swapfile.c revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/config.h>
9#include <linux/mm.h>
10#include <linux/hugetlb.h>
11#include <linux/mman.h>
12#include <linux/slab.h>
13#include <linux/kernel_stat.h>
14#include <linux/swap.h>
15#include <linux/vmalloc.h>
16#include <linux/pagemap.h>
17#include <linux/namei.h>
18#include <linux/shm.h>
19#include <linux/blkdev.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
28#include <linux/syscalls.h>
29
30#include <asm/pgtable.h>
31#include <asm/tlbflush.h>
32#include <linux/swapops.h>
33
34DEFINE_SPINLOCK(swaplock);
35unsigned int nr_swapfiles;
36long total_swap_pages;
37static int swap_overflow;
38
39EXPORT_SYMBOL(total_swap_pages);
40
41static const char Bad_file[] = "Bad swap file entry ";
42static const char Unused_file[] = "Unused swap file entry ";
43static const char Bad_offset[] = "Bad swap offset entry ";
44static const char Unused_offset[] = "Unused swap offset entry ";
45
46struct swap_list_t swap_list = {-1, -1};
47
48struct swap_info_struct swap_info[MAX_SWAPFILES];
49
50static DECLARE_MUTEX(swapon_sem);
51
52/*
53 * We need this because the bdev->unplug_fn can sleep and we cannot
54 * hold swap_list_lock while calling the unplug_fn. And swap_list_lock
55 * cannot be turned into a semaphore.
56 */
57static DECLARE_RWSEM(swap_unplug_sem);
58
59#define SWAPFILE_CLUSTER 256
60
61void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
62{
63	swp_entry_t entry;
64
65	down_read(&swap_unplug_sem);
66	entry.val = page->private;
67	if (PageSwapCache(page)) {
68		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
69		struct backing_dev_info *bdi;
70
71		/*
72		 * If the page is removed from swapcache from under us (with a
73		 * racy try_to_unuse/swapoff) we need an additional reference
74		 * count to avoid reading garbage from page->private above. If
75		 * the WARN_ON triggers during a swapoff it maybe the race
76		 * condition and it's harmless. However if it triggers without
77		 * swapoff it signals a problem.
78		 */
79		WARN_ON(page_count(page) <= 1);
80
81		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
82		bdi->unplug_io_fn(bdi, page);
83	}
84	up_read(&swap_unplug_sem);
85}
86
87static inline int scan_swap_map(struct swap_info_struct *si)
88{
89	unsigned long offset;
90	/*
91	 * We try to cluster swap pages by allocating them
92	 * sequentially in swap.  Once we've allocated
93	 * SWAPFILE_CLUSTER pages this way, however, we resort to
94	 * first-free allocation, starting a new cluster.  This
95	 * prevents us from scattering swap pages all over the entire
96	 * swap partition, so that we reduce overall disk seek times
97	 * between swap pages.  -- sct */
98	if (si->cluster_nr) {
99		while (si->cluster_next <= si->highest_bit) {
100			offset = si->cluster_next++;
101			if (si->swap_map[offset])
102				continue;
103			si->cluster_nr--;
104			goto got_page;
105		}
106	}
107	si->cluster_nr = SWAPFILE_CLUSTER;
108
109	/* try to find an empty (even not aligned) cluster. */
110	offset = si->lowest_bit;
111 check_next_cluster:
112	if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit)
113	{
114		unsigned long nr;
115		for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++)
116			if (si->swap_map[nr])
117			{
118				offset = nr+1;
119				goto check_next_cluster;
120			}
121		/* We found a completly empty cluster, so start
122		 * using it.
123		 */
124		goto got_page;
125	}
126	/* No luck, so now go finegrined as usual. -Andrea */
127	for (offset = si->lowest_bit; offset <= si->highest_bit ; offset++) {
128		if (si->swap_map[offset])
129			continue;
130		si->lowest_bit = offset+1;
131	got_page:
132		if (offset == si->lowest_bit)
133			si->lowest_bit++;
134		if (offset == si->highest_bit)
135			si->highest_bit--;
136		if (si->lowest_bit > si->highest_bit) {
137			si->lowest_bit = si->max;
138			si->highest_bit = 0;
139		}
140		si->swap_map[offset] = 1;
141		si->inuse_pages++;
142		nr_swap_pages--;
143		si->cluster_next = offset+1;
144		return offset;
145	}
146	si->lowest_bit = si->max;
147	si->highest_bit = 0;
148	return 0;
149}
150
151swp_entry_t get_swap_page(void)
152{
153	struct swap_info_struct * p;
154	unsigned long offset;
155	swp_entry_t entry;
156	int type, wrapped = 0;
157
158	entry.val = 0;	/* Out of memory */
159	swap_list_lock();
160	type = swap_list.next;
161	if (type < 0)
162		goto out;
163	if (nr_swap_pages <= 0)
164		goto out;
165
166	while (1) {
167		p = &swap_info[type];
168		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
169			swap_device_lock(p);
170			offset = scan_swap_map(p);
171			swap_device_unlock(p);
172			if (offset) {
173				entry = swp_entry(type,offset);
174				type = swap_info[type].next;
175				if (type < 0 ||
176					p->prio != swap_info[type].prio) {
177						swap_list.next = swap_list.head;
178				} else {
179					swap_list.next = type;
180				}
181				goto out;
182			}
183		}
184		type = p->next;
185		if (!wrapped) {
186			if (type < 0 || p->prio != swap_info[type].prio) {
187				type = swap_list.head;
188				wrapped = 1;
189			}
190		} else
191			if (type < 0)
192				goto out;	/* out of swap space */
193	}
194out:
195	swap_list_unlock();
196	return entry;
197}
198
199static struct swap_info_struct * swap_info_get(swp_entry_t entry)
200{
201	struct swap_info_struct * p;
202	unsigned long offset, type;
203
204	if (!entry.val)
205		goto out;
206	type = swp_type(entry);
207	if (type >= nr_swapfiles)
208		goto bad_nofile;
209	p = & swap_info[type];
210	if (!(p->flags & SWP_USED))
211		goto bad_device;
212	offset = swp_offset(entry);
213	if (offset >= p->max)
214		goto bad_offset;
215	if (!p->swap_map[offset])
216		goto bad_free;
217	swap_list_lock();
218	if (p->prio > swap_info[swap_list.next].prio)
219		swap_list.next = type;
220	swap_device_lock(p);
221	return p;
222
223bad_free:
224	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
225	goto out;
226bad_offset:
227	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
228	goto out;
229bad_device:
230	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
231	goto out;
232bad_nofile:
233	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
234out:
235	return NULL;
236}
237
238static void swap_info_put(struct swap_info_struct * p)
239{
240	swap_device_unlock(p);
241	swap_list_unlock();
242}
243
244static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
245{
246	int count = p->swap_map[offset];
247
248	if (count < SWAP_MAP_MAX) {
249		count--;
250		p->swap_map[offset] = count;
251		if (!count) {
252			if (offset < p->lowest_bit)
253				p->lowest_bit = offset;
254			if (offset > p->highest_bit)
255				p->highest_bit = offset;
256			nr_swap_pages++;
257			p->inuse_pages--;
258		}
259	}
260	return count;
261}
262
263/*
264 * Caller has made sure that the swapdevice corresponding to entry
265 * is still around or has not been recycled.
266 */
267void swap_free(swp_entry_t entry)
268{
269	struct swap_info_struct * p;
270
271	p = swap_info_get(entry);
272	if (p) {
273		swap_entry_free(p, swp_offset(entry));
274		swap_info_put(p);
275	}
276}
277
278/*
279 * Check if we're the only user of a swap page,
280 * when the page is locked.
281 */
282static int exclusive_swap_page(struct page *page)
283{
284	int retval = 0;
285	struct swap_info_struct * p;
286	swp_entry_t entry;
287
288	entry.val = page->private;
289	p = swap_info_get(entry);
290	if (p) {
291		/* Is the only swap cache user the cache itself? */
292		if (p->swap_map[swp_offset(entry)] == 1) {
293			/* Recheck the page count with the swapcache lock held.. */
294			write_lock_irq(&swapper_space.tree_lock);
295			if (page_count(page) == 2)
296				retval = 1;
297			write_unlock_irq(&swapper_space.tree_lock);
298		}
299		swap_info_put(p);
300	}
301	return retval;
302}
303
304/*
305 * We can use this swap cache entry directly
306 * if there are no other references to it.
307 *
308 * Here "exclusive_swap_page()" does the real
309 * work, but we opportunistically check whether
310 * we need to get all the locks first..
311 */
312int can_share_swap_page(struct page *page)
313{
314	int retval = 0;
315
316	if (!PageLocked(page))
317		BUG();
318	switch (page_count(page)) {
319	case 3:
320		if (!PagePrivate(page))
321			break;
322		/* Fallthrough */
323	case 2:
324		if (!PageSwapCache(page))
325			break;
326		retval = exclusive_swap_page(page);
327		break;
328	case 1:
329		if (PageReserved(page))
330			break;
331		retval = 1;
332	}
333	return retval;
334}
335
336/*
337 * Work out if there are any other processes sharing this
338 * swap cache page. Free it if you can. Return success.
339 */
340int remove_exclusive_swap_page(struct page *page)
341{
342	int retval;
343	struct swap_info_struct * p;
344	swp_entry_t entry;
345
346	BUG_ON(PagePrivate(page));
347	BUG_ON(!PageLocked(page));
348
349	if (!PageSwapCache(page))
350		return 0;
351	if (PageWriteback(page))
352		return 0;
353	if (page_count(page) != 2) /* 2: us + cache */
354		return 0;
355
356	entry.val = page->private;
357	p = swap_info_get(entry);
358	if (!p)
359		return 0;
360
361	/* Is the only swap cache user the cache itself? */
362	retval = 0;
363	if (p->swap_map[swp_offset(entry)] == 1) {
364		/* Recheck the page count with the swapcache lock held.. */
365		write_lock_irq(&swapper_space.tree_lock);
366		if ((page_count(page) == 2) && !PageWriteback(page)) {
367			__delete_from_swap_cache(page);
368			SetPageDirty(page);
369			retval = 1;
370		}
371		write_unlock_irq(&swapper_space.tree_lock);
372	}
373	swap_info_put(p);
374
375	if (retval) {
376		swap_free(entry);
377		page_cache_release(page);
378	}
379
380	return retval;
381}
382
383/*
384 * Free the swap entry like above, but also try to
385 * free the page cache entry if it is the last user.
386 */
387void free_swap_and_cache(swp_entry_t entry)
388{
389	struct swap_info_struct * p;
390	struct page *page = NULL;
391
392	p = swap_info_get(entry);
393	if (p) {
394		if (swap_entry_free(p, swp_offset(entry)) == 1)
395			page = find_trylock_page(&swapper_space, entry.val);
396		swap_info_put(p);
397	}
398	if (page) {
399		int one_user;
400
401		BUG_ON(PagePrivate(page));
402		page_cache_get(page);
403		one_user = (page_count(page) == 2);
404		/* Only cache user (+us), or swap space full? Free it! */
405		if (!PageWriteback(page) && (one_user || vm_swap_full())) {
406			delete_from_swap_cache(page);
407			SetPageDirty(page);
408		}
409		unlock_page(page);
410		page_cache_release(page);
411	}
412}
413
414/*
415 * Always set the resulting pte to be nowrite (the same as COW pages
416 * after one process has exited).  We don't know just how many PTEs will
417 * share this swap entry, so be cautious and let do_wp_page work out
418 * what to do if a write is requested later.
419 *
420 * vma->vm_mm->page_table_lock is held.
421 */
422static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
423		unsigned long addr, swp_entry_t entry, struct page *page)
424{
425	inc_mm_counter(vma->vm_mm, rss);
426	get_page(page);
427	set_pte_at(vma->vm_mm, addr, pte,
428		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
429	page_add_anon_rmap(page, vma, addr);
430	swap_free(entry);
431	/*
432	 * Move the page to the active list so it is not
433	 * immediately swapped out again after swapon.
434	 */
435	activate_page(page);
436}
437
438static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
439				unsigned long addr, unsigned long end,
440				swp_entry_t entry, struct page *page)
441{
442	pte_t *pte;
443	pte_t swp_pte = swp_entry_to_pte(entry);
444
445	pte = pte_offset_map(pmd, addr);
446	do {
447		/*
448		 * swapoff spends a _lot_ of time in this loop!
449		 * Test inline before going to call unuse_pte.
450		 */
451		if (unlikely(pte_same(*pte, swp_pte))) {
452			unuse_pte(vma, pte, addr, entry, page);
453			pte_unmap(pte);
454			return 1;
455		}
456	} while (pte++, addr += PAGE_SIZE, addr != end);
457	pte_unmap(pte - 1);
458	return 0;
459}
460
461static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
462				unsigned long addr, unsigned long end,
463				swp_entry_t entry, struct page *page)
464{
465	pmd_t *pmd;
466	unsigned long next;
467
468	pmd = pmd_offset(pud, addr);
469	do {
470		next = pmd_addr_end(addr, end);
471		if (pmd_none_or_clear_bad(pmd))
472			continue;
473		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
474			return 1;
475	} while (pmd++, addr = next, addr != end);
476	return 0;
477}
478
479static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
480				unsigned long addr, unsigned long end,
481				swp_entry_t entry, struct page *page)
482{
483	pud_t *pud;
484	unsigned long next;
485
486	pud = pud_offset(pgd, addr);
487	do {
488		next = pud_addr_end(addr, end);
489		if (pud_none_or_clear_bad(pud))
490			continue;
491		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
492			return 1;
493	} while (pud++, addr = next, addr != end);
494	return 0;
495}
496
497static int unuse_vma(struct vm_area_struct *vma,
498				swp_entry_t entry, struct page *page)
499{
500	pgd_t *pgd;
501	unsigned long addr, end, next;
502
503	if (page->mapping) {
504		addr = page_address_in_vma(page, vma);
505		if (addr == -EFAULT)
506			return 0;
507		else
508			end = addr + PAGE_SIZE;
509	} else {
510		addr = vma->vm_start;
511		end = vma->vm_end;
512	}
513
514	pgd = pgd_offset(vma->vm_mm, addr);
515	do {
516		next = pgd_addr_end(addr, end);
517		if (pgd_none_or_clear_bad(pgd))
518			continue;
519		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
520			return 1;
521	} while (pgd++, addr = next, addr != end);
522	return 0;
523}
524
525static int unuse_mm(struct mm_struct *mm,
526				swp_entry_t entry, struct page *page)
527{
528	struct vm_area_struct *vma;
529
530	if (!down_read_trylock(&mm->mmap_sem)) {
531		/*
532		 * Our reference to the page stops try_to_unmap_one from
533		 * unmapping its ptes, so swapoff can make progress.
534		 */
535		unlock_page(page);
536		down_read(&mm->mmap_sem);
537		lock_page(page);
538	}
539	spin_lock(&mm->page_table_lock);
540	for (vma = mm->mmap; vma; vma = vma->vm_next) {
541		if (vma->anon_vma && unuse_vma(vma, entry, page))
542			break;
543	}
544	spin_unlock(&mm->page_table_lock);
545	up_read(&mm->mmap_sem);
546	/*
547	 * Currently unuse_mm cannot fail, but leave error handling
548	 * at call sites for now, since we change it from time to time.
549	 */
550	return 0;
551}
552
553/*
554 * Scan swap_map from current position to next entry still in use.
555 * Recycle to start on reaching the end, returning 0 when empty.
556 */
557static int find_next_to_unuse(struct swap_info_struct *si, int prev)
558{
559	int max = si->max;
560	int i = prev;
561	int count;
562
563	/*
564	 * No need for swap_device_lock(si) here: we're just looking
565	 * for whether an entry is in use, not modifying it; false
566	 * hits are okay, and sys_swapoff() has already prevented new
567	 * allocations from this area (while holding swap_list_lock()).
568	 */
569	for (;;) {
570		if (++i >= max) {
571			if (!prev) {
572				i = 0;
573				break;
574			}
575			/*
576			 * No entries in use at top of swap_map,
577			 * loop back to start and recheck there.
578			 */
579			max = prev + 1;
580			prev = 0;
581			i = 1;
582		}
583		count = si->swap_map[i];
584		if (count && count != SWAP_MAP_BAD)
585			break;
586	}
587	return i;
588}
589
590/*
591 * We completely avoid races by reading each swap page in advance,
592 * and then search for the process using it.  All the necessary
593 * page table adjustments can then be made atomically.
594 */
595static int try_to_unuse(unsigned int type)
596{
597	struct swap_info_struct * si = &swap_info[type];
598	struct mm_struct *start_mm;
599	unsigned short *swap_map;
600	unsigned short swcount;
601	struct page *page;
602	swp_entry_t entry;
603	int i = 0;
604	int retval = 0;
605	int reset_overflow = 0;
606	int shmem;
607
608	/*
609	 * When searching mms for an entry, a good strategy is to
610	 * start at the first mm we freed the previous entry from
611	 * (though actually we don't notice whether we or coincidence
612	 * freed the entry).  Initialize this start_mm with a hold.
613	 *
614	 * A simpler strategy would be to start at the last mm we
615	 * freed the previous entry from; but that would take less
616	 * advantage of mmlist ordering, which clusters forked mms
617	 * together, child after parent.  If we race with dup_mmap(), we
618	 * prefer to resolve parent before child, lest we miss entries
619	 * duplicated after we scanned child: using last mm would invert
620	 * that.  Though it's only a serious concern when an overflowed
621	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
622	 */
623	start_mm = &init_mm;
624	atomic_inc(&init_mm.mm_users);
625
626	/*
627	 * Keep on scanning until all entries have gone.  Usually,
628	 * one pass through swap_map is enough, but not necessarily:
629	 * there are races when an instance of an entry might be missed.
630	 */
631	while ((i = find_next_to_unuse(si, i)) != 0) {
632		if (signal_pending(current)) {
633			retval = -EINTR;
634			break;
635		}
636
637		/*
638		 * Get a page for the entry, using the existing swap
639		 * cache page if there is one.  Otherwise, get a clean
640		 * page and read the swap into it.
641		 */
642		swap_map = &si->swap_map[i];
643		entry = swp_entry(type, i);
644		page = read_swap_cache_async(entry, NULL, 0);
645		if (!page) {
646			/*
647			 * Either swap_duplicate() failed because entry
648			 * has been freed independently, and will not be
649			 * reused since sys_swapoff() already disabled
650			 * allocation from here, or alloc_page() failed.
651			 */
652			if (!*swap_map)
653				continue;
654			retval = -ENOMEM;
655			break;
656		}
657
658		/*
659		 * Don't hold on to start_mm if it looks like exiting.
660		 */
661		if (atomic_read(&start_mm->mm_users) == 1) {
662			mmput(start_mm);
663			start_mm = &init_mm;
664			atomic_inc(&init_mm.mm_users);
665		}
666
667		/*
668		 * Wait for and lock page.  When do_swap_page races with
669		 * try_to_unuse, do_swap_page can handle the fault much
670		 * faster than try_to_unuse can locate the entry.  This
671		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
672		 * defer to do_swap_page in such a case - in some tests,
673		 * do_swap_page and try_to_unuse repeatedly compete.
674		 */
675		wait_on_page_locked(page);
676		wait_on_page_writeback(page);
677		lock_page(page);
678		wait_on_page_writeback(page);
679
680		/*
681		 * Remove all references to entry.
682		 * Whenever we reach init_mm, there's no address space
683		 * to search, but use it as a reminder to search shmem.
684		 */
685		shmem = 0;
686		swcount = *swap_map;
687		if (swcount > 1) {
688			if (start_mm == &init_mm)
689				shmem = shmem_unuse(entry, page);
690			else
691				retval = unuse_mm(start_mm, entry, page);
692		}
693		if (*swap_map > 1) {
694			int set_start_mm = (*swap_map >= swcount);
695			struct list_head *p = &start_mm->mmlist;
696			struct mm_struct *new_start_mm = start_mm;
697			struct mm_struct *prev_mm = start_mm;
698			struct mm_struct *mm;
699
700			atomic_inc(&new_start_mm->mm_users);
701			atomic_inc(&prev_mm->mm_users);
702			spin_lock(&mmlist_lock);
703			while (*swap_map > 1 && !retval &&
704					(p = p->next) != &start_mm->mmlist) {
705				mm = list_entry(p, struct mm_struct, mmlist);
706				if (atomic_inc_return(&mm->mm_users) == 1) {
707					atomic_dec(&mm->mm_users);
708					continue;
709				}
710				spin_unlock(&mmlist_lock);
711				mmput(prev_mm);
712				prev_mm = mm;
713
714				cond_resched();
715
716				swcount = *swap_map;
717				if (swcount <= 1)
718					;
719				else if (mm == &init_mm) {
720					set_start_mm = 1;
721					shmem = shmem_unuse(entry, page);
722				} else
723					retval = unuse_mm(mm, entry, page);
724				if (set_start_mm && *swap_map < swcount) {
725					mmput(new_start_mm);
726					atomic_inc(&mm->mm_users);
727					new_start_mm = mm;
728					set_start_mm = 0;
729				}
730				spin_lock(&mmlist_lock);
731			}
732			spin_unlock(&mmlist_lock);
733			mmput(prev_mm);
734			mmput(start_mm);
735			start_mm = new_start_mm;
736		}
737		if (retval) {
738			unlock_page(page);
739			page_cache_release(page);
740			break;
741		}
742
743		/*
744		 * How could swap count reach 0x7fff when the maximum
745		 * pid is 0x7fff, and there's no way to repeat a swap
746		 * page within an mm (except in shmem, where it's the
747		 * shared object which takes the reference count)?
748		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
749		 *
750		 * If that's wrong, then we should worry more about
751		 * exit_mmap() and do_munmap() cases described above:
752		 * we might be resetting SWAP_MAP_MAX too early here.
753		 * We know "Undead"s can happen, they're okay, so don't
754		 * report them; but do report if we reset SWAP_MAP_MAX.
755		 */
756		if (*swap_map == SWAP_MAP_MAX) {
757			swap_device_lock(si);
758			*swap_map = 1;
759			swap_device_unlock(si);
760			reset_overflow = 1;
761		}
762
763		/*
764		 * If a reference remains (rare), we would like to leave
765		 * the page in the swap cache; but try_to_unmap could
766		 * then re-duplicate the entry once we drop page lock,
767		 * so we might loop indefinitely; also, that page could
768		 * not be swapped out to other storage meanwhile.  So:
769		 * delete from cache even if there's another reference,
770		 * after ensuring that the data has been saved to disk -
771		 * since if the reference remains (rarer), it will be
772		 * read from disk into another page.  Splitting into two
773		 * pages would be incorrect if swap supported "shared
774		 * private" pages, but they are handled by tmpfs files.
775		 *
776		 * Note shmem_unuse already deleted a swappage from
777		 * the swap cache, unless the move to filepage failed:
778		 * in which case it left swappage in cache, lowered its
779		 * swap count to pass quickly through the loops above,
780		 * and now we must reincrement count to try again later.
781		 */
782		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
783			struct writeback_control wbc = {
784				.sync_mode = WB_SYNC_NONE,
785			};
786
787			swap_writepage(page, &wbc);
788			lock_page(page);
789			wait_on_page_writeback(page);
790		}
791		if (PageSwapCache(page)) {
792			if (shmem)
793				swap_duplicate(entry);
794			else
795				delete_from_swap_cache(page);
796		}
797
798		/*
799		 * So we could skip searching mms once swap count went
800		 * to 1, we did not mark any present ptes as dirty: must
801		 * mark page dirty so shrink_list will preserve it.
802		 */
803		SetPageDirty(page);
804		unlock_page(page);
805		page_cache_release(page);
806
807		/*
808		 * Make sure that we aren't completely killing
809		 * interactive performance.
810		 */
811		cond_resched();
812	}
813
814	mmput(start_mm);
815	if (reset_overflow) {
816		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
817		swap_overflow = 0;
818	}
819	return retval;
820}
821
822/*
823 * After a successful try_to_unuse, if no swap is now in use, we know we
824 * can empty the mmlist.  swap_list_lock must be held on entry and exit.
825 * Note that mmlist_lock nests inside swap_list_lock, and an mm must be
826 * added to the mmlist just after page_duplicate - before would be racy.
827 */
828static void drain_mmlist(void)
829{
830	struct list_head *p, *next;
831	unsigned int i;
832
833	for (i = 0; i < nr_swapfiles; i++)
834		if (swap_info[i].inuse_pages)
835			return;
836	spin_lock(&mmlist_lock);
837	list_for_each_safe(p, next, &init_mm.mmlist)
838		list_del_init(p);
839	spin_unlock(&mmlist_lock);
840}
841
842/*
843 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
844 * corresponds to page offset `offset'.
845 */
846sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
847{
848	struct swap_extent *se = sis->curr_swap_extent;
849	struct swap_extent *start_se = se;
850
851	for ( ; ; ) {
852		struct list_head *lh;
853
854		if (se->start_page <= offset &&
855				offset < (se->start_page + se->nr_pages)) {
856			return se->start_block + (offset - se->start_page);
857		}
858		lh = se->list.prev;
859		if (lh == &sis->extent_list)
860			lh = lh->prev;
861		se = list_entry(lh, struct swap_extent, list);
862		sis->curr_swap_extent = se;
863		BUG_ON(se == start_se);		/* It *must* be present */
864	}
865}
866
867/*
868 * Free all of a swapdev's extent information
869 */
870static void destroy_swap_extents(struct swap_info_struct *sis)
871{
872	while (!list_empty(&sis->extent_list)) {
873		struct swap_extent *se;
874
875		se = list_entry(sis->extent_list.next,
876				struct swap_extent, list);
877		list_del(&se->list);
878		kfree(se);
879	}
880	sis->nr_extents = 0;
881}
882
883/*
884 * Add a block range (and the corresponding page range) into this swapdev's
885 * extent list.  The extent list is kept sorted in block order.
886 *
887 * This function rather assumes that it is called in ascending sector_t order.
888 * It doesn't look for extent coalescing opportunities.
889 */
890static int
891add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
892		unsigned long nr_pages, sector_t start_block)
893{
894	struct swap_extent *se;
895	struct swap_extent *new_se;
896	struct list_head *lh;
897
898	lh = sis->extent_list.next;	/* The highest-addressed block */
899	while (lh != &sis->extent_list) {
900		se = list_entry(lh, struct swap_extent, list);
901		if (se->start_block + se->nr_pages == start_block &&
902		    se->start_page  + se->nr_pages == start_page) {
903			/* Merge it */
904			se->nr_pages += nr_pages;
905			return 0;
906		}
907		lh = lh->next;
908	}
909
910	/*
911	 * No merge.  Insert a new extent, preserving ordering.
912	 */
913	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
914	if (new_se == NULL)
915		return -ENOMEM;
916	new_se->start_page = start_page;
917	new_se->nr_pages = nr_pages;
918	new_se->start_block = start_block;
919
920	lh = sis->extent_list.prev;	/* The lowest block */
921	while (lh != &sis->extent_list) {
922		se = list_entry(lh, struct swap_extent, list);
923		if (se->start_block > start_block)
924			break;
925		lh = lh->prev;
926	}
927	list_add_tail(&new_se->list, lh);
928	sis->nr_extents++;
929	return 0;
930}
931
932/*
933 * A `swap extent' is a simple thing which maps a contiguous range of pages
934 * onto a contiguous range of disk blocks.  An ordered list of swap extents
935 * is built at swapon time and is then used at swap_writepage/swap_readpage
936 * time for locating where on disk a page belongs.
937 *
938 * If the swapfile is an S_ISBLK block device, a single extent is installed.
939 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
940 * swap files identically.
941 *
942 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
943 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
944 * swapfiles are handled *identically* after swapon time.
945 *
946 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
947 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
948 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
949 * requirements, they are simply tossed out - we will never use those blocks
950 * for swapping.
951 *
952 * For S_ISREG swapfiles we hold i_sem across the life of the swapon.  This
953 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
954 * which will scribble on the fs.
955 *
956 * The amount of disk space which a single swap extent represents varies.
957 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
958 * extents in the list.  To avoid much list walking, we cache the previous
959 * search location in `curr_swap_extent', and start new searches from there.
960 * This is extremely effective.  The average number of iterations in
961 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
962 */
963static int setup_swap_extents(struct swap_info_struct *sis)
964{
965	struct inode *inode;
966	unsigned blocks_per_page;
967	unsigned long page_no;
968	unsigned blkbits;
969	sector_t probe_block;
970	sector_t last_block;
971	int ret;
972
973	inode = sis->swap_file->f_mapping->host;
974	if (S_ISBLK(inode->i_mode)) {
975		ret = add_swap_extent(sis, 0, sis->max, 0);
976		goto done;
977	}
978
979	blkbits = inode->i_blkbits;
980	blocks_per_page = PAGE_SIZE >> blkbits;
981
982	/*
983	 * Map all the blocks into the extent list.  This code doesn't try
984	 * to be very smart.
985	 */
986	probe_block = 0;
987	page_no = 0;
988	last_block = i_size_read(inode) >> blkbits;
989	while ((probe_block + blocks_per_page) <= last_block &&
990			page_no < sis->max) {
991		unsigned block_in_page;
992		sector_t first_block;
993
994		first_block = bmap(inode, probe_block);
995		if (first_block == 0)
996			goto bad_bmap;
997
998		/*
999		 * It must be PAGE_SIZE aligned on-disk
1000		 */
1001		if (first_block & (blocks_per_page - 1)) {
1002			probe_block++;
1003			goto reprobe;
1004		}
1005
1006		for (block_in_page = 1; block_in_page < blocks_per_page;
1007					block_in_page++) {
1008			sector_t block;
1009
1010			block = bmap(inode, probe_block + block_in_page);
1011			if (block == 0)
1012				goto bad_bmap;
1013			if (block != first_block + block_in_page) {
1014				/* Discontiguity */
1015				probe_block++;
1016				goto reprobe;
1017			}
1018		}
1019
1020		/*
1021		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1022		 */
1023		ret = add_swap_extent(sis, page_no, 1,
1024				first_block >> (PAGE_SHIFT - blkbits));
1025		if (ret)
1026			goto out;
1027		page_no++;
1028		probe_block += blocks_per_page;
1029reprobe:
1030		continue;
1031	}
1032	ret = 0;
1033	if (page_no == 0)
1034		ret = -EINVAL;
1035	sis->max = page_no;
1036	sis->highest_bit = page_no - 1;
1037done:
1038	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1039					struct swap_extent, list);
1040	goto out;
1041bad_bmap:
1042	printk(KERN_ERR "swapon: swapfile has holes\n");
1043	ret = -EINVAL;
1044out:
1045	return ret;
1046}
1047
1048#if 0	/* We don't need this yet */
1049#include <linux/backing-dev.h>
1050int page_queue_congested(struct page *page)
1051{
1052	struct backing_dev_info *bdi;
1053
1054	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1055
1056	if (PageSwapCache(page)) {
1057		swp_entry_t entry = { .val = page->private };
1058		struct swap_info_struct *sis;
1059
1060		sis = get_swap_info_struct(swp_type(entry));
1061		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1062	} else
1063		bdi = page->mapping->backing_dev_info;
1064	return bdi_write_congested(bdi);
1065}
1066#endif
1067
1068asmlinkage long sys_swapoff(const char __user * specialfile)
1069{
1070	struct swap_info_struct * p = NULL;
1071	unsigned short *swap_map;
1072	struct file *swap_file, *victim;
1073	struct address_space *mapping;
1074	struct inode *inode;
1075	char * pathname;
1076	int i, type, prev;
1077	int err;
1078
1079	if (!capable(CAP_SYS_ADMIN))
1080		return -EPERM;
1081
1082	pathname = getname(specialfile);
1083	err = PTR_ERR(pathname);
1084	if (IS_ERR(pathname))
1085		goto out;
1086
1087	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1088	putname(pathname);
1089	err = PTR_ERR(victim);
1090	if (IS_ERR(victim))
1091		goto out;
1092
1093	mapping = victim->f_mapping;
1094	prev = -1;
1095	swap_list_lock();
1096	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1097		p = swap_info + type;
1098		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1099			if (p->swap_file->f_mapping == mapping)
1100				break;
1101		}
1102		prev = type;
1103	}
1104	if (type < 0) {
1105		err = -EINVAL;
1106		swap_list_unlock();
1107		goto out_dput;
1108	}
1109	if (!security_vm_enough_memory(p->pages))
1110		vm_unacct_memory(p->pages);
1111	else {
1112		err = -ENOMEM;
1113		swap_list_unlock();
1114		goto out_dput;
1115	}
1116	if (prev < 0) {
1117		swap_list.head = p->next;
1118	} else {
1119		swap_info[prev].next = p->next;
1120	}
1121	if (type == swap_list.next) {
1122		/* just pick something that's safe... */
1123		swap_list.next = swap_list.head;
1124	}
1125	nr_swap_pages -= p->pages;
1126	total_swap_pages -= p->pages;
1127	p->flags &= ~SWP_WRITEOK;
1128	swap_list_unlock();
1129	current->flags |= PF_SWAPOFF;
1130	err = try_to_unuse(type);
1131	current->flags &= ~PF_SWAPOFF;
1132
1133	/* wait for any unplug function to finish */
1134	down_write(&swap_unplug_sem);
1135	up_write(&swap_unplug_sem);
1136
1137	if (err) {
1138		/* re-insert swap space back into swap_list */
1139		swap_list_lock();
1140		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1141			if (p->prio >= swap_info[i].prio)
1142				break;
1143		p->next = i;
1144		if (prev < 0)
1145			swap_list.head = swap_list.next = p - swap_info;
1146		else
1147			swap_info[prev].next = p - swap_info;
1148		nr_swap_pages += p->pages;
1149		total_swap_pages += p->pages;
1150		p->flags |= SWP_WRITEOK;
1151		swap_list_unlock();
1152		goto out_dput;
1153	}
1154	down(&swapon_sem);
1155	swap_list_lock();
1156	drain_mmlist();
1157	swap_device_lock(p);
1158	swap_file = p->swap_file;
1159	p->swap_file = NULL;
1160	p->max = 0;
1161	swap_map = p->swap_map;
1162	p->swap_map = NULL;
1163	p->flags = 0;
1164	destroy_swap_extents(p);
1165	swap_device_unlock(p);
1166	swap_list_unlock();
1167	up(&swapon_sem);
1168	vfree(swap_map);
1169	inode = mapping->host;
1170	if (S_ISBLK(inode->i_mode)) {
1171		struct block_device *bdev = I_BDEV(inode);
1172		set_blocksize(bdev, p->old_block_size);
1173		bd_release(bdev);
1174	} else {
1175		down(&inode->i_sem);
1176		inode->i_flags &= ~S_SWAPFILE;
1177		up(&inode->i_sem);
1178	}
1179	filp_close(swap_file, NULL);
1180	err = 0;
1181
1182out_dput:
1183	filp_close(victim, NULL);
1184out:
1185	return err;
1186}
1187
1188#ifdef CONFIG_PROC_FS
1189/* iterator */
1190static void *swap_start(struct seq_file *swap, loff_t *pos)
1191{
1192	struct swap_info_struct *ptr = swap_info;
1193	int i;
1194	loff_t l = *pos;
1195
1196	down(&swapon_sem);
1197
1198	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1199		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1200			continue;
1201		if (!l--)
1202			return ptr;
1203	}
1204
1205	return NULL;
1206}
1207
1208static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1209{
1210	struct swap_info_struct *ptr = v;
1211	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1212
1213	for (++ptr; ptr < endptr; ptr++) {
1214		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1215			continue;
1216		++*pos;
1217		return ptr;
1218	}
1219
1220	return NULL;
1221}
1222
1223static void swap_stop(struct seq_file *swap, void *v)
1224{
1225	up(&swapon_sem);
1226}
1227
1228static int swap_show(struct seq_file *swap, void *v)
1229{
1230	struct swap_info_struct *ptr = v;
1231	struct file *file;
1232	int len;
1233
1234	if (v == swap_info)
1235		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1236
1237	file = ptr->swap_file;
1238	len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1239	seq_printf(swap, "%*s%s\t%d\t%ld\t%d\n",
1240		       len < 40 ? 40 - len : 1, " ",
1241		       S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1242				"partition" : "file\t",
1243		       ptr->pages << (PAGE_SHIFT - 10),
1244		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1245		       ptr->prio);
1246	return 0;
1247}
1248
1249static struct seq_operations swaps_op = {
1250	.start =	swap_start,
1251	.next =		swap_next,
1252	.stop =		swap_stop,
1253	.show =		swap_show
1254};
1255
1256static int swaps_open(struct inode *inode, struct file *file)
1257{
1258	return seq_open(file, &swaps_op);
1259}
1260
1261static struct file_operations proc_swaps_operations = {
1262	.open		= swaps_open,
1263	.read		= seq_read,
1264	.llseek		= seq_lseek,
1265	.release	= seq_release,
1266};
1267
1268static int __init procswaps_init(void)
1269{
1270	struct proc_dir_entry *entry;
1271
1272	entry = create_proc_entry("swaps", 0, NULL);
1273	if (entry)
1274		entry->proc_fops = &proc_swaps_operations;
1275	return 0;
1276}
1277__initcall(procswaps_init);
1278#endif /* CONFIG_PROC_FS */
1279
1280/*
1281 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1282 *
1283 * The swapon system call
1284 */
1285asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1286{
1287	struct swap_info_struct * p;
1288	char *name = NULL;
1289	struct block_device *bdev = NULL;
1290	struct file *swap_file = NULL;
1291	struct address_space *mapping;
1292	unsigned int type;
1293	int i, prev;
1294	int error;
1295	static int least_priority;
1296	union swap_header *swap_header = NULL;
1297	int swap_header_version;
1298	int nr_good_pages = 0;
1299	unsigned long maxpages = 1;
1300	int swapfilesize;
1301	unsigned short *swap_map;
1302	struct page *page = NULL;
1303	struct inode *inode = NULL;
1304	int did_down = 0;
1305
1306	if (!capable(CAP_SYS_ADMIN))
1307		return -EPERM;
1308	swap_list_lock();
1309	p = swap_info;
1310	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1311		if (!(p->flags & SWP_USED))
1312			break;
1313	error = -EPERM;
1314	/*
1315	 * Test if adding another swap device is possible. There are
1316	 * two limiting factors: 1) the number of bits for the swap
1317	 * type swp_entry_t definition and 2) the number of bits for
1318	 * the swap type in the swap ptes as defined by the different
1319	 * architectures. To honor both limitations a swap entry
1320	 * with swap offset 0 and swap type ~0UL is created, encoded
1321	 * to a swap pte, decoded to a swp_entry_t again and finally
1322	 * the swap type part is extracted. This will mask all bits
1323	 * from the initial ~0UL that can't be encoded in either the
1324	 * swp_entry_t or the architecture definition of a swap pte.
1325	 */
1326	if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1327		swap_list_unlock();
1328		goto out;
1329	}
1330	if (type >= nr_swapfiles)
1331		nr_swapfiles = type+1;
1332	INIT_LIST_HEAD(&p->extent_list);
1333	p->flags = SWP_USED;
1334	p->nr_extents = 0;
1335	p->swap_file = NULL;
1336	p->old_block_size = 0;
1337	p->swap_map = NULL;
1338	p->lowest_bit = 0;
1339	p->highest_bit = 0;
1340	p->cluster_nr = 0;
1341	p->inuse_pages = 0;
1342	spin_lock_init(&p->sdev_lock);
1343	p->next = -1;
1344	if (swap_flags & SWAP_FLAG_PREFER) {
1345		p->prio =
1346		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1347	} else {
1348		p->prio = --least_priority;
1349	}
1350	swap_list_unlock();
1351	name = getname(specialfile);
1352	error = PTR_ERR(name);
1353	if (IS_ERR(name)) {
1354		name = NULL;
1355		goto bad_swap_2;
1356	}
1357	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1358	error = PTR_ERR(swap_file);
1359	if (IS_ERR(swap_file)) {
1360		swap_file = NULL;
1361		goto bad_swap_2;
1362	}
1363
1364	p->swap_file = swap_file;
1365	mapping = swap_file->f_mapping;
1366	inode = mapping->host;
1367
1368	error = -EBUSY;
1369	for (i = 0; i < nr_swapfiles; i++) {
1370		struct swap_info_struct *q = &swap_info[i];
1371
1372		if (i == type || !q->swap_file)
1373			continue;
1374		if (mapping == q->swap_file->f_mapping)
1375			goto bad_swap;
1376	}
1377
1378	error = -EINVAL;
1379	if (S_ISBLK(inode->i_mode)) {
1380		bdev = I_BDEV(inode);
1381		error = bd_claim(bdev, sys_swapon);
1382		if (error < 0) {
1383			bdev = NULL;
1384			goto bad_swap;
1385		}
1386		p->old_block_size = block_size(bdev);
1387		error = set_blocksize(bdev, PAGE_SIZE);
1388		if (error < 0)
1389			goto bad_swap;
1390		p->bdev = bdev;
1391	} else if (S_ISREG(inode->i_mode)) {
1392		p->bdev = inode->i_sb->s_bdev;
1393		down(&inode->i_sem);
1394		did_down = 1;
1395		if (IS_SWAPFILE(inode)) {
1396			error = -EBUSY;
1397			goto bad_swap;
1398		}
1399	} else {
1400		goto bad_swap;
1401	}
1402
1403	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1404
1405	/*
1406	 * Read the swap header.
1407	 */
1408	if (!mapping->a_ops->readpage) {
1409		error = -EINVAL;
1410		goto bad_swap;
1411	}
1412	page = read_cache_page(mapping, 0,
1413			(filler_t *)mapping->a_ops->readpage, swap_file);
1414	if (IS_ERR(page)) {
1415		error = PTR_ERR(page);
1416		goto bad_swap;
1417	}
1418	wait_on_page_locked(page);
1419	if (!PageUptodate(page))
1420		goto bad_swap;
1421	kmap(page);
1422	swap_header = page_address(page);
1423
1424	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1425		swap_header_version = 1;
1426	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1427		swap_header_version = 2;
1428	else {
1429		printk("Unable to find swap-space signature\n");
1430		error = -EINVAL;
1431		goto bad_swap;
1432	}
1433
1434	switch (swap_header_version) {
1435	case 1:
1436		printk(KERN_ERR "version 0 swap is no longer supported. "
1437			"Use mkswap -v1 %s\n", name);
1438		error = -EINVAL;
1439		goto bad_swap;
1440	case 2:
1441		/* Check the swap header's sub-version and the size of
1442                   the swap file and bad block lists */
1443		if (swap_header->info.version != 1) {
1444			printk(KERN_WARNING
1445			       "Unable to handle swap header version %d\n",
1446			       swap_header->info.version);
1447			error = -EINVAL;
1448			goto bad_swap;
1449		}
1450
1451		p->lowest_bit  = 1;
1452		/*
1453		 * Find out how many pages are allowed for a single swap
1454		 * device. There are two limiting factors: 1) the number of
1455		 * bits for the swap offset in the swp_entry_t type and
1456		 * 2) the number of bits in the a swap pte as defined by
1457		 * the different architectures. In order to find the
1458		 * largest possible bit mask a swap entry with swap type 0
1459		 * and swap offset ~0UL is created, encoded to a swap pte,
1460		 * decoded to a swp_entry_t again and finally the swap
1461		 * offset is extracted. This will mask all the bits from
1462		 * the initial ~0UL mask that can't be encoded in either
1463		 * the swp_entry_t or the architecture definition of a
1464		 * swap pte.
1465		 */
1466		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1467		if (maxpages > swap_header->info.last_page)
1468			maxpages = swap_header->info.last_page;
1469		p->highest_bit = maxpages - 1;
1470
1471		error = -EINVAL;
1472		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1473			goto bad_swap;
1474
1475		/* OK, set up the swap map and apply the bad block list */
1476		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1477			error = -ENOMEM;
1478			goto bad_swap;
1479		}
1480
1481		error = 0;
1482		memset(p->swap_map, 0, maxpages * sizeof(short));
1483		for (i=0; i<swap_header->info.nr_badpages; i++) {
1484			int page = swap_header->info.badpages[i];
1485			if (page <= 0 || page >= swap_header->info.last_page)
1486				error = -EINVAL;
1487			else
1488				p->swap_map[page] = SWAP_MAP_BAD;
1489		}
1490		nr_good_pages = swap_header->info.last_page -
1491				swap_header->info.nr_badpages -
1492				1 /* header page */;
1493		if (error)
1494			goto bad_swap;
1495	}
1496
1497	if (swapfilesize && maxpages > swapfilesize) {
1498		printk(KERN_WARNING
1499		       "Swap area shorter than signature indicates\n");
1500		error = -EINVAL;
1501		goto bad_swap;
1502	}
1503	if (!nr_good_pages) {
1504		printk(KERN_WARNING "Empty swap-file\n");
1505		error = -EINVAL;
1506		goto bad_swap;
1507	}
1508	p->swap_map[0] = SWAP_MAP_BAD;
1509	p->max = maxpages;
1510	p->pages = nr_good_pages;
1511
1512	error = setup_swap_extents(p);
1513	if (error)
1514		goto bad_swap;
1515
1516	down(&swapon_sem);
1517	swap_list_lock();
1518	swap_device_lock(p);
1519	p->flags = SWP_ACTIVE;
1520	nr_swap_pages += nr_good_pages;
1521	total_swap_pages += nr_good_pages;
1522	printk(KERN_INFO "Adding %dk swap on %s.  Priority:%d extents:%d\n",
1523		nr_good_pages<<(PAGE_SHIFT-10), name,
1524		p->prio, p->nr_extents);
1525
1526	/* insert swap space into swap_list: */
1527	prev = -1;
1528	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1529		if (p->prio >= swap_info[i].prio) {
1530			break;
1531		}
1532		prev = i;
1533	}
1534	p->next = i;
1535	if (prev < 0) {
1536		swap_list.head = swap_list.next = p - swap_info;
1537	} else {
1538		swap_info[prev].next = p - swap_info;
1539	}
1540	swap_device_unlock(p);
1541	swap_list_unlock();
1542	up(&swapon_sem);
1543	error = 0;
1544	goto out;
1545bad_swap:
1546	if (bdev) {
1547		set_blocksize(bdev, p->old_block_size);
1548		bd_release(bdev);
1549	}
1550bad_swap_2:
1551	swap_list_lock();
1552	swap_map = p->swap_map;
1553	p->swap_file = NULL;
1554	p->swap_map = NULL;
1555	p->flags = 0;
1556	if (!(swap_flags & SWAP_FLAG_PREFER))
1557		++least_priority;
1558	swap_list_unlock();
1559	destroy_swap_extents(p);
1560	vfree(swap_map);
1561	if (swap_file)
1562		filp_close(swap_file, NULL);
1563out:
1564	if (page && !IS_ERR(page)) {
1565		kunmap(page);
1566		page_cache_release(page);
1567	}
1568	if (name)
1569		putname(name);
1570	if (did_down) {
1571		if (!error)
1572			inode->i_flags |= S_SWAPFILE;
1573		up(&inode->i_sem);
1574	}
1575	return error;
1576}
1577
1578void si_swapinfo(struct sysinfo *val)
1579{
1580	unsigned int i;
1581	unsigned long nr_to_be_unused = 0;
1582
1583	swap_list_lock();
1584	for (i = 0; i < nr_swapfiles; i++) {
1585		if (!(swap_info[i].flags & SWP_USED) ||
1586		     (swap_info[i].flags & SWP_WRITEOK))
1587			continue;
1588		nr_to_be_unused += swap_info[i].inuse_pages;
1589	}
1590	val->freeswap = nr_swap_pages + nr_to_be_unused;
1591	val->totalswap = total_swap_pages + nr_to_be_unused;
1592	swap_list_unlock();
1593}
1594
1595/*
1596 * Verify that a swap entry is valid and increment its swap map count.
1597 *
1598 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1599 * "permanent", but will be reclaimed by the next swapoff.
1600 */
1601int swap_duplicate(swp_entry_t entry)
1602{
1603	struct swap_info_struct * p;
1604	unsigned long offset, type;
1605	int result = 0;
1606
1607	type = swp_type(entry);
1608	if (type >= nr_swapfiles)
1609		goto bad_file;
1610	p = type + swap_info;
1611	offset = swp_offset(entry);
1612
1613	swap_device_lock(p);
1614	if (offset < p->max && p->swap_map[offset]) {
1615		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1616			p->swap_map[offset]++;
1617			result = 1;
1618		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1619			if (swap_overflow++ < 5)
1620				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1621			p->swap_map[offset] = SWAP_MAP_MAX;
1622			result = 1;
1623		}
1624	}
1625	swap_device_unlock(p);
1626out:
1627	return result;
1628
1629bad_file:
1630	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1631	goto out;
1632}
1633
1634struct swap_info_struct *
1635get_swap_info_struct(unsigned type)
1636{
1637	return &swap_info[type];
1638}
1639
1640/*
1641 * swap_device_lock prevents swap_map being freed. Don't grab an extra
1642 * reference on the swaphandle, it doesn't matter if it becomes unused.
1643 */
1644int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1645{
1646	int ret = 0, i = 1 << page_cluster;
1647	unsigned long toff;
1648	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1649
1650	if (!page_cluster)	/* no readahead */
1651		return 0;
1652	toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1653	if (!toff)		/* first page is swap header */
1654		toff++, i--;
1655	*offset = toff;
1656
1657	swap_device_lock(swapdev);
1658	do {
1659		/* Don't read-ahead past the end of the swap area */
1660		if (toff >= swapdev->max)
1661			break;
1662		/* Don't read in free or bad pages */
1663		if (!swapdev->swap_map[toff])
1664			break;
1665		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1666			break;
1667		toff++;
1668		ret++;
1669	} while (--i);
1670	swap_device_unlock(swapdev);
1671	return ret;
1672}
1673