sparse.c revision 46a66eecdf7bc12562ecb492297447ed0e1ecf59
1/*
2 * sparse memory mappings.
3 */
4#include <linux/config.h>
5#include <linux/mm.h>
6#include <linux/mmzone.h>
7#include <linux/bootmem.h>
8#include <linux/highmem.h>
9#include <linux/module.h>
10#include <linux/spinlock.h>
11#include <linux/vmalloc.h>
12#include <asm/dma.h>
13
14/*
15 * Permanent SPARSEMEM data:
16 *
17 * 1) mem_section	- memory sections, mem_map's for valid memory
18 */
19#ifdef CONFIG_SPARSEMEM_EXTREME
20struct mem_section *mem_section[NR_SECTION_ROOTS]
21	____cacheline_internodealigned_in_smp;
22#else
23struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
24	____cacheline_internodealigned_in_smp;
25#endif
26EXPORT_SYMBOL(mem_section);
27
28#ifdef CONFIG_SPARSEMEM_EXTREME
29static struct mem_section *sparse_index_alloc(int nid)
30{
31	struct mem_section *section = NULL;
32	unsigned long array_size = SECTIONS_PER_ROOT *
33				   sizeof(struct mem_section);
34
35	if (system_state == SYSTEM_RUNNING)
36		section = kmalloc_node(array_size, GFP_KERNEL, nid);
37	else
38		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
39
40	if (section)
41		memset(section, 0, array_size);
42
43	return section;
44}
45
46static int sparse_index_init(unsigned long section_nr, int nid)
47{
48	static spinlock_t index_init_lock = SPIN_LOCK_UNLOCKED;
49	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
50	struct mem_section *section;
51	int ret = 0;
52
53	if (mem_section[root])
54		return -EEXIST;
55
56	section = sparse_index_alloc(nid);
57	/*
58	 * This lock keeps two different sections from
59	 * reallocating for the same index
60	 */
61	spin_lock(&index_init_lock);
62
63	if (mem_section[root]) {
64		ret = -EEXIST;
65		goto out;
66	}
67
68	mem_section[root] = section;
69out:
70	spin_unlock(&index_init_lock);
71	return ret;
72}
73#else /* !SPARSEMEM_EXTREME */
74static inline int sparse_index_init(unsigned long section_nr, int nid)
75{
76	return 0;
77}
78#endif
79
80/*
81 * Although written for the SPARSEMEM_EXTREME case, this happens
82 * to also work for the flat array case becase
83 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
84 */
85int __section_nr(struct mem_section* ms)
86{
87	unsigned long root_nr;
88	struct mem_section* root;
89
90	for (root_nr = 0;
91	     root_nr < NR_MEM_SECTIONS;
92	     root_nr += SECTIONS_PER_ROOT) {
93		root = __nr_to_section(root_nr);
94
95		if (!root)
96			continue;
97
98		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
99		     break;
100	}
101
102	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
103}
104
105/* Record a memory area against a node. */
106void memory_present(int nid, unsigned long start, unsigned long end)
107{
108	unsigned long pfn;
109
110	start &= PAGE_SECTION_MASK;
111	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
112		unsigned long section = pfn_to_section_nr(pfn);
113		struct mem_section *ms;
114
115		sparse_index_init(section, nid);
116
117		ms = __nr_to_section(section);
118		if (!ms->section_mem_map)
119			ms->section_mem_map = SECTION_MARKED_PRESENT;
120	}
121}
122
123/*
124 * Only used by the i386 NUMA architecures, but relatively
125 * generic code.
126 */
127unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
128						     unsigned long end_pfn)
129{
130	unsigned long pfn;
131	unsigned long nr_pages = 0;
132
133	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
134		if (nid != early_pfn_to_nid(pfn))
135			continue;
136
137		if (pfn_valid(pfn))
138			nr_pages += PAGES_PER_SECTION;
139	}
140
141	return nr_pages * sizeof(struct page);
142}
143
144/*
145 * Subtle, we encode the real pfn into the mem_map such that
146 * the identity pfn - section_mem_map will return the actual
147 * physical page frame number.
148 */
149static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
150{
151	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
152}
153
154/*
155 * We need this if we ever free the mem_maps.  While not implemented yet,
156 * this function is included for parity with its sibling.
157 */
158static __attribute((unused))
159struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
160{
161	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
162}
163
164static int sparse_init_one_section(struct mem_section *ms,
165		unsigned long pnum, struct page *mem_map)
166{
167	if (!valid_section(ms))
168		return -EINVAL;
169
170	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum);
171
172	return 1;
173}
174
175static struct page *sparse_early_mem_map_alloc(unsigned long pnum)
176{
177	struct page *map;
178	int nid = early_pfn_to_nid(section_nr_to_pfn(pnum));
179	struct mem_section *ms = __nr_to_section(pnum);
180
181	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
182	if (map)
183		return map;
184
185	map = alloc_bootmem_node(NODE_DATA(nid),
186			sizeof(struct page) * PAGES_PER_SECTION);
187	if (map)
188		return map;
189
190	printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
191	ms->section_mem_map = 0;
192	return NULL;
193}
194
195static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
196{
197	struct page *page, *ret;
198	unsigned long memmap_size = sizeof(struct page) * nr_pages;
199
200	page = alloc_pages(GFP_KERNEL, get_order(memmap_size));
201	if (page)
202		goto got_map_page;
203
204	ret = vmalloc(memmap_size);
205	if (ret)
206		goto got_map_ptr;
207
208	return NULL;
209got_map_page:
210	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
211got_map_ptr:
212	memset(ret, 0, memmap_size);
213
214	return ret;
215}
216
217static int vaddr_in_vmalloc_area(void *addr)
218{
219	if (addr >= (void *)VMALLOC_START &&
220	    addr < (void *)VMALLOC_END)
221		return 1;
222	return 0;
223}
224
225static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
226{
227	if (vaddr_in_vmalloc_area(memmap))
228		vfree(memmap);
229	else
230		free_pages((unsigned long)memmap,
231			   get_order(sizeof(struct page) * nr_pages));
232}
233
234/*
235 * Allocate the accumulated non-linear sections, allocate a mem_map
236 * for each and record the physical to section mapping.
237 */
238void sparse_init(void)
239{
240	unsigned long pnum;
241	struct page *map;
242
243	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
244		if (!valid_section_nr(pnum))
245			continue;
246
247		map = sparse_early_mem_map_alloc(pnum);
248		if (!map)
249			continue;
250		sparse_init_one_section(__nr_to_section(pnum), pnum, map);
251	}
252}
253
254/*
255 * returns the number of sections whose mem_maps were properly
256 * set.  If this is <=0, then that means that the passed-in
257 * map was not consumed and must be freed.
258 */
259int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
260			   int nr_pages)
261{
262	unsigned long section_nr = pfn_to_section_nr(start_pfn);
263	struct pglist_data *pgdat = zone->zone_pgdat;
264	struct mem_section *ms;
265	struct page *memmap;
266	unsigned long flags;
267	int ret;
268
269	/*
270	 * no locking for this, because it does its own
271	 * plus, it does a kmalloc
272	 */
273	sparse_index_init(section_nr, pgdat->node_id);
274	memmap = __kmalloc_section_memmap(nr_pages);
275
276	pgdat_resize_lock(pgdat, &flags);
277
278	ms = __pfn_to_section(start_pfn);
279	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
280		ret = -EEXIST;
281		goto out;
282	}
283	ms->section_mem_map |= SECTION_MARKED_PRESENT;
284
285	ret = sparse_init_one_section(ms, section_nr, memmap);
286
287out:
288	pgdat_resize_unlock(pgdat, &flags);
289	if (ret <= 0)
290		__kfree_section_memmap(memmap, nr_pages);
291	return ret;
292}
293