swap_state.c revision e25934a51772f47edd94d7b7d08b0e167769639c
1/*
2 *  linux/mm/swap_state.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9#include <linux/mm.h>
10#include <linux/gfp.h>
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
13#include <linux/swapops.h>
14#include <linux/init.h>
15#include <linux/pagemap.h>
16#include <linux/buffer_head.h>
17#include <linux/backing-dev.h>
18#include <linux/pagevec.h>
19#include <linux/migrate.h>
20#include <linux/page_cgroup.h>
21
22#include <asm/pgtable.h>
23
24/*
25 * swapper_space is a fiction, retained to simplify the path through
26 * vmscan's shrink_page_list.
27 */
28static const struct address_space_operations swap_aops = {
29	.writepage	= swap_writepage,
30	.set_page_dirty	= __set_page_dirty_nobuffers,
31	.migratepage	= migrate_page,
32};
33
34static struct backing_dev_info swap_backing_dev_info = {
35	.name		= "swap",
36	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
37};
38
39struct address_space swapper_space = {
40	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
41	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
42	.a_ops		= &swap_aops,
43	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
44	.backing_dev_info = &swap_backing_dev_info,
45};
46
47#define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
48
49static struct {
50	unsigned long add_total;
51	unsigned long del_total;
52	unsigned long find_success;
53	unsigned long find_total;
54} swap_cache_info;
55
56void show_swap_cache_info(void)
57{
58	printk("%lu pages in swap cache\n", total_swapcache_pages);
59	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
60		swap_cache_info.add_total, swap_cache_info.del_total,
61		swap_cache_info.find_success, swap_cache_info.find_total);
62	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
63	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
64}
65
66/*
67 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
68 * but sets SwapCache flag and private instead of mapping and index.
69 */
70static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
71{
72	int error;
73
74	VM_BUG_ON(!PageLocked(page));
75	VM_BUG_ON(PageSwapCache(page));
76	VM_BUG_ON(!PageSwapBacked(page));
77
78	page_cache_get(page);
79	SetPageSwapCache(page);
80	set_page_private(page, entry.val);
81
82	spin_lock_irq(&swapper_space.tree_lock);
83	error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
84	if (likely(!error)) {
85		total_swapcache_pages++;
86		__inc_zone_page_state(page, NR_FILE_PAGES);
87		INC_CACHE_INFO(add_total);
88	}
89	spin_unlock_irq(&swapper_space.tree_lock);
90
91	if (unlikely(error)) {
92		/*
93		 * Only the context which have set SWAP_HAS_CACHE flag
94		 * would call add_to_swap_cache().
95		 * So add_to_swap_cache() doesn't returns -EEXIST.
96		 */
97		VM_BUG_ON(error == -EEXIST);
98		set_page_private(page, 0UL);
99		ClearPageSwapCache(page);
100		page_cache_release(page);
101	}
102
103	return error;
104}
105
106
107int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
108{
109	int error;
110
111	error = radix_tree_preload(gfp_mask);
112	if (!error) {
113		error = __add_to_swap_cache(page, entry);
114		radix_tree_preload_end();
115	}
116	return error;
117}
118
119/*
120 * This must be called only on pages that have
121 * been verified to be in the swap cache.
122 */
123void __delete_from_swap_cache(struct page *page)
124{
125	VM_BUG_ON(!PageLocked(page));
126	VM_BUG_ON(!PageSwapCache(page));
127	VM_BUG_ON(PageWriteback(page));
128
129	radix_tree_delete(&swapper_space.page_tree, page_private(page));
130	set_page_private(page, 0);
131	ClearPageSwapCache(page);
132	total_swapcache_pages--;
133	__dec_zone_page_state(page, NR_FILE_PAGES);
134	INC_CACHE_INFO(del_total);
135}
136
137/**
138 * add_to_swap - allocate swap space for a page
139 * @page: page we want to move to swap
140 *
141 * Allocate swap space for the page and add the page to the
142 * swap cache.  Caller needs to hold the page lock.
143 */
144int add_to_swap(struct page *page)
145{
146	swp_entry_t entry;
147	int err;
148
149	VM_BUG_ON(!PageLocked(page));
150	VM_BUG_ON(!PageUptodate(page));
151
152	entry = get_swap_page();
153	if (!entry.val)
154		return 0;
155
156	if (unlikely(PageTransHuge(page)))
157		if (unlikely(split_huge_page(page))) {
158			swapcache_free(entry, NULL);
159			return 0;
160		}
161
162	/*
163	 * Radix-tree node allocations from PF_MEMALLOC contexts could
164	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
165	 * stops emergency reserves from being allocated.
166	 *
167	 * TODO: this could cause a theoretical memory reclaim
168	 * deadlock in the swap out path.
169	 */
170	/*
171	 * Add it to the swap cache and mark it dirty
172	 */
173	err = add_to_swap_cache(page, entry,
174			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
175
176	if (!err) {	/* Success */
177		SetPageDirty(page);
178		return 1;
179	} else {	/* -ENOMEM radix-tree allocation failure */
180		/*
181		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
182		 * clear SWAP_HAS_CACHE flag.
183		 */
184		swapcache_free(entry, NULL);
185		return 0;
186	}
187}
188
189/*
190 * This must be called only on pages that have
191 * been verified to be in the swap cache and locked.
192 * It will never put the page into the free list,
193 * the caller has a reference on the page.
194 */
195void delete_from_swap_cache(struct page *page)
196{
197	swp_entry_t entry;
198
199	entry.val = page_private(page);
200
201	spin_lock_irq(&swapper_space.tree_lock);
202	__delete_from_swap_cache(page);
203	spin_unlock_irq(&swapper_space.tree_lock);
204
205	swapcache_free(entry, page);
206	page_cache_release(page);
207}
208
209/*
210 * If we are the only user, then try to free up the swap cache.
211 *
212 * Its ok to check for PageSwapCache without the page lock
213 * here because we are going to recheck again inside
214 * try_to_free_swap() _with_ the lock.
215 * 					- Marcelo
216 */
217static inline void free_swap_cache(struct page *page)
218{
219	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
220		try_to_free_swap(page);
221		unlock_page(page);
222	}
223}
224
225/*
226 * Perform a free_page(), also freeing any swap cache associated with
227 * this page if it is the last user of the page.
228 */
229void free_page_and_swap_cache(struct page *page)
230{
231	free_swap_cache(page);
232	page_cache_release(page);
233}
234
235/*
236 * Passed an array of pages, drop them all from swapcache and then release
237 * them.  They are removed from the LRU and freed if this is their last use.
238 */
239void free_pages_and_swap_cache(struct page **pages, int nr)
240{
241	struct page **pagep = pages;
242
243	lru_add_drain();
244	while (nr) {
245		int todo = min(nr, PAGEVEC_SIZE);
246		int i;
247
248		for (i = 0; i < todo; i++)
249			free_swap_cache(pagep[i]);
250		release_pages(pagep, todo, 0);
251		pagep += todo;
252		nr -= todo;
253	}
254}
255
256/*
257 * Lookup a swap entry in the swap cache. A found page will be returned
258 * unlocked and with its refcount incremented - we rely on the kernel
259 * lock getting page table operations atomic even if we drop the page
260 * lock before returning.
261 */
262struct page * lookup_swap_cache(swp_entry_t entry)
263{
264	struct page *page;
265
266	page = find_get_page(&swapper_space, entry.val);
267
268	if (page)
269		INC_CACHE_INFO(find_success);
270
271	INC_CACHE_INFO(find_total);
272	return page;
273}
274
275/*
276 * Locate a page of swap in physical memory, reserving swap cache space
277 * and reading the disk if it is not already cached.
278 * A failure return means that either the page allocation failed or that
279 * the swap entry is no longer in use.
280 */
281struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
282			struct vm_area_struct *vma, unsigned long addr)
283{
284	struct page *found_page, *new_page = NULL;
285	int err;
286
287	do {
288		/*
289		 * First check the swap cache.  Since this is normally
290		 * called after lookup_swap_cache() failed, re-calling
291		 * that would confuse statistics.
292		 */
293		found_page = find_get_page(&swapper_space, entry.val);
294		if (found_page)
295			break;
296
297		/*
298		 * Get a new page to read into from swap.
299		 */
300		if (!new_page) {
301			new_page = alloc_page_vma(gfp_mask, vma, addr);
302			if (!new_page)
303				break;		/* Out of memory */
304		}
305
306		/*
307		 * call radix_tree_preload() while we can wait.
308		 */
309		err = radix_tree_preload(gfp_mask & GFP_KERNEL);
310		if (err)
311			break;
312
313		/*
314		 * Swap entry may have been freed since our caller observed it.
315		 */
316		err = swapcache_prepare(entry);
317		if (err == -EEXIST) {	/* seems racy */
318			radix_tree_preload_end();
319			continue;
320		}
321		if (err) {		/* swp entry is obsolete ? */
322			radix_tree_preload_end();
323			break;
324		}
325
326		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
327		__set_page_locked(new_page);
328		SetPageSwapBacked(new_page);
329		err = __add_to_swap_cache(new_page, entry);
330		if (likely(!err)) {
331			radix_tree_preload_end();
332			/*
333			 * Initiate read into locked page and return.
334			 */
335			lru_cache_add_anon(new_page);
336			swap_readpage(new_page);
337			return new_page;
338		}
339		radix_tree_preload_end();
340		ClearPageSwapBacked(new_page);
341		__clear_page_locked(new_page);
342		/*
343		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
344		 * clear SWAP_HAS_CACHE flag.
345		 */
346		swapcache_free(entry, NULL);
347	} while (err != -ENOMEM);
348
349	if (new_page)
350		page_cache_release(new_page);
351	return found_page;
352}
353
354/**
355 * swapin_readahead - swap in pages in hope we need them soon
356 * @entry: swap entry of this memory
357 * @gfp_mask: memory allocation flags
358 * @vma: user vma this address belongs to
359 * @addr: target address for mempolicy
360 *
361 * Returns the struct page for entry and addr, after queueing swapin.
362 *
363 * Primitive swap readahead code. We simply read an aligned block of
364 * (1 << page_cluster) entries in the swap area. This method is chosen
365 * because it doesn't cost us any seek time.  We also make sure to queue
366 * the 'original' request together with the readahead ones...
367 *
368 * This has been extended to use the NUMA policies from the mm triggering
369 * the readahead.
370 *
371 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
372 */
373struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
374			struct vm_area_struct *vma, unsigned long addr)
375{
376	int nr_pages;
377	struct page *page;
378	unsigned long offset;
379	unsigned long end_offset;
380
381	/*
382	 * Get starting offset for readaround, and number of pages to read.
383	 * Adjust starting address by readbehind (for NUMA interleave case)?
384	 * No, it's very unlikely that swap layout would follow vma layout,
385	 * more likely that neighbouring swap pages came from the same node:
386	 * so use the same "addr" to choose the same node for each swap read.
387	 */
388	nr_pages = valid_swaphandles(entry, &offset);
389	for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
390		/* Ok, do the async read-ahead now */
391		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
392						gfp_mask, vma, addr);
393		if (!page)
394			break;
395		page_cache_release(page);
396	}
397	lru_add_drain();	/* Push any new pages onto the LRU now */
398	return read_swap_cache_async(entry, gfp_mask, vma, addr);
399}
400