __kmalloc_section_memmap(nr_pages);
660}
661
662static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
663{
664	if (is_vmalloc_addr(memmap))
665		vfree(memmap);
666	else
667		free_pages((unsigned long)memmap,
668			   get_order(sizeof(struct page) * nr_pages));
669}
670
671static void free_map_bootmem(struct page *page, unsigned long nr_pages)
672{
673	unsigned long maps_section_nr, removing_section_nr, i;
674	unsigned long magic;
675
676	for (i = 0; i < nr_pages; i++, page++) {
677		magic = (unsigned long) page->lru.next;
678
679		BUG_ON(magic == NODE_INFO);
680
681		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
682		removing_section_nr = page->private;
683
684		/*
685		 * When this function is called, the removing section is
686		 * logical offlined state. This means all pages are isolated
687		 * from page allocator. If removing section's memmap is placed
688		 * on the same section, it must not be freed.
689		 * If it is freed, page allocator may allocate it which will
690		 * be removed physically soon.
691		 */
692		if (maps_section_nr != removing_section_nr)
693			put_page_bootmem(page);
694	}
695}
696#endif /* CONFIG_SPARSEMEM_VMEMMAP */
697
698static void free_section_usemap(struct page *memmap, unsigned long *usemap)
699{
700	struct page *usemap_page;
701	unsigned long nr_pages;
702
703	if (!usemap)
704		return;
705
706	usemap_page = virt_to_page(usemap);
707	/*
708	 * Check to see if allocation came from hot-plug-add
709	 */
710	if (PageSlab(usemap_page)) {
711		kfree(usemap);
712		if (memmap)
713			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
714		return;
715	}
716
717	/*
718	 * The usemap came from bootmem. This is packed with other usemaps
719	 * on the section which has pgdat at boot time. Just keep it as is now.
720	 */
721
722	if (memmap) {
723		struct page *memmap_page;
724		memmap_page = virt_to_page(memmap);
725
726		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
727			>> PAGE_SHIFT;
728
729		free_map_bootmem(memmap_page, nr_pages);
730	}
731}
732
733/*
734 * returns the number of sections whose mem_maps were properly
735 * set.  If this is <=0, then that means that the passed-in
736 * map was not consumed and must be freed.
737 */
738int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
739			   int nr_pages)
740{
741	unsigned long section_nr = pfn_to_section_nr(start_pfn);
742	struct pglist_data *pgdat = zone->zone_pgdat;
743	struct mem_section *ms;
744	struct page *memmap;
745	unsigned long *usemap;
746	unsigned long flags;
747	int ret;
748
749	/*
750	 * no locking for this, because it does its own
751	 * plus, it does a kmalloc
752	 */
753	ret = sparse_index_init(section_nr, pgdat->node_id);
754	if (ret < 0 && ret != -EEXIST)
755		return ret;
756	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
757	if (!memmap)
758		return -ENOMEM;
759	usemap = __kmalloc_section_usemap();
760	if (!usemap) {
761		__kfree_section_memmap(memmap, nr_pages);
762		return -ENOMEM;
763	}
764
765	pgdat_resize_lock(pgdat, &flags);
766
767	ms = __pfn_to_section(start_pfn);
768	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
769		ret = -EEXIST;
770		goto out;
771	}
772
773	ms->section_mem_map |= SECTION_MARKED_PRESENT;
774
775	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
776
777out:
778	pgdat_resize_unlock(pgdat, &flags);
779	if (ret <= 0) {
780		kfree(usemap);
781		__kfree_section_memmap(memmap, nr_pages);
782	}
783	return ret;
784}
785
786void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
787{
788	struct page *memmap = NULL;
789	unsigned long *usemap = NULL;
790
791	if (ms->section_mem_map) {
792		usemap = ms->pageblock_flags;
793		memmap = sparse_decode_mem_map(ms->section_mem_map,
794						__section_nr(ms));
795		ms->section_mem_map = 0;
796		ms->pageblock_flags = NULL;
797	}
798
799	free_section_usemap(memmap, usemap);
800}
801#endif
802