swap.c revision a95a82e96c48270980dd248ccd5546f1b49e6f8a
1/*
2 *  linux/mm/swap.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/mm_inline.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page() */
27#include <linux/percpu_counter.h>
28#include <linux/percpu.h>
29#include <linux/cpu.h>
30#include <linux/notifier.h>
31#include <linux/backing-dev.h>
32#include <linux/memcontrol.h>
33#include <linux/gfp.h>
34
35#include "internal.h"
36
37/* How many pages do we try to swap or page in/out together? */
38int page_cluster;
39
40static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42
43/*
44 * This path almost never happens for VM activity - pages are normally
45 * freed via pagevecs.  But it gets used by networking.
46 */
47static void __page_cache_release(struct page *page)
48{
49	if (PageLRU(page)) {
50		unsigned long flags;
51		struct zone *zone = page_zone(page);
52
53		spin_lock_irqsave(&zone->lru_lock, flags);
54		VM_BUG_ON(!PageLRU(page));
55		__ClearPageLRU(page);
56		del_page_from_lru(zone, page);
57		spin_unlock_irqrestore(&zone->lru_lock, flags);
58	}
59}
60
61static void __put_single_page(struct page *page)
62{
63	__page_cache_release(page);
64	free_hot_cold_page(page, 0);
65}
66
67static void __put_compound_page(struct page *page)
68{
69	compound_page_dtor *dtor;
70
71	__page_cache_release(page);
72	dtor = get_compound_page_dtor(page);
73	(*dtor)(page);
74}
75
76static void put_compound_page(struct page *page)
77{
78	if (unlikely(PageTail(page))) {
79		/* __split_huge_page_refcount can run under us */
80		struct page *page_head = page->first_page;
81		smp_rmb();
82		/*
83		 * If PageTail is still set after smp_rmb() we can be sure
84		 * that the page->first_page we read wasn't a dangling pointer.
85		 * See __split_huge_page_refcount() smp_wmb().
86		 */
87		if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
88			unsigned long flags;
89			/*
90			 * Verify that our page_head wasn't converted
91			 * to a a regular page before we got a
92			 * reference on it.
93			 */
94			if (unlikely(!PageHead(page_head))) {
95				/* PageHead is cleared after PageTail */
96				smp_rmb();
97				VM_BUG_ON(PageTail(page));
98				goto out_put_head;
99			}
100			/*
101			 * Only run compound_lock on a valid PageHead,
102			 * after having it pinned with
103			 * get_page_unless_zero() above.
104			 */
105			smp_mb();
106			/* page_head wasn't a dangling pointer */
107			flags = compound_lock_irqsave(page_head);
108			if (unlikely(!PageTail(page))) {
109				/* __split_huge_page_refcount run before us */
110				compound_unlock_irqrestore(page_head, flags);
111				VM_BUG_ON(PageHead(page_head));
112			out_put_head:
113				if (put_page_testzero(page_head))
114					__put_single_page(page_head);
115			out_put_single:
116				if (put_page_testzero(page))
117					__put_single_page(page);
118				return;
119			}
120			VM_BUG_ON(page_head != page->first_page);
121			/*
122			 * We can release the refcount taken by
123			 * get_page_unless_zero now that
124			 * split_huge_page_refcount is blocked on the
125			 * compound_lock.
126			 */
127			if (put_page_testzero(page_head))
128				VM_BUG_ON(1);
129			/* __split_huge_page_refcount will wait now */
130			VM_BUG_ON(atomic_read(&page->_count) <= 0);
131			atomic_dec(&page->_count);
132			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
133			compound_unlock_irqrestore(page_head, flags);
134			if (put_page_testzero(page_head)) {
135				if (PageHead(page_head))
136					__put_compound_page(page_head);
137				else
138					__put_single_page(page_head);
139			}
140		} else {
141			/* page_head is a dangling pointer */
142			VM_BUG_ON(PageTail(page));
143			goto out_put_single;
144		}
145	} else if (put_page_testzero(page)) {
146		if (PageHead(page))
147			__put_compound_page(page);
148		else
149			__put_single_page(page);
150	}
151}
152
153void put_page(struct page *page)
154{
155	if (unlikely(PageCompound(page)))
156		put_compound_page(page);
157	else if (put_page_testzero(page))
158		__put_single_page(page);
159}
160EXPORT_SYMBOL(put_page);
161
162/**
163 * put_pages_list() - release a list of pages
164 * @pages: list of pages threaded on page->lru
165 *
166 * Release a list of pages which are strung together on page.lru.  Currently
167 * used by read_cache_pages() and related error recovery code.
168 */
169void put_pages_list(struct list_head *pages)
170{
171	while (!list_empty(pages)) {
172		struct page *victim;
173
174		victim = list_entry(pages->prev, struct page, lru);
175		list_del(&victim->lru);
176		page_cache_release(victim);
177	}
178}
179EXPORT_SYMBOL(put_pages_list);
180
181/*
182 * pagevec_move_tail() must be called with IRQ disabled.
183 * Otherwise this may cause nasty races.
184 */
185static void pagevec_move_tail(struct pagevec *pvec)
186{
187	int i;
188	int pgmoved = 0;
189	struct zone *zone = NULL;
190
191	for (i = 0; i < pagevec_count(pvec); i++) {
192		struct page *page = pvec->pages[i];
193		struct zone *pagezone = page_zone(page);
194
195		if (pagezone != zone) {
196			if (zone)
197				spin_unlock(&zone->lru_lock);
198			zone = pagezone;
199			spin_lock(&zone->lru_lock);
200		}
201		if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
202			int lru = page_lru_base_type(page);
203			list_move_tail(&page->lru, &zone->lru[lru].list);
204			pgmoved++;
205		}
206	}
207	if (zone)
208		spin_unlock(&zone->lru_lock);
209	__count_vm_events(PGROTATED, pgmoved);
210	release_pages(pvec->pages, pvec->nr, pvec->cold);
211	pagevec_reinit(pvec);
212}
213
214/*
215 * Writeback is about to end against a page which has been marked for immediate
216 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
217 * inactive list.
218 */
219void  rotate_reclaimable_page(struct page *page)
220{
221	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
222	    !PageUnevictable(page) && PageLRU(page)) {
223		struct pagevec *pvec;
224		unsigned long flags;
225
226		page_cache_get(page);
227		local_irq_save(flags);
228		pvec = &__get_cpu_var(lru_rotate_pvecs);
229		if (!pagevec_add(pvec, page))
230			pagevec_move_tail(pvec);
231		local_irq_restore(flags);
232	}
233}
234
235static void update_page_reclaim_stat(struct zone *zone, struct page *page,
236				     int file, int rotated)
237{
238	struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
239	struct zone_reclaim_stat *memcg_reclaim_stat;
240
241	memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
242
243	reclaim_stat->recent_scanned[file]++;
244	if (rotated)
245		reclaim_stat->recent_rotated[file]++;
246
247	if (!memcg_reclaim_stat)
248		return;
249
250	memcg_reclaim_stat->recent_scanned[file]++;
251	if (rotated)
252		memcg_reclaim_stat->recent_rotated[file]++;
253}
254
255/*
256 * FIXME: speed this up?
257 */
258void activate_page(struct page *page)
259{
260	struct zone *zone = page_zone(page);
261
262	spin_lock_irq(&zone->lru_lock);
263	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
264		int file = page_is_file_cache(page);
265		int lru = page_lru_base_type(page);
266		del_page_from_lru_list(zone, page, lru);
267
268		SetPageActive(page);
269		lru += LRU_ACTIVE;
270		add_page_to_lru_list(zone, page, lru);
271		__count_vm_event(PGACTIVATE);
272
273		update_page_reclaim_stat(zone, page, file, 1);
274	}
275	spin_unlock_irq(&zone->lru_lock);
276}
277
278/*
279 * Mark a page as having seen activity.
280 *
281 * inactive,unreferenced	->	inactive,referenced
282 * inactive,referenced		->	active,unreferenced
283 * active,unreferenced		->	active,referenced
284 */
285void mark_page_accessed(struct page *page)
286{
287	if (!PageActive(page) && !PageUnevictable(page) &&
288			PageReferenced(page) && PageLRU(page)) {
289		activate_page(page);
290		ClearPageReferenced(page);
291	} else if (!PageReferenced(page)) {
292		SetPageReferenced(page);
293	}
294}
295
296EXPORT_SYMBOL(mark_page_accessed);
297
298void __lru_cache_add(struct page *page, enum lru_list lru)
299{
300	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
301
302	page_cache_get(page);
303	if (!pagevec_add(pvec, page))
304		____pagevec_lru_add(pvec, lru);
305	put_cpu_var(lru_add_pvecs);
306}
307EXPORT_SYMBOL(__lru_cache_add);
308
309/**
310 * lru_cache_add_lru - add a page to a page list
311 * @page: the page to be added to the LRU.
312 * @lru: the LRU list to which the page is added.
313 */
314void lru_cache_add_lru(struct page *page, enum lru_list lru)
315{
316	if (PageActive(page)) {
317		VM_BUG_ON(PageUnevictable(page));
318		ClearPageActive(page);
319	} else if (PageUnevictable(page)) {
320		VM_BUG_ON(PageActive(page));
321		ClearPageUnevictable(page);
322	}
323
324	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
325	__lru_cache_add(page, lru);
326}
327
328/**
329 * add_page_to_unevictable_list - add a page to the unevictable list
330 * @page:  the page to be added to the unevictable list
331 *
332 * Add page directly to its zone's unevictable list.  To avoid races with
333 * tasks that might be making the page evictable, through eg. munlock,
334 * munmap or exit, while it's not on the lru, we want to add the page
335 * while it's locked or otherwise "invisible" to other tasks.  This is
336 * difficult to do when using the pagevec cache, so bypass that.
337 */
338void add_page_to_unevictable_list(struct page *page)
339{
340	struct zone *zone = page_zone(page);
341
342	spin_lock_irq(&zone->lru_lock);
343	SetPageUnevictable(page);
344	SetPageLRU(page);
345	add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
346	spin_unlock_irq(&zone->lru_lock);
347}
348
349/*
350 * Drain pages out of the cpu's pagevecs.
351 * Either "cpu" is the current CPU, and preemption has already been
352 * disabled; or "cpu" is being hot-unplugged, and is already dead.
353 */
354static void drain_cpu_pagevecs(int cpu)
355{
356	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
357	struct pagevec *pvec;
358	int lru;
359
360	for_each_lru(lru) {
361		pvec = &pvecs[lru - LRU_BASE];
362		if (pagevec_count(pvec))
363			____pagevec_lru_add(pvec, lru);
364	}
365
366	pvec = &per_cpu(lru_rotate_pvecs, cpu);
367	if (pagevec_count(pvec)) {
368		unsigned long flags;
369
370		/* No harm done if a racing interrupt already did this */
371		local_irq_save(flags);
372		pagevec_move_tail(pvec);
373		local_irq_restore(flags);
374	}
375}
376
377void lru_add_drain(void)
378{
379	drain_cpu_pagevecs(get_cpu());
380	put_cpu();
381}
382
383static void lru_add_drain_per_cpu(struct work_struct *dummy)
384{
385	lru_add_drain();
386}
387
388/*
389 * Returns 0 for success
390 */
391int lru_add_drain_all(void)
392{
393	return schedule_on_each_cpu(lru_add_drain_per_cpu);
394}
395
396/*
397 * Batched page_cache_release().  Decrement the reference count on all the
398 * passed pages.  If it fell to zero then remove the page from the LRU and
399 * free it.
400 *
401 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
402 * for the remainder of the operation.
403 *
404 * The locking in this function is against shrink_inactive_list(): we recheck
405 * the page count inside the lock to see whether shrink_inactive_list()
406 * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
407 * will free it.
408 */
409void release_pages(struct page **pages, int nr, int cold)
410{
411	int i;
412	struct pagevec pages_to_free;
413	struct zone *zone = NULL;
414	unsigned long uninitialized_var(flags);
415
416	pagevec_init(&pages_to_free, cold);
417	for (i = 0; i < nr; i++) {
418		struct page *page = pages[i];
419
420		if (unlikely(PageCompound(page))) {
421			if (zone) {
422				spin_unlock_irqrestore(&zone->lru_lock, flags);
423				zone = NULL;
424			}
425			put_compound_page(page);
426			continue;
427		}
428
429		if (!put_page_testzero(page))
430			continue;
431
432		if (PageLRU(page)) {
433			struct zone *pagezone = page_zone(page);
434
435			if (pagezone != zone) {
436				if (zone)
437					spin_unlock_irqrestore(&zone->lru_lock,
438									flags);
439				zone = pagezone;
440				spin_lock_irqsave(&zone->lru_lock, flags);
441			}
442			VM_BUG_ON(!PageLRU(page));
443			__ClearPageLRU(page);
444			del_page_from_lru(zone, page);
445		}
446
447		if (!pagevec_add(&pages_to_free, page)) {
448			if (zone) {
449				spin_unlock_irqrestore(&zone->lru_lock, flags);
450				zone = NULL;
451			}
452			__pagevec_free(&pages_to_free);
453			pagevec_reinit(&pages_to_free);
454  		}
455	}
456	if (zone)
457		spin_unlock_irqrestore(&zone->lru_lock, flags);
458
459	pagevec_free(&pages_to_free);
460}
461EXPORT_SYMBOL(release_pages);
462
463/*
464 * The pages which we're about to release may be in the deferred lru-addition
465 * queues.  That would prevent them from really being freed right now.  That's
466 * OK from a correctness point of view but is inefficient - those pages may be
467 * cache-warm and we want to give them back to the page allocator ASAP.
468 *
469 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
470 * and __pagevec_lru_add_active() call release_pages() directly to avoid
471 * mutual recursion.
472 */
473void __pagevec_release(struct pagevec *pvec)
474{
475	lru_add_drain();
476	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
477	pagevec_reinit(pvec);
478}
479
480EXPORT_SYMBOL(__pagevec_release);
481
482/*
483 * Add the passed pages to the LRU, then drop the caller's refcount
484 * on them.  Reinitialises the caller's pagevec.
485 */
486void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
487{
488	int i;
489	struct zone *zone = NULL;
490
491	VM_BUG_ON(is_unevictable_lru(lru));
492
493	for (i = 0; i < pagevec_count(pvec); i++) {
494		struct page *page = pvec->pages[i];
495		struct zone *pagezone = page_zone(page);
496		int file;
497		int active;
498
499		if (pagezone != zone) {
500			if (zone)
501				spin_unlock_irq(&zone->lru_lock);
502			zone = pagezone;
503			spin_lock_irq(&zone->lru_lock);
504		}
505		VM_BUG_ON(PageActive(page));
506		VM_BUG_ON(PageUnevictable(page));
507		VM_BUG_ON(PageLRU(page));
508		SetPageLRU(page);
509		active = is_active_lru(lru);
510		file = is_file_lru(lru);
511		if (active)
512			SetPageActive(page);
513		update_page_reclaim_stat(zone, page, file, active);
514		add_page_to_lru_list(zone, page, lru);
515	}
516	if (zone)
517		spin_unlock_irq(&zone->lru_lock);
518	release_pages(pvec->pages, pvec->nr, pvec->cold);
519	pagevec_reinit(pvec);
520}
521
522EXPORT_SYMBOL(____pagevec_lru_add);
523
524/*
525 * Try to drop buffers from the pages in a pagevec
526 */
527void pagevec_strip(struct pagevec *pvec)
528{
529	int i;
530
531	for (i = 0; i < pagevec_count(pvec); i++) {
532		struct page *page = pvec->pages[i];
533
534		if (page_has_private(page) && trylock_page(page)) {
535			if (page_has_private(page))
536				try_to_release_page(page, 0);
537			unlock_page(page);
538		}
539	}
540}
541
542/**
543 * pagevec_lookup - gang pagecache lookup
544 * @pvec:	Where the resulting pages are placed
545 * @mapping:	The address_space to search
546 * @start:	The starting page index
547 * @nr_pages:	The maximum number of pages
548 *
549 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
550 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
551 * reference against the pages in @pvec.
552 *
553 * The search returns a group of mapping-contiguous pages with ascending
554 * indexes.  There may be holes in the indices due to not-present pages.
555 *
556 * pagevec_lookup() returns the number of pages which were found.
557 */
558unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
559		pgoff_t start, unsigned nr_pages)
560{
561	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
562	return pagevec_count(pvec);
563}
564
565EXPORT_SYMBOL(pagevec_lookup);
566
567unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
568		pgoff_t *index, int tag, unsigned nr_pages)
569{
570	pvec->nr = find_get_pages_tag(mapping, index, tag,
571					nr_pages, pvec->pages);
572	return pagevec_count(pvec);
573}
574
575EXPORT_SYMBOL(pagevec_lookup_tag);
576
577/*
578 * Perform any setup for the swap system
579 */
580void __init swap_setup(void)
581{
582	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
583
584#ifdef CONFIG_SWAP
585	bdi_init(swapper_space.backing_dev_info);
586#endif
587
588	/* Use a smaller cluster for small-memory machines */
589	if (megs < 16)
590		page_cluster = 2;
591	else
592		page_cluster = 3;
593	/*
594	 * Right now other parts of the system means that we
595	 * _really_ don't want to cluster much more
596	 */
597}
598