swap.c revision 4c21e2f2441dc5fbb957b030333f5a3f2d02dea7
1/*
2 *  linux/mm/swap.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * This file contains the default values for the opereation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/mm_inline.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page() */
27#include <linux/module.h>
28#include <linux/percpu_counter.h>
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
32#include <linux/init.h>
33
34/* How many pages do we try to swap or page in/out together? */
35int page_cluster;
36
37#ifdef CONFIG_HUGETLB_PAGE
38
39void put_page(struct page *page)
40{
41	if (unlikely(PageCompound(page))) {
42		page = (struct page *)page_private(page);
43		if (put_page_testzero(page)) {
44			void (*dtor)(struct page *page);
45
46			dtor = (void (*)(struct page *))page[1].mapping;
47			(*dtor)(page);
48		}
49		return;
50	}
51	if (put_page_testzero(page))
52		__page_cache_release(page);
53}
54EXPORT_SYMBOL(put_page);
55#endif
56
57/*
58 * Writeback is about to end against a page which has been marked for immediate
59 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
60 * inactive list.  The page still has PageWriteback set, which will pin it.
61 *
62 * We don't expect many pages to come through here, so don't bother batching
63 * things up.
64 *
65 * To avoid placing the page at the tail of the LRU while PG_writeback is still
66 * set, this function will clear PG_writeback before performing the page
67 * motion.  Do that inside the lru lock because once PG_writeback is cleared
68 * we may not touch the page.
69 *
70 * Returns zero if it cleared PG_writeback.
71 */
72int rotate_reclaimable_page(struct page *page)
73{
74	struct zone *zone;
75	unsigned long flags;
76
77	if (PageLocked(page))
78		return 1;
79	if (PageDirty(page))
80		return 1;
81	if (PageActive(page))
82		return 1;
83	if (!PageLRU(page))
84		return 1;
85
86	zone = page_zone(page);
87	spin_lock_irqsave(&zone->lru_lock, flags);
88	if (PageLRU(page) && !PageActive(page)) {
89		list_del(&page->lru);
90		list_add_tail(&page->lru, &zone->inactive_list);
91		inc_page_state(pgrotated);
92	}
93	if (!test_clear_page_writeback(page))
94		BUG();
95	spin_unlock_irqrestore(&zone->lru_lock, flags);
96	return 0;
97}
98
99/*
100 * FIXME: speed this up?
101 */
102void fastcall activate_page(struct page *page)
103{
104	struct zone *zone = page_zone(page);
105
106	spin_lock_irq(&zone->lru_lock);
107	if (PageLRU(page) && !PageActive(page)) {
108		del_page_from_inactive_list(zone, page);
109		SetPageActive(page);
110		add_page_to_active_list(zone, page);
111		inc_page_state(pgactivate);
112	}
113	spin_unlock_irq(&zone->lru_lock);
114}
115
116/*
117 * Mark a page as having seen activity.
118 *
119 * inactive,unreferenced	->	inactive,referenced
120 * inactive,referenced		->	active,unreferenced
121 * active,unreferenced		->	active,referenced
122 */
123void fastcall mark_page_accessed(struct page *page)
124{
125	if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
126		activate_page(page);
127		ClearPageReferenced(page);
128	} else if (!PageReferenced(page)) {
129		SetPageReferenced(page);
130	}
131}
132
133EXPORT_SYMBOL(mark_page_accessed);
134
135/**
136 * lru_cache_add: add a page to the page lists
137 * @page: the page to add
138 */
139static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
140static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
141
142void fastcall lru_cache_add(struct page *page)
143{
144	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
145
146	page_cache_get(page);
147	if (!pagevec_add(pvec, page))
148		__pagevec_lru_add(pvec);
149	put_cpu_var(lru_add_pvecs);
150}
151
152void fastcall lru_cache_add_active(struct page *page)
153{
154	struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
155
156	page_cache_get(page);
157	if (!pagevec_add(pvec, page))
158		__pagevec_lru_add_active(pvec);
159	put_cpu_var(lru_add_active_pvecs);
160}
161
162void lru_add_drain(void)
163{
164	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
165
166	if (pagevec_count(pvec))
167		__pagevec_lru_add(pvec);
168	pvec = &__get_cpu_var(lru_add_active_pvecs);
169	if (pagevec_count(pvec))
170		__pagevec_lru_add_active(pvec);
171	put_cpu_var(lru_add_pvecs);
172}
173
174/*
175 * This path almost never happens for VM activity - pages are normally
176 * freed via pagevecs.  But it gets used by networking.
177 */
178void fastcall __page_cache_release(struct page *page)
179{
180	unsigned long flags;
181	struct zone *zone = page_zone(page);
182
183	spin_lock_irqsave(&zone->lru_lock, flags);
184	if (TestClearPageLRU(page))
185		del_page_from_lru(zone, page);
186	if (page_count(page) != 0)
187		page = NULL;
188	spin_unlock_irqrestore(&zone->lru_lock, flags);
189	if (page)
190		free_hot_page(page);
191}
192
193EXPORT_SYMBOL(__page_cache_release);
194
195/*
196 * Batched page_cache_release().  Decrement the reference count on all the
197 * passed pages.  If it fell to zero then remove the page from the LRU and
198 * free it.
199 *
200 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
201 * for the remainder of the operation.
202 *
203 * The locking in this function is against shrink_cache(): we recheck the
204 * page count inside the lock to see whether shrink_cache grabbed the page
205 * via the LRU.  If it did, give up: shrink_cache will free it.
206 */
207void release_pages(struct page **pages, int nr, int cold)
208{
209	int i;
210	struct pagevec pages_to_free;
211	struct zone *zone = NULL;
212
213	pagevec_init(&pages_to_free, cold);
214	for (i = 0; i < nr; i++) {
215		struct page *page = pages[i];
216		struct zone *pagezone;
217
218		if (!put_page_testzero(page))
219			continue;
220
221		pagezone = page_zone(page);
222		if (pagezone != zone) {
223			if (zone)
224				spin_unlock_irq(&zone->lru_lock);
225			zone = pagezone;
226			spin_lock_irq(&zone->lru_lock);
227		}
228		if (TestClearPageLRU(page))
229			del_page_from_lru(zone, page);
230		if (page_count(page) == 0) {
231			if (!pagevec_add(&pages_to_free, page)) {
232				spin_unlock_irq(&zone->lru_lock);
233				__pagevec_free(&pages_to_free);
234				pagevec_reinit(&pages_to_free);
235				zone = NULL;	/* No lock is held */
236			}
237		}
238	}
239	if (zone)
240		spin_unlock_irq(&zone->lru_lock);
241
242	pagevec_free(&pages_to_free);
243}
244
245/*
246 * The pages which we're about to release may be in the deferred lru-addition
247 * queues.  That would prevent them from really being freed right now.  That's
248 * OK from a correctness point of view but is inefficient - those pages may be
249 * cache-warm and we want to give them back to the page allocator ASAP.
250 *
251 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
252 * and __pagevec_lru_add_active() call release_pages() directly to avoid
253 * mutual recursion.
254 */
255void __pagevec_release(struct pagevec *pvec)
256{
257	lru_add_drain();
258	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
259	pagevec_reinit(pvec);
260}
261
262/*
263 * pagevec_release() for pages which are known to not be on the LRU
264 *
265 * This function reinitialises the caller's pagevec.
266 */
267void __pagevec_release_nonlru(struct pagevec *pvec)
268{
269	int i;
270	struct pagevec pages_to_free;
271
272	pagevec_init(&pages_to_free, pvec->cold);
273	pages_to_free.cold = pvec->cold;
274	for (i = 0; i < pagevec_count(pvec); i++) {
275		struct page *page = pvec->pages[i];
276
277		BUG_ON(PageLRU(page));
278		if (put_page_testzero(page))
279			pagevec_add(&pages_to_free, page);
280	}
281	pagevec_free(&pages_to_free);
282	pagevec_reinit(pvec);
283}
284
285/*
286 * Add the passed pages to the LRU, then drop the caller's refcount
287 * on them.  Reinitialises the caller's pagevec.
288 */
289void __pagevec_lru_add(struct pagevec *pvec)
290{
291	int i;
292	struct zone *zone = NULL;
293
294	for (i = 0; i < pagevec_count(pvec); i++) {
295		struct page *page = pvec->pages[i];
296		struct zone *pagezone = page_zone(page);
297
298		if (pagezone != zone) {
299			if (zone)
300				spin_unlock_irq(&zone->lru_lock);
301			zone = pagezone;
302			spin_lock_irq(&zone->lru_lock);
303		}
304		if (TestSetPageLRU(page))
305			BUG();
306		add_page_to_inactive_list(zone, page);
307	}
308	if (zone)
309		spin_unlock_irq(&zone->lru_lock);
310	release_pages(pvec->pages, pvec->nr, pvec->cold);
311	pagevec_reinit(pvec);
312}
313
314EXPORT_SYMBOL(__pagevec_lru_add);
315
316void __pagevec_lru_add_active(struct pagevec *pvec)
317{
318	int i;
319	struct zone *zone = NULL;
320
321	for (i = 0; i < pagevec_count(pvec); i++) {
322		struct page *page = pvec->pages[i];
323		struct zone *pagezone = page_zone(page);
324
325		if (pagezone != zone) {
326			if (zone)
327				spin_unlock_irq(&zone->lru_lock);
328			zone = pagezone;
329			spin_lock_irq(&zone->lru_lock);
330		}
331		if (TestSetPageLRU(page))
332			BUG();
333		if (TestSetPageActive(page))
334			BUG();
335		add_page_to_active_list(zone, page);
336	}
337	if (zone)
338		spin_unlock_irq(&zone->lru_lock);
339	release_pages(pvec->pages, pvec->nr, pvec->cold);
340	pagevec_reinit(pvec);
341}
342
343/*
344 * Try to drop buffers from the pages in a pagevec
345 */
346void pagevec_strip(struct pagevec *pvec)
347{
348	int i;
349
350	for (i = 0; i < pagevec_count(pvec); i++) {
351		struct page *page = pvec->pages[i];
352
353		if (PagePrivate(page) && !TestSetPageLocked(page)) {
354			try_to_release_page(page, 0);
355			unlock_page(page);
356		}
357	}
358}
359
360/**
361 * pagevec_lookup - gang pagecache lookup
362 * @pvec:	Where the resulting pages are placed
363 * @mapping:	The address_space to search
364 * @start:	The starting page index
365 * @nr_pages:	The maximum number of pages
366 *
367 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
368 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
369 * reference against the pages in @pvec.
370 *
371 * The search returns a group of mapping-contiguous pages with ascending
372 * indexes.  There may be holes in the indices due to not-present pages.
373 *
374 * pagevec_lookup() returns the number of pages which were found.
375 */
376unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
377		pgoff_t start, unsigned nr_pages)
378{
379	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
380	return pagevec_count(pvec);
381}
382
383unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
384		pgoff_t *index, int tag, unsigned nr_pages)
385{
386	pvec->nr = find_get_pages_tag(mapping, index, tag,
387					nr_pages, pvec->pages);
388	return pagevec_count(pvec);
389}
390
391
392#ifdef CONFIG_SMP
393/*
394 * We tolerate a little inaccuracy to avoid ping-ponging the counter between
395 * CPUs
396 */
397#define ACCT_THRESHOLD	max(16, NR_CPUS * 2)
398
399static DEFINE_PER_CPU(long, committed_space) = 0;
400
401void vm_acct_memory(long pages)
402{
403	long *local;
404
405	preempt_disable();
406	local = &__get_cpu_var(committed_space);
407	*local += pages;
408	if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
409		atomic_add(*local, &vm_committed_space);
410		*local = 0;
411	}
412	preempt_enable();
413}
414EXPORT_SYMBOL(vm_acct_memory);
415
416#ifdef CONFIG_HOTPLUG_CPU
417static void lru_drain_cache(unsigned int cpu)
418{
419	struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu);
420
421	/* CPU is dead, so no locking needed. */
422	if (pagevec_count(pvec))
423		__pagevec_lru_add(pvec);
424	pvec = &per_cpu(lru_add_active_pvecs, cpu);
425	if (pagevec_count(pvec))
426		__pagevec_lru_add_active(pvec);
427}
428
429/* Drop the CPU's cached committed space back into the central pool. */
430static int cpu_swap_callback(struct notifier_block *nfb,
431			     unsigned long action,
432			     void *hcpu)
433{
434	long *committed;
435
436	committed = &per_cpu(committed_space, (long)hcpu);
437	if (action == CPU_DEAD) {
438		atomic_add(*committed, &vm_committed_space);
439		*committed = 0;
440		lru_drain_cache((long)hcpu);
441	}
442	return NOTIFY_OK;
443}
444#endif /* CONFIG_HOTPLUG_CPU */
445#endif /* CONFIG_SMP */
446
447#ifdef CONFIG_SMP
448void percpu_counter_mod(struct percpu_counter *fbc, long amount)
449{
450	long count;
451	long *pcount;
452	int cpu = get_cpu();
453
454	pcount = per_cpu_ptr(fbc->counters, cpu);
455	count = *pcount + amount;
456	if (count >= FBC_BATCH || count <= -FBC_BATCH) {
457		spin_lock(&fbc->lock);
458		fbc->count += count;
459		spin_unlock(&fbc->lock);
460		count = 0;
461	}
462	*pcount = count;
463	put_cpu();
464}
465EXPORT_SYMBOL(percpu_counter_mod);
466#endif
467
468/*
469 * Perform any setup for the swap system
470 */
471void __init swap_setup(void)
472{
473	unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
474
475	/* Use a smaller cluster for small-memory machines */
476	if (megs < 16)
477		page_cluster = 2;
478	else
479		page_cluster = 3;
480	/*
481	 * Right now other parts of the system means that we
482	 * _really_ don't want to cluster much more
483	 */
484	hotcpu_notifier(cpu_swap_callback, 0);
485}
486