swap_state.c revision 4f98a2fee8acdb4ac84545df98cccecfd130f8db
1/*
2 *  linux/mm/swap_state.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
13#include <linux/swapops.h>
14#include <linux/init.h>
15#include <linux/pagemap.h>
16#include <linux/buffer_head.h>
17#include <linux/backing-dev.h>
18#include <linux/pagevec.h>
19#include <linux/migrate.h>
20
21#include <asm/pgtable.h>
22
23/*
24 * swapper_space is a fiction, retained to simplify the path through
25 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
26 * future use of radix_tree tags in the swap cache.
27 */
28static const struct address_space_operations swap_aops = {
29	.writepage	= swap_writepage,
30	.sync_page	= block_sync_page,
31	.set_page_dirty	= __set_page_dirty_nobuffers,
32	.migratepage	= migrate_page,
33};
34
35static struct backing_dev_info swap_backing_dev_info = {
36	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
37	.unplug_io_fn	= swap_unplug_io_fn,
38};
39
40struct address_space swapper_space = {
41	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
42	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
43	.a_ops		= &swap_aops,
44	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
45	.backing_dev_info = &swap_backing_dev_info,
46};
47
48#define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
49
50static struct {
51	unsigned long add_total;
52	unsigned long del_total;
53	unsigned long find_success;
54	unsigned long find_total;
55} swap_cache_info;
56
57void show_swap_cache_info(void)
58{
59	printk("%lu pages in swap cache\n", total_swapcache_pages);
60	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
61		swap_cache_info.add_total, swap_cache_info.del_total,
62		swap_cache_info.find_success, swap_cache_info.find_total);
63	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
64	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
65}
66
67/*
68 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
69 * but sets SwapCache flag and private instead of mapping and index.
70 */
71int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
72{
73	int error;
74
75	BUG_ON(!PageLocked(page));
76	BUG_ON(PageSwapCache(page));
77	BUG_ON(PagePrivate(page));
78	BUG_ON(!PageSwapBacked(page));
79	error = radix_tree_preload(gfp_mask);
80	if (!error) {
81		page_cache_get(page);
82		SetPageSwapCache(page);
83		set_page_private(page, entry.val);
84
85		spin_lock_irq(&swapper_space.tree_lock);
86		error = radix_tree_insert(&swapper_space.page_tree,
87						entry.val, page);
88		if (likely(!error)) {
89			total_swapcache_pages++;
90			__inc_zone_page_state(page, NR_FILE_PAGES);
91			INC_CACHE_INFO(add_total);
92		}
93		spin_unlock_irq(&swapper_space.tree_lock);
94		radix_tree_preload_end();
95
96		if (unlikely(error)) {
97			set_page_private(page, 0UL);
98			ClearPageSwapCache(page);
99			page_cache_release(page);
100		}
101	}
102	return error;
103}
104
105/*
106 * This must be called only on pages that have
107 * been verified to be in the swap cache.
108 */
109void __delete_from_swap_cache(struct page *page)
110{
111	BUG_ON(!PageLocked(page));
112	BUG_ON(!PageSwapCache(page));
113	BUG_ON(PageWriteback(page));
114	BUG_ON(PagePrivate(page));
115
116	radix_tree_delete(&swapper_space.page_tree, page_private(page));
117	set_page_private(page, 0);
118	ClearPageSwapCache(page);
119	total_swapcache_pages--;
120	__dec_zone_page_state(page, NR_FILE_PAGES);
121	INC_CACHE_INFO(del_total);
122}
123
124/**
125 * add_to_swap - allocate swap space for a page
126 * @page: page we want to move to swap
127 * @gfp_mask: memory allocation flags
128 *
129 * Allocate swap space for the page and add the page to the
130 * swap cache.  Caller needs to hold the page lock.
131 */
132int add_to_swap(struct page * page, gfp_t gfp_mask)
133{
134	swp_entry_t entry;
135	int err;
136
137	BUG_ON(!PageLocked(page));
138	BUG_ON(!PageUptodate(page));
139
140	for (;;) {
141		entry = get_swap_page();
142		if (!entry.val)
143			return 0;
144
145		/*
146		 * Radix-tree node allocations from PF_MEMALLOC contexts could
147		 * completely exhaust the page allocator. __GFP_NOMEMALLOC
148		 * stops emergency reserves from being allocated.
149		 *
150		 * TODO: this could cause a theoretical memory reclaim
151		 * deadlock in the swap out path.
152		 */
153		/*
154		 * Add it to the swap cache and mark it dirty
155		 */
156		err = add_to_swap_cache(page, entry,
157				gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN);
158
159		switch (err) {
160		case 0:				/* Success */
161			SetPageDirty(page);
162			return 1;
163		case -EEXIST:
164			/* Raced with "speculative" read_swap_cache_async */
165			swap_free(entry);
166			continue;
167		default:
168			/* -ENOMEM radix-tree allocation failure */
169			swap_free(entry);
170			return 0;
171		}
172	}
173}
174
175/*
176 * This must be called only on pages that have
177 * been verified to be in the swap cache and locked.
178 * It will never put the page into the free list,
179 * the caller has a reference on the page.
180 */
181void delete_from_swap_cache(struct page *page)
182{
183	swp_entry_t entry;
184
185	entry.val = page_private(page);
186
187	spin_lock_irq(&swapper_space.tree_lock);
188	__delete_from_swap_cache(page);
189	spin_unlock_irq(&swapper_space.tree_lock);
190
191	swap_free(entry);
192	page_cache_release(page);
193}
194
195/*
196 * If we are the only user, then try to free up the swap cache.
197 *
198 * Its ok to check for PageSwapCache without the page lock
199 * here because we are going to recheck again inside
200 * exclusive_swap_page() _with_ the lock.
201 * 					- Marcelo
202 */
203static inline void free_swap_cache(struct page *page)
204{
205	if (PageSwapCache(page) && trylock_page(page)) {
206		remove_exclusive_swap_page(page);
207		unlock_page(page);
208	}
209}
210
211/*
212 * Perform a free_page(), also freeing any swap cache associated with
213 * this page if it is the last user of the page.
214 */
215void free_page_and_swap_cache(struct page *page)
216{
217	free_swap_cache(page);
218	page_cache_release(page);
219}
220
221/*
222 * Passed an array of pages, drop them all from swapcache and then release
223 * them.  They are removed from the LRU and freed if this is their last use.
224 */
225void free_pages_and_swap_cache(struct page **pages, int nr)
226{
227	struct page **pagep = pages;
228
229	lru_add_drain();
230	while (nr) {
231		int todo = min(nr, PAGEVEC_SIZE);
232		int i;
233
234		for (i = 0; i < todo; i++)
235			free_swap_cache(pagep[i]);
236		release_pages(pagep, todo, 0);
237		pagep += todo;
238		nr -= todo;
239	}
240}
241
242/*
243 * Lookup a swap entry in the swap cache. A found page will be returned
244 * unlocked and with its refcount incremented - we rely on the kernel
245 * lock getting page table operations atomic even if we drop the page
246 * lock before returning.
247 */
248struct page * lookup_swap_cache(swp_entry_t entry)
249{
250	struct page *page;
251
252	page = find_get_page(&swapper_space, entry.val);
253
254	if (page)
255		INC_CACHE_INFO(find_success);
256
257	INC_CACHE_INFO(find_total);
258	return page;
259}
260
261/*
262 * Locate a page of swap in physical memory, reserving swap cache space
263 * and reading the disk if it is not already cached.
264 * A failure return means that either the page allocation failed or that
265 * the swap entry is no longer in use.
266 */
267struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
268			struct vm_area_struct *vma, unsigned long addr)
269{
270	struct page *found_page, *new_page = NULL;
271	int err;
272
273	do {
274		/*
275		 * First check the swap cache.  Since this is normally
276		 * called after lookup_swap_cache() failed, re-calling
277		 * that would confuse statistics.
278		 */
279		found_page = find_get_page(&swapper_space, entry.val);
280		if (found_page)
281			break;
282
283		/*
284		 * Get a new page to read into from swap.
285		 */
286		if (!new_page) {
287			new_page = alloc_page_vma(gfp_mask, vma, addr);
288			if (!new_page)
289				break;		/* Out of memory */
290		}
291
292		/*
293		 * Swap entry may have been freed since our caller observed it.
294		 */
295		if (!swap_duplicate(entry))
296			break;
297
298		/*
299		 * Associate the page with swap entry in the swap cache.
300		 * May fail (-EEXIST) if there is already a page associated
301		 * with this entry in the swap cache: added by a racing
302		 * read_swap_cache_async, or add_to_swap or shmem_writepage
303		 * re-using the just freed swap entry for an existing page.
304		 * May fail (-ENOMEM) if radix-tree node allocation failed.
305		 */
306		set_page_locked(new_page);
307		SetPageSwapBacked(new_page);
308		err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
309		if (likely(!err)) {
310			/*
311			 * Initiate read into locked page and return.
312			 */
313			lru_cache_add_active_anon(new_page);
314			swap_readpage(NULL, new_page);
315			return new_page;
316		}
317		ClearPageSwapBacked(new_page);
318		clear_page_locked(new_page);
319		swap_free(entry);
320	} while (err != -ENOMEM);
321
322	if (new_page)
323		page_cache_release(new_page);
324	return found_page;
325}
326
327/**
328 * swapin_readahead - swap in pages in hope we need them soon
329 * @entry: swap entry of this memory
330 * @gfp_mask: memory allocation flags
331 * @vma: user vma this address belongs to
332 * @addr: target address for mempolicy
333 *
334 * Returns the struct page for entry and addr, after queueing swapin.
335 *
336 * Primitive swap readahead code. We simply read an aligned block of
337 * (1 << page_cluster) entries in the swap area. This method is chosen
338 * because it doesn't cost us any seek time.  We also make sure to queue
339 * the 'original' request together with the readahead ones...
340 *
341 * This has been extended to use the NUMA policies from the mm triggering
342 * the readahead.
343 *
344 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
345 */
346struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
347			struct vm_area_struct *vma, unsigned long addr)
348{
349	int nr_pages;
350	struct page *page;
351	unsigned long offset;
352	unsigned long end_offset;
353
354	/*
355	 * Get starting offset for readaround, and number of pages to read.
356	 * Adjust starting address by readbehind (for NUMA interleave case)?
357	 * No, it's very unlikely that swap layout would follow vma layout,
358	 * more likely that neighbouring swap pages came from the same node:
359	 * so use the same "addr" to choose the same node for each swap read.
360	 */
361	nr_pages = valid_swaphandles(entry, &offset);
362	for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
363		/* Ok, do the async read-ahead now */
364		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
365						gfp_mask, vma, addr);
366		if (!page)
367			break;
368		page_cache_release(page);
369	}
370	lru_add_drain();	/* Push any new pages onto the LRU now */
371	return read_swap_cache_async(entry, gfp_mask, vma, addr);
372}
373