swap.c revision 315601809d124d046abd6c3ffa346d0dbd7aa29d
1/*
2 *  linux/mm/swap.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/mm_inline.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page() */
27#include <linux/percpu_counter.h>
28#include <linux/percpu.h>
29#include <linux/cpu.h>
30#include <linux/notifier.h>
31#include <linux/backing-dev.h>
32#include <linux/memcontrol.h>
33#include <linux/gfp.h>
34
35#include "internal.h"
36
37/* How many pages do we try to swap or page in/out together? */
38int page_cluster;
39
40static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43
44/*
45 * This path almost never happens for VM activity - pages are normally
46 * freed via pagevecs.  But it gets used by networking.
47 */
48static void __page_cache_release(struct page *page)
49{
50	if (PageLRU(page)) {
51		unsigned long flags;
52		struct zone *zone = page_zone(page);
53
54		spin_lock_irqsave(&zone->lru_lock, flags);
55		VM_BUG_ON(!PageLRU(page));
56		__ClearPageLRU(page);
57		del_page_from_lru(zone, page);
58		spin_unlock_irqrestore(&zone->lru_lock, flags);
59	}
60}
61
62static void __put_single_page(struct page *page)
63{
64	__page_cache_release(page);
65	free_hot_cold_page(page, 0);
66}
67
68static void __put_compound_page(struct page *page)
69{
70	compound_page_dtor *dtor;
71
72	__page_cache_release(page);
73	dtor = get_compound_page_dtor(page);
74	(*dtor)(page);
75}
76
77static void put_compound_page(struct page *page)
78{
79	if (unlikely(PageTail(page))) {
80		/* __split_huge_page_refcount can run under us */
81		struct page *page_head = page->first_page;
82		smp_rmb();
83		/*
84		 * If PageTail is still set after smp_rmb() we can be sure
85		 * that the page->first_page we read wasn't a dangling pointer.
86		 * See __split_huge_page_refcount() smp_wmb().
87		 */
88		if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
89			unsigned long flags;
90			/*
91			 * Verify that our page_head wasn't converted
92			 * to a a regular page before we got a
93			 * reference on it.
94			 */
95			if (unlikely(!PageHead(page_head))) {
96				/* PageHead is cleared after PageTail */
97				smp_rmb();
98				VM_BUG_ON(PageTail(page));
99				goto out_put_head;
100			}
101			/*
102			 * Only run compound_lock on a valid PageHead,
103			 * after having it pinned with
104			 * get_page_unless_zero() above.
105			 */
106			smp_mb();
107			/* page_head wasn't a dangling pointer */
108			flags = compound_lock_irqsave(page_head);
109			if (unlikely(!PageTail(page))) {
110				/* __split_huge_page_refcount run before us */
111				compound_unlock_irqrestore(page_head, flags);
112				VM_BUG_ON(PageHead(page_head));
113			out_put_head:
114				if (put_page_testzero(page_head))
115					__put_single_page(page_head);
116			out_put_single:
117				if (put_page_testzero(page))
118					__put_single_page(page);
119				return;
120			}
121			VM_BUG_ON(page_head != page->first_page);
122			/*
123			 * We can release the refcount taken by
124			 * get_page_unless_zero now that
125			 * split_huge_page_refcount is blocked on the
126			 * compound_lock.
127			 */
128			if (put_page_testzero(page_head))
129				VM_BUG_ON(1);
130			/* __split_huge_page_refcount will wait now */
131			VM_BUG_ON(atomic_read(&page->_count) <= 0);
132			atomic_dec(&page->_count);
133			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
134			compound_unlock_irqrestore(page_head, flags);
135			if (put_page_testzero(page_head)) {
136				if (PageHead(page_head))
137					__put_compound_page(page_head);
138				else
139					__put_single_page(page_head);
140			}
141		} else {
142			/* page_head is a dangling pointer */
143			VM_BUG_ON(PageTail(page));
144			goto out_put_single;
145		}
146	} else if (put_page_testzero(page)) {
147		if (PageHead(page))
148			__put_compound_page(page);
149		else
150			__put_single_page(page);
151	}
152}
153
154void put_page(struct page *page)
155{
156	if (unlikely(PageCompound(page)))
157		put_compound_page(page);
158	else if (put_page_testzero(page))
159		__put_single_page(page);
160}
161EXPORT_SYMBOL(put_page);
162
163/**
164 * put_pages_list() - release a list of pages
165 * @pages: list of pages threaded on page->lru
166 *
167 * Release a list of pages which are strung together on page.lru.  Currently
168 * used by read_cache_pages() and related error recovery code.
169 */
170void put_pages_list(struct list_head *pages)
171{
172	while (!list_empty(pages)) {
173		struct page *victim;
174
175		victim = list_entry(pages->prev, struct page, lru);
176		list_del(&victim->lru);
177		page_cache_release(victim);
178	}
179}
180EXPORT_SYMBOL(put_pages_list);
181
182/*
183 * pagevec_move_tail() must be called with IRQ disabled.
184 * Otherwise this may cause nasty races.
185 */
186static void pagevec_move_tail(struct pagevec *pvec)
187{
188	int i;
189	int pgmoved = 0;
190	struct zone *zone = NULL;
191
192	for (i = 0; i < pagevec_count(pvec); i++) {
193		struct page *page = pvec->pages[i];
194		struct zone *pagezone = page_zone(page);
195
196		if (pagezone != zone) {
197			if (zone)
198				spin_unlock(&zone->lru_lock);
199			zone = pagezone;
200			spin_lock(&zone->lru_lock);
201		}
202		if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
203			int lru = page_lru_base_type(page);
204			list_move_tail(&page->lru, &zone->lru[lru].list);
205			pgmoved++;
206		}
207	}
208	if (zone)
209		spin_unlock(&zone->lru_lock);
210	__count_vm_events(PGROTATED, pgmoved);
211	release_pages(pvec->pages, pvec->nr, pvec->cold);
212	pagevec_reinit(pvec);
213}
214
215/*
216 * Writeback is about to end against a page which has been marked for immediate
217 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
218 * inactive list.
219 */
220void  rotate_reclaimable_page(struct page *page)
221{
222	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
223	    !PageUnevictable(page) && PageLRU(page)) {
224		struct pagevec *pvec;
225		unsigned long flags;
226
227		page_cache_get(page);
228		local_irq_save(flags);
229		pvec = &__get_cpu_var(lru_rotate_pvecs);
230		if (!pagevec_add(pvec, page))
231			pagevec_move_tail(pvec);
232		local_irq_restore(flags);
233	}
234}
235
236static void update_page_reclaim_stat(struct zone *zone, struct page *page,
237				     int file, int rotated)
238{
239	struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
240	struct zone_reclaim_stat *memcg_reclaim_stat;
241
242	memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
243
244	reclaim_stat->recent_scanned[file]++;
245	if (rotated)
246		reclaim_stat->recent_rotated[file]++;
247
248	if (!memcg_reclaim_stat)
249		return;
250
251	memcg_reclaim_stat->recent_scanned[file]++;
252	if (rotated)
253		memcg_reclaim_stat->recent_rotated[file]++;
254}
255
256/*
257 * FIXME: speed this up?
258 */
259void activate_page(struct page *page)
260{
261	struct zone *zone = page_zone(page);
262
263	spin_lock_irq(&zone->lru_lock);
264	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
265		int file = page_is_file_cache(page);
266		int lru = page_lru_base_type(page);
267		del_page_from_lru_list(zone, page, lru);
268
269		SetPageActive(page);
270		lru += LRU_ACTIVE;
271		add_page_to_lru_list(zone, page, lru);
272		__count_vm_event(PGACTIVATE);
273
274		update_page_reclaim_stat(zone, page, file, 1);
275	}
276	spin_unlock_irq(&zone->lru_lock);
277}
278
279/*
280 * Mark a page as having seen activity.
281 *
282 * inactive,unreferenced	->	inactive,referenced
283 * inactive,referenced		->	active,unreferenced
284 * active,unreferenced		->	active,referenced
285 */
286void mark_page_accessed(struct page *page)
287{
288	if (!PageActive(page) && !PageUnevictable(page) &&
289			PageReferenced(page) && PageLRU(page)) {
290		activate_page(page);
291		ClearPageReferenced(page);
292	} else if (!PageReferenced(page)) {
293		SetPageReferenced(page);
294	}
295}
296
297EXPORT_SYMBOL(mark_page_accessed);
298
299void __lru_cache_add(struct page *page, enum lru_list lru)
300{
301	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
302
303	page_cache_get(page);
304	if (!pagevec_add(pvec, page))
305		____pagevec_lru_add(pvec, lru);
306	put_cpu_var(lru_add_pvecs);
307}
308EXPORT_SYMBOL(__lru_cache_add);
309
310/**
311 * lru_cache_add_lru - add a page to a page list
312 * @page: the page to be added to the LRU.
313 * @lru: the LRU list to which the page is added.
314 */
315void lru_cache_add_lru(struct page *page, enum lru_list lru)
316{
317	if (PageActive(page)) {
318		VM_BUG_ON(PageUnevictable(page));
319		ClearPageActive(page);
320	} else if (PageUnevictable(page)) {
321		VM_BUG_ON(PageActive(page));
322		ClearPageUnevictable(page);
323	}
324
325	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
326	__lru_cache_add(page, lru);
327}
328
329/**
330 * add_page_to_unevictable_list - add a page to the unevictable list
331 * @page:  the page to be added to the unevictable list
332 *
333 * Add page directly to its zone's unevictable list.  To avoid races with
334 * tasks that might be making the page evictable, through eg. munlock,
335 * munmap or exit, while it's not on the lru, we want to add the page
336 * while it's locked or otherwise "invisible" to other tasks.  This is
337 * difficult to do when using the pagevec cache, so bypass that.
338 */
339void add_page_to_unevictable_list(struct page *page)
340{
341	struct zone *zone = page_zone(page);
342
343	spin_lock_irq(&zone->lru_lock);
344	SetPageUnevictable(page);
345	SetPageLRU(page);
346	add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
347	spin_unlock_irq(&zone->lru_lock);
348}
349
350/*
351 * If the page can not be invalidated, it is moved to the
352 * inactive list to speed up its reclaim.  It is moved to the
353 * head of the list, rather than the tail, to give the flusher
354 * threads some time to write it out, as this is much more
355 * effective than the single-page writeout from reclaim.
356 */
357static void lru_deactivate(struct page *page, struct zone *zone)
358{
359	int lru, file;
360
361	if (!PageLRU(page) || !PageActive(page))
362		return;
363
364	/* Some processes are using the page */
365	if (page_mapped(page))
366		return;
367
368	file = page_is_file_cache(page);
369	lru = page_lru_base_type(page);
370	del_page_from_lru_list(zone, page, lru + LRU_ACTIVE);
371	ClearPageActive(page);
372	ClearPageReferenced(page);
373	add_page_to_lru_list(zone, page, lru);
374	__count_vm_event(PGDEACTIVATE);
375
376	update_page_reclaim_stat(zone, page, file, 0);
377}
378
379static void ____pagevec_lru_deactivate(struct pagevec *pvec)
380{
381	int i;
382	struct zone *zone = NULL;
383
384	for (i = 0; i < pagevec_count(pvec); i++) {
385		struct page *page = pvec->pages[i];
386		struct zone *pagezone = page_zone(page);
387
388		if (pagezone != zone) {
389			if (zone)
390				spin_unlock_irq(&zone->lru_lock);
391			zone = pagezone;
392			spin_lock_irq(&zone->lru_lock);
393		}
394		lru_deactivate(page, zone);
395	}
396	if (zone)
397		spin_unlock_irq(&zone->lru_lock);
398
399	release_pages(pvec->pages, pvec->nr, pvec->cold);
400	pagevec_reinit(pvec);
401}
402
403
404/*
405 * Drain pages out of the cpu's pagevecs.
406 * Either "cpu" is the current CPU, and preemption has already been
407 * disabled; or "cpu" is being hot-unplugged, and is already dead.
408 */
409static void drain_cpu_pagevecs(int cpu)
410{
411	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
412	struct pagevec *pvec;
413	int lru;
414
415	for_each_lru(lru) {
416		pvec = &pvecs[lru - LRU_BASE];
417		if (pagevec_count(pvec))
418			____pagevec_lru_add(pvec, lru);
419	}
420
421	pvec = &per_cpu(lru_rotate_pvecs, cpu);
422	if (pagevec_count(pvec)) {
423		unsigned long flags;
424
425		/* No harm done if a racing interrupt already did this */
426		local_irq_save(flags);
427		pagevec_move_tail(pvec);
428		local_irq_restore(flags);
429	}
430
431	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
432	if (pagevec_count(pvec))
433		____pagevec_lru_deactivate(pvec);
434}
435
436/**
437 * deactivate_page - forcefully deactivate a page
438 * @page: page to deactivate
439 *
440 * This function hints the VM that @page is a good reclaim candidate,
441 * for example if its invalidation fails due to the page being dirty
442 * or under writeback.
443 */
444void deactivate_page(struct page *page)
445{
446	if (likely(get_page_unless_zero(page))) {
447		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
448
449		if (!pagevec_add(pvec, page))
450			____pagevec_lru_deactivate(pvec);
451		put_cpu_var(lru_deactivate_pvecs);
452	}
453}
454
455void lru_add_drain(void)
456{
457	drain_cpu_pagevecs(get_cpu());
458	put_cpu();
459}
460
461static void lru_add_drain_per_cpu(struct work_struct *dummy)
462{
463	lru_add_drain();
464}
465
466/*
467 * Returns 0 for success
468 */
469int lru_add_drain_all(void)
470{
471	return schedule_on_each_cpu(lru_add_drain_per_cpu);
472}
473
474/*
475 * Batched page_cache_release().  Decrement the reference count on all the
476 * passed pages.  If it fell to zero then remove the page from the LRU and
477 * free it.
478 *
479 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
480 * for the remainder of the operation.
481 *
482 * The locking in this function is against shrink_inactive_list(): we recheck
483 * the page count inside the lock to see whether shrink_inactive_list()
484 * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
485 * will free it.
486 */
487void release_pages(struct page **pages, int nr, int cold)
488{
489	int i;
490	struct pagevec pages_to_free;
491	struct zone *zone = NULL;
492	unsigned long uninitialized_var(flags);
493
494	pagevec_init(&pages_to_free, cold);
495	for (i = 0; i < nr; i++) {
496		struct page *page = pages[i];
497
498		if (unlikely(PageCompound(page))) {
499			if (zone) {
500				spin_unlock_irqrestore(&zone->lru_lock, flags);
501				zone = NULL;
502			}
503			put_compound_page(page);
504			continue;
505		}
506
507		if (!put_page_testzero(page))
508			continue;
509
510		if (PageLRU(page)) {
511			struct zone *pagezone = page_zone(page);
512
513			if (pagezone != zone) {
514				if (zone)
515					spin_unlock_irqrestore(&zone->lru_lock,
516									flags);
517				zone = pagezone;
518				spin_lock_irqsave(&zone->lru_lock, flags);
519			}
520			VM_BUG_ON(!PageLRU(page));
521			__ClearPageLRU(page);
522			del_page_from_lru(zone, page);
523		}
524
525		if (!pagevec_add(&pages_to_free, page)) {
526			if (zone) {
527				spin_unlock_irqrestore(&zone->lru_lock, flags);
528				zone = NULL;
529			}
530			__pagevec_free(&pages_to_free);
531			pagevec_reinit(&pages_to_free);
532  		}
533	}
534	if (zone)
535		spin_unlock_irqrestore(&zone->lru_lock, flags);
536
537	pagevec_free(&pages_to_free);
538}
539EXPORT_SYMBOL(release_pages);
540
541/*
542 * The pages which we're about to release may be in the deferred lru-addition
543 * queues.  That would prevent them from really being freed right now.  That's
544 * OK from a correctness point of view but is inefficient - those pages may be
545 * cache-warm and we want to give them back to the page allocator ASAP.
546 *
547 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
548 * and __pagevec_lru_add_active() call release_pages() directly to avoid
549 * mutual recursion.
550 */
551void __pagevec_release(struct pagevec *pvec)
552{
553	lru_add_drain();
554	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
555	pagevec_reinit(pvec);
556}
557
558EXPORT_SYMBOL(__pagevec_release);
559
560/* used by __split_huge_page_refcount() */
561void lru_add_page_tail(struct zone* zone,
562		       struct page *page, struct page *page_tail)
563{
564	int active;
565	enum lru_list lru;
566	const int file = 0;
567	struct list_head *head;
568
569	VM_BUG_ON(!PageHead(page));
570	VM_BUG_ON(PageCompound(page_tail));
571	VM_BUG_ON(PageLRU(page_tail));
572	VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
573
574	SetPageLRU(page_tail);
575
576	if (page_evictable(page_tail, NULL)) {
577		if (PageActive(page)) {
578			SetPageActive(page_tail);
579			active = 1;
580			lru = LRU_ACTIVE_ANON;
581		} else {
582			active = 0;
583			lru = LRU_INACTIVE_ANON;
584		}
585		update_page_reclaim_stat(zone, page_tail, file, active);
586		if (likely(PageLRU(page)))
587			head = page->lru.prev;
588		else
589			head = &zone->lru[lru].list;
590		__add_page_to_lru_list(zone, page_tail, lru, head);
591	} else {
592		SetPageUnevictable(page_tail);
593		add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
594	}
595}
596
597/*
598 * Add the passed pages to the LRU, then drop the caller's refcount
599 * on them.  Reinitialises the caller's pagevec.
600 */
601void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
602{
603	int i;
604	struct zone *zone = NULL;
605
606	VM_BUG_ON(is_unevictable_lru(lru));
607
608	for (i = 0; i < pagevec_count(pvec); i++) {
609		struct page *page = pvec->pages[i];
610		struct zone *pagezone = page_zone(page);
611		int file;
612		int active;
613
614		if (pagezone != zone) {
615			if (zone)
616				spin_unlock_irq(&zone->lru_lock);
617			zone = pagezone;
618			spin_lock_irq(&zone->lru_lock);
619		}
620		VM_BUG_ON(PageActive(page));
621		VM_BUG_ON(PageUnevictable(page));
622		VM_BUG_ON(PageLRU(page));
623		SetPageLRU(page);
624		active = is_active_lru(lru);
625		file = is_file_lru(lru);
626		if (active)
627			SetPageActive(page);
628		update_page_reclaim_stat(zone, page, file, active);
629		add_page_to_lru_list(zone, page, lru);
630	}
631	if (zone)
632		spin_unlock_irq(&zone->lru_lock);
633	release_pages(pvec->pages, pvec->nr, pvec->cold);
634	pagevec_reinit(pvec);
635}
636
637EXPORT_SYMBOL(____pagevec_lru_add);
638
639/*
640 * Try to drop buffers from the pages in a pagevec
641 */
642void pagevec_strip(struct pagevec *pvec)
643{
644	int i;
645
646	for (i = 0; i < pagevec_count(pvec); i++) {
647		struct page *page = pvec->pages[i];
648
649		if (page_has_private(page) && trylock_page(page)) {
650			if (page_has_private(page))
651				try_to_release_page(page, 0);
652			unlock_page(page);
653		}
654	}
655}
656
657/**
658 * pagevec_lookup - gang pagecache lookup
659 * @pvec:	Where the resulting pages are placed
660 * @mapping:	The address_space to search
661 * @start:	The starting page index
662 * @nr_pages:	The maximum number of pages
663 *
664 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
665 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
666 * reference against the pages in @pvec.
667 *
668 * The search returns a group of mapping-contiguous pages with ascending
669 * indexes.  There may be holes in the indices due to not-present pages.
670 *
671 * pagevec_lookup() returns the number of pages which were found.
672 */
673unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
674		pgoff_t start, unsigned nr_pages)
675{
676	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
677	return pagevec_count(pvec);
678}
679
680EXPORT_SYMBOL(pagevec_lookup);
681
682unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
683		pgoff_t *index, int tag, unsigned nr_pages)
684{
685	pvec->nr = find_get_pages_tag(mapping, index, tag,
686					nr_pages, pvec->pages);
687	return pagevec_count(pvec);
688}
689
690EXPORT_SYMBOL(pagevec_lookup_tag);
691
692/*
693 * Perform any setup for the swap system
694 */
695void __init swap_setup(void)
696{
697	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
698
699#ifdef CONFIG_SWAP
700	bdi_init(swapper_space.backing_dev_info);
701#endif
702
703	/* Use a smaller cluster for small-memory machines */
704	if (megs < 16)
705		page_cluster = 2;
706	else
707		page_cluster = 3;
708	/*
709	 * Right now other parts of the system means that we
710	 * _really_ don't want to cluster much more
711	 */
712}
713