swap.c revision cc59850ef940e4ee6a765d28b439b9bafe07cf63
1/*
2 *  linux/mm/swap.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
24#include <linux/export.h>
25#include <linux/mm_inline.h>
26#include <linux/buffer_head.h>	/* for try_to_release_page() */
27#include <linux/percpu_counter.h>
28#include <linux/percpu.h>
29#include <linux/cpu.h>
30#include <linux/notifier.h>
31#include <linux/backing-dev.h>
32#include <linux/memcontrol.h>
33#include <linux/gfp.h>
34
35#include "internal.h"
36
37/* How many pages do we try to swap or page in/out together? */
38int page_cluster;
39
40static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43
44/*
45 * This path almost never happens for VM activity - pages are normally
46 * freed via pagevecs.  But it gets used by networking.
47 */
48static void __page_cache_release(struct page *page)
49{
50	if (PageLRU(page)) {
51		unsigned long flags;
52		struct zone *zone = page_zone(page);
53
54		spin_lock_irqsave(&zone->lru_lock, flags);
55		VM_BUG_ON(!PageLRU(page));
56		__ClearPageLRU(page);
57		del_page_from_lru(zone, page);
58		spin_unlock_irqrestore(&zone->lru_lock, flags);
59	}
60}
61
62static void __put_single_page(struct page *page)
63{
64	__page_cache_release(page);
65	free_hot_cold_page(page, 0);
66}
67
68static void __put_compound_page(struct page *page)
69{
70	compound_page_dtor *dtor;
71
72	__page_cache_release(page);
73	dtor = get_compound_page_dtor(page);
74	(*dtor)(page);
75}
76
77static void put_compound_page(struct page *page)
78{
79	if (unlikely(PageTail(page))) {
80		/* __split_huge_page_refcount can run under us */
81		struct page *page_head = compound_trans_head(page);
82
83		if (likely(page != page_head &&
84			   get_page_unless_zero(page_head))) {
85			unsigned long flags;
86			/*
87			 * page_head wasn't a dangling pointer but it
88			 * may not be a head page anymore by the time
89			 * we obtain the lock. That is ok as long as it
90			 * can't be freed from under us.
91			 */
92			flags = compound_lock_irqsave(page_head);
93			if (unlikely(!PageTail(page))) {
94				/* __split_huge_page_refcount run before us */
95				compound_unlock_irqrestore(page_head, flags);
96				VM_BUG_ON(PageHead(page_head));
97				if (put_page_testzero(page_head))
98					__put_single_page(page_head);
99			out_put_single:
100				if (put_page_testzero(page))
101					__put_single_page(page);
102				return;
103			}
104			VM_BUG_ON(page_head != page->first_page);
105			/*
106			 * We can release the refcount taken by
107			 * get_page_unless_zero() now that
108			 * __split_huge_page_refcount() is blocked on
109			 * the compound_lock.
110			 */
111			if (put_page_testzero(page_head))
112				VM_BUG_ON(1);
113			/* __split_huge_page_refcount will wait now */
114			VM_BUG_ON(page_mapcount(page) <= 0);
115			atomic_dec(&page->_mapcount);
116			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
117			VM_BUG_ON(atomic_read(&page->_count) != 0);
118			compound_unlock_irqrestore(page_head, flags);
119			if (put_page_testzero(page_head)) {
120				if (PageHead(page_head))
121					__put_compound_page(page_head);
122				else
123					__put_single_page(page_head);
124			}
125		} else {
126			/* page_head is a dangling pointer */
127			VM_BUG_ON(PageTail(page));
128			goto out_put_single;
129		}
130	} else if (put_page_testzero(page)) {
131		if (PageHead(page))
132			__put_compound_page(page);
133		else
134			__put_single_page(page);
135	}
136}
137
138void put_page(struct page *page)
139{
140	if (unlikely(PageCompound(page)))
141		put_compound_page(page);
142	else if (put_page_testzero(page))
143		__put_single_page(page);
144}
145EXPORT_SYMBOL(put_page);
146
147/*
148 * This function is exported but must not be called by anything other
149 * than get_page(). It implements the slow path of get_page().
150 */
151bool __get_page_tail(struct page *page)
152{
153	/*
154	 * This takes care of get_page() if run on a tail page
155	 * returned by one of the get_user_pages/follow_page variants.
156	 * get_user_pages/follow_page itself doesn't need the compound
157	 * lock because it runs __get_page_tail_foll() under the
158	 * proper PT lock that already serializes against
159	 * split_huge_page().
160	 */
161	unsigned long flags;
162	bool got = false;
163	struct page *page_head = compound_trans_head(page);
164
165	if (likely(page != page_head && get_page_unless_zero(page_head))) {
166		/*
167		 * page_head wasn't a dangling pointer but it
168		 * may not be a head page anymore by the time
169		 * we obtain the lock. That is ok as long as it
170		 * can't be freed from under us.
171		 */
172		flags = compound_lock_irqsave(page_head);
173		/* here __split_huge_page_refcount won't run anymore */
174		if (likely(PageTail(page))) {
175			__get_page_tail_foll(page, false);
176			got = true;
177		}
178		compound_unlock_irqrestore(page_head, flags);
179		if (unlikely(!got))
180			put_page(page_head);
181	}
182	return got;
183}
184EXPORT_SYMBOL(__get_page_tail);
185
186/**
187 * put_pages_list() - release a list of pages
188 * @pages: list of pages threaded on page->lru
189 *
190 * Release a list of pages which are strung together on page.lru.  Currently
191 * used by read_cache_pages() and related error recovery code.
192 */
193void put_pages_list(struct list_head *pages)
194{
195	while (!list_empty(pages)) {
196		struct page *victim;
197
198		victim = list_entry(pages->prev, struct page, lru);
199		list_del(&victim->lru);
200		page_cache_release(victim);
201	}
202}
203EXPORT_SYMBOL(put_pages_list);
204
205static void pagevec_lru_move_fn(struct pagevec *pvec,
206				void (*move_fn)(struct page *page, void *arg),
207				void *arg)
208{
209	int i;
210	struct zone *zone = NULL;
211	unsigned long flags = 0;
212
213	for (i = 0; i < pagevec_count(pvec); i++) {
214		struct page *page = pvec->pages[i];
215		struct zone *pagezone = page_zone(page);
216
217		if (pagezone != zone) {
218			if (zone)
219				spin_unlock_irqrestore(&zone->lru_lock, flags);
220			zone = pagezone;
221			spin_lock_irqsave(&zone->lru_lock, flags);
222		}
223
224		(*move_fn)(page, arg);
225	}
226	if (zone)
227		spin_unlock_irqrestore(&zone->lru_lock, flags);
228	release_pages(pvec->pages, pvec->nr, pvec->cold);
229	pagevec_reinit(pvec);
230}
231
232static void pagevec_move_tail_fn(struct page *page, void *arg)
233{
234	int *pgmoved = arg;
235	struct zone *zone = page_zone(page);
236
237	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
238		enum lru_list lru = page_lru_base_type(page);
239		list_move_tail(&page->lru, &zone->lru[lru].list);
240		mem_cgroup_rotate_reclaimable_page(page);
241		(*pgmoved)++;
242	}
243}
244
245/*
246 * pagevec_move_tail() must be called with IRQ disabled.
247 * Otherwise this may cause nasty races.
248 */
249static void pagevec_move_tail(struct pagevec *pvec)
250{
251	int pgmoved = 0;
252
253	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
254	__count_vm_events(PGROTATED, pgmoved);
255}
256
257/*
258 * Writeback is about to end against a page which has been marked for immediate
259 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
260 * inactive list.
261 */
262void rotate_reclaimable_page(struct page *page)
263{
264	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
265	    !PageUnevictable(page) && PageLRU(page)) {
266		struct pagevec *pvec;
267		unsigned long flags;
268
269		page_cache_get(page);
270		local_irq_save(flags);
271		pvec = &__get_cpu_var(lru_rotate_pvecs);
272		if (!pagevec_add(pvec, page))
273			pagevec_move_tail(pvec);
274		local_irq_restore(flags);
275	}
276}
277
278static void update_page_reclaim_stat(struct zone *zone, struct page *page,
279				     int file, int rotated)
280{
281	struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
282	struct zone_reclaim_stat *memcg_reclaim_stat;
283
284	memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
285
286	reclaim_stat->recent_scanned[file]++;
287	if (rotated)
288		reclaim_stat->recent_rotated[file]++;
289
290	if (!memcg_reclaim_stat)
291		return;
292
293	memcg_reclaim_stat->recent_scanned[file]++;
294	if (rotated)
295		memcg_reclaim_stat->recent_rotated[file]++;
296}
297
298static void __activate_page(struct page *page, void *arg)
299{
300	struct zone *zone = page_zone(page);
301
302	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
303		int file = page_is_file_cache(page);
304		int lru = page_lru_base_type(page);
305		del_page_from_lru_list(zone, page, lru);
306
307		SetPageActive(page);
308		lru += LRU_ACTIVE;
309		add_page_to_lru_list(zone, page, lru);
310		__count_vm_event(PGACTIVATE);
311
312		update_page_reclaim_stat(zone, page, file, 1);
313	}
314}
315
316#ifdef CONFIG_SMP
317static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
318
319static void activate_page_drain(int cpu)
320{
321	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
322
323	if (pagevec_count(pvec))
324		pagevec_lru_move_fn(pvec, __activate_page, NULL);
325}
326
327void activate_page(struct page *page)
328{
329	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
330		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
331
332		page_cache_get(page);
333		if (!pagevec_add(pvec, page))
334			pagevec_lru_move_fn(pvec, __activate_page, NULL);
335		put_cpu_var(activate_page_pvecs);
336	}
337}
338
339#else
340static inline void activate_page_drain(int cpu)
341{
342}
343
344void activate_page(struct page *page)
345{
346	struct zone *zone = page_zone(page);
347
348	spin_lock_irq(&zone->lru_lock);
349	__activate_page(page, NULL);
350	spin_unlock_irq(&zone->lru_lock);
351}
352#endif
353
354/*
355 * Mark a page as having seen activity.
356 *
357 * inactive,unreferenced	->	inactive,referenced
358 * inactive,referenced		->	active,unreferenced
359 * active,unreferenced		->	active,referenced
360 */
361void mark_page_accessed(struct page *page)
362{
363	if (!PageActive(page) && !PageUnevictable(page) &&
364			PageReferenced(page) && PageLRU(page)) {
365		activate_page(page);
366		ClearPageReferenced(page);
367	} else if (!PageReferenced(page)) {
368		SetPageReferenced(page);
369	}
370}
371
372EXPORT_SYMBOL(mark_page_accessed);
373
374void __lru_cache_add(struct page *page, enum lru_list lru)
375{
376	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
377
378	page_cache_get(page);
379	if (!pagevec_add(pvec, page))
380		____pagevec_lru_add(pvec, lru);
381	put_cpu_var(lru_add_pvecs);
382}
383EXPORT_SYMBOL(__lru_cache_add);
384
385/**
386 * lru_cache_add_lru - add a page to a page list
387 * @page: the page to be added to the LRU.
388 * @lru: the LRU list to which the page is added.
389 */
390void lru_cache_add_lru(struct page *page, enum lru_list lru)
391{
392	if (PageActive(page)) {
393		VM_BUG_ON(PageUnevictable(page));
394		ClearPageActive(page);
395	} else if (PageUnevictable(page)) {
396		VM_BUG_ON(PageActive(page));
397		ClearPageUnevictable(page);
398	}
399
400	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
401	__lru_cache_add(page, lru);
402}
403
404/**
405 * add_page_to_unevictable_list - add a page to the unevictable list
406 * @page:  the page to be added to the unevictable list
407 *
408 * Add page directly to its zone's unevictable list.  To avoid races with
409 * tasks that might be making the page evictable, through eg. munlock,
410 * munmap or exit, while it's not on the lru, we want to add the page
411 * while it's locked or otherwise "invisible" to other tasks.  This is
412 * difficult to do when using the pagevec cache, so bypass that.
413 */
414void add_page_to_unevictable_list(struct page *page)
415{
416	struct zone *zone = page_zone(page);
417
418	spin_lock_irq(&zone->lru_lock);
419	SetPageUnevictable(page);
420	SetPageLRU(page);
421	add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
422	spin_unlock_irq(&zone->lru_lock);
423}
424
425/*
426 * If the page can not be invalidated, it is moved to the
427 * inactive list to speed up its reclaim.  It is moved to the
428 * head of the list, rather than the tail, to give the flusher
429 * threads some time to write it out, as this is much more
430 * effective than the single-page writeout from reclaim.
431 *
432 * If the page isn't page_mapped and dirty/writeback, the page
433 * could reclaim asap using PG_reclaim.
434 *
435 * 1. active, mapped page -> none
436 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
437 * 3. inactive, mapped page -> none
438 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
439 * 5. inactive, clean -> inactive, tail
440 * 6. Others -> none
441 *
442 * In 4, why it moves inactive's head, the VM expects the page would
443 * be write it out by flusher threads as this is much more effective
444 * than the single-page writeout from reclaim.
445 */
446static void lru_deactivate_fn(struct page *page, void *arg)
447{
448	int lru, file;
449	bool active;
450	struct zone *zone = page_zone(page);
451
452	if (!PageLRU(page))
453		return;
454
455	if (PageUnevictable(page))
456		return;
457
458	/* Some processes are using the page */
459	if (page_mapped(page))
460		return;
461
462	active = PageActive(page);
463
464	file = page_is_file_cache(page);
465	lru = page_lru_base_type(page);
466	del_page_from_lru_list(zone, page, lru + active);
467	ClearPageActive(page);
468	ClearPageReferenced(page);
469	add_page_to_lru_list(zone, page, lru);
470
471	if (PageWriteback(page) || PageDirty(page)) {
472		/*
473		 * PG_reclaim could be raced with end_page_writeback
474		 * It can make readahead confusing.  But race window
475		 * is _really_ small and  it's non-critical problem.
476		 */
477		SetPageReclaim(page);
478	} else {
479		/*
480		 * The page's writeback ends up during pagevec
481		 * We moves tha page into tail of inactive.
482		 */
483		list_move_tail(&page->lru, &zone->lru[lru].list);
484		mem_cgroup_rotate_reclaimable_page(page);
485		__count_vm_event(PGROTATED);
486	}
487
488	if (active)
489		__count_vm_event(PGDEACTIVATE);
490	update_page_reclaim_stat(zone, page, file, 0);
491}
492
493/*
494 * Drain pages out of the cpu's pagevecs.
495 * Either "cpu" is the current CPU, and preemption has already been
496 * disabled; or "cpu" is being hot-unplugged, and is already dead.
497 */
498static void drain_cpu_pagevecs(int cpu)
499{
500	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
501	struct pagevec *pvec;
502	int lru;
503
504	for_each_lru(lru) {
505		pvec = &pvecs[lru - LRU_BASE];
506		if (pagevec_count(pvec))
507			____pagevec_lru_add(pvec, lru);
508	}
509
510	pvec = &per_cpu(lru_rotate_pvecs, cpu);
511	if (pagevec_count(pvec)) {
512		unsigned long flags;
513
514		/* No harm done if a racing interrupt already did this */
515		local_irq_save(flags);
516		pagevec_move_tail(pvec);
517		local_irq_restore(flags);
518	}
519
520	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
521	if (pagevec_count(pvec))
522		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
523
524	activate_page_drain(cpu);
525}
526
527/**
528 * deactivate_page - forcefully deactivate a page
529 * @page: page to deactivate
530 *
531 * This function hints the VM that @page is a good reclaim candidate,
532 * for example if its invalidation fails due to the page being dirty
533 * or under writeback.
534 */
535void deactivate_page(struct page *page)
536{
537	/*
538	 * In a workload with many unevictable page such as mprotect, unevictable
539	 * page deactivation for accelerating reclaim is pointless.
540	 */
541	if (PageUnevictable(page))
542		return;
543
544	if (likely(get_page_unless_zero(page))) {
545		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
546
547		if (!pagevec_add(pvec, page))
548			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
549		put_cpu_var(lru_deactivate_pvecs);
550	}
551}
552
553void lru_add_drain(void)
554{
555	drain_cpu_pagevecs(get_cpu());
556	put_cpu();
557}
558
559static void lru_add_drain_per_cpu(struct work_struct *dummy)
560{
561	lru_add_drain();
562}
563
564/*
565 * Returns 0 for success
566 */
567int lru_add_drain_all(void)
568{
569	return schedule_on_each_cpu(lru_add_drain_per_cpu);
570}
571
572/*
573 * Batched page_cache_release().  Decrement the reference count on all the
574 * passed pages.  If it fell to zero then remove the page from the LRU and
575 * free it.
576 *
577 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
578 * for the remainder of the operation.
579 *
580 * The locking in this function is against shrink_inactive_list(): we recheck
581 * the page count inside the lock to see whether shrink_inactive_list()
582 * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
583 * will free it.
584 */
585void release_pages(struct page **pages, int nr, int cold)
586{
587	int i;
588	LIST_HEAD(pages_to_free);
589	struct zone *zone = NULL;
590	unsigned long uninitialized_var(flags);
591
592	for (i = 0; i < nr; i++) {
593		struct page *page = pages[i];
594
595		if (unlikely(PageCompound(page))) {
596			if (zone) {
597				spin_unlock_irqrestore(&zone->lru_lock, flags);
598				zone = NULL;
599			}
600			put_compound_page(page);
601			continue;
602		}
603
604		if (!put_page_testzero(page))
605			continue;
606
607		if (PageLRU(page)) {
608			struct zone *pagezone = page_zone(page);
609
610			if (pagezone != zone) {
611				if (zone)
612					spin_unlock_irqrestore(&zone->lru_lock,
613									flags);
614				zone = pagezone;
615				spin_lock_irqsave(&zone->lru_lock, flags);
616			}
617			VM_BUG_ON(!PageLRU(page));
618			__ClearPageLRU(page);
619			del_page_from_lru(zone, page);
620		}
621
622		list_add(&page->lru, &pages_to_free);
623	}
624	if (zone)
625		spin_unlock_irqrestore(&zone->lru_lock, flags);
626
627	free_hot_cold_page_list(&pages_to_free, cold);
628}
629EXPORT_SYMBOL(release_pages);
630
631/*
632 * The pages which we're about to release may be in the deferred lru-addition
633 * queues.  That would prevent them from really being freed right now.  That's
634 * OK from a correctness point of view but is inefficient - those pages may be
635 * cache-warm and we want to give them back to the page allocator ASAP.
636 *
637 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
638 * and __pagevec_lru_add_active() call release_pages() directly to avoid
639 * mutual recursion.
640 */
641void __pagevec_release(struct pagevec *pvec)
642{
643	lru_add_drain();
644	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
645	pagevec_reinit(pvec);
646}
647
648EXPORT_SYMBOL(__pagevec_release);
649
650/* used by __split_huge_page_refcount() */
651void lru_add_page_tail(struct zone* zone,
652		       struct page *page, struct page *page_tail)
653{
654	int active;
655	enum lru_list lru;
656	const int file = 0;
657	struct list_head *head;
658
659	VM_BUG_ON(!PageHead(page));
660	VM_BUG_ON(PageCompound(page_tail));
661	VM_BUG_ON(PageLRU(page_tail));
662	VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
663
664	SetPageLRU(page_tail);
665
666	if (page_evictable(page_tail, NULL)) {
667		if (PageActive(page)) {
668			SetPageActive(page_tail);
669			active = 1;
670			lru = LRU_ACTIVE_ANON;
671		} else {
672			active = 0;
673			lru = LRU_INACTIVE_ANON;
674		}
675		update_page_reclaim_stat(zone, page_tail, file, active);
676		if (likely(PageLRU(page)))
677			head = page->lru.prev;
678		else
679			head = &zone->lru[lru].list;
680		__add_page_to_lru_list(zone, page_tail, lru, head);
681	} else {
682		SetPageUnevictable(page_tail);
683		add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
684	}
685}
686
687static void ____pagevec_lru_add_fn(struct page *page, void *arg)
688{
689	enum lru_list lru = (enum lru_list)arg;
690	struct zone *zone = page_zone(page);
691	int file = is_file_lru(lru);
692	int active = is_active_lru(lru);
693
694	VM_BUG_ON(PageActive(page));
695	VM_BUG_ON(PageUnevictable(page));
696	VM_BUG_ON(PageLRU(page));
697
698	SetPageLRU(page);
699	if (active)
700		SetPageActive(page);
701	update_page_reclaim_stat(zone, page, file, active);
702	add_page_to_lru_list(zone, page, lru);
703}
704
705/*
706 * Add the passed pages to the LRU, then drop the caller's refcount
707 * on them.  Reinitialises the caller's pagevec.
708 */
709void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
710{
711	VM_BUG_ON(is_unevictable_lru(lru));
712
713	pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
714}
715
716EXPORT_SYMBOL(____pagevec_lru_add);
717
718/*
719 * Try to drop buffers from the pages in a pagevec
720 */
721void pagevec_strip(struct pagevec *pvec)
722{
723	int i;
724
725	for (i = 0; i < pagevec_count(pvec); i++) {
726		struct page *page = pvec->pages[i];
727
728		if (page_has_private(page) && trylock_page(page)) {
729			if (page_has_private(page))
730				try_to_release_page(page, 0);
731			unlock_page(page);
732		}
733	}
734}
735
736/**
737 * pagevec_lookup - gang pagecache lookup
738 * @pvec:	Where the resulting pages are placed
739 * @mapping:	The address_space to search
740 * @start:	The starting page index
741 * @nr_pages:	The maximum number of pages
742 *
743 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
744 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
745 * reference against the pages in @pvec.
746 *
747 * The search returns a group of mapping-contiguous pages with ascending
748 * indexes.  There may be holes in the indices due to not-present pages.
749 *
750 * pagevec_lookup() returns the number of pages which were found.
751 */
752unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
753		pgoff_t start, unsigned nr_pages)
754{
755	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
756	return pagevec_count(pvec);
757}
758
759EXPORT_SYMBOL(pagevec_lookup);
760
761unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
762		pgoff_t *index, int tag, unsigned nr_pages)
763{
764	pvec->nr = find_get_pages_tag(mapping, index, tag,
765					nr_pages, pvec->pages);
766	return pagevec_count(pvec);
767}
768
769EXPORT_SYMBOL(pagevec_lookup_tag);
770
771/*
772 * Perform any setup for the swap system
773 */
774void __init swap_setup(void)
775{
776	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
777
778#ifdef CONFIG_SWAP
779	bdi_init(swapper_space.backing_dev_info);
780#endif
781
782	/* Use a smaller cluster for small-memory machines */
783	if (megs < 16)
784		page_cluster = 2;
785	else
786		page_cluster = 3;
787	/*
788	 * Right now other parts of the system means that we
789	 * _really_ don't want to cluster much more
790	 */
791}
792