swap_state.c revision aca8bf323edd31ad462dc98c107c23a5c6022ca2
1/*
2 *  linux/mm/swap_state.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
13#include <linux/swapops.h>
14#include <linux/init.h>
15#include <linux/pagemap.h>
16#include <linux/buffer_head.h>
17#include <linux/backing-dev.h>
18#include <linux/pagevec.h>
19#include <linux/migrate.h>
20#include <linux/page_cgroup.h>
21
22#include <asm/pgtable.h>
23
24/*
25 * swapper_space is a fiction, retained to simplify the path through
26 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
27 * future use of radix_tree tags in the swap cache.
28 */
29static const struct address_space_operations swap_aops = {
30	.writepage	= swap_writepage,
31	.sync_page	= block_sync_page,
32	.set_page_dirty	= __set_page_dirty_nobuffers,
33	.migratepage	= migrate_page,
34};
35
36static struct backing_dev_info swap_backing_dev_info = {
37	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
38	.unplug_io_fn	= swap_unplug_io_fn,
39};
40
41struct address_space swapper_space = {
42	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
43	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
44	.a_ops		= &swap_aops,
45	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
46	.backing_dev_info = &swap_backing_dev_info,
47};
48
49#define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
50
51static struct {
52	unsigned long add_total;
53	unsigned long del_total;
54	unsigned long find_success;
55	unsigned long find_total;
56} swap_cache_info;
57
58void show_swap_cache_info(void)
59{
60	printk("%lu pages in swap cache\n", total_swapcache_pages);
61	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
62		swap_cache_info.add_total, swap_cache_info.del_total,
63		swap_cache_info.find_success, swap_cache_info.find_total);
64	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
65	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
66}
67
68/*
69 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
70 * but sets SwapCache flag and private instead of mapping and index.
71 */
72int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
73{
74	int error;
75
76	VM_BUG_ON(!PageLocked(page));
77	VM_BUG_ON(PageSwapCache(page));
78	VM_BUG_ON(!PageSwapBacked(page));
79
80	error = radix_tree_preload(gfp_mask);
81	if (!error) {
82		page_cache_get(page);
83		SetPageSwapCache(page);
84		set_page_private(page, entry.val);
85
86		spin_lock_irq(&swapper_space.tree_lock);
87		error = radix_tree_insert(&swapper_space.page_tree,
88						entry.val, page);
89		if (likely(!error)) {
90			total_swapcache_pages++;
91			__inc_zone_page_state(page, NR_FILE_PAGES);
92			INC_CACHE_INFO(add_total);
93		}
94		spin_unlock_irq(&swapper_space.tree_lock);
95		radix_tree_preload_end();
96
97		if (unlikely(error)) {
98			set_page_private(page, 0UL);
99			ClearPageSwapCache(page);
100			page_cache_release(page);
101		}
102	}
103	return error;
104}
105
106/*
107 * This must be called only on pages that have
108 * been verified to be in the swap cache.
109 */
110void __delete_from_swap_cache(struct page *page)
111{
112	VM_BUG_ON(!PageLocked(page));
113	VM_BUG_ON(!PageSwapCache(page));
114	VM_BUG_ON(PageWriteback(page));
115
116	radix_tree_delete(&swapper_space.page_tree, page_private(page));
117	set_page_private(page, 0);
118	ClearPageSwapCache(page);
119	total_swapcache_pages--;
120	__dec_zone_page_state(page, NR_FILE_PAGES);
121	INC_CACHE_INFO(del_total);
122}
123
124/**
125 * add_to_swap - allocate swap space for a page
126 * @page: page we want to move to swap
127 *
128 * Allocate swap space for the page and add the page to the
129 * swap cache.  Caller needs to hold the page lock.
130 */
131int add_to_swap(struct page *page)
132{
133	swp_entry_t entry;
134	int err;
135
136	VM_BUG_ON(!PageLocked(page));
137	VM_BUG_ON(!PageUptodate(page));
138
139	for (;;) {
140		entry = get_swap_page();
141		if (!entry.val)
142			return 0;
143
144		/*
145		 * Radix-tree node allocations from PF_MEMALLOC contexts could
146		 * completely exhaust the page allocator. __GFP_NOMEMALLOC
147		 * stops emergency reserves from being allocated.
148		 *
149		 * TODO: this could cause a theoretical memory reclaim
150		 * deadlock in the swap out path.
151		 */
152		/*
153		 * Add it to the swap cache and mark it dirty
154		 */
155		err = add_to_swap_cache(page, entry,
156				__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
157
158		switch (err) {
159		case 0:				/* Success */
160			SetPageDirty(page);
161			return 1;
162		case -EEXIST:
163			/* Raced with "speculative" read_swap_cache_async */
164			swapcache_free(entry, NULL);
165			continue;
166		default:
167			/* -ENOMEM radix-tree allocation failure */
168			swapcache_free(entry, NULL);
169			return 0;
170		}
171	}
172}
173
174/*
175 * This must be called only on pages that have
176 * been verified to be in the swap cache and locked.
177 * It will never put the page into the free list,
178 * the caller has a reference on the page.
179 */
180void delete_from_swap_cache(struct page *page)
181{
182	swp_entry_t entry;
183
184	entry.val = page_private(page);
185
186	spin_lock_irq(&swapper_space.tree_lock);
187	__delete_from_swap_cache(page);
188	spin_unlock_irq(&swapper_space.tree_lock);
189
190	swapcache_free(entry, page);
191	page_cache_release(page);
192}
193
194/*
195 * If we are the only user, then try to free up the swap cache.
196 *
197 * Its ok to check for PageSwapCache without the page lock
198 * here because we are going to recheck again inside
199 * try_to_free_swap() _with_ the lock.
200 * 					- Marcelo
201 */
202static inline void free_swap_cache(struct page *page)
203{
204	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
205		try_to_free_swap(page);
206		unlock_page(page);
207	}
208}
209
210/*
211 * Perform a free_page(), also freeing any swap cache associated with
212 * this page if it is the last user of the page.
213 */
214void free_page_and_swap_cache(struct page *page)
215{
216	free_swap_cache(page);
217	page_cache_release(page);
218}
219
220/*
221 * Passed an array of pages, drop them all from swapcache and then release
222 * them.  They are removed from the LRU and freed if this is their last use.
223 */
224void free_pages_and_swap_cache(struct page **pages, int nr)
225{
226	struct page **pagep = pages;
227
228	lru_add_drain();
229	while (nr) {
230		int todo = min(nr, PAGEVEC_SIZE);
231		int i;
232
233		for (i = 0; i < todo; i++)
234			free_swap_cache(pagep[i]);
235		release_pages(pagep, todo, 0);
236		pagep += todo;
237		nr -= todo;
238	}
239}
240
241/*
242 * Lookup a swap entry in the swap cache. A found page will be returned
243 * unlocked and with its refcount incremented - we rely on the kernel
244 * lock getting page table operations atomic even if we drop the page
245 * lock before returning.
246 */
247struct page * lookup_swap_cache(swp_entry_t entry)
248{
249	struct page *page;
250
251	page = find_get_page(&swapper_space, entry.val);
252
253	if (page)
254		INC_CACHE_INFO(find_success);
255
256	INC_CACHE_INFO(find_total);
257	return page;
258}
259
260/*
261 * Locate a page of swap in physical memory, reserving swap cache space
262 * and reading the disk if it is not already cached.
263 * A failure return means that either the page allocation failed or that
264 * the swap entry is no longer in use.
265 */
266struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
267			struct vm_area_struct *vma, unsigned long addr)
268{
269	struct page *found_page, *new_page = NULL;
270	int err;
271
272	do {
273		/*
274		 * First check the swap cache.  Since this is normally
275		 * called after lookup_swap_cache() failed, re-calling
276		 * that would confuse statistics.
277		 */
278		found_page = find_get_page(&swapper_space, entry.val);
279		if (found_page)
280			break;
281
282		/*
283		 * Get a new page to read into from swap.
284		 */
285		if (!new_page) {
286			new_page = alloc_page_vma(gfp_mask, vma, addr);
287			if (!new_page)
288				break;		/* Out of memory */
289		}
290
291		/*
292		 * Swap entry may have been freed since our caller observed it.
293		 */
294		err = swapcache_prepare(entry);
295		if (err == -EEXIST) /* seems racy */
296			continue;
297		if (err)           /* swp entry is obsolete ? */
298			break;
299
300		/*
301		 * Associate the page with swap entry in the swap cache.
302		 * May fail (-EEXIST) if there is already a page associated
303		 * with this entry in the swap cache: added by a racing
304		 * read_swap_cache_async, or add_to_swap or shmem_writepage
305		 * re-using the just freed swap entry for an existing page.
306		 * May fail (-ENOMEM) if radix-tree node allocation failed.
307		 */
308		__set_page_locked(new_page);
309		SetPageSwapBacked(new_page);
310		err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
311		if (likely(!err)) {
312			/*
313			 * Initiate read into locked page and return.
314			 */
315			lru_cache_add_anon(new_page);
316			swap_readpage(new_page);
317			return new_page;
318		}
319		ClearPageSwapBacked(new_page);
320		__clear_page_locked(new_page);
321		swapcache_free(entry, NULL);
322	} while (err != -ENOMEM);
323
324	if (new_page)
325		page_cache_release(new_page);
326	return found_page;
327}
328
329/**
330 * swapin_readahead - swap in pages in hope we need them soon
331 * @entry: swap entry of this memory
332 * @gfp_mask: memory allocation flags
333 * @vma: user vma this address belongs to
334 * @addr: target address for mempolicy
335 *
336 * Returns the struct page for entry and addr, after queueing swapin.
337 *
338 * Primitive swap readahead code. We simply read an aligned block of
339 * (1 << page_cluster) entries in the swap area. This method is chosen
340 * because it doesn't cost us any seek time.  We also make sure to queue
341 * the 'original' request together with the readahead ones...
342 *
343 * This has been extended to use the NUMA policies from the mm triggering
344 * the readahead.
345 *
346 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
347 */
348struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
349			struct vm_area_struct *vma, unsigned long addr)
350{
351	int nr_pages;
352	struct page *page;
353	unsigned long offset;
354	unsigned long end_offset;
355
356	/*
357	 * Get starting offset for readaround, and number of pages to read.
358	 * Adjust starting address by readbehind (for NUMA interleave case)?
359	 * No, it's very unlikely that swap layout would follow vma layout,
360	 * more likely that neighbouring swap pages came from the same node:
361	 * so use the same "addr" to choose the same node for each swap read.
362	 */
363	nr_pages = valid_swaphandles(entry, &offset);
364	for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
365		/* Ok, do the async read-ahead now */
366		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
367						gfp_mask, vma, addr);
368		if (!page)
369			break;
370		page_cache_release(page);
371	}
372	lru_add_drain();	/* Push any new pages onto the LRU now */
373	return read_swap_cache_async(entry, gfp_mask, vma, addr);
374}
375