sparse.c revision af0cd5a7c3cded50c25e98acd94912d17a0eb914
1/*
2 * sparse memory mappings.
3 */
4#include <linux/mm.h>
5#include <linux/mmzone.h>
6#include <linux/bootmem.h>
7#include <linux/highmem.h>
8#include <linux/module.h>
9#include <linux/spinlock.h>
10#include <linux/vmalloc.h>
11#include <asm/dma.h>
12#include <asm/pgalloc.h>
13#include <asm/pgtable.h>
14
15/*
16 * Permanent SPARSEMEM data:
17 *
18 * 1) mem_section	- memory sections, mem_map's for valid memory
19 */
20#ifdef CONFIG_SPARSEMEM_EXTREME
21struct mem_section *mem_section[NR_SECTION_ROOTS]
22	____cacheline_internodealigned_in_smp;
23#else
24struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
25	____cacheline_internodealigned_in_smp;
26#endif
27EXPORT_SYMBOL(mem_section);
28
29#ifdef NODE_NOT_IN_PAGE_FLAGS
30/*
31 * If we did not store the node number in the page then we have to
32 * do a lookup in the section_to_node_table in order to find which
33 * node the page belongs to.
34 */
35#if MAX_NUMNODES <= 256
36static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
37#else
38static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39#endif
40
41int page_to_nid(struct page *page)
42{
43	return section_to_node_table[page_to_section(page)];
44}
45EXPORT_SYMBOL(page_to_nid);
46
47static void set_section_nid(unsigned long section_nr, int nid)
48{
49	section_to_node_table[section_nr] = nid;
50}
51#else /* !NODE_NOT_IN_PAGE_FLAGS */
52static inline void set_section_nid(unsigned long section_nr, int nid)
53{
54}
55#endif
56
57#ifdef CONFIG_SPARSEMEM_EXTREME
58static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
59{
60	struct mem_section *section = NULL;
61	unsigned long array_size = SECTIONS_PER_ROOT *
62				   sizeof(struct mem_section);
63
64	if (slab_is_available())
65		section = kmalloc_node(array_size, GFP_KERNEL, nid);
66	else
67		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
68
69	if (section)
70		memset(section, 0, array_size);
71
72	return section;
73}
74
75static int __meminit sparse_index_init(unsigned long section_nr, int nid)
76{
77	static DEFINE_SPINLOCK(index_init_lock);
78	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79	struct mem_section *section;
80	int ret = 0;
81
82	if (mem_section[root])
83		return -EEXIST;
84
85	section = sparse_index_alloc(nid);
86	if (!section)
87		return -ENOMEM;
88	/*
89	 * This lock keeps two different sections from
90	 * reallocating for the same index
91	 */
92	spin_lock(&index_init_lock);
93
94	if (mem_section[root]) {
95		ret = -EEXIST;
96		goto out;
97	}
98
99	mem_section[root] = section;
100out:
101	spin_unlock(&index_init_lock);
102	return ret;
103}
104#else /* !SPARSEMEM_EXTREME */
105static inline int sparse_index_init(unsigned long section_nr, int nid)
106{
107	return 0;
108}
109#endif
110
111/*
112 * Although written for the SPARSEMEM_EXTREME case, this happens
113 * to also work for the flat array case because
114 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
115 */
116int __section_nr(struct mem_section* ms)
117{
118	unsigned long root_nr;
119	struct mem_section* root;
120
121	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
122		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
123		if (!root)
124			continue;
125
126		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
127		     break;
128	}
129
130	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131}
132
133/*
134 * During early boot, before section_mem_map is used for an actual
135 * mem_map, we use section_mem_map to store the section's NUMA
136 * node.  This keeps us from having to use another data structure.  The
137 * node information is cleared just before we store the real mem_map.
138 */
139static inline unsigned long sparse_encode_early_nid(int nid)
140{
141	return (nid << SECTION_NID_SHIFT);
142}
143
144static inline int sparse_early_nid(struct mem_section *section)
145{
146	return (section->section_mem_map >> SECTION_NID_SHIFT);
147}
148
149/* Record a memory area against a node. */
150void __init memory_present(int nid, unsigned long start, unsigned long end)
151{
152	unsigned long pfn;
153
154	start &= PAGE_SECTION_MASK;
155	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
156		unsigned long section = pfn_to_section_nr(pfn);
157		struct mem_section *ms;
158
159		sparse_index_init(section, nid);
160		set_section_nid(section, nid);
161
162		ms = __nr_to_section(section);
163		if (!ms->section_mem_map)
164			ms->section_mem_map = sparse_encode_early_nid(nid) |
165							SECTION_MARKED_PRESENT;
166	}
167}
168
169/*
170 * Only used by the i386 NUMA architecures, but relatively
171 * generic code.
172 */
173unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
174						     unsigned long end_pfn)
175{
176	unsigned long pfn;
177	unsigned long nr_pages = 0;
178
179	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
180		if (nid != early_pfn_to_nid(pfn))
181			continue;
182
183		if (pfn_present(pfn))
184			nr_pages += PAGES_PER_SECTION;
185	}
186
187	return nr_pages * sizeof(struct page);
188}
189
190/*
191 * Subtle, we encode the real pfn into the mem_map such that
192 * the identity pfn - section_mem_map will return the actual
193 * physical page frame number.
194 */
195static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
196{
197	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
198}
199
200/*
201 * We need this if we ever free the mem_maps.  While not implemented yet,
202 * this function is included for parity with its sibling.
203 */
204static __attribute((unused))
205struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
206{
207	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
208}
209
210static int __meminit sparse_init_one_section(struct mem_section *ms,
211		unsigned long pnum, struct page *mem_map,
212		unsigned long *pageblock_bitmap)
213{
214	if (!present_section(ms))
215		return -EINVAL;
216
217	ms->section_mem_map &= ~SECTION_MAP_MASK;
218	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
219							SECTION_HAS_MEM_MAP;
220 	ms->pageblock_flags = pageblock_bitmap;
221
222	return 1;
223}
224
225static unsigned long usemap_size(void)
226{
227	unsigned long size_bytes;
228	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
229	size_bytes = roundup(size_bytes, sizeof(unsigned long));
230	return size_bytes;
231}
232
233#ifdef CONFIG_MEMORY_HOTPLUG
234static unsigned long *__kmalloc_section_usemap(void)
235{
236	return kmalloc(usemap_size(), GFP_KERNEL);
237}
238#endif /* CONFIG_MEMORY_HOTPLUG */
239
240static unsigned long *sparse_early_usemap_alloc(unsigned long pnum)
241{
242	unsigned long *usemap;
243	struct mem_section *ms = __nr_to_section(pnum);
244	int nid = sparse_early_nid(ms);
245
246	usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
247	if (usemap)
248		return usemap;
249
250	/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
251	nid = 0;
252
253	printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
254	return NULL;
255}
256
257#ifndef CONFIG_SPARSEMEM_VMEMMAP
258struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
259{
260	struct page *map;
261
262	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
263	if (map)
264		return map;
265
266	map = alloc_bootmem_node(NODE_DATA(nid),
267			sizeof(struct page) * PAGES_PER_SECTION);
268	return map;
269}
270#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
271
272struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
273{
274	struct page *map;
275	struct mem_section *ms = __nr_to_section(pnum);
276	int nid = sparse_early_nid(ms);
277
278	map = sparse_mem_map_populate(pnum, nid);
279	if (map)
280		return map;
281
282	printk(KERN_ERR "%s: sparsemem memory map backing failed "
283			"some memory will not be available.\n", __FUNCTION__);
284	ms->section_mem_map = 0;
285	return NULL;
286}
287
288/*
289 * Allocate the accumulated non-linear sections, allocate a mem_map
290 * for each and record the physical to section mapping.
291 */
292void __init sparse_init(void)
293{
294	unsigned long pnum;
295	struct page *map;
296	unsigned long *usemap;
297
298	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
299		if (!present_section_nr(pnum))
300			continue;
301
302		map = sparse_early_mem_map_alloc(pnum);
303		if (!map)
304			continue;
305
306		usemap = sparse_early_usemap_alloc(pnum);
307		if (!usemap)
308			continue;
309
310		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
311								usemap);
312	}
313}
314
315#ifdef CONFIG_MEMORY_HOTPLUG
316#ifdef CONFIG_SPARSEMEM_VMEMMAP
317static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
318						 unsigned long nr_pages)
319{
320	/* This will make the necessary allocations eventually. */
321	return sparse_mem_map_populate(pnum, nid);
322}
323static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
324{
325	return; /* XXX: Not implemented yet */
326}
327#else
328static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
329{
330	struct page *page, *ret;
331	unsigned long memmap_size = sizeof(struct page) * nr_pages;
332
333	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
334	if (page)
335		goto got_map_page;
336
337	ret = vmalloc(memmap_size);
338	if (ret)
339		goto got_map_ptr;
340
341	return NULL;
342got_map_page:
343	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
344got_map_ptr:
345	memset(ret, 0, memmap_size);
346
347	return ret;
348}
349
350static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
351						  unsigned long nr_pages)
352{
353	return __kmalloc_section_memmap(nr_pages);
354}
355
356static int vaddr_in_vmalloc_area(void *addr)
357{
358	if (addr >= (void *)VMALLOC_START &&
359	    addr < (void *)VMALLOC_END)
360		return 1;
361	return 0;
362}
363
364static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
365{
366	if (vaddr_in_vmalloc_area(memmap))
367		vfree(memmap);
368	else
369		free_pages((unsigned long)memmap,
370			   get_order(sizeof(struct page) * nr_pages));
371}
372#endif /* CONFIG_SPARSEMEM_VMEMMAP */
373
374/*
375 * returns the number of sections whose mem_maps were properly
376 * set.  If this is <=0, then that means that the passed-in
377 * map was not consumed and must be freed.
378 */
379int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
380			   int nr_pages)
381{
382	unsigned long section_nr = pfn_to_section_nr(start_pfn);
383	struct pglist_data *pgdat = zone->zone_pgdat;
384	struct mem_section *ms;
385	struct page *memmap;
386	unsigned long *usemap;
387	unsigned long flags;
388	int ret;
389
390	/*
391	 * no locking for this, because it does its own
392	 * plus, it does a kmalloc
393	 */
394	sparse_index_init(section_nr, pgdat->node_id);
395	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
396	usemap = __kmalloc_section_usemap();
397
398	pgdat_resize_lock(pgdat, &flags);
399
400	ms = __pfn_to_section(start_pfn);
401	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
402		ret = -EEXIST;
403		goto out;
404	}
405
406	if (!usemap) {
407		ret = -ENOMEM;
408		goto out;
409	}
410	ms->section_mem_map |= SECTION_MARKED_PRESENT;
411
412	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
413
414out:
415	pgdat_resize_unlock(pgdat, &flags);
416	if (ret <= 0)
417		__kfree_section_memmap(memmap, nr_pages);
418	return ret;
419}
420#endif
421