swap.c revision 12d27107867fc7216e8faaff0b894b0f162dcf75
1/*
2 *  linux/mm/swap.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
24#include <linux/export.h>
25#include <linux/mm_inline.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page() */
27#include <linux/percpu_counter.h>
28#include <linux/percpu.h>
29#include <linux/cpu.h>
30#include <linux/notifier.h>
31#include <linux/backing-dev.h>
32#include <linux/memcontrol.h>
33#include <linux/gfp.h>
34
35#include "internal.h"
36
37/* How many pages do we try to swap or page in/out together? */
38int page_cluster;
39
40static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43
44/*
45 * This path almost never happens for VM activity - pages are normally
46 * freed via pagevecs.  But it gets used by networking.
47 */
48static void __page_cache_release(struct page *page)
49{
50	if (PageLRU(page)) {
51		unsigned long flags;
52		struct zone *zone = page_zone(page);
53
54		spin_lock_irqsave(&zone->lru_lock, flags);
55		VM_BUG_ON(!PageLRU(page));
56		__ClearPageLRU(page);
57		del_page_from_lru(zone, page);
58		spin_unlock_irqrestore(&zone->lru_lock, flags);
59	}
60}
61
62static void __put_single_page(struct page *page)
63{
64	__page_cache_release(page);
65	free_hot_cold_page(page, 0);
66}
67
68static void __put_compound_page(struct page *page)
69{
70	compound_page_dtor *dtor;
71
72	__page_cache_release(page);
73	dtor = get_compound_page_dtor(page);
74	(*dtor)(page);
75}
76
77static void put_compound_page(struct page *page)
78{
79	if (unlikely(PageTail(page))) {
80		/* __split_huge_page_refcount can run under us */
81		struct page *page_head = compound_trans_head(page);
82
83		if (likely(page != page_head &&
84			   get_page_unless_zero(page_head))) {
85			unsigned long flags;
86			/*
87			 * page_head wasn't a dangling pointer but it
88			 * may not be a head page anymore by the time
89			 * we obtain the lock. That is ok as long as it
90			 * can't be freed from under us.
91			 */
92			flags = compound_lock_irqsave(page_head);
93			if (unlikely(!PageTail(page))) {
94				/* __split_huge_page_refcount run before us */
95				compound_unlock_irqrestore(page_head, flags);
96				VM_BUG_ON(PageHead(page_head));
97				if (put_page_testzero(page_head))
98					__put_single_page(page_head);
99			out_put_single:
100				if (put_page_testzero(page))
101					__put_single_page(page);
102				return;
103			}
104			VM_BUG_ON(page_head != page->first_page);
105			/*
106			 * We can release the refcount taken by
107			 * get_page_unless_zero() now that
108			 * __split_huge_page_refcount() is blocked on
109			 * the compound_lock.
110			 */
111			if (put_page_testzero(page_head))
112				VM_BUG_ON(1);
113			/* __split_huge_page_refcount will wait now */
114			VM_BUG_ON(page_mapcount(page) <= 0);
115			atomic_dec(&page->_mapcount);
116			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
117			VM_BUG_ON(atomic_read(&page->_count) != 0);
118			compound_unlock_irqrestore(page_head, flags);
119			if (put_page_testzero(page_head)) {
120				if (PageHead(page_head))
121					__put_compound_page(page_head);
122				else
123					__put_single_page(page_head);
124			}
125		} else {
126			/* page_head is a dangling pointer */
127			VM_BUG_ON(PageTail(page));
128			goto out_put_single;
129		}
130	} else if (put_page_testzero(page)) {
131		if (PageHead(page))
132			__put_compound_page(page);
133		else
134			__put_single_page(page);
135	}
136}
137
138void put_page(struct page *page)
139{
140	if (unlikely(PageCompound(page)))
141		put_compound_page(page);
142	else if (put_page_testzero(page))
143		__put_single_page(page);
144}
145EXPORT_SYMBOL(put_page);
146
147/*
148 * This function is exported but must not be called by anything other
149 * than get_page(). It implements the slow path of get_page().
150 */
151bool __get_page_tail(struct page *page)
152{
153	/*
154	 * This takes care of get_page() if run on a tail page
155	 * returned by one of the get_user_pages/follow_page variants.
156	 * get_user_pages/follow_page itself doesn't need the compound
157	 * lock because it runs __get_page_tail_foll() under the
158	 * proper PT lock that already serializes against
159	 * split_huge_page().
160	 */
161	unsigned long flags;
162	bool got = false;
163	struct page *page_head = compound_trans_head(page);
164
165	if (likely(page != page_head && get_page_unless_zero(page_head))) {
166		/*
167		 * page_head wasn't a dangling pointer but it
168		 * may not be a head page anymore by the time
169		 * we obtain the lock. That is ok as long as it
170		 * can't be freed from under us.
171		 */
172		flags = compound_lock_irqsave(page_head);
173		/* here __split_huge_page_refcount won't run anymore */
174		if (likely(PageTail(page))) {
175			__get_page_tail_foll(page, false);
176			got = true;
177		}
178		compound_unlock_irqrestore(page_head, flags);
179		if (unlikely(!got))
180			put_page(page_head);
181	}
182	return got;
183}
184EXPORT_SYMBOL(__get_page_tail);
185
186/**
187 * put_pages_list() - release a list of pages
188 * @pages: list of pages threaded on page->lru
189 *
190 * Release a list of pages which are strung together on page.lru.  Currently
191 * used by read_cache_pages() and related error recovery code.
192 */
193void put_pages_list(struct list_head *pages)
194{
195	while (!list_empty(pages)) {
196		struct page *victim;
197
198		victim = list_entry(pages->prev, struct page, lru);
199		list_del(&victim->lru);
200		page_cache_release(victim);
201	}
202}
203EXPORT_SYMBOL(put_pages_list);
204
205static void pagevec_lru_move_fn(struct pagevec *pvec,
206				void (*move_fn)(struct page *page, void *arg),
207				void *arg)
208{
209	int i;
210	struct zone *zone = NULL;
211	unsigned long flags = 0;
212
213	for (i = 0; i < pagevec_count(pvec); i++) {
214		struct page *page = pvec->pages[i];
215		struct zone *pagezone = page_zone(page);
216
217		if (pagezone != zone) {
218			if (zone)
219				spin_unlock_irqrestore(&zone->lru_lock, flags);
220			zone = pagezone;
221			spin_lock_irqsave(&zone->lru_lock, flags);
222		}
223
224		(*move_fn)(page, arg);
225	}
226	if (zone)
227		spin_unlock_irqrestore(&zone->lru_lock, flags);
228	release_pages(pvec->pages, pvec->nr, pvec->cold);
229	pagevec_reinit(pvec);
230}
231
232static void pagevec_move_tail_fn(struct page *page, void *arg)
233{
234	int *pgmoved = arg;
235
236	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
237		enum lru_list lru = page_lru_base_type(page);
238		struct lruvec *lruvec;
239
240		lruvec = mem_cgroup_lru_move_lists(page_zone(page),
241						   page, lru, lru);
242		list_move_tail(&page->lru, &lruvec->lists[lru]);
243		(*pgmoved)++;
244	}
245}
246
247/*
248 * pagevec_move_tail() must be called with IRQ disabled.
249 * Otherwise this may cause nasty races.
250 */
251static void pagevec_move_tail(struct pagevec *pvec)
252{
253	int pgmoved = 0;
254
255	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
256	__count_vm_events(PGROTATED, pgmoved);
257}
258
259/*
260 * Writeback is about to end against a page which has been marked for immediate
261 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
262 * inactive list.
263 */
264void rotate_reclaimable_page(struct page *page)
265{
266	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
267	    !PageUnevictable(page) && PageLRU(page)) {
268		struct pagevec *pvec;
269		unsigned long flags;
270
271		page_cache_get(page);
272		local_irq_save(flags);
273		pvec = &__get_cpu_var(lru_rotate_pvecs);
274		if (!pagevec_add(pvec, page))
275			pagevec_move_tail(pvec);
276		local_irq_restore(flags);
277	}
278}
279
280static void update_page_reclaim_stat(struct zone *zone, struct page *page,
281				     int file, int rotated)
282{
283	struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
284	struct zone_reclaim_stat *memcg_reclaim_stat;
285
286	memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
287
288	reclaim_stat->recent_scanned[file]++;
289	if (rotated)
290		reclaim_stat->recent_rotated[file]++;
291
292	if (!memcg_reclaim_stat)
293		return;
294
295	memcg_reclaim_stat->recent_scanned[file]++;
296	if (rotated)
297		memcg_reclaim_stat->recent_rotated[file]++;
298}
299
300static void __activate_page(struct page *page, void *arg)
301{
302	struct zone *zone = page_zone(page);
303
304	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
305		int file = page_is_file_cache(page);
306		int lru = page_lru_base_type(page);
307		del_page_from_lru_list(zone, page, lru);
308
309		SetPageActive(page);
310		lru += LRU_ACTIVE;
311		add_page_to_lru_list(zone, page, lru);
312		__count_vm_event(PGACTIVATE);
313
314		update_page_reclaim_stat(zone, page, file, 1);
315	}
316}
317
318#ifdef CONFIG_SMP
319static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
320
321static void activate_page_drain(int cpu)
322{
323	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
324
325	if (pagevec_count(pvec))
326		pagevec_lru_move_fn(pvec, __activate_page, NULL);
327}
328
329void activate_page(struct page *page)
330{
331	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
332		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
333
334		page_cache_get(page);
335		if (!pagevec_add(pvec, page))
336			pagevec_lru_move_fn(pvec, __activate_page, NULL);
337		put_cpu_var(activate_page_pvecs);
338	}
339}
340
341#else
342static inline void activate_page_drain(int cpu)
343{
344}
345
346void activate_page(struct page *page)
347{
348	struct zone *zone = page_zone(page);
349
350	spin_lock_irq(&zone->lru_lock);
351	__activate_page(page, NULL);
352	spin_unlock_irq(&zone->lru_lock);
353}
354#endif
355
356/*
357 * Mark a page as having seen activity.
358 *
359 * inactive,unreferenced	->	inactive,referenced
360 * inactive,referenced		->	active,unreferenced
361 * active,unreferenced		->	active,referenced
362 */
363void mark_page_accessed(struct page *page)
364{
365	if (!PageActive(page) && !PageUnevictable(page) &&
366			PageReferenced(page) && PageLRU(page)) {
367		activate_page(page);
368		ClearPageReferenced(page);
369	} else if (!PageReferenced(page)) {
370		SetPageReferenced(page);
371	}
372}
373
374EXPORT_SYMBOL(mark_page_accessed);
375
376void __lru_cache_add(struct page *page, enum lru_list lru)
377{
378	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
379
380	page_cache_get(page);
381	if (!pagevec_add(pvec, page))
382		____pagevec_lru_add(pvec, lru);
383	put_cpu_var(lru_add_pvecs);
384}
385EXPORT_SYMBOL(__lru_cache_add);
386
387/**
388 * lru_cache_add_lru - add a page to a page list
389 * @page: the page to be added to the LRU.
390 * @lru: the LRU list to which the page is added.
391 */
392void lru_cache_add_lru(struct page *page, enum lru_list lru)
393{
394	if (PageActive(page)) {
395		VM_BUG_ON(PageUnevictable(page));
396		ClearPageActive(page);
397	} else if (PageUnevictable(page)) {
398		VM_BUG_ON(PageActive(page));
399		ClearPageUnevictable(page);
400	}
401
402	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
403	__lru_cache_add(page, lru);
404}
405
406/**
407 * add_page_to_unevictable_list - add a page to the unevictable list
408 * @page:  the page to be added to the unevictable list
409 *
410 * Add page directly to its zone's unevictable list.  To avoid races with
411 * tasks that might be making the page evictable, through eg. munlock,
412 * munmap or exit, while it's not on the lru, we want to add the page
413 * while it's locked or otherwise "invisible" to other tasks.  This is
414 * difficult to do when using the pagevec cache, so bypass that.
415 */
416void add_page_to_unevictable_list(struct page *page)
417{
418	struct zone *zone = page_zone(page);
419
420	spin_lock_irq(&zone->lru_lock);
421	SetPageUnevictable(page);
422	SetPageLRU(page);
423	add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
424	spin_unlock_irq(&zone->lru_lock);
425}
426
427/*
428 * If the page can not be invalidated, it is moved to the
429 * inactive list to speed up its reclaim.  It is moved to the
430 * head of the list, rather than the tail, to give the flusher
431 * threads some time to write it out, as this is much more
432 * effective than the single-page writeout from reclaim.
433 *
434 * If the page isn't page_mapped and dirty/writeback, the page
435 * could reclaim asap using PG_reclaim.
436 *
437 * 1. active, mapped page -> none
438 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
439 * 3. inactive, mapped page -> none
440 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
441 * 5. inactive, clean -> inactive, tail
442 * 6. Others -> none
443 *
444 * In 4, why it moves inactive's head, the VM expects the page would
445 * be write it out by flusher threads as this is much more effective
446 * than the single-page writeout from reclaim.
447 */
448static void lru_deactivate_fn(struct page *page, void *arg)
449{
450	int lru, file;
451	bool active;
452	struct zone *zone = page_zone(page);
453
454	if (!PageLRU(page))
455		return;
456
457	if (PageUnevictable(page))
458		return;
459
460	/* Some processes are using the page */
461	if (page_mapped(page))
462		return;
463
464	active = PageActive(page);
465
466	file = page_is_file_cache(page);
467	lru = page_lru_base_type(page);
468	del_page_from_lru_list(zone, page, lru + active);
469	ClearPageActive(page);
470	ClearPageReferenced(page);
471	add_page_to_lru_list(zone, page, lru);
472
473	if (PageWriteback(page) || PageDirty(page)) {
474		/*
475		 * PG_reclaim could be raced with end_page_writeback
476		 * It can make readahead confusing.  But race window
477		 * is _really_ small and  it's non-critical problem.
478		 */
479		SetPageReclaim(page);
480	} else {
481		struct lruvec *lruvec;
482		/*
483		 * The page's writeback ends up during pagevec
484		 * We moves tha page into tail of inactive.
485		 */
486		lruvec = mem_cgroup_lru_move_lists(zone, page, lru, lru);
487		list_move_tail(&page->lru, &lruvec->lists[lru]);
488		__count_vm_event(PGROTATED);
489	}
490
491	if (active)
492		__count_vm_event(PGDEACTIVATE);
493	update_page_reclaim_stat(zone, page, file, 0);
494}
495
496/*
497 * Drain pages out of the cpu's pagevecs.
498 * Either "cpu" is the current CPU, and preemption has already been
499 * disabled; or "cpu" is being hot-unplugged, and is already dead.
500 */
501static void drain_cpu_pagevecs(int cpu)
502{
503	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
504	struct pagevec *pvec;
505	int lru;
506
507	for_each_lru(lru) {
508		pvec = &pvecs[lru - LRU_BASE];
509		if (pagevec_count(pvec))
510			____pagevec_lru_add(pvec, lru);
511	}
512
513	pvec = &per_cpu(lru_rotate_pvecs, cpu);
514	if (pagevec_count(pvec)) {
515		unsigned long flags;
516
517		/* No harm done if a racing interrupt already did this */
518		local_irq_save(flags);
519		pagevec_move_tail(pvec);
520		local_irq_restore(flags);
521	}
522
523	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
524	if (pagevec_count(pvec))
525		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
526
527	activate_page_drain(cpu);
528}
529
530/**
531 * deactivate_page - forcefully deactivate a page
532 * @page: page to deactivate
533 *
534 * This function hints the VM that @page is a good reclaim candidate,
535 * for example if its invalidation fails due to the page being dirty
536 * or under writeback.
537 */
538void deactivate_page(struct page *page)
539{
540	/*
541	 * In a workload with many unevictable page such as mprotect, unevictable
542	 * page deactivation for accelerating reclaim is pointless.
543	 */
544	if (PageUnevictable(page))
545		return;
546
547	if (likely(get_page_unless_zero(page))) {
548		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
549
550		if (!pagevec_add(pvec, page))
551			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
552		put_cpu_var(lru_deactivate_pvecs);
553	}
554}
555
556void lru_add_drain(void)
557{
558	drain_cpu_pagevecs(get_cpu());
559	put_cpu();
560}
561
562static void lru_add_drain_per_cpu(struct work_struct *dummy)
563{
564	lru_add_drain();
565}
566
567/*
568 * Returns 0 for success
569 */
570int lru_add_drain_all(void)
571{
572	return schedule_on_each_cpu(lru_add_drain_per_cpu);
573}
574
575/*
576 * Batched page_cache_release().  Decrement the reference count on all the
577 * passed pages.  If it fell to zero then remove the page from the LRU and
578 * free it.
579 *
580 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
581 * for the remainder of the operation.
582 *
583 * The locking in this function is against shrink_inactive_list(): we recheck
584 * the page count inside the lock to see whether shrink_inactive_list()
585 * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
586 * will free it.
587 */
588void release_pages(struct page **pages, int nr, int cold)
589{
590	int i;
591	LIST_HEAD(pages_to_free);
592	struct zone *zone = NULL;
593	unsigned long uninitialized_var(flags);
594
595	for (i = 0; i < nr; i++) {
596		struct page *page = pages[i];
597
598		if (unlikely(PageCompound(page))) {
599			if (zone) {
600				spin_unlock_irqrestore(&zone->lru_lock, flags);
601				zone = NULL;
602			}
603			put_compound_page(page);
604			continue;
605		}
606
607		if (!put_page_testzero(page))
608			continue;
609
610		if (PageLRU(page)) {
611			struct zone *pagezone = page_zone(page);
612
613			if (pagezone != zone) {
614				if (zone)
615					spin_unlock_irqrestore(&zone->lru_lock,
616									flags);
617				zone = pagezone;
618				spin_lock_irqsave(&zone->lru_lock, flags);
619			}
620			VM_BUG_ON(!PageLRU(page));
621			__ClearPageLRU(page);
622			del_page_from_lru(zone, page);
623		}
624
625		list_add(&page->lru, &pages_to_free);
626	}
627	if (zone)
628		spin_unlock_irqrestore(&zone->lru_lock, flags);
629
630	free_hot_cold_page_list(&pages_to_free, cold);
631}
632EXPORT_SYMBOL(release_pages);
633
634/*
635 * The pages which we're about to release may be in the deferred lru-addition
636 * queues.  That would prevent them from really being freed right now.  That's
637 * OK from a correctness point of view but is inefficient - those pages may be
638 * cache-warm and we want to give them back to the page allocator ASAP.
639 *
640 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
641 * and __pagevec_lru_add_active() call release_pages() directly to avoid
642 * mutual recursion.
643 */
644void __pagevec_release(struct pagevec *pvec)
645{
646	lru_add_drain();
647	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
648	pagevec_reinit(pvec);
649}
650
651EXPORT_SYMBOL(__pagevec_release);
652
653#ifdef CONFIG_TRANSPARENT_HUGEPAGE
654/* used by __split_huge_page_refcount() */
655void lru_add_page_tail(struct zone* zone,
656		       struct page *page, struct page *page_tail)
657{
658	int active;
659	enum lru_list lru;
660	const int file = 0;
661
662	VM_BUG_ON(!PageHead(page));
663	VM_BUG_ON(PageCompound(page_tail));
664	VM_BUG_ON(PageLRU(page_tail));
665	VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
666
667	SetPageLRU(page_tail);
668
669	if (page_evictable(page_tail, NULL)) {
670		if (PageActive(page)) {
671			SetPageActive(page_tail);
672			active = 1;
673			lru = LRU_ACTIVE_ANON;
674		} else {
675			active = 0;
676			lru = LRU_INACTIVE_ANON;
677		}
678		update_page_reclaim_stat(zone, page_tail, file, active);
679	} else {
680		SetPageUnevictable(page_tail);
681		lru = LRU_UNEVICTABLE;
682	}
683
684	if (likely(PageLRU(page)))
685		list_add_tail(&page_tail->lru, &page->lru);
686	else {
687		struct list_head *list_head;
688		/*
689		 * Head page has not yet been counted, as an hpage,
690		 * so we must account for each subpage individually.
691		 *
692		 * Use the standard add function to put page_tail on the list,
693		 * but then correct its position so they all end up in order.
694		 */
695		add_page_to_lru_list(zone, page_tail, lru);
696		list_head = page_tail->lru.prev;
697		list_move_tail(&page_tail->lru, list_head);
698	}
699}
700#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
701
702static void ____pagevec_lru_add_fn(struct page *page, void *arg)
703{
704	enum lru_list lru = (enum lru_list)arg;
705	struct zone *zone = page_zone(page);
706	int file = is_file_lru(lru);
707	int active = is_active_lru(lru);
708
709	VM_BUG_ON(PageActive(page));
710	VM_BUG_ON(PageUnevictable(page));
711	VM_BUG_ON(PageLRU(page));
712
713	SetPageLRU(page);
714	if (active)
715		SetPageActive(page);
716	update_page_reclaim_stat(zone, page, file, active);
717	add_page_to_lru_list(zone, page, lru);
718}
719
720/*
721 * Add the passed pages to the LRU, then drop the caller's refcount
722 * on them.  Reinitialises the caller's pagevec.
723 */
724void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
725{
726	VM_BUG_ON(is_unevictable_lru(lru));
727
728	pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
729}
730
731EXPORT_SYMBOL(____pagevec_lru_add);
732
733/*
734 * Try to drop buffers from the pages in a pagevec
735 */
736void pagevec_strip(struct pagevec *pvec)
737{
738	int i;
739
740	for (i = 0; i < pagevec_count(pvec); i++) {
741		struct page *page = pvec->pages[i];
742
743		if (page_has_private(page) && trylock_page(page)) {
744			if (page_has_private(page))
745				try_to_release_page(page, 0);
746			unlock_page(page);
747		}
748	}
749}
750
751/**
752 * pagevec_lookup - gang pagecache lookup
753 * @pvec:	Where the resulting pages are placed
754 * @mapping:	The address_space to search
755 * @start:	The starting page index
756 * @nr_pages:	The maximum number of pages
757 *
758 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
759 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
760 * reference against the pages in @pvec.
761 *
762 * The search returns a group of mapping-contiguous pages with ascending
763 * indexes.  There may be holes in the indices due to not-present pages.
764 *
765 * pagevec_lookup() returns the number of pages which were found.
766 */
767unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
768		pgoff_t start, unsigned nr_pages)
769{
770	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
771	return pagevec_count(pvec);
772}
773
774EXPORT_SYMBOL(pagevec_lookup);
775
776unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
777		pgoff_t *index, int tag, unsigned nr_pages)
778{
779	pvec->nr = find_get_pages_tag(mapping, index, tag,
780					nr_pages, pvec->pages);
781	return pagevec_count(pvec);
782}
783
784EXPORT_SYMBOL(pagevec_lookup_tag);
785
786/*
787 * Perform any setup for the swap system
788 */
789void __init swap_setup(void)
790{
791	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
792
793#ifdef CONFIG_SWAP
794	bdi_init(swapper_space.backing_dev_info);
795#endif
796
797	/* Use a smaller cluster for small-memory machines */
798	if (megs < 16)
799		page_cluster = 2;
800	else
801		page_cluster = 3;
802	/*
803	 * Right now other parts of the system means that we
804	 * _really_ don't want to cluster much more
805	 */
806}
807