swap_state.c revision e767e0561d7fd2333df1921f1ab4176211f9036b
1/*
2 *  linux/mm/swap_state.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
13#include <linux/swapops.h>
14#include <linux/init.h>
15#include <linux/pagemap.h>
16#include <linux/buffer_head.h>
17#include <linux/backing-dev.h>
18#include <linux/pagevec.h>
19#include <linux/migrate.h>
20#include <linux/page_cgroup.h>
21
22#include <asm/pgtable.h>
23
24/*
25 * swapper_space is a fiction, retained to simplify the path through
26 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
27 * future use of radix_tree tags in the swap cache.
28 */
29static const struct address_space_operations swap_aops = {
30	.writepage	= swap_writepage,
31	.sync_page	= block_sync_page,
32	.set_page_dirty	= __set_page_dirty_nobuffers,
33	.migratepage	= migrate_page,
34};
35
36static struct backing_dev_info swap_backing_dev_info = {
37	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
38	.unplug_io_fn	= swap_unplug_io_fn,
39};
40
41struct address_space swapper_space = {
42	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
43	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
44	.a_ops		= &swap_aops,
45	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
46	.backing_dev_info = &swap_backing_dev_info,
47};
48
49#define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
50
51static struct {
52	unsigned long add_total;
53	unsigned long del_total;
54	unsigned long find_success;
55	unsigned long find_total;
56} swap_cache_info;
57
58void show_swap_cache_info(void)
59{
60	printk("%lu pages in swap cache\n", total_swapcache_pages);
61	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
62		swap_cache_info.add_total, swap_cache_info.del_total,
63		swap_cache_info.find_success, swap_cache_info.find_total);
64	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
65	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
66}
67
68/*
69 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
70 * but sets SwapCache flag and private instead of mapping and index.
71 */
72int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
73{
74	int error;
75
76	VM_BUG_ON(!PageLocked(page));
77	VM_BUG_ON(PageSwapCache(page));
78	VM_BUG_ON(!PageSwapBacked(page));
79
80	error = radix_tree_preload(gfp_mask);
81	if (!error) {
82		page_cache_get(page);
83		SetPageSwapCache(page);
84		set_page_private(page, entry.val);
85
86		spin_lock_irq(&swapper_space.tree_lock);
87		error = radix_tree_insert(&swapper_space.page_tree,
88						entry.val, page);
89		if (likely(!error)) {
90			total_swapcache_pages++;
91			__inc_zone_page_state(page, NR_FILE_PAGES);
92			INC_CACHE_INFO(add_total);
93		}
94		spin_unlock_irq(&swapper_space.tree_lock);
95		radix_tree_preload_end();
96
97		if (unlikely(error)) {
98			set_page_private(page, 0UL);
99			ClearPageSwapCache(page);
100			page_cache_release(page);
101		}
102	}
103	return error;
104}
105
106/*
107 * This must be called only on pages that have
108 * been verified to be in the swap cache.
109 */
110void __delete_from_swap_cache(struct page *page)
111{
112	VM_BUG_ON(!PageLocked(page));
113	VM_BUG_ON(!PageSwapCache(page));
114	VM_BUG_ON(PageWriteback(page));
115
116	radix_tree_delete(&swapper_space.page_tree, page_private(page));
117	set_page_private(page, 0);
118	ClearPageSwapCache(page);
119	total_swapcache_pages--;
120	__dec_zone_page_state(page, NR_FILE_PAGES);
121	INC_CACHE_INFO(del_total);
122}
123
124/**
125 * add_to_swap - allocate swap space for a page
126 * @page: page we want to move to swap
127 * @gfp_mask: memory allocation flags
128 *
129 * Allocate swap space for the page and add the page to the
130 * swap cache.  Caller needs to hold the page lock.
131 */
132int add_to_swap(struct page *page)
133{
134	swp_entry_t entry;
135	int err;
136
137	VM_BUG_ON(!PageLocked(page));
138	VM_BUG_ON(!PageUptodate(page));
139
140	for (;;) {
141		entry = get_swap_page();
142		if (!entry.val)
143			return 0;
144
145		/*
146		 * Radix-tree node allocations from PF_MEMALLOC contexts could
147		 * completely exhaust the page allocator. __GFP_NOMEMALLOC
148		 * stops emergency reserves from being allocated.
149		 *
150		 * TODO: this could cause a theoretical memory reclaim
151		 * deadlock in the swap out path.
152		 */
153		/*
154		 * Add it to the swap cache and mark it dirty
155		 */
156		err = add_to_swap_cache(page, entry,
157				__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
158
159		switch (err) {
160		case 0:				/* Success */
161			SetPageDirty(page);
162			return 1;
163		case -EEXIST:
164			/* Raced with "speculative" read_swap_cache_async */
165			swap_free(entry);
166			continue;
167		default:
168			/* -ENOMEM radix-tree allocation failure */
169			swap_free(entry);
170			return 0;
171		}
172	}
173}
174
175/*
176 * This must be called only on pages that have
177 * been verified to be in the swap cache and locked.
178 * It will never put the page into the free list,
179 * the caller has a reference on the page.
180 */
181void delete_from_swap_cache(struct page *page)
182{
183	swp_entry_t entry;
184
185	entry.val = page_private(page);
186
187	spin_lock_irq(&swapper_space.tree_lock);
188	__delete_from_swap_cache(page);
189	spin_unlock_irq(&swapper_space.tree_lock);
190
191	mem_cgroup_uncharge_swapcache(page, entry);
192	swap_free(entry);
193	page_cache_release(page);
194}
195
196/*
197 * If we are the only user, then try to free up the swap cache.
198 *
199 * Its ok to check for PageSwapCache without the page lock
200 * here because we are going to recheck again inside
201 * try_to_free_swap() _with_ the lock.
202 * 					- Marcelo
203 */
204static inline void free_swap_cache(struct page *page)
205{
206	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
207		try_to_free_swap(page);
208		unlock_page(page);
209	}
210}
211
212/*
213 * Perform a free_page(), also freeing any swap cache associated with
214 * this page if it is the last user of the page.
215 */
216void free_page_and_swap_cache(struct page *page)
217{
218	free_swap_cache(page);
219	page_cache_release(page);
220}
221
222/*
223 * Passed an array of pages, drop them all from swapcache and then release
224 * them.  They are removed from the LRU and freed if this is their last use.
225 */
226void free_pages_and_swap_cache(struct page **pages, int nr)
227{
228	struct page **pagep = pages;
229
230	lru_add_drain();
231	while (nr) {
232		int todo = min(nr, PAGEVEC_SIZE);
233		int i;
234
235		for (i = 0; i < todo; i++)
236			free_swap_cache(pagep[i]);
237		release_pages(pagep, todo, 0);
238		pagep += todo;
239		nr -= todo;
240	}
241}
242
243/*
244 * Lookup a swap entry in the swap cache. A found page will be returned
245 * unlocked and with its refcount incremented - we rely on the kernel
246 * lock getting page table operations atomic even if we drop the page
247 * lock before returning.
248 */
249struct page * lookup_swap_cache(swp_entry_t entry)
250{
251	struct page *page;
252
253	page = find_get_page(&swapper_space, entry.val);
254
255	if (page)
256		INC_CACHE_INFO(find_success);
257
258	INC_CACHE_INFO(find_total);
259	return page;
260}
261
262/*
263 * Locate a page of swap in physical memory, reserving swap cache space
264 * and reading the disk if it is not already cached.
265 * A failure return means that either the page allocation failed or that
266 * the swap entry is no longer in use.
267 */
268struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
269			struct vm_area_struct *vma, unsigned long addr)
270{
271	struct page *found_page, *new_page = NULL;
272	int err;
273
274	do {
275		/*
276		 * First check the swap cache.  Since this is normally
277		 * called after lookup_swap_cache() failed, re-calling
278		 * that would confuse statistics.
279		 */
280		found_page = find_get_page(&swapper_space, entry.val);
281		if (found_page)
282			break;
283
284		/*
285		 * Get a new page to read into from swap.
286		 */
287		if (!new_page) {
288			new_page = alloc_page_vma(gfp_mask, vma, addr);
289			if (!new_page)
290				break;		/* Out of memory */
291		}
292
293		/*
294		 * Swap entry may have been freed since our caller observed it.
295		 */
296		if (!swap_duplicate(entry))
297			break;
298
299		/*
300		 * Associate the page with swap entry in the swap cache.
301		 * May fail (-EEXIST) if there is already a page associated
302		 * with this entry in the swap cache: added by a racing
303		 * read_swap_cache_async, or add_to_swap or shmem_writepage
304		 * re-using the just freed swap entry for an existing page.
305		 * May fail (-ENOMEM) if radix-tree node allocation failed.
306		 */
307		__set_page_locked(new_page);
308		SetPageSwapBacked(new_page);
309		err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
310		if (likely(!err)) {
311			/*
312			 * Initiate read into locked page and return.
313			 */
314			lru_cache_add_anon(new_page);
315			swap_readpage(NULL, new_page);
316			return new_page;
317		}
318		ClearPageSwapBacked(new_page);
319		__clear_page_locked(new_page);
320		swap_free(entry);
321	} while (err != -ENOMEM);
322
323	if (new_page)
324		page_cache_release(new_page);
325	return found_page;
326}
327
328/**
329 * swapin_readahead - swap in pages in hope we need them soon
330 * @entry: swap entry of this memory
331 * @gfp_mask: memory allocation flags
332 * @vma: user vma this address belongs to
333 * @addr: target address for mempolicy
334 *
335 * Returns the struct page for entry and addr, after queueing swapin.
336 *
337 * Primitive swap readahead code. We simply read an aligned block of
338 * (1 << page_cluster) entries in the swap area. This method is chosen
339 * because it doesn't cost us any seek time.  We also make sure to queue
340 * the 'original' request together with the readahead ones...
341 *
342 * This has been extended to use the NUMA policies from the mm triggering
343 * the readahead.
344 *
345 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
346 */
347struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
348			struct vm_area_struct *vma, unsigned long addr)
349{
350	int nr_pages;
351	struct page *page;
352	unsigned long offset;
353	unsigned long end_offset;
354
355	/*
356	 * Get starting offset for readaround, and number of pages to read.
357	 * Adjust starting address by readbehind (for NUMA interleave case)?
358	 * No, it's very unlikely that swap layout would follow vma layout,
359	 * more likely that neighbouring swap pages came from the same node:
360	 * so use the same "addr" to choose the same node for each swap read.
361	 */
362	nr_pages = valid_swaphandles(entry, &offset);
363	for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
364		/* Ok, do the async read-ahead now */
365		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
366						gfp_mask, vma, addr);
367		if (!page)
368			break;
369		page_cache_release(page);
370	}
371	lru_add_drain();	/* Push any new pages onto the LRU now */
372	return read_swap_cache_async(entry, gfp_mask, vma, addr);
373}
374