swapfile.c revision 11d31886dbcb61039ed3789e583d21c6e70960fd
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/config.h>
9#include <linux/mm.h>
10#include <linux/hugetlb.h>
11#include <linux/mman.h>
12#include <linux/slab.h>
13#include <linux/kernel_stat.h>
14#include <linux/swap.h>
15#include <linux/vmalloc.h>
16#include <linux/pagemap.h>
17#include <linux/namei.h>
18#include <linux/shm.h>
19#include <linux/blkdev.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
28#include <linux/syscalls.h>
29
30#include <asm/pgtable.h>
31#include <asm/tlbflush.h>
32#include <linux/swapops.h>
33
34DEFINE_SPINLOCK(swaplock);
35unsigned int nr_swapfiles;
36long total_swap_pages;
37static int swap_overflow;
38
39EXPORT_SYMBOL(total_swap_pages);
40
41static const char Bad_file[] = "Bad swap file entry ";
42static const char Unused_file[] = "Unused swap file entry ";
43static const char Bad_offset[] = "Bad swap offset entry ";
44static const char Unused_offset[] = "Unused swap offset entry ";
45
46struct swap_list_t swap_list = {-1, -1};
47
48struct swap_info_struct swap_info[MAX_SWAPFILES];
49
50static DECLARE_MUTEX(swapon_sem);
51
52/*
53 * We need this because the bdev->unplug_fn can sleep and we cannot
54 * hold swap_list_lock while calling the unplug_fn. And swap_list_lock
55 * cannot be turned into a semaphore.
56 */
57static DECLARE_RWSEM(swap_unplug_sem);
58
59#define SWAPFILE_CLUSTER 256
60
61void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
62{
63	swp_entry_t entry;
64
65	down_read(&swap_unplug_sem);
66	entry.val = page->private;
67	if (PageSwapCache(page)) {
68		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
69		struct backing_dev_info *bdi;
70
71		/*
72		 * If the page is removed from swapcache from under us (with a
73		 * racy try_to_unuse/swapoff) we need an additional reference
74		 * count to avoid reading garbage from page->private above. If
75		 * the WARN_ON triggers during a swapoff it maybe the race
76		 * condition and it's harmless. However if it triggers without
77		 * swapoff it signals a problem.
78		 */
79		WARN_ON(page_count(page) <= 1);
80
81		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
82		blk_run_backing_dev(bdi, page);
83	}
84	up_read(&swap_unplug_sem);
85}
86
87static inline int scan_swap_map(struct swap_info_struct *si)
88{
89	unsigned long offset;
90	/*
91	 * We try to cluster swap pages by allocating them
92	 * sequentially in swap.  Once we've allocated
93	 * SWAPFILE_CLUSTER pages this way, however, we resort to
94	 * first-free allocation, starting a new cluster.  This
95	 * prevents us from scattering swap pages all over the entire
96	 * swap partition, so that we reduce overall disk seek times
97	 * between swap pages.  -- sct */
98	if (si->cluster_nr) {
99		while (si->cluster_next <= si->highest_bit) {
100			offset = si->cluster_next++;
101			if (si->swap_map[offset])
102				continue;
103			si->cluster_nr--;
104			goto got_page;
105		}
106	}
107	si->cluster_nr = SWAPFILE_CLUSTER;
108
109	/* try to find an empty (even not aligned) cluster. */
110	offset = si->lowest_bit;
111 check_next_cluster:
112	if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit)
113	{
114		unsigned long nr;
115		for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++)
116			if (si->swap_map[nr])
117			{
118				offset = nr+1;
119				goto check_next_cluster;
120			}
121		/* We found a completly empty cluster, so start
122		 * using it.
123		 */
124		goto got_page;
125	}
126	/* No luck, so now go finegrined as usual. -Andrea */
127	for (offset = si->lowest_bit; offset <= si->highest_bit ; offset++) {
128		if (si->swap_map[offset])
129			continue;
130		si->lowest_bit = offset+1;
131	got_page:
132		if (offset == si->lowest_bit)
133			si->lowest_bit++;
134		if (offset == si->highest_bit)
135			si->highest_bit--;
136		if (si->lowest_bit > si->highest_bit) {
137			si->lowest_bit = si->max;
138			si->highest_bit = 0;
139		}
140		si->swap_map[offset] = 1;
141		si->inuse_pages++;
142		nr_swap_pages--;
143		si->cluster_next = offset+1;
144		return offset;
145	}
146	si->lowest_bit = si->max;
147	si->highest_bit = 0;
148	return 0;
149}
150
151swp_entry_t get_swap_page(void)
152{
153	struct swap_info_struct * p;
154	unsigned long offset;
155	swp_entry_t entry;
156	int type, wrapped = 0;
157
158	entry.val = 0;	/* Out of memory */
159	swap_list_lock();
160	type = swap_list.next;
161	if (type < 0)
162		goto out;
163	if (nr_swap_pages <= 0)
164		goto out;
165
166	while (1) {
167		p = &swap_info[type];
168		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
169			swap_device_lock(p);
170			offset = scan_swap_map(p);
171			swap_device_unlock(p);
172			if (offset) {
173				entry = swp_entry(type,offset);
174				type = swap_info[type].next;
175				if (type < 0 ||
176					p->prio != swap_info[type].prio) {
177						swap_list.next = swap_list.head;
178				} else {
179					swap_list.next = type;
180				}
181				goto out;
182			}
183		}
184		type = p->next;
185		if (!wrapped) {
186			if (type < 0 || p->prio != swap_info[type].prio) {
187				type = swap_list.head;
188				wrapped = 1;
189			}
190		} else
191			if (type < 0)
192				goto out;	/* out of swap space */
193	}
194out:
195	swap_list_unlock();
196	return entry;
197}
198
199static struct swap_info_struct * swap_info_get(swp_entry_t entry)
200{
201	struct swap_info_struct * p;
202	unsigned long offset, type;
203
204	if (!entry.val)
205		goto out;
206	type = swp_type(entry);
207	if (type >= nr_swapfiles)
208		goto bad_nofile;
209	p = & swap_info[type];
210	if (!(p->flags & SWP_USED))
211		goto bad_device;
212	offset = swp_offset(entry);
213	if (offset >= p->max)
214		goto bad_offset;
215	if (!p->swap_map[offset])
216		goto bad_free;
217	swap_list_lock();
218	if (p->prio > swap_info[swap_list.next].prio)
219		swap_list.next = type;
220	swap_device_lock(p);
221	return p;
222
223bad_free:
224	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
225	goto out;
226bad_offset:
227	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
228	goto out;
229bad_device:
230	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
231	goto out;
232bad_nofile:
233	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
234out:
235	return NULL;
236}
237
238static void swap_info_put(struct swap_info_struct * p)
239{
240	swap_device_unlock(p);
241	swap_list_unlock();
242}
243
244static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
245{
246	int count = p->swap_map[offset];
247
248	if (count < SWAP_MAP_MAX) {
249		count--;
250		p->swap_map[offset] = count;
251		if (!count) {
252			if (offset < p->lowest_bit)
253				p->lowest_bit = offset;
254			if (offset > p->highest_bit)
255				p->highest_bit = offset;
256			nr_swap_pages++;
257			p->inuse_pages--;
258		}
259	}
260	return count;
261}
262
263/*
264 * Caller has made sure that the swapdevice corresponding to entry
265 * is still around or has not been recycled.
266 */
267void swap_free(swp_entry_t entry)
268{
269	struct swap_info_struct * p;
270
271	p = swap_info_get(entry);
272	if (p) {
273		swap_entry_free(p, swp_offset(entry));
274		swap_info_put(p);
275	}
276}
277
278/*
279 * How many references to page are currently swapped out?
280 */
281static inline int page_swapcount(struct page *page)
282{
283	int count = 0;
284	struct swap_info_struct *p;
285	swp_entry_t entry;
286
287	entry.val = page->private;
288	p = swap_info_get(entry);
289	if (p) {
290		/* Subtract the 1 for the swap cache itself */
291		count = p->swap_map[swp_offset(entry)] - 1;
292		swap_info_put(p);
293	}
294	return count;
295}
296
297/*
298 * We can use this swap cache entry directly
299 * if there are no other references to it.
300 */
301int can_share_swap_page(struct page *page)
302{
303	int count;
304
305	BUG_ON(!PageLocked(page));
306	count = page_mapcount(page);
307	if (count <= 1 && PageSwapCache(page))
308		count += page_swapcount(page);
309	return count == 1;
310}
311
312/*
313 * Work out if there are any other processes sharing this
314 * swap cache page. Free it if you can. Return success.
315 */
316int remove_exclusive_swap_page(struct page *page)
317{
318	int retval;
319	struct swap_info_struct * p;
320	swp_entry_t entry;
321
322	BUG_ON(PagePrivate(page));
323	BUG_ON(!PageLocked(page));
324
325	if (!PageSwapCache(page))
326		return 0;
327	if (PageWriteback(page))
328		return 0;
329	if (page_count(page) != 2) /* 2: us + cache */
330		return 0;
331
332	entry.val = page->private;
333	p = swap_info_get(entry);
334	if (!p)
335		return 0;
336
337	/* Is the only swap cache user the cache itself? */
338	retval = 0;
339	if (p->swap_map[swp_offset(entry)] == 1) {
340		/* Recheck the page count with the swapcache lock held.. */
341		write_lock_irq(&swapper_space.tree_lock);
342		if ((page_count(page) == 2) && !PageWriteback(page)) {
343			__delete_from_swap_cache(page);
344			SetPageDirty(page);
345			retval = 1;
346		}
347		write_unlock_irq(&swapper_space.tree_lock);
348	}
349	swap_info_put(p);
350
351	if (retval) {
352		swap_free(entry);
353		page_cache_release(page);
354	}
355
356	return retval;
357}
358
359/*
360 * Free the swap entry like above, but also try to
361 * free the page cache entry if it is the last user.
362 */
363void free_swap_and_cache(swp_entry_t entry)
364{
365	struct swap_info_struct * p;
366	struct page *page = NULL;
367
368	p = swap_info_get(entry);
369	if (p) {
370		if (swap_entry_free(p, swp_offset(entry)) == 1)
371			page = find_trylock_page(&swapper_space, entry.val);
372		swap_info_put(p);
373	}
374	if (page) {
375		int one_user;
376
377		BUG_ON(PagePrivate(page));
378		page_cache_get(page);
379		one_user = (page_count(page) == 2);
380		/* Only cache user (+us), or swap space full? Free it! */
381		if (!PageWriteback(page) && (one_user || vm_swap_full())) {
382			delete_from_swap_cache(page);
383			SetPageDirty(page);
384		}
385		unlock_page(page);
386		page_cache_release(page);
387	}
388}
389
390/*
391 * Always set the resulting pte to be nowrite (the same as COW pages
392 * after one process has exited).  We don't know just how many PTEs will
393 * share this swap entry, so be cautious and let do_wp_page work out
394 * what to do if a write is requested later.
395 *
396 * vma->vm_mm->page_table_lock is held.
397 */
398static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
399		unsigned long addr, swp_entry_t entry, struct page *page)
400{
401	inc_mm_counter(vma->vm_mm, rss);
402	get_page(page);
403	set_pte_at(vma->vm_mm, addr, pte,
404		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
405	page_add_anon_rmap(page, vma, addr);
406	swap_free(entry);
407	/*
408	 * Move the page to the active list so it is not
409	 * immediately swapped out again after swapon.
410	 */
411	activate_page(page);
412}
413
414static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
415				unsigned long addr, unsigned long end,
416				swp_entry_t entry, struct page *page)
417{
418	pte_t *pte;
419	pte_t swp_pte = swp_entry_to_pte(entry);
420
421	pte = pte_offset_map(pmd, addr);
422	do {
423		/*
424		 * swapoff spends a _lot_ of time in this loop!
425		 * Test inline before going to call unuse_pte.
426		 */
427		if (unlikely(pte_same(*pte, swp_pte))) {
428			unuse_pte(vma, pte, addr, entry, page);
429			pte_unmap(pte);
430			return 1;
431		}
432	} while (pte++, addr += PAGE_SIZE, addr != end);
433	pte_unmap(pte - 1);
434	return 0;
435}
436
437static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
438				unsigned long addr, unsigned long end,
439				swp_entry_t entry, struct page *page)
440{
441	pmd_t *pmd;
442	unsigned long next;
443
444	pmd = pmd_offset(pud, addr);
445	do {
446		next = pmd_addr_end(addr, end);
447		if (pmd_none_or_clear_bad(pmd))
448			continue;
449		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
450			return 1;
451	} while (pmd++, addr = next, addr != end);
452	return 0;
453}
454
455static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
456				unsigned long addr, unsigned long end,
457				swp_entry_t entry, struct page *page)
458{
459	pud_t *pud;
460	unsigned long next;
461
462	pud = pud_offset(pgd, addr);
463	do {
464		next = pud_addr_end(addr, end);
465		if (pud_none_or_clear_bad(pud))
466			continue;
467		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
468			return 1;
469	} while (pud++, addr = next, addr != end);
470	return 0;
471}
472
473static int unuse_vma(struct vm_area_struct *vma,
474				swp_entry_t entry, struct page *page)
475{
476	pgd_t *pgd;
477	unsigned long addr, end, next;
478
479	if (page->mapping) {
480		addr = page_address_in_vma(page, vma);
481		if (addr == -EFAULT)
482			return 0;
483		else
484			end = addr + PAGE_SIZE;
485	} else {
486		addr = vma->vm_start;
487		end = vma->vm_end;
488	}
489
490	pgd = pgd_offset(vma->vm_mm, addr);
491	do {
492		next = pgd_addr_end(addr, end);
493		if (pgd_none_or_clear_bad(pgd))
494			continue;
495		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
496			return 1;
497	} while (pgd++, addr = next, addr != end);
498	return 0;
499}
500
501static int unuse_mm(struct mm_struct *mm,
502				swp_entry_t entry, struct page *page)
503{
504	struct vm_area_struct *vma;
505
506	if (!down_read_trylock(&mm->mmap_sem)) {
507		/*
508		 * Activate page so shrink_cache is unlikely to unmap its
509		 * ptes while lock is dropped, so swapoff can make progress.
510		 */
511		activate_page(page);
512		unlock_page(page);
513		down_read(&mm->mmap_sem);
514		lock_page(page);
515	}
516	spin_lock(&mm->page_table_lock);
517	for (vma = mm->mmap; vma; vma = vma->vm_next) {
518		if (vma->anon_vma && unuse_vma(vma, entry, page))
519			break;
520	}
521	spin_unlock(&mm->page_table_lock);
522	up_read(&mm->mmap_sem);
523	/*
524	 * Currently unuse_mm cannot fail, but leave error handling
525	 * at call sites for now, since we change it from time to time.
526	 */
527	return 0;
528}
529
530/*
531 * Scan swap_map from current position to next entry still in use.
532 * Recycle to start on reaching the end, returning 0 when empty.
533 */
534static int find_next_to_unuse(struct swap_info_struct *si, int prev)
535{
536	int max = si->max;
537	int i = prev;
538	int count;
539
540	/*
541	 * No need for swap_device_lock(si) here: we're just looking
542	 * for whether an entry is in use, not modifying it; false
543	 * hits are okay, and sys_swapoff() has already prevented new
544	 * allocations from this area (while holding swap_list_lock()).
545	 */
546	for (;;) {
547		if (++i >= max) {
548			if (!prev) {
549				i = 0;
550				break;
551			}
552			/*
553			 * No entries in use at top of swap_map,
554			 * loop back to start and recheck there.
555			 */
556			max = prev + 1;
557			prev = 0;
558			i = 1;
559		}
560		count = si->swap_map[i];
561		if (count && count != SWAP_MAP_BAD)
562			break;
563	}
564	return i;
565}
566
567/*
568 * We completely avoid races by reading each swap page in advance,
569 * and then search for the process using it.  All the necessary
570 * page table adjustments can then be made atomically.
571 */
572static int try_to_unuse(unsigned int type)
573{
574	struct swap_info_struct * si = &swap_info[type];
575	struct mm_struct *start_mm;
576	unsigned short *swap_map;
577	unsigned short swcount;
578	struct page *page;
579	swp_entry_t entry;
580	int i = 0;
581	int retval = 0;
582	int reset_overflow = 0;
583	int shmem;
584
585	/*
586	 * When searching mms for an entry, a good strategy is to
587	 * start at the first mm we freed the previous entry from
588	 * (though actually we don't notice whether we or coincidence
589	 * freed the entry).  Initialize this start_mm with a hold.
590	 *
591	 * A simpler strategy would be to start at the last mm we
592	 * freed the previous entry from; but that would take less
593	 * advantage of mmlist ordering, which clusters forked mms
594	 * together, child after parent.  If we race with dup_mmap(), we
595	 * prefer to resolve parent before child, lest we miss entries
596	 * duplicated after we scanned child: using last mm would invert
597	 * that.  Though it's only a serious concern when an overflowed
598	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
599	 */
600	start_mm = &init_mm;
601	atomic_inc(&init_mm.mm_users);
602
603	/*
604	 * Keep on scanning until all entries have gone.  Usually,
605	 * one pass through swap_map is enough, but not necessarily:
606	 * there are races when an instance of an entry might be missed.
607	 */
608	while ((i = find_next_to_unuse(si, i)) != 0) {
609		if (signal_pending(current)) {
610			retval = -EINTR;
611			break;
612		}
613
614		/*
615		 * Get a page for the entry, using the existing swap
616		 * cache page if there is one.  Otherwise, get a clean
617		 * page and read the swap into it.
618		 */
619		swap_map = &si->swap_map[i];
620		entry = swp_entry(type, i);
621		page = read_swap_cache_async(entry, NULL, 0);
622		if (!page) {
623			/*
624			 * Either swap_duplicate() failed because entry
625			 * has been freed independently, and will not be
626			 * reused since sys_swapoff() already disabled
627			 * allocation from here, or alloc_page() failed.
628			 */
629			if (!*swap_map)
630				continue;
631			retval = -ENOMEM;
632			break;
633		}
634
635		/*
636		 * Don't hold on to start_mm if it looks like exiting.
637		 */
638		if (atomic_read(&start_mm->mm_users) == 1) {
639			mmput(start_mm);
640			start_mm = &init_mm;
641			atomic_inc(&init_mm.mm_users);
642		}
643
644		/*
645		 * Wait for and lock page.  When do_swap_page races with
646		 * try_to_unuse, do_swap_page can handle the fault much
647		 * faster than try_to_unuse can locate the entry.  This
648		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
649		 * defer to do_swap_page in such a case - in some tests,
650		 * do_swap_page and try_to_unuse repeatedly compete.
651		 */
652		wait_on_page_locked(page);
653		wait_on_page_writeback(page);
654		lock_page(page);
655		wait_on_page_writeback(page);
656
657		/*
658		 * Remove all references to entry.
659		 * Whenever we reach init_mm, there's no address space
660		 * to search, but use it as a reminder to search shmem.
661		 */
662		shmem = 0;
663		swcount = *swap_map;
664		if (swcount > 1) {
665			if (start_mm == &init_mm)
666				shmem = shmem_unuse(entry, page);
667			else
668				retval = unuse_mm(start_mm, entry, page);
669		}
670		if (*swap_map > 1) {
671			int set_start_mm = (*swap_map >= swcount);
672			struct list_head *p = &start_mm->mmlist;
673			struct mm_struct *new_start_mm = start_mm;
674			struct mm_struct *prev_mm = start_mm;
675			struct mm_struct *mm;
676
677			atomic_inc(&new_start_mm->mm_users);
678			atomic_inc(&prev_mm->mm_users);
679			spin_lock(&mmlist_lock);
680			while (*swap_map > 1 && !retval &&
681					(p = p->next) != &start_mm->mmlist) {
682				mm = list_entry(p, struct mm_struct, mmlist);
683				if (atomic_inc_return(&mm->mm_users) == 1) {
684					atomic_dec(&mm->mm_users);
685					continue;
686				}
687				spin_unlock(&mmlist_lock);
688				mmput(prev_mm);
689				prev_mm = mm;
690
691				cond_resched();
692
693				swcount = *swap_map;
694				if (swcount <= 1)
695					;
696				else if (mm == &init_mm) {
697					set_start_mm = 1;
698					shmem = shmem_unuse(entry, page);
699				} else
700					retval = unuse_mm(mm, entry, page);
701				if (set_start_mm && *swap_map < swcount) {
702					mmput(new_start_mm);
703					atomic_inc(&mm->mm_users);
704					new_start_mm = mm;
705					set_start_mm = 0;
706				}
707				spin_lock(&mmlist_lock);
708			}
709			spin_unlock(&mmlist_lock);
710			mmput(prev_mm);
711			mmput(start_mm);
712			start_mm = new_start_mm;
713		}
714		if (retval) {
715			unlock_page(page);
716			page_cache_release(page);
717			break;
718		}
719
720		/*
721		 * How could swap count reach 0x7fff when the maximum
722		 * pid is 0x7fff, and there's no way to repeat a swap
723		 * page within an mm (except in shmem, where it's the
724		 * shared object which takes the reference count)?
725		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
726		 *
727		 * If that's wrong, then we should worry more about
728		 * exit_mmap() and do_munmap() cases described above:
729		 * we might be resetting SWAP_MAP_MAX too early here.
730		 * We know "Undead"s can happen, they're okay, so don't
731		 * report them; but do report if we reset SWAP_MAP_MAX.
732		 */
733		if (*swap_map == SWAP_MAP_MAX) {
734			swap_device_lock(si);
735			*swap_map = 1;
736			swap_device_unlock(si);
737			reset_overflow = 1;
738		}
739
740		/*
741		 * If a reference remains (rare), we would like to leave
742		 * the page in the swap cache; but try_to_unmap could
743		 * then re-duplicate the entry once we drop page lock,
744		 * so we might loop indefinitely; also, that page could
745		 * not be swapped out to other storage meanwhile.  So:
746		 * delete from cache even if there's another reference,
747		 * after ensuring that the data has been saved to disk -
748		 * since if the reference remains (rarer), it will be
749		 * read from disk into another page.  Splitting into two
750		 * pages would be incorrect if swap supported "shared
751		 * private" pages, but they are handled by tmpfs files.
752		 *
753		 * Note shmem_unuse already deleted a swappage from
754		 * the swap cache, unless the move to filepage failed:
755		 * in which case it left swappage in cache, lowered its
756		 * swap count to pass quickly through the loops above,
757		 * and now we must reincrement count to try again later.
758		 */
759		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
760			struct writeback_control wbc = {
761				.sync_mode = WB_SYNC_NONE,
762			};
763
764			swap_writepage(page, &wbc);
765			lock_page(page);
766			wait_on_page_writeback(page);
767		}
768		if (PageSwapCache(page)) {
769			if (shmem)
770				swap_duplicate(entry);
771			else
772				delete_from_swap_cache(page);
773		}
774
775		/*
776		 * So we could skip searching mms once swap count went
777		 * to 1, we did not mark any present ptes as dirty: must
778		 * mark page dirty so shrink_list will preserve it.
779		 */
780		SetPageDirty(page);
781		unlock_page(page);
782		page_cache_release(page);
783
784		/*
785		 * Make sure that we aren't completely killing
786		 * interactive performance.
787		 */
788		cond_resched();
789	}
790
791	mmput(start_mm);
792	if (reset_overflow) {
793		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
794		swap_overflow = 0;
795	}
796	return retval;
797}
798
799/*
800 * After a successful try_to_unuse, if no swap is now in use, we know we
801 * can empty the mmlist.  swap_list_lock must be held on entry and exit.
802 * Note that mmlist_lock nests inside swap_list_lock, and an mm must be
803 * added to the mmlist just after page_duplicate - before would be racy.
804 */
805static void drain_mmlist(void)
806{
807	struct list_head *p, *next;
808	unsigned int i;
809
810	for (i = 0; i < nr_swapfiles; i++)
811		if (swap_info[i].inuse_pages)
812			return;
813	spin_lock(&mmlist_lock);
814	list_for_each_safe(p, next, &init_mm.mmlist)
815		list_del_init(p);
816	spin_unlock(&mmlist_lock);
817}
818
819/*
820 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
821 * corresponds to page offset `offset'.
822 */
823sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
824{
825	struct swap_extent *se = sis->curr_swap_extent;
826	struct swap_extent *start_se = se;
827
828	for ( ; ; ) {
829		struct list_head *lh;
830
831		if (se->start_page <= offset &&
832				offset < (se->start_page + se->nr_pages)) {
833			return se->start_block + (offset - se->start_page);
834		}
835		lh = se->list.next;
836		if (lh == &sis->extent_list)
837			lh = lh->next;
838		se = list_entry(lh, struct swap_extent, list);
839		sis->curr_swap_extent = se;
840		BUG_ON(se == start_se);		/* It *must* be present */
841	}
842}
843
844/*
845 * Free all of a swapdev's extent information
846 */
847static void destroy_swap_extents(struct swap_info_struct *sis)
848{
849	while (!list_empty(&sis->extent_list)) {
850		struct swap_extent *se;
851
852		se = list_entry(sis->extent_list.next,
853				struct swap_extent, list);
854		list_del(&se->list);
855		kfree(se);
856	}
857	sis->nr_extents = 0;
858}
859
860/*
861 * Add a block range (and the corresponding page range) into this swapdev's
862 * extent list.  The extent list is kept sorted in page order.
863 *
864 * This function rather assumes that it is called in ascending page order.
865 */
866static int
867add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
868		unsigned long nr_pages, sector_t start_block)
869{
870	struct swap_extent *se;
871	struct swap_extent *new_se;
872	struct list_head *lh;
873
874	lh = sis->extent_list.prev;	/* The highest page extent */
875	if (lh != &sis->extent_list) {
876		se = list_entry(lh, struct swap_extent, list);
877		BUG_ON(se->start_page + se->nr_pages != start_page);
878		if (se->start_block + se->nr_pages == start_block) {
879			/* Merge it */
880			se->nr_pages += nr_pages;
881			return 0;
882		}
883	}
884
885	/*
886	 * No merge.  Insert a new extent, preserving ordering.
887	 */
888	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
889	if (new_se == NULL)
890		return -ENOMEM;
891	new_se->start_page = start_page;
892	new_se->nr_pages = nr_pages;
893	new_se->start_block = start_block;
894
895	list_add_tail(&new_se->list, &sis->extent_list);
896	sis->nr_extents++;
897	return 0;
898}
899
900/*
901 * A `swap extent' is a simple thing which maps a contiguous range of pages
902 * onto a contiguous range of disk blocks.  An ordered list of swap extents
903 * is built at swapon time and is then used at swap_writepage/swap_readpage
904 * time for locating where on disk a page belongs.
905 *
906 * If the swapfile is an S_ISBLK block device, a single extent is installed.
907 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
908 * swap files identically.
909 *
910 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
911 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
912 * swapfiles are handled *identically* after swapon time.
913 *
914 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
915 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
916 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
917 * requirements, they are simply tossed out - we will never use those blocks
918 * for swapping.
919 *
920 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
921 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
922 * which will scribble on the fs.
923 *
924 * The amount of disk space which a single swap extent represents varies.
925 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
926 * extents in the list.  To avoid much list walking, we cache the previous
927 * search location in `curr_swap_extent', and start new searches from there.
928 * This is extremely effective.  The average number of iterations in
929 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
930 */
931static int setup_swap_extents(struct swap_info_struct *sis)
932{
933	struct inode *inode;
934	unsigned blocks_per_page;
935	unsigned long page_no;
936	unsigned blkbits;
937	sector_t probe_block;
938	sector_t last_block;
939	int ret;
940
941	inode = sis->swap_file->f_mapping->host;
942	if (S_ISBLK(inode->i_mode)) {
943		ret = add_swap_extent(sis, 0, sis->max, 0);
944		goto done;
945	}
946
947	blkbits = inode->i_blkbits;
948	blocks_per_page = PAGE_SIZE >> blkbits;
949
950	/*
951	 * Map all the blocks into the extent list.  This code doesn't try
952	 * to be very smart.
953	 */
954	probe_block = 0;
955	page_no = 0;
956	last_block = i_size_read(inode) >> blkbits;
957	while ((probe_block + blocks_per_page) <= last_block &&
958			page_no < sis->max) {
959		unsigned block_in_page;
960		sector_t first_block;
961
962		first_block = bmap(inode, probe_block);
963		if (first_block == 0)
964			goto bad_bmap;
965
966		/*
967		 * It must be PAGE_SIZE aligned on-disk
968		 */
969		if (first_block & (blocks_per_page - 1)) {
970			probe_block++;
971			goto reprobe;
972		}
973
974		for (block_in_page = 1; block_in_page < blocks_per_page;
975					block_in_page++) {
976			sector_t block;
977
978			block = bmap(inode, probe_block + block_in_page);
979			if (block == 0)
980				goto bad_bmap;
981			if (block != first_block + block_in_page) {
982				/* Discontiguity */
983				probe_block++;
984				goto reprobe;
985			}
986		}
987
988		/*
989		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
990		 */
991		ret = add_swap_extent(sis, page_no, 1,
992				first_block >> (PAGE_SHIFT - blkbits));
993		if (ret)
994			goto out;
995		page_no++;
996		probe_block += blocks_per_page;
997reprobe:
998		continue;
999	}
1000	ret = 0;
1001	if (page_no == 0)
1002		page_no = 1;	/* force Empty message */
1003	sis->max = page_no;
1004	sis->pages = page_no - 1;
1005	sis->highest_bit = page_no - 1;
1006done:
1007	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1008					struct swap_extent, list);
1009	goto out;
1010bad_bmap:
1011	printk(KERN_ERR "swapon: swapfile has holes\n");
1012	ret = -EINVAL;
1013out:
1014	return ret;
1015}
1016
1017#if 0	/* We don't need this yet */
1018#include <linux/backing-dev.h>
1019int page_queue_congested(struct page *page)
1020{
1021	struct backing_dev_info *bdi;
1022
1023	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1024
1025	if (PageSwapCache(page)) {
1026		swp_entry_t entry = { .val = page->private };
1027		struct swap_info_struct *sis;
1028
1029		sis = get_swap_info_struct(swp_type(entry));
1030		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1031	} else
1032		bdi = page->mapping->backing_dev_info;
1033	return bdi_write_congested(bdi);
1034}
1035#endif
1036
1037asmlinkage long sys_swapoff(const char __user * specialfile)
1038{
1039	struct swap_info_struct * p = NULL;
1040	unsigned short *swap_map;
1041	struct file *swap_file, *victim;
1042	struct address_space *mapping;
1043	struct inode *inode;
1044	char * pathname;
1045	int i, type, prev;
1046	int err;
1047
1048	if (!capable(CAP_SYS_ADMIN))
1049		return -EPERM;
1050
1051	pathname = getname(specialfile);
1052	err = PTR_ERR(pathname);
1053	if (IS_ERR(pathname))
1054		goto out;
1055
1056	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1057	putname(pathname);
1058	err = PTR_ERR(victim);
1059	if (IS_ERR(victim))
1060		goto out;
1061
1062	mapping = victim->f_mapping;
1063	prev = -1;
1064	swap_list_lock();
1065	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1066		p = swap_info + type;
1067		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1068			if (p->swap_file->f_mapping == mapping)
1069				break;
1070		}
1071		prev = type;
1072	}
1073	if (type < 0) {
1074		err = -EINVAL;
1075		swap_list_unlock();
1076		goto out_dput;
1077	}
1078	if (!security_vm_enough_memory(p->pages))
1079		vm_unacct_memory(p->pages);
1080	else {
1081		err = -ENOMEM;
1082		swap_list_unlock();
1083		goto out_dput;
1084	}
1085	if (prev < 0) {
1086		swap_list.head = p->next;
1087	} else {
1088		swap_info[prev].next = p->next;
1089	}
1090	if (type == swap_list.next) {
1091		/* just pick something that's safe... */
1092		swap_list.next = swap_list.head;
1093	}
1094	nr_swap_pages -= p->pages;
1095	total_swap_pages -= p->pages;
1096	p->flags &= ~SWP_WRITEOK;
1097	swap_list_unlock();
1098	current->flags |= PF_SWAPOFF;
1099	err = try_to_unuse(type);
1100	current->flags &= ~PF_SWAPOFF;
1101
1102	/* wait for any unplug function to finish */
1103	down_write(&swap_unplug_sem);
1104	up_write(&swap_unplug_sem);
1105
1106	if (err) {
1107		/* re-insert swap space back into swap_list */
1108		swap_list_lock();
1109		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1110			if (p->prio >= swap_info[i].prio)
1111				break;
1112		p->next = i;
1113		if (prev < 0)
1114			swap_list.head = swap_list.next = p - swap_info;
1115		else
1116			swap_info[prev].next = p - swap_info;
1117		nr_swap_pages += p->pages;
1118		total_swap_pages += p->pages;
1119		p->flags |= SWP_WRITEOK;
1120		swap_list_unlock();
1121		goto out_dput;
1122	}
1123	destroy_swap_extents(p);
1124	down(&swapon_sem);
1125	swap_list_lock();
1126	drain_mmlist();
1127	swap_device_lock(p);
1128	swap_file = p->swap_file;
1129	p->swap_file = NULL;
1130	p->max = 0;
1131	swap_map = p->swap_map;
1132	p->swap_map = NULL;
1133	p->flags = 0;
1134	swap_device_unlock(p);
1135	swap_list_unlock();
1136	up(&swapon_sem);
1137	vfree(swap_map);
1138	inode = mapping->host;
1139	if (S_ISBLK(inode->i_mode)) {
1140		struct block_device *bdev = I_BDEV(inode);
1141		set_blocksize(bdev, p->old_block_size);
1142		bd_release(bdev);
1143	} else {
1144		down(&inode->i_sem);
1145		inode->i_flags &= ~S_SWAPFILE;
1146		up(&inode->i_sem);
1147	}
1148	filp_close(swap_file, NULL);
1149	err = 0;
1150
1151out_dput:
1152	filp_close(victim, NULL);
1153out:
1154	return err;
1155}
1156
1157#ifdef CONFIG_PROC_FS
1158/* iterator */
1159static void *swap_start(struct seq_file *swap, loff_t *pos)
1160{
1161	struct swap_info_struct *ptr = swap_info;
1162	int i;
1163	loff_t l = *pos;
1164
1165	down(&swapon_sem);
1166
1167	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1168		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1169			continue;
1170		if (!l--)
1171			return ptr;
1172	}
1173
1174	return NULL;
1175}
1176
1177static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1178{
1179	struct swap_info_struct *ptr = v;
1180	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1181
1182	for (++ptr; ptr < endptr; ptr++) {
1183		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1184			continue;
1185		++*pos;
1186		return ptr;
1187	}
1188
1189	return NULL;
1190}
1191
1192static void swap_stop(struct seq_file *swap, void *v)
1193{
1194	up(&swapon_sem);
1195}
1196
1197static int swap_show(struct seq_file *swap, void *v)
1198{
1199	struct swap_info_struct *ptr = v;
1200	struct file *file;
1201	int len;
1202
1203	if (v == swap_info)
1204		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1205
1206	file = ptr->swap_file;
1207	len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1208	seq_printf(swap, "%*s%s\t%d\t%ld\t%d\n",
1209		       len < 40 ? 40 - len : 1, " ",
1210		       S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1211				"partition" : "file\t",
1212		       ptr->pages << (PAGE_SHIFT - 10),
1213		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1214		       ptr->prio);
1215	return 0;
1216}
1217
1218static struct seq_operations swaps_op = {
1219	.start =	swap_start,
1220	.next =		swap_next,
1221	.stop =		swap_stop,
1222	.show =		swap_show
1223};
1224
1225static int swaps_open(struct inode *inode, struct file *file)
1226{
1227	return seq_open(file, &swaps_op);
1228}
1229
1230static struct file_operations proc_swaps_operations = {
1231	.open		= swaps_open,
1232	.read		= seq_read,
1233	.llseek		= seq_lseek,
1234	.release	= seq_release,
1235};
1236
1237static int __init procswaps_init(void)
1238{
1239	struct proc_dir_entry *entry;
1240
1241	entry = create_proc_entry("swaps", 0, NULL);
1242	if (entry)
1243		entry->proc_fops = &proc_swaps_operations;
1244	return 0;
1245}
1246__initcall(procswaps_init);
1247#endif /* CONFIG_PROC_FS */
1248
1249/*
1250 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1251 *
1252 * The swapon system call
1253 */
1254asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1255{
1256	struct swap_info_struct * p;
1257	char *name = NULL;
1258	struct block_device *bdev = NULL;
1259	struct file *swap_file = NULL;
1260	struct address_space *mapping;
1261	unsigned int type;
1262	int i, prev;
1263	int error;
1264	static int least_priority;
1265	union swap_header *swap_header = NULL;
1266	int swap_header_version;
1267	int nr_good_pages = 0;
1268	unsigned long maxpages = 1;
1269	int swapfilesize;
1270	unsigned short *swap_map;
1271	struct page *page = NULL;
1272	struct inode *inode = NULL;
1273	int did_down = 0;
1274
1275	if (!capable(CAP_SYS_ADMIN))
1276		return -EPERM;
1277	swap_list_lock();
1278	p = swap_info;
1279	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1280		if (!(p->flags & SWP_USED))
1281			break;
1282	error = -EPERM;
1283	/*
1284	 * Test if adding another swap device is possible. There are
1285	 * two limiting factors: 1) the number of bits for the swap
1286	 * type swp_entry_t definition and 2) the number of bits for
1287	 * the swap type in the swap ptes as defined by the different
1288	 * architectures. To honor both limitations a swap entry
1289	 * with swap offset 0 and swap type ~0UL is created, encoded
1290	 * to a swap pte, decoded to a swp_entry_t again and finally
1291	 * the swap type part is extracted. This will mask all bits
1292	 * from the initial ~0UL that can't be encoded in either the
1293	 * swp_entry_t or the architecture definition of a swap pte.
1294	 */
1295	if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1296		swap_list_unlock();
1297		goto out;
1298	}
1299	if (type >= nr_swapfiles)
1300		nr_swapfiles = type+1;
1301	INIT_LIST_HEAD(&p->extent_list);
1302	p->flags = SWP_USED;
1303	p->nr_extents = 0;
1304	p->swap_file = NULL;
1305	p->old_block_size = 0;
1306	p->swap_map = NULL;
1307	p->lowest_bit = 0;
1308	p->highest_bit = 0;
1309	p->cluster_nr = 0;
1310	p->inuse_pages = 0;
1311	spin_lock_init(&p->sdev_lock);
1312	p->next = -1;
1313	if (swap_flags & SWAP_FLAG_PREFER) {
1314		p->prio =
1315		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1316	} else {
1317		p->prio = --least_priority;
1318	}
1319	swap_list_unlock();
1320	name = getname(specialfile);
1321	error = PTR_ERR(name);
1322	if (IS_ERR(name)) {
1323		name = NULL;
1324		goto bad_swap_2;
1325	}
1326	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1327	error = PTR_ERR(swap_file);
1328	if (IS_ERR(swap_file)) {
1329		swap_file = NULL;
1330		goto bad_swap_2;
1331	}
1332
1333	p->swap_file = swap_file;
1334	mapping = swap_file->f_mapping;
1335	inode = mapping->host;
1336
1337	error = -EBUSY;
1338	for (i = 0; i < nr_swapfiles; i++) {
1339		struct swap_info_struct *q = &swap_info[i];
1340
1341		if (i == type || !q->swap_file)
1342			continue;
1343		if (mapping == q->swap_file->f_mapping)
1344			goto bad_swap;
1345	}
1346
1347	error = -EINVAL;
1348	if (S_ISBLK(inode->i_mode)) {
1349		bdev = I_BDEV(inode);
1350		error = bd_claim(bdev, sys_swapon);
1351		if (error < 0) {
1352			bdev = NULL;
1353			goto bad_swap;
1354		}
1355		p->old_block_size = block_size(bdev);
1356		error = set_blocksize(bdev, PAGE_SIZE);
1357		if (error < 0)
1358			goto bad_swap;
1359		p->bdev = bdev;
1360	} else if (S_ISREG(inode->i_mode)) {
1361		p->bdev = inode->i_sb->s_bdev;
1362		down(&inode->i_sem);
1363		did_down = 1;
1364		if (IS_SWAPFILE(inode)) {
1365			error = -EBUSY;
1366			goto bad_swap;
1367		}
1368	} else {
1369		goto bad_swap;
1370	}
1371
1372	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1373
1374	/*
1375	 * Read the swap header.
1376	 */
1377	if (!mapping->a_ops->readpage) {
1378		error = -EINVAL;
1379		goto bad_swap;
1380	}
1381	page = read_cache_page(mapping, 0,
1382			(filler_t *)mapping->a_ops->readpage, swap_file);
1383	if (IS_ERR(page)) {
1384		error = PTR_ERR(page);
1385		goto bad_swap;
1386	}
1387	wait_on_page_locked(page);
1388	if (!PageUptodate(page))
1389		goto bad_swap;
1390	kmap(page);
1391	swap_header = page_address(page);
1392
1393	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1394		swap_header_version = 1;
1395	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1396		swap_header_version = 2;
1397	else {
1398		printk("Unable to find swap-space signature\n");
1399		error = -EINVAL;
1400		goto bad_swap;
1401	}
1402
1403	switch (swap_header_version) {
1404	case 1:
1405		printk(KERN_ERR "version 0 swap is no longer supported. "
1406			"Use mkswap -v1 %s\n", name);
1407		error = -EINVAL;
1408		goto bad_swap;
1409	case 2:
1410		/* Check the swap header's sub-version and the size of
1411                   the swap file and bad block lists */
1412		if (swap_header->info.version != 1) {
1413			printk(KERN_WARNING
1414			       "Unable to handle swap header version %d\n",
1415			       swap_header->info.version);
1416			error = -EINVAL;
1417			goto bad_swap;
1418		}
1419
1420		p->lowest_bit  = 1;
1421		/*
1422		 * Find out how many pages are allowed for a single swap
1423		 * device. There are two limiting factors: 1) the number of
1424		 * bits for the swap offset in the swp_entry_t type and
1425		 * 2) the number of bits in the a swap pte as defined by
1426		 * the different architectures. In order to find the
1427		 * largest possible bit mask a swap entry with swap type 0
1428		 * and swap offset ~0UL is created, encoded to a swap pte,
1429		 * decoded to a swp_entry_t again and finally the swap
1430		 * offset is extracted. This will mask all the bits from
1431		 * the initial ~0UL mask that can't be encoded in either
1432		 * the swp_entry_t or the architecture definition of a
1433		 * swap pte.
1434		 */
1435		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1436		if (maxpages > swap_header->info.last_page)
1437			maxpages = swap_header->info.last_page;
1438		p->highest_bit = maxpages - 1;
1439
1440		error = -EINVAL;
1441		if (!maxpages)
1442			goto bad_swap;
1443		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1444			goto bad_swap;
1445		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1446			goto bad_swap;
1447
1448		/* OK, set up the swap map and apply the bad block list */
1449		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1450			error = -ENOMEM;
1451			goto bad_swap;
1452		}
1453
1454		error = 0;
1455		memset(p->swap_map, 0, maxpages * sizeof(short));
1456		for (i=0; i<swap_header->info.nr_badpages; i++) {
1457			int page = swap_header->info.badpages[i];
1458			if (page <= 0 || page >= swap_header->info.last_page)
1459				error = -EINVAL;
1460			else
1461				p->swap_map[page] = SWAP_MAP_BAD;
1462		}
1463		nr_good_pages = swap_header->info.last_page -
1464				swap_header->info.nr_badpages -
1465				1 /* header page */;
1466		if (error)
1467			goto bad_swap;
1468	}
1469
1470	if (swapfilesize && maxpages > swapfilesize) {
1471		printk(KERN_WARNING
1472		       "Swap area shorter than signature indicates\n");
1473		error = -EINVAL;
1474		goto bad_swap;
1475	}
1476	if (nr_good_pages) {
1477		p->swap_map[0] = SWAP_MAP_BAD;
1478		p->max = maxpages;
1479		p->pages = nr_good_pages;
1480		error = setup_swap_extents(p);
1481		if (error)
1482			goto bad_swap;
1483		nr_good_pages = p->pages;
1484	}
1485	if (!nr_good_pages) {
1486		printk(KERN_WARNING "Empty swap-file\n");
1487		error = -EINVAL;
1488		goto bad_swap;
1489	}
1490
1491	down(&swapon_sem);
1492	swap_list_lock();
1493	swap_device_lock(p);
1494	p->flags = SWP_ACTIVE;
1495	nr_swap_pages += nr_good_pages;
1496	total_swap_pages += nr_good_pages;
1497	printk(KERN_INFO "Adding %dk swap on %s.  Priority:%d extents:%d\n",
1498		nr_good_pages<<(PAGE_SHIFT-10), name,
1499		p->prio, p->nr_extents);
1500
1501	/* insert swap space into swap_list: */
1502	prev = -1;
1503	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1504		if (p->prio >= swap_info[i].prio) {
1505			break;
1506		}
1507		prev = i;
1508	}
1509	p->next = i;
1510	if (prev < 0) {
1511		swap_list.head = swap_list.next = p - swap_info;
1512	} else {
1513		swap_info[prev].next = p - swap_info;
1514	}
1515	swap_device_unlock(p);
1516	swap_list_unlock();
1517	up(&swapon_sem);
1518	error = 0;
1519	goto out;
1520bad_swap:
1521	if (bdev) {
1522		set_blocksize(bdev, p->old_block_size);
1523		bd_release(bdev);
1524	}
1525	destroy_swap_extents(p);
1526bad_swap_2:
1527	swap_list_lock();
1528	swap_map = p->swap_map;
1529	p->swap_file = NULL;
1530	p->swap_map = NULL;
1531	p->flags = 0;
1532	if (!(swap_flags & SWAP_FLAG_PREFER))
1533		++least_priority;
1534	swap_list_unlock();
1535	vfree(swap_map);
1536	if (swap_file)
1537		filp_close(swap_file, NULL);
1538out:
1539	if (page && !IS_ERR(page)) {
1540		kunmap(page);
1541		page_cache_release(page);
1542	}
1543	if (name)
1544		putname(name);
1545	if (did_down) {
1546		if (!error)
1547			inode->i_flags |= S_SWAPFILE;
1548		up(&inode->i_sem);
1549	}
1550	return error;
1551}
1552
1553void si_swapinfo(struct sysinfo *val)
1554{
1555	unsigned int i;
1556	unsigned long nr_to_be_unused = 0;
1557
1558	swap_list_lock();
1559	for (i = 0; i < nr_swapfiles; i++) {
1560		if (!(swap_info[i].flags & SWP_USED) ||
1561		     (swap_info[i].flags & SWP_WRITEOK))
1562			continue;
1563		nr_to_be_unused += swap_info[i].inuse_pages;
1564	}
1565	val->freeswap = nr_swap_pages + nr_to_be_unused;
1566	val->totalswap = total_swap_pages + nr_to_be_unused;
1567	swap_list_unlock();
1568}
1569
1570/*
1571 * Verify that a swap entry is valid and increment its swap map count.
1572 *
1573 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1574 * "permanent", but will be reclaimed by the next swapoff.
1575 */
1576int swap_duplicate(swp_entry_t entry)
1577{
1578	struct swap_info_struct * p;
1579	unsigned long offset, type;
1580	int result = 0;
1581
1582	type = swp_type(entry);
1583	if (type >= nr_swapfiles)
1584		goto bad_file;
1585	p = type + swap_info;
1586	offset = swp_offset(entry);
1587
1588	swap_device_lock(p);
1589	if (offset < p->max && p->swap_map[offset]) {
1590		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1591			p->swap_map[offset]++;
1592			result = 1;
1593		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1594			if (swap_overflow++ < 5)
1595				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1596			p->swap_map[offset] = SWAP_MAP_MAX;
1597			result = 1;
1598		}
1599	}
1600	swap_device_unlock(p);
1601out:
1602	return result;
1603
1604bad_file:
1605	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1606	goto out;
1607}
1608
1609struct swap_info_struct *
1610get_swap_info_struct(unsigned type)
1611{
1612	return &swap_info[type];
1613}
1614
1615/*
1616 * swap_device_lock prevents swap_map being freed. Don't grab an extra
1617 * reference on the swaphandle, it doesn't matter if it becomes unused.
1618 */
1619int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1620{
1621	int ret = 0, i = 1 << page_cluster;
1622	unsigned long toff;
1623	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1624
1625	if (!page_cluster)	/* no readahead */
1626		return 0;
1627	toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1628	if (!toff)		/* first page is swap header */
1629		toff++, i--;
1630	*offset = toff;
1631
1632	swap_device_lock(swapdev);
1633	do {
1634		/* Don't read-ahead past the end of the swap area */
1635		if (toff >= swapdev->max)
1636			break;
1637		/* Don't read in free or bad pages */
1638		if (!swapdev->swap_map[toff])
1639			break;
1640		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1641			break;
1642		toff++;
1643		ret++;
1644	} while (--i);
1645	swap_device_unlock(swapdev);
1646	return ret;
1647}
1648