swap.c revision 43fac94dd62667c83dd2daa5b7ac548512af780a
1/*
2 *  linux/mm/swap.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * This file contains the default values for the opereation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/mm_inline.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page() */
27#include <linux/percpu_counter.h>
28#include <linux/percpu.h>
29#include <linux/cpu.h>
30#include <linux/notifier.h>
31
32/* How many pages do we try to swap or page in/out together? */
33int page_cluster;
34
35/*
36 * This path almost never happens for VM activity - pages are normally
37 * freed via pagevecs.  But it gets used by networking.
38 */
39static void fastcall __page_cache_release(struct page *page)
40{
41	if (PageLRU(page)) {
42		unsigned long flags;
43		struct zone *zone = page_zone(page);
44
45		spin_lock_irqsave(&zone->lru_lock, flags);
46		VM_BUG_ON(!PageLRU(page));
47		__ClearPageLRU(page);
48		del_page_from_lru(zone, page);
49		spin_unlock_irqrestore(&zone->lru_lock, flags);
50	}
51	free_hot_page(page);
52}
53
54static void put_compound_page(struct page *page)
55{
56	page = compound_head(page);
57	if (put_page_testzero(page)) {
58		compound_page_dtor *dtor;
59
60		dtor = get_compound_page_dtor(page);
61		(*dtor)(page);
62	}
63}
64
65void put_page(struct page *page)
66{
67	if (unlikely(PageCompound(page)))
68		put_compound_page(page);
69	else if (put_page_testzero(page))
70		__page_cache_release(page);
71}
72EXPORT_SYMBOL(put_page);
73
74/**
75 * put_pages_list(): release a list of pages
76 *
77 * Release a list of pages which are strung together on page.lru.  Currently
78 * used by read_cache_pages() and related error recovery code.
79 *
80 * @pages: list of pages threaded on page->lru
81 */
82void put_pages_list(struct list_head *pages)
83{
84	while (!list_empty(pages)) {
85		struct page *victim;
86
87		victim = list_entry(pages->prev, struct page, lru);
88		list_del(&victim->lru);
89		page_cache_release(victim);
90	}
91}
92EXPORT_SYMBOL(put_pages_list);
93
94/*
95 * Writeback is about to end against a page which has been marked for immediate
96 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
97 * inactive list.  The page still has PageWriteback set, which will pin it.
98 *
99 * We don't expect many pages to come through here, so don't bother batching
100 * things up.
101 *
102 * To avoid placing the page at the tail of the LRU while PG_writeback is still
103 * set, this function will clear PG_writeback before performing the page
104 * motion.  Do that inside the lru lock because once PG_writeback is cleared
105 * we may not touch the page.
106 *
107 * Returns zero if it cleared PG_writeback.
108 */
109int rotate_reclaimable_page(struct page *page)
110{
111	struct zone *zone;
112	unsigned long flags;
113
114	if (PageLocked(page))
115		return 1;
116	if (PageDirty(page))
117		return 1;
118	if (PageActive(page))
119		return 1;
120	if (!PageLRU(page))
121		return 1;
122
123	zone = page_zone(page);
124	spin_lock_irqsave(&zone->lru_lock, flags);
125	if (PageLRU(page) && !PageActive(page)) {
126		list_move_tail(&page->lru, &zone->inactive_list);
127		__count_vm_event(PGROTATED);
128	}
129	if (!test_clear_page_writeback(page))
130		BUG();
131	spin_unlock_irqrestore(&zone->lru_lock, flags);
132	return 0;
133}
134
135/*
136 * FIXME: speed this up?
137 */
138void fastcall activate_page(struct page *page)
139{
140	struct zone *zone = page_zone(page);
141
142	spin_lock_irq(&zone->lru_lock);
143	if (PageLRU(page) && !PageActive(page)) {
144		del_page_from_inactive_list(zone, page);
145		SetPageActive(page);
146		add_page_to_active_list(zone, page);
147		__count_vm_event(PGACTIVATE);
148	}
149	spin_unlock_irq(&zone->lru_lock);
150}
151
152/*
153 * Mark a page as having seen activity.
154 *
155 * inactive,unreferenced	->	inactive,referenced
156 * inactive,referenced		->	active,unreferenced
157 * active,unreferenced		->	active,referenced
158 */
159void fastcall mark_page_accessed(struct page *page)
160{
161	if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
162		activate_page(page);
163		ClearPageReferenced(page);
164	} else if (!PageReferenced(page)) {
165		SetPageReferenced(page);
166	}
167}
168
169EXPORT_SYMBOL(mark_page_accessed);
170
171/**
172 * lru_cache_add: add a page to the page lists
173 * @page: the page to add
174 */
175static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
176static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
177
178void fastcall lru_cache_add(struct page *page)
179{
180	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
181
182	page_cache_get(page);
183	if (!pagevec_add(pvec, page))
184		__pagevec_lru_add(pvec);
185	put_cpu_var(lru_add_pvecs);
186}
187
188void fastcall lru_cache_add_active(struct page *page)
189{
190	struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
191
192	page_cache_get(page);
193	if (!pagevec_add(pvec, page))
194		__pagevec_lru_add_active(pvec);
195	put_cpu_var(lru_add_active_pvecs);
196}
197
198static void __lru_add_drain(int cpu)
199{
200	struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu);
201
202	/* CPU is dead, so no locking needed. */
203	if (pagevec_count(pvec))
204		__pagevec_lru_add(pvec);
205	pvec = &per_cpu(lru_add_active_pvecs, cpu);
206	if (pagevec_count(pvec))
207		__pagevec_lru_add_active(pvec);
208}
209
210void lru_add_drain(void)
211{
212	__lru_add_drain(get_cpu());
213	put_cpu();
214}
215
216#ifdef CONFIG_NUMA
217static void lru_add_drain_per_cpu(struct work_struct *dummy)
218{
219	lru_add_drain();
220}
221
222/*
223 * Returns 0 for success
224 */
225int lru_add_drain_all(void)
226{
227	return schedule_on_each_cpu(lru_add_drain_per_cpu);
228}
229
230#else
231
232/*
233 * Returns 0 for success
234 */
235int lru_add_drain_all(void)
236{
237	lru_add_drain();
238	return 0;
239}
240#endif
241
242/*
243 * Batched page_cache_release().  Decrement the reference count on all the
244 * passed pages.  If it fell to zero then remove the page from the LRU and
245 * free it.
246 *
247 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
248 * for the remainder of the operation.
249 *
250 * The locking in this function is against shrink_cache(): we recheck the
251 * page count inside the lock to see whether shrink_cache grabbed the page
252 * via the LRU.  If it did, give up: shrink_cache will free it.
253 */
254void release_pages(struct page **pages, int nr, int cold)
255{
256	int i;
257	struct pagevec pages_to_free;
258	struct zone *zone = NULL;
259
260	pagevec_init(&pages_to_free, cold);
261	for (i = 0; i < nr; i++) {
262		struct page *page = pages[i];
263
264		if (unlikely(PageCompound(page))) {
265			if (zone) {
266				spin_unlock_irq(&zone->lru_lock);
267				zone = NULL;
268			}
269			put_compound_page(page);
270			continue;
271		}
272
273		if (!put_page_testzero(page))
274			continue;
275
276		if (PageLRU(page)) {
277			struct zone *pagezone = page_zone(page);
278			if (pagezone != zone) {
279				if (zone)
280					spin_unlock_irq(&zone->lru_lock);
281				zone = pagezone;
282				spin_lock_irq(&zone->lru_lock);
283			}
284			VM_BUG_ON(!PageLRU(page));
285			__ClearPageLRU(page);
286			del_page_from_lru(zone, page);
287		}
288
289		if (!pagevec_add(&pages_to_free, page)) {
290			if (zone) {
291				spin_unlock_irq(&zone->lru_lock);
292				zone = NULL;
293			}
294			__pagevec_free(&pages_to_free);
295			pagevec_reinit(&pages_to_free);
296  		}
297	}
298	if (zone)
299		spin_unlock_irq(&zone->lru_lock);
300
301	pagevec_free(&pages_to_free);
302}
303
304/*
305 * The pages which we're about to release may be in the deferred lru-addition
306 * queues.  That would prevent them from really being freed right now.  That's
307 * OK from a correctness point of view but is inefficient - those pages may be
308 * cache-warm and we want to give them back to the page allocator ASAP.
309 *
310 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
311 * and __pagevec_lru_add_active() call release_pages() directly to avoid
312 * mutual recursion.
313 */
314void __pagevec_release(struct pagevec *pvec)
315{
316	lru_add_drain();
317	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
318	pagevec_reinit(pvec);
319}
320
321EXPORT_SYMBOL(__pagevec_release);
322
323/*
324 * pagevec_release() for pages which are known to not be on the LRU
325 *
326 * This function reinitialises the caller's pagevec.
327 */
328void __pagevec_release_nonlru(struct pagevec *pvec)
329{
330	int i;
331	struct pagevec pages_to_free;
332
333	pagevec_init(&pages_to_free, pvec->cold);
334	for (i = 0; i < pagevec_count(pvec); i++) {
335		struct page *page = pvec->pages[i];
336
337		VM_BUG_ON(PageLRU(page));
338		if (put_page_testzero(page))
339			pagevec_add(&pages_to_free, page);
340	}
341	pagevec_free(&pages_to_free);
342	pagevec_reinit(pvec);
343}
344
345/*
346 * Add the passed pages to the LRU, then drop the caller's refcount
347 * on them.  Reinitialises the caller's pagevec.
348 */
349void __pagevec_lru_add(struct pagevec *pvec)
350{
351	int i;
352	struct zone *zone = NULL;
353
354	for (i = 0; i < pagevec_count(pvec); i++) {
355		struct page *page = pvec->pages[i];
356		struct zone *pagezone = page_zone(page);
357
358		if (pagezone != zone) {
359			if (zone)
360				spin_unlock_irq(&zone->lru_lock);
361			zone = pagezone;
362			spin_lock_irq(&zone->lru_lock);
363		}
364		VM_BUG_ON(PageLRU(page));
365		SetPageLRU(page);
366		add_page_to_inactive_list(zone, page);
367	}
368	if (zone)
369		spin_unlock_irq(&zone->lru_lock);
370	release_pages(pvec->pages, pvec->nr, pvec->cold);
371	pagevec_reinit(pvec);
372}
373
374EXPORT_SYMBOL(__pagevec_lru_add);
375
376void __pagevec_lru_add_active(struct pagevec *pvec)
377{
378	int i;
379	struct zone *zone = NULL;
380
381	for (i = 0; i < pagevec_count(pvec); i++) {
382		struct page *page = pvec->pages[i];
383		struct zone *pagezone = page_zone(page);
384
385		if (pagezone != zone) {
386			if (zone)
387				spin_unlock_irq(&zone->lru_lock);
388			zone = pagezone;
389			spin_lock_irq(&zone->lru_lock);
390		}
391		VM_BUG_ON(PageLRU(page));
392		SetPageLRU(page);
393		VM_BUG_ON(PageActive(page));
394		SetPageActive(page);
395		add_page_to_active_list(zone, page);
396	}
397	if (zone)
398		spin_unlock_irq(&zone->lru_lock);
399	release_pages(pvec->pages, pvec->nr, pvec->cold);
400	pagevec_reinit(pvec);
401}
402
403/*
404 * Try to drop buffers from the pages in a pagevec
405 */
406void pagevec_strip(struct pagevec *pvec)
407{
408	int i;
409
410	for (i = 0; i < pagevec_count(pvec); i++) {
411		struct page *page = pvec->pages[i];
412
413		if (PagePrivate(page) && !TestSetPageLocked(page)) {
414			if (PagePrivate(page))
415				try_to_release_page(page, 0);
416			unlock_page(page);
417		}
418	}
419}
420
421/**
422 * pagevec_lookup - gang pagecache lookup
423 * @pvec:	Where the resulting pages are placed
424 * @mapping:	The address_space to search
425 * @start:	The starting page index
426 * @nr_pages:	The maximum number of pages
427 *
428 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
429 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
430 * reference against the pages in @pvec.
431 *
432 * The search returns a group of mapping-contiguous pages with ascending
433 * indexes.  There may be holes in the indices due to not-present pages.
434 *
435 * pagevec_lookup() returns the number of pages which were found.
436 */
437unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
438		pgoff_t start, unsigned nr_pages)
439{
440	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
441	return pagevec_count(pvec);
442}
443
444EXPORT_SYMBOL(pagevec_lookup);
445
446unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
447		pgoff_t *index, int tag, unsigned nr_pages)
448{
449	pvec->nr = find_get_pages_tag(mapping, index, tag,
450					nr_pages, pvec->pages);
451	return pagevec_count(pvec);
452}
453
454EXPORT_SYMBOL(pagevec_lookup_tag);
455
456#ifdef CONFIG_SMP
457/*
458 * We tolerate a little inaccuracy to avoid ping-ponging the counter between
459 * CPUs
460 */
461#define ACCT_THRESHOLD	max(16, NR_CPUS * 2)
462
463static DEFINE_PER_CPU(long, committed_space) = 0;
464
465void vm_acct_memory(long pages)
466{
467	long *local;
468
469	preempt_disable();
470	local = &__get_cpu_var(committed_space);
471	*local += pages;
472	if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
473		atomic_add(*local, &vm_committed_space);
474		*local = 0;
475	}
476	preempt_enable();
477}
478
479#ifdef CONFIG_HOTPLUG_CPU
480
481/* Drop the CPU's cached committed space back into the central pool. */
482static int cpu_swap_callback(struct notifier_block *nfb,
483			     unsigned long action,
484			     void *hcpu)
485{
486	long *committed;
487
488	committed = &per_cpu(committed_space, (long)hcpu);
489	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
490		atomic_add(*committed, &vm_committed_space);
491		*committed = 0;
492		__lru_add_drain((long)hcpu);
493	}
494	return NOTIFY_OK;
495}
496#endif /* CONFIG_HOTPLUG_CPU */
497#endif /* CONFIG_SMP */
498
499/*
500 * Perform any setup for the swap system
501 */
502void __init swap_setup(void)
503{
504	unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
505
506	/* Use a smaller cluster for small-memory machines */
507	if (megs < 16)
508		page_cluster = 2;
509	else
510		page_cluster = 3;
511	/*
512	 * Right now other parts of the system means that we
513	 * _really_ don't want to cluster much more
514	 */
515#ifdef CONFIG_HOTPLUG_CPU
516	hotcpu_notifier(cpu_swap_callback, 0);
517#endif
518}
519