swap_state.c revision 1480a540c98525640174a7eadd712378fcd6fd63
1/*
2 *  linux/mm/swap_state.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
13#include <linux/init.h>
14#include <linux/pagemap.h>
15#include <linux/buffer_head.h>
16#include <linux/backing-dev.h>
17#include <linux/pagevec.h>
18
19#include <asm/pgtable.h>
20
21/*
22 * swapper_space is a fiction, retained to simplify the path through
23 * vmscan's shrink_list, to make sync_page look nicer, and to allow
24 * future use of radix_tree tags in the swap cache.
25 */
26static struct address_space_operations swap_aops = {
27	.writepage	= swap_writepage,
28	.sync_page	= block_sync_page,
29	.set_page_dirty	= __set_page_dirty_nobuffers,
30};
31
32static struct backing_dev_info swap_backing_dev_info = {
33	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
34	.unplug_io_fn	= swap_unplug_io_fn,
35};
36
37struct address_space swapper_space = {
38	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
39	.tree_lock	= RW_LOCK_UNLOCKED,
40	.a_ops		= &swap_aops,
41	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
42	.backing_dev_info = &swap_backing_dev_info,
43};
44
45#define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
46
47static struct {
48	unsigned long add_total;
49	unsigned long del_total;
50	unsigned long find_success;
51	unsigned long find_total;
52	unsigned long noent_race;
53	unsigned long exist_race;
54} swap_cache_info;
55
56void show_swap_cache_info(void)
57{
58	printk("Swap cache: add %lu, delete %lu, find %lu/%lu, race %lu+%lu\n",
59		swap_cache_info.add_total, swap_cache_info.del_total,
60		swap_cache_info.find_success, swap_cache_info.find_total,
61		swap_cache_info.noent_race, swap_cache_info.exist_race);
62	printk("Free swap  = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10));
63	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
64}
65
66/*
67 * __add_to_swap_cache resembles add_to_page_cache on swapper_space,
68 * but sets SwapCache flag and private instead of mapping and index.
69 */
70static int __add_to_swap_cache(struct page *page, swp_entry_t entry,
71			       gfp_t gfp_mask)
72{
73	int error;
74
75	BUG_ON(PageSwapCache(page));
76	BUG_ON(PagePrivate(page));
77	error = radix_tree_preload(gfp_mask);
78	if (!error) {
79		write_lock_irq(&swapper_space.tree_lock);
80		error = radix_tree_insert(&swapper_space.page_tree,
81						entry.val, page);
82		if (!error) {
83			page_cache_get(page);
84			SetPageLocked(page);
85			SetPageSwapCache(page);
86			set_page_private(page, entry.val);
87			total_swapcache_pages++;
88			pagecache_acct(1);
89		}
90		write_unlock_irq(&swapper_space.tree_lock);
91		radix_tree_preload_end();
92	}
93	return error;
94}
95
96static int add_to_swap_cache(struct page *page, swp_entry_t entry)
97{
98	int error;
99
100	if (!swap_duplicate(entry)) {
101		INC_CACHE_INFO(noent_race);
102		return -ENOENT;
103	}
104	error = __add_to_swap_cache(page, entry, GFP_KERNEL);
105	/*
106	 * Anon pages are already on the LRU, we don't run lru_cache_add here.
107	 */
108	if (error) {
109		swap_free(entry);
110		if (error == -EEXIST)
111			INC_CACHE_INFO(exist_race);
112		return error;
113	}
114	INC_CACHE_INFO(add_total);
115	return 0;
116}
117
118/*
119 * This must be called only on pages that have
120 * been verified to be in the swap cache.
121 */
122void __delete_from_swap_cache(struct page *page)
123{
124	BUG_ON(!PageLocked(page));
125	BUG_ON(!PageSwapCache(page));
126	BUG_ON(PageWriteback(page));
127	BUG_ON(PagePrivate(page));
128
129	radix_tree_delete(&swapper_space.page_tree, page_private(page));
130	set_page_private(page, 0);
131	ClearPageSwapCache(page);
132	total_swapcache_pages--;
133	pagecache_acct(-1);
134	INC_CACHE_INFO(del_total);
135}
136
137/**
138 * add_to_swap - allocate swap space for a page
139 * @page: page we want to move to swap
140 *
141 * Allocate swap space for the page and add the page to the
142 * swap cache.  Caller needs to hold the page lock.
143 */
144int add_to_swap(struct page * page, gfp_t gfp_mask)
145{
146	swp_entry_t entry;
147	int err;
148
149	if (!PageLocked(page))
150		BUG();
151
152	for (;;) {
153		entry = get_swap_page();
154		if (!entry.val)
155			return 0;
156
157		/*
158		 * Radix-tree node allocations from PF_MEMALLOC contexts could
159		 * completely exhaust the page allocator. __GFP_NOMEMALLOC
160		 * stops emergency reserves from being allocated.
161		 *
162		 * TODO: this could cause a theoretical memory reclaim
163		 * deadlock in the swap out path.
164		 */
165		/*
166		 * Add it to the swap cache and mark it dirty
167		 */
168		err = __add_to_swap_cache(page, entry,
169				gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN);
170
171		switch (err) {
172		case 0:				/* Success */
173			SetPageUptodate(page);
174			SetPageDirty(page);
175			INC_CACHE_INFO(add_total);
176			return 1;
177		case -EEXIST:
178			/* Raced with "speculative" read_swap_cache_async */
179			INC_CACHE_INFO(exist_race);
180			swap_free(entry);
181			continue;
182		default:
183			/* -ENOMEM radix-tree allocation failure */
184			swap_free(entry);
185			return 0;
186		}
187	}
188}
189
190/*
191 * This must be called only on pages that have
192 * been verified to be in the swap cache and locked.
193 * It will never put the page into the free list,
194 * the caller has a reference on the page.
195 */
196void delete_from_swap_cache(struct page *page)
197{
198	swp_entry_t entry;
199
200	entry.val = page_private(page);
201
202	write_lock_irq(&swapper_space.tree_lock);
203	__delete_from_swap_cache(page);
204	write_unlock_irq(&swapper_space.tree_lock);
205
206	swap_free(entry);
207	page_cache_release(page);
208}
209
210/*
211 * Strange swizzling function only for use by shmem_writepage
212 */
213int move_to_swap_cache(struct page *page, swp_entry_t entry)
214{
215	int err = __add_to_swap_cache(page, entry, GFP_ATOMIC);
216	if (!err) {
217		remove_from_page_cache(page);
218		page_cache_release(page);	/* pagecache ref */
219		if (!swap_duplicate(entry))
220			BUG();
221		SetPageDirty(page);
222		INC_CACHE_INFO(add_total);
223	} else if (err == -EEXIST)
224		INC_CACHE_INFO(exist_race);
225	return err;
226}
227
228/*
229 * Strange swizzling function for shmem_getpage (and shmem_unuse)
230 */
231int move_from_swap_cache(struct page *page, unsigned long index,
232		struct address_space *mapping)
233{
234	int err = add_to_page_cache(page, mapping, index, GFP_ATOMIC);
235	if (!err) {
236		delete_from_swap_cache(page);
237		/* shift page from clean_pages to dirty_pages list */
238		ClearPageDirty(page);
239		set_page_dirty(page);
240	}
241	return err;
242}
243
244/*
245 * If we are the only user, then try to free up the swap cache.
246 *
247 * Its ok to check for PageSwapCache without the page lock
248 * here because we are going to recheck again inside
249 * exclusive_swap_page() _with_ the lock.
250 * 					- Marcelo
251 */
252static inline void free_swap_cache(struct page *page)
253{
254	if (PageSwapCache(page) && !TestSetPageLocked(page)) {
255		remove_exclusive_swap_page(page);
256		unlock_page(page);
257	}
258}
259
260/*
261 * Perform a free_page(), also freeing any swap cache associated with
262 * this page if it is the last user of the page.
263 */
264void free_page_and_swap_cache(struct page *page)
265{
266	free_swap_cache(page);
267	page_cache_release(page);
268}
269
270/*
271 * Passed an array of pages, drop them all from swapcache and then release
272 * them.  They are removed from the LRU and freed if this is their last use.
273 */
274void free_pages_and_swap_cache(struct page **pages, int nr)
275{
276	struct page **pagep = pages;
277
278	lru_add_drain();
279	while (nr) {
280		int todo = min(nr, PAGEVEC_SIZE);
281		int i;
282
283		for (i = 0; i < todo; i++)
284			free_swap_cache(pagep[i]);
285		release_pages(pagep, todo, 0);
286		pagep += todo;
287		nr -= todo;
288	}
289}
290
291/*
292 * Lookup a swap entry in the swap cache. A found page will be returned
293 * unlocked and with its refcount incremented - we rely on the kernel
294 * lock getting page table operations atomic even if we drop the page
295 * lock before returning.
296 */
297struct page * lookup_swap_cache(swp_entry_t entry)
298{
299	struct page *page;
300
301	page = find_get_page(&swapper_space, entry.val);
302
303	if (page)
304		INC_CACHE_INFO(find_success);
305
306	INC_CACHE_INFO(find_total);
307	return page;
308}
309
310/*
311 * Locate a page of swap in physical memory, reserving swap cache space
312 * and reading the disk if it is not already cached.
313 * A failure return means that either the page allocation failed or that
314 * the swap entry is no longer in use.
315 */
316struct page *read_swap_cache_async(swp_entry_t entry,
317			struct vm_area_struct *vma, unsigned long addr)
318{
319	struct page *found_page, *new_page = NULL;
320	int err;
321
322	do {
323		/*
324		 * First check the swap cache.  Since this is normally
325		 * called after lookup_swap_cache() failed, re-calling
326		 * that would confuse statistics.
327		 */
328		found_page = find_get_page(&swapper_space, entry.val);
329		if (found_page)
330			break;
331
332		/*
333		 * Get a new page to read into from swap.
334		 */
335		if (!new_page) {
336			new_page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
337			if (!new_page)
338				break;		/* Out of memory */
339		}
340
341		/*
342		 * Associate the page with swap entry in the swap cache.
343		 * May fail (-ENOENT) if swap entry has been freed since
344		 * our caller observed it.  May fail (-EEXIST) if there
345		 * is already a page associated with this entry in the
346		 * swap cache: added by a racing read_swap_cache_async,
347		 * or by try_to_swap_out (or shmem_writepage) re-using
348		 * the just freed swap entry for an existing page.
349		 * May fail (-ENOMEM) if radix-tree node allocation failed.
350		 */
351		err = add_to_swap_cache(new_page, entry);
352		if (!err) {
353			/*
354			 * Initiate read into locked page and return.
355			 */
356			lru_cache_add_active(new_page);
357			swap_readpage(NULL, new_page);
358			return new_page;
359		}
360	} while (err != -ENOENT && err != -ENOMEM);
361
362	if (new_page)
363		page_cache_release(new_page);
364	return found_page;
365}
366