swapfile.c revision 20137a490f397d9c01fc9fadd83a8d198bda4477
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/random.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
28#include <linux/mutex.h>
29#include <linux/capability.h>
30#include <linux/syscalls.h>
31#include <linux/memcontrol.h>
32
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <linux/swapops.h>
36
37static DEFINE_SPINLOCK(swap_lock);
38static unsigned int nr_swapfiles;
39long nr_swap_pages;
40long total_swap_pages;
41static int swap_overflow;
42static int least_priority;
43
44static const char Bad_file[] = "Bad swap file entry ";
45static const char Unused_file[] = "Unused swap file entry ";
46static const char Bad_offset[] = "Bad swap offset entry ";
47static const char Unused_offset[] = "Unused swap offset entry ";
48
49static struct swap_list_t swap_list = {-1, -1};
50
51static struct swap_info_struct swap_info[MAX_SWAPFILES];
52
53static DEFINE_MUTEX(swapon_mutex);
54
55/*
56 * We need this because the bdev->unplug_fn can sleep and we cannot
57 * hold swap_lock while calling the unplug_fn. And swap_lock
58 * cannot be turned into a mutex.
59 */
60static DECLARE_RWSEM(swap_unplug_sem);
61
62void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
63{
64	swp_entry_t entry;
65
66	down_read(&swap_unplug_sem);
67	entry.val = page_private(page);
68	if (PageSwapCache(page)) {
69		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
70		struct backing_dev_info *bdi;
71
72		/*
73		 * If the page is removed from swapcache from under us (with a
74		 * racy try_to_unuse/swapoff) we need an additional reference
75		 * count to avoid reading garbage from page_private(page) above.
76		 * If the WARN_ON triggers during a swapoff it maybe the race
77		 * condition and it's harmless. However if it triggers without
78		 * swapoff it signals a problem.
79		 */
80		WARN_ON(page_count(page) <= 1);
81
82		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
83		blk_run_backing_dev(bdi, page);
84	}
85	up_read(&swap_unplug_sem);
86}
87
88/*
89 * swapon tell device that all the old swap contents can be discarded,
90 * to allow the swap device to optimize its wear-levelling.
91 */
92static int discard_swap(struct swap_info_struct *si)
93{
94	struct swap_extent *se;
95	int err = 0;
96
97	list_for_each_entry(se, &si->extent_list, list) {
98		sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
99		pgoff_t nr_blocks = se->nr_pages << (PAGE_SHIFT - 9);
100
101		if (se->start_page == 0) {
102			/* Do not discard the swap header page! */
103			start_block += 1 << (PAGE_SHIFT - 9);
104			nr_blocks -= 1 << (PAGE_SHIFT - 9);
105			if (!nr_blocks)
106				continue;
107		}
108
109		err = blkdev_issue_discard(si->bdev, start_block,
110						nr_blocks, GFP_KERNEL);
111		if (err)
112			break;
113
114		cond_resched();
115	}
116	return err;		/* That will often be -EOPNOTSUPP */
117}
118
119/*
120 * swap allocation tell device that a cluster of swap can now be discarded,
121 * to allow the swap device to optimize its wear-levelling.
122 */
123static void discard_swap_cluster(struct swap_info_struct *si,
124				 pgoff_t start_page, pgoff_t nr_pages)
125{
126	struct swap_extent *se = si->curr_swap_extent;
127	int found_extent = 0;
128
129	while (nr_pages) {
130		struct list_head *lh;
131
132		if (se->start_page <= start_page &&
133		    start_page < se->start_page + se->nr_pages) {
134			pgoff_t offset = start_page - se->start_page;
135			sector_t start_block = se->start_block + offset;
136			pgoff_t nr_blocks = se->nr_pages - offset;
137
138			if (nr_blocks > nr_pages)
139				nr_blocks = nr_pages;
140			start_page += nr_blocks;
141			nr_pages -= nr_blocks;
142
143			if (!found_extent++)
144				si->curr_swap_extent = se;
145
146			start_block <<= PAGE_SHIFT - 9;
147			nr_blocks <<= PAGE_SHIFT - 9;
148			if (blkdev_issue_discard(si->bdev, start_block,
149							nr_blocks, GFP_NOIO))
150				break;
151		}
152
153		lh = se->list.next;
154		if (lh == &si->extent_list)
155			lh = lh->next;
156		se = list_entry(lh, struct swap_extent, list);
157	}
158}
159
160static int wait_for_discard(void *word)
161{
162	schedule();
163	return 0;
164}
165
166#define SWAPFILE_CLUSTER	256
167#define LATENCY_LIMIT		256
168
169static inline unsigned long scan_swap_map(struct swap_info_struct *si)
170{
171	unsigned long offset;
172	unsigned long last_in_cluster = 0;
173	int latency_ration = LATENCY_LIMIT;
174	int found_free_cluster = 0;
175
176	/*
177	 * We try to cluster swap pages by allocating them sequentially
178	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
179	 * way, however, we resort to first-free allocation, starting
180	 * a new cluster.  This prevents us from scattering swap pages
181	 * all over the entire swap partition, so that we reduce
182	 * overall disk seek times between swap pages.  -- sct
183	 * But we do now try to find an empty cluster.  -Andrea
184	 */
185
186	si->flags += SWP_SCANNING;
187	offset = si->cluster_next;
188
189	if (unlikely(!si->cluster_nr--)) {
190		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
191			si->cluster_nr = SWAPFILE_CLUSTER - 1;
192			goto checks;
193		}
194		if (si->flags & SWP_DISCARDABLE) {
195			/*
196			 * Start range check on racing allocations, in case
197			 * they overlap the cluster we eventually decide on
198			 * (we scan without swap_lock to allow preemption).
199			 * It's hardly conceivable that cluster_nr could be
200			 * wrapped during our scan, but don't depend on it.
201			 */
202			if (si->lowest_alloc)
203				goto checks;
204			si->lowest_alloc = si->max;
205			si->highest_alloc = 0;
206		}
207		spin_unlock(&swap_lock);
208
209		offset = si->lowest_bit;
210		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
211
212		/* Locate the first empty (unaligned) cluster */
213		for (; last_in_cluster <= si->highest_bit; offset++) {
214			if (si->swap_map[offset])
215				last_in_cluster = offset + SWAPFILE_CLUSTER;
216			else if (offset == last_in_cluster) {
217				spin_lock(&swap_lock);
218				offset -= SWAPFILE_CLUSTER - 1;
219				si->cluster_next = offset;
220				si->cluster_nr = SWAPFILE_CLUSTER - 1;
221				found_free_cluster = 1;
222				goto checks;
223			}
224			if (unlikely(--latency_ration < 0)) {
225				cond_resched();
226				latency_ration = LATENCY_LIMIT;
227			}
228		}
229
230		offset = si->lowest_bit;
231		spin_lock(&swap_lock);
232		si->cluster_nr = SWAPFILE_CLUSTER - 1;
233		si->lowest_alloc = 0;
234	}
235
236checks:
237	if (!(si->flags & SWP_WRITEOK))
238		goto no_page;
239	if (!si->highest_bit)
240		goto no_page;
241	if (offset > si->highest_bit)
242		offset = si->lowest_bit;
243	if (si->swap_map[offset])
244		goto scan;
245
246	if (offset == si->lowest_bit)
247		si->lowest_bit++;
248	if (offset == si->highest_bit)
249		si->highest_bit--;
250	si->inuse_pages++;
251	if (si->inuse_pages == si->pages) {
252		si->lowest_bit = si->max;
253		si->highest_bit = 0;
254	}
255	si->swap_map[offset] = 1;
256	si->cluster_next = offset + 1;
257	si->flags -= SWP_SCANNING;
258
259	if (si->lowest_alloc) {
260		/*
261		 * Only set when SWP_DISCARDABLE, and there's a scan
262		 * for a free cluster in progress or just completed.
263		 */
264		if (found_free_cluster) {
265			/*
266			 * To optimize wear-levelling, discard the
267			 * old data of the cluster, taking care not to
268			 * discard any of its pages that have already
269			 * been allocated by racing tasks (offset has
270			 * already stepped over any at the beginning).
271			 */
272			if (offset < si->highest_alloc &&
273			    si->lowest_alloc <= last_in_cluster)
274				last_in_cluster = si->lowest_alloc - 1;
275			si->flags |= SWP_DISCARDING;
276			spin_unlock(&swap_lock);
277
278			if (offset < last_in_cluster)
279				discard_swap_cluster(si, offset,
280					last_in_cluster - offset + 1);
281
282			spin_lock(&swap_lock);
283			si->lowest_alloc = 0;
284			si->flags &= ~SWP_DISCARDING;
285
286			smp_mb();	/* wake_up_bit advises this */
287			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
288
289		} else if (si->flags & SWP_DISCARDING) {
290			/*
291			 * Delay using pages allocated by racing tasks
292			 * until the whole discard has been issued. We
293			 * could defer that delay until swap_writepage,
294			 * but it's easier to keep this self-contained.
295			 */
296			spin_unlock(&swap_lock);
297			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
298				wait_for_discard, TASK_UNINTERRUPTIBLE);
299			spin_lock(&swap_lock);
300		} else {
301			/*
302			 * Note pages allocated by racing tasks while
303			 * scan for a free cluster is in progress, so
304			 * that its final discard can exclude them.
305			 */
306			if (offset < si->lowest_alloc)
307				si->lowest_alloc = offset;
308			if (offset > si->highest_alloc)
309				si->highest_alloc = offset;
310		}
311	}
312	return offset;
313
314scan:
315	spin_unlock(&swap_lock);
316	while (++offset <= si->highest_bit) {
317		if (!si->swap_map[offset]) {
318			spin_lock(&swap_lock);
319			goto checks;
320		}
321		if (unlikely(--latency_ration < 0)) {
322			cond_resched();
323			latency_ration = LATENCY_LIMIT;
324		}
325	}
326	spin_lock(&swap_lock);
327	goto checks;
328
329no_page:
330	si->flags -= SWP_SCANNING;
331	return 0;
332}
333
334swp_entry_t get_swap_page(void)
335{
336	struct swap_info_struct *si;
337	pgoff_t offset;
338	int type, next;
339	int wrapped = 0;
340
341	spin_lock(&swap_lock);
342	if (nr_swap_pages <= 0)
343		goto noswap;
344	nr_swap_pages--;
345
346	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
347		si = swap_info + type;
348		next = si->next;
349		if (next < 0 ||
350		    (!wrapped && si->prio != swap_info[next].prio)) {
351			next = swap_list.head;
352			wrapped++;
353		}
354
355		if (!si->highest_bit)
356			continue;
357		if (!(si->flags & SWP_WRITEOK))
358			continue;
359
360		swap_list.next = next;
361		offset = scan_swap_map(si);
362		if (offset) {
363			spin_unlock(&swap_lock);
364			return swp_entry(type, offset);
365		}
366		next = swap_list.next;
367	}
368
369	nr_swap_pages++;
370noswap:
371	spin_unlock(&swap_lock);
372	return (swp_entry_t) {0};
373}
374
375swp_entry_t get_swap_page_of_type(int type)
376{
377	struct swap_info_struct *si;
378	pgoff_t offset;
379
380	spin_lock(&swap_lock);
381	si = swap_info + type;
382	if (si->flags & SWP_WRITEOK) {
383		nr_swap_pages--;
384		offset = scan_swap_map(si);
385		if (offset) {
386			spin_unlock(&swap_lock);
387			return swp_entry(type, offset);
388		}
389		nr_swap_pages++;
390	}
391	spin_unlock(&swap_lock);
392	return (swp_entry_t) {0};
393}
394
395static struct swap_info_struct * swap_info_get(swp_entry_t entry)
396{
397	struct swap_info_struct * p;
398	unsigned long offset, type;
399
400	if (!entry.val)
401		goto out;
402	type = swp_type(entry);
403	if (type >= nr_swapfiles)
404		goto bad_nofile;
405	p = & swap_info[type];
406	if (!(p->flags & SWP_USED))
407		goto bad_device;
408	offset = swp_offset(entry);
409	if (offset >= p->max)
410		goto bad_offset;
411	if (!p->swap_map[offset])
412		goto bad_free;
413	spin_lock(&swap_lock);
414	return p;
415
416bad_free:
417	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
418	goto out;
419bad_offset:
420	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
421	goto out;
422bad_device:
423	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
424	goto out;
425bad_nofile:
426	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
427out:
428	return NULL;
429}
430
431static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
432{
433	int count = p->swap_map[offset];
434
435	if (count < SWAP_MAP_MAX) {
436		count--;
437		p->swap_map[offset] = count;
438		if (!count) {
439			if (offset < p->lowest_bit)
440				p->lowest_bit = offset;
441			if (offset > p->highest_bit)
442				p->highest_bit = offset;
443			if (p->prio > swap_info[swap_list.next].prio)
444				swap_list.next = p - swap_info;
445			nr_swap_pages++;
446			p->inuse_pages--;
447		}
448	}
449	return count;
450}
451
452/*
453 * Caller has made sure that the swapdevice corresponding to entry
454 * is still around or has not been recycled.
455 */
456void swap_free(swp_entry_t entry)
457{
458	struct swap_info_struct * p;
459
460	p = swap_info_get(entry);
461	if (p) {
462		swap_entry_free(p, swp_offset(entry));
463		spin_unlock(&swap_lock);
464	}
465}
466
467/*
468 * How many references to page are currently swapped out?
469 */
470static inline int page_swapcount(struct page *page)
471{
472	int count = 0;
473	struct swap_info_struct *p;
474	swp_entry_t entry;
475
476	entry.val = page_private(page);
477	p = swap_info_get(entry);
478	if (p) {
479		/* Subtract the 1 for the swap cache itself */
480		count = p->swap_map[swp_offset(entry)] - 1;
481		spin_unlock(&swap_lock);
482	}
483	return count;
484}
485
486/*
487 * We can write to an anon page without COW if there are no other references
488 * to it.  And as a side-effect, free up its swap: because the old content
489 * on disk will never be read, and seeking back there to write new content
490 * later would only waste time away from clustering.
491 */
492int reuse_swap_page(struct page *page)
493{
494	int count;
495
496	VM_BUG_ON(!PageLocked(page));
497	count = page_mapcount(page);
498	if (count <= 1 && PageSwapCache(page)) {
499		count += page_swapcount(page);
500		if (count == 1 && !PageWriteback(page)) {
501			delete_from_swap_cache(page);
502			SetPageDirty(page);
503		}
504	}
505	return count == 1;
506}
507
508/*
509 * If swap is getting full, or if there are no more mappings of this page,
510 * then try_to_free_swap is called to free its swap space.
511 */
512int try_to_free_swap(struct page *page)
513{
514	VM_BUG_ON(!PageLocked(page));
515
516	if (!PageSwapCache(page))
517		return 0;
518	if (PageWriteback(page))
519		return 0;
520	if (page_swapcount(page))
521		return 0;
522
523	delete_from_swap_cache(page);
524	SetPageDirty(page);
525	return 1;
526}
527
528/*
529 * Free the swap entry like above, but also try to
530 * free the page cache entry if it is the last user.
531 */
532void free_swap_and_cache(swp_entry_t entry)
533{
534	struct swap_info_struct * p;
535	struct page *page = NULL;
536
537	if (is_migration_entry(entry))
538		return;
539
540	p = swap_info_get(entry);
541	if (p) {
542		if (swap_entry_free(p, swp_offset(entry)) == 1) {
543			page = find_get_page(&swapper_space, entry.val);
544			if (page && !trylock_page(page)) {
545				page_cache_release(page);
546				page = NULL;
547			}
548		}
549		spin_unlock(&swap_lock);
550	}
551	if (page) {
552		/*
553		 * Not mapped elsewhere, or swap space full? Free it!
554		 * Also recheck PageSwapCache now page is locked (above).
555		 */
556		if (PageSwapCache(page) && !PageWriteback(page) &&
557				(!page_mapped(page) || vm_swap_full())) {
558			delete_from_swap_cache(page);
559			SetPageDirty(page);
560		}
561		unlock_page(page);
562		page_cache_release(page);
563	}
564}
565
566#ifdef CONFIG_HIBERNATION
567/*
568 * Find the swap type that corresponds to given device (if any).
569 *
570 * @offset - number of the PAGE_SIZE-sized block of the device, starting
571 * from 0, in which the swap header is expected to be located.
572 *
573 * This is needed for the suspend to disk (aka swsusp).
574 */
575int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
576{
577	struct block_device *bdev = NULL;
578	int i;
579
580	if (device)
581		bdev = bdget(device);
582
583	spin_lock(&swap_lock);
584	for (i = 0; i < nr_swapfiles; i++) {
585		struct swap_info_struct *sis = swap_info + i;
586
587		if (!(sis->flags & SWP_WRITEOK))
588			continue;
589
590		if (!bdev) {
591			if (bdev_p)
592				*bdev_p = sis->bdev;
593
594			spin_unlock(&swap_lock);
595			return i;
596		}
597		if (bdev == sis->bdev) {
598			struct swap_extent *se;
599
600			se = list_entry(sis->extent_list.next,
601					struct swap_extent, list);
602			if (se->start_block == offset) {
603				if (bdev_p)
604					*bdev_p = sis->bdev;
605
606				spin_unlock(&swap_lock);
607				bdput(bdev);
608				return i;
609			}
610		}
611	}
612	spin_unlock(&swap_lock);
613	if (bdev)
614		bdput(bdev);
615
616	return -ENODEV;
617}
618
619/*
620 * Return either the total number of swap pages of given type, or the number
621 * of free pages of that type (depending on @free)
622 *
623 * This is needed for software suspend
624 */
625unsigned int count_swap_pages(int type, int free)
626{
627	unsigned int n = 0;
628
629	if (type < nr_swapfiles) {
630		spin_lock(&swap_lock);
631		if (swap_info[type].flags & SWP_WRITEOK) {
632			n = swap_info[type].pages;
633			if (free)
634				n -= swap_info[type].inuse_pages;
635		}
636		spin_unlock(&swap_lock);
637	}
638	return n;
639}
640#endif
641
642/*
643 * No need to decide whether this PTE shares the swap entry with others,
644 * just let do_wp_page work it out if a write is requested later - to
645 * force COW, vm_page_prot omits write permission from any private vma.
646 */
647static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
648		unsigned long addr, swp_entry_t entry, struct page *page)
649{
650	spinlock_t *ptl;
651	pte_t *pte;
652	int ret = 1;
653
654	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
655		ret = -ENOMEM;
656
657	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
658	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
659		if (ret > 0)
660			mem_cgroup_uncharge_page(page);
661		ret = 0;
662		goto out;
663	}
664
665	inc_mm_counter(vma->vm_mm, anon_rss);
666	get_page(page);
667	set_pte_at(vma->vm_mm, addr, pte,
668		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
669	page_add_anon_rmap(page, vma, addr);
670	swap_free(entry);
671	/*
672	 * Move the page to the active list so it is not
673	 * immediately swapped out again after swapon.
674	 */
675	activate_page(page);
676out:
677	pte_unmap_unlock(pte, ptl);
678	return ret;
679}
680
681static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
682				unsigned long addr, unsigned long end,
683				swp_entry_t entry, struct page *page)
684{
685	pte_t swp_pte = swp_entry_to_pte(entry);
686	pte_t *pte;
687	int ret = 0;
688
689	/*
690	 * We don't actually need pte lock while scanning for swp_pte: since
691	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
692	 * page table while we're scanning; though it could get zapped, and on
693	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
694	 * of unmatched parts which look like swp_pte, so unuse_pte must
695	 * recheck under pte lock.  Scanning without pte lock lets it be
696	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
697	 */
698	pte = pte_offset_map(pmd, addr);
699	do {
700		/*
701		 * swapoff spends a _lot_ of time in this loop!
702		 * Test inline before going to call unuse_pte.
703		 */
704		if (unlikely(pte_same(*pte, swp_pte))) {
705			pte_unmap(pte);
706			ret = unuse_pte(vma, pmd, addr, entry, page);
707			if (ret)
708				goto out;
709			pte = pte_offset_map(pmd, addr);
710		}
711	} while (pte++, addr += PAGE_SIZE, addr != end);
712	pte_unmap(pte - 1);
713out:
714	return ret;
715}
716
717static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
718				unsigned long addr, unsigned long end,
719				swp_entry_t entry, struct page *page)
720{
721	pmd_t *pmd;
722	unsigned long next;
723	int ret;
724
725	pmd = pmd_offset(pud, addr);
726	do {
727		next = pmd_addr_end(addr, end);
728		if (pmd_none_or_clear_bad(pmd))
729			continue;
730		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
731		if (ret)
732			return ret;
733	} while (pmd++, addr = next, addr != end);
734	return 0;
735}
736
737static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
738				unsigned long addr, unsigned long end,
739				swp_entry_t entry, struct page *page)
740{
741	pud_t *pud;
742	unsigned long next;
743	int ret;
744
745	pud = pud_offset(pgd, addr);
746	do {
747		next = pud_addr_end(addr, end);
748		if (pud_none_or_clear_bad(pud))
749			continue;
750		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
751		if (ret)
752			return ret;
753	} while (pud++, addr = next, addr != end);
754	return 0;
755}
756
757static int unuse_vma(struct vm_area_struct *vma,
758				swp_entry_t entry, struct page *page)
759{
760	pgd_t *pgd;
761	unsigned long addr, end, next;
762	int ret;
763
764	if (page->mapping) {
765		addr = page_address_in_vma(page, vma);
766		if (addr == -EFAULT)
767			return 0;
768		else
769			end = addr + PAGE_SIZE;
770	} else {
771		addr = vma->vm_start;
772		end = vma->vm_end;
773	}
774
775	pgd = pgd_offset(vma->vm_mm, addr);
776	do {
777		next = pgd_addr_end(addr, end);
778		if (pgd_none_or_clear_bad(pgd))
779			continue;
780		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
781		if (ret)
782			return ret;
783	} while (pgd++, addr = next, addr != end);
784	return 0;
785}
786
787static int unuse_mm(struct mm_struct *mm,
788				swp_entry_t entry, struct page *page)
789{
790	struct vm_area_struct *vma;
791	int ret = 0;
792
793	if (!down_read_trylock(&mm->mmap_sem)) {
794		/*
795		 * Activate page so shrink_inactive_list is unlikely to unmap
796		 * its ptes while lock is dropped, so swapoff can make progress.
797		 */
798		activate_page(page);
799		unlock_page(page);
800		down_read(&mm->mmap_sem);
801		lock_page(page);
802	}
803	for (vma = mm->mmap; vma; vma = vma->vm_next) {
804		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
805			break;
806	}
807	up_read(&mm->mmap_sem);
808	return (ret < 0)? ret: 0;
809}
810
811/*
812 * Scan swap_map from current position to next entry still in use.
813 * Recycle to start on reaching the end, returning 0 when empty.
814 */
815static unsigned int find_next_to_unuse(struct swap_info_struct *si,
816					unsigned int prev)
817{
818	unsigned int max = si->max;
819	unsigned int i = prev;
820	int count;
821
822	/*
823	 * No need for swap_lock here: we're just looking
824	 * for whether an entry is in use, not modifying it; false
825	 * hits are okay, and sys_swapoff() has already prevented new
826	 * allocations from this area (while holding swap_lock).
827	 */
828	for (;;) {
829		if (++i >= max) {
830			if (!prev) {
831				i = 0;
832				break;
833			}
834			/*
835			 * No entries in use at top of swap_map,
836			 * loop back to start and recheck there.
837			 */
838			max = prev + 1;
839			prev = 0;
840			i = 1;
841		}
842		count = si->swap_map[i];
843		if (count && count != SWAP_MAP_BAD)
844			break;
845	}
846	return i;
847}
848
849/*
850 * We completely avoid races by reading each swap page in advance,
851 * and then search for the process using it.  All the necessary
852 * page table adjustments can then be made atomically.
853 */
854static int try_to_unuse(unsigned int type)
855{
856	struct swap_info_struct * si = &swap_info[type];
857	struct mm_struct *start_mm;
858	unsigned short *swap_map;
859	unsigned short swcount;
860	struct page *page;
861	swp_entry_t entry;
862	unsigned int i = 0;
863	int retval = 0;
864	int reset_overflow = 0;
865	int shmem;
866
867	/*
868	 * When searching mms for an entry, a good strategy is to
869	 * start at the first mm we freed the previous entry from
870	 * (though actually we don't notice whether we or coincidence
871	 * freed the entry).  Initialize this start_mm with a hold.
872	 *
873	 * A simpler strategy would be to start at the last mm we
874	 * freed the previous entry from; but that would take less
875	 * advantage of mmlist ordering, which clusters forked mms
876	 * together, child after parent.  If we race with dup_mmap(), we
877	 * prefer to resolve parent before child, lest we miss entries
878	 * duplicated after we scanned child: using last mm would invert
879	 * that.  Though it's only a serious concern when an overflowed
880	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
881	 */
882	start_mm = &init_mm;
883	atomic_inc(&init_mm.mm_users);
884
885	/*
886	 * Keep on scanning until all entries have gone.  Usually,
887	 * one pass through swap_map is enough, but not necessarily:
888	 * there are races when an instance of an entry might be missed.
889	 */
890	while ((i = find_next_to_unuse(si, i)) != 0) {
891		if (signal_pending(current)) {
892			retval = -EINTR;
893			break;
894		}
895
896		/*
897		 * Get a page for the entry, using the existing swap
898		 * cache page if there is one.  Otherwise, get a clean
899		 * page and read the swap into it.
900		 */
901		swap_map = &si->swap_map[i];
902		entry = swp_entry(type, i);
903		page = read_swap_cache_async(entry,
904					GFP_HIGHUSER_MOVABLE, NULL, 0);
905		if (!page) {
906			/*
907			 * Either swap_duplicate() failed because entry
908			 * has been freed independently, and will not be
909			 * reused since sys_swapoff() already disabled
910			 * allocation from here, or alloc_page() failed.
911			 */
912			if (!*swap_map)
913				continue;
914			retval = -ENOMEM;
915			break;
916		}
917
918		/*
919		 * Don't hold on to start_mm if it looks like exiting.
920		 */
921		if (atomic_read(&start_mm->mm_users) == 1) {
922			mmput(start_mm);
923			start_mm = &init_mm;
924			atomic_inc(&init_mm.mm_users);
925		}
926
927		/*
928		 * Wait for and lock page.  When do_swap_page races with
929		 * try_to_unuse, do_swap_page can handle the fault much
930		 * faster than try_to_unuse can locate the entry.  This
931		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
932		 * defer to do_swap_page in such a case - in some tests,
933		 * do_swap_page and try_to_unuse repeatedly compete.
934		 */
935		wait_on_page_locked(page);
936		wait_on_page_writeback(page);
937		lock_page(page);
938		wait_on_page_writeback(page);
939
940		/*
941		 * Remove all references to entry.
942		 * Whenever we reach init_mm, there's no address space
943		 * to search, but use it as a reminder to search shmem.
944		 */
945		shmem = 0;
946		swcount = *swap_map;
947		if (swcount > 1) {
948			if (start_mm == &init_mm)
949				shmem = shmem_unuse(entry, page);
950			else
951				retval = unuse_mm(start_mm, entry, page);
952		}
953		if (*swap_map > 1) {
954			int set_start_mm = (*swap_map >= swcount);
955			struct list_head *p = &start_mm->mmlist;
956			struct mm_struct *new_start_mm = start_mm;
957			struct mm_struct *prev_mm = start_mm;
958			struct mm_struct *mm;
959
960			atomic_inc(&new_start_mm->mm_users);
961			atomic_inc(&prev_mm->mm_users);
962			spin_lock(&mmlist_lock);
963			while (*swap_map > 1 && !retval && !shmem &&
964					(p = p->next) != &start_mm->mmlist) {
965				mm = list_entry(p, struct mm_struct, mmlist);
966				if (!atomic_inc_not_zero(&mm->mm_users))
967					continue;
968				spin_unlock(&mmlist_lock);
969				mmput(prev_mm);
970				prev_mm = mm;
971
972				cond_resched();
973
974				swcount = *swap_map;
975				if (swcount <= 1)
976					;
977				else if (mm == &init_mm) {
978					set_start_mm = 1;
979					shmem = shmem_unuse(entry, page);
980				} else
981					retval = unuse_mm(mm, entry, page);
982				if (set_start_mm && *swap_map < swcount) {
983					mmput(new_start_mm);
984					atomic_inc(&mm->mm_users);
985					new_start_mm = mm;
986					set_start_mm = 0;
987				}
988				spin_lock(&mmlist_lock);
989			}
990			spin_unlock(&mmlist_lock);
991			mmput(prev_mm);
992			mmput(start_mm);
993			start_mm = new_start_mm;
994		}
995		if (shmem) {
996			/* page has already been unlocked and released */
997			if (shmem > 0)
998				continue;
999			retval = shmem;
1000			break;
1001		}
1002		if (retval) {
1003			unlock_page(page);
1004			page_cache_release(page);
1005			break;
1006		}
1007
1008		/*
1009		 * How could swap count reach 0x7fff when the maximum
1010		 * pid is 0x7fff, and there's no way to repeat a swap
1011		 * page within an mm (except in shmem, where it's the
1012		 * shared object which takes the reference count)?
1013		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
1014		 *
1015		 * If that's wrong, then we should worry more about
1016		 * exit_mmap() and do_munmap() cases described above:
1017		 * we might be resetting SWAP_MAP_MAX too early here.
1018		 * We know "Undead"s can happen, they're okay, so don't
1019		 * report them; but do report if we reset SWAP_MAP_MAX.
1020		 */
1021		if (*swap_map == SWAP_MAP_MAX) {
1022			spin_lock(&swap_lock);
1023			*swap_map = 1;
1024			spin_unlock(&swap_lock);
1025			reset_overflow = 1;
1026		}
1027
1028		/*
1029		 * If a reference remains (rare), we would like to leave
1030		 * the page in the swap cache; but try_to_unmap could
1031		 * then re-duplicate the entry once we drop page lock,
1032		 * so we might loop indefinitely; also, that page could
1033		 * not be swapped out to other storage meanwhile.  So:
1034		 * delete from cache even if there's another reference,
1035		 * after ensuring that the data has been saved to disk -
1036		 * since if the reference remains (rarer), it will be
1037		 * read from disk into another page.  Splitting into two
1038		 * pages would be incorrect if swap supported "shared
1039		 * private" pages, but they are handled by tmpfs files.
1040		 */
1041		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
1042			struct writeback_control wbc = {
1043				.sync_mode = WB_SYNC_NONE,
1044			};
1045
1046			swap_writepage(page, &wbc);
1047			lock_page(page);
1048			wait_on_page_writeback(page);
1049		}
1050
1051		/*
1052		 * It is conceivable that a racing task removed this page from
1053		 * swap cache just before we acquired the page lock at the top,
1054		 * or while we dropped it in unuse_mm().  The page might even
1055		 * be back in swap cache on another swap area: that we must not
1056		 * delete, since it may not have been written out to swap yet.
1057		 */
1058		if (PageSwapCache(page) &&
1059		    likely(page_private(page) == entry.val))
1060			delete_from_swap_cache(page);
1061
1062		/*
1063		 * So we could skip searching mms once swap count went
1064		 * to 1, we did not mark any present ptes as dirty: must
1065		 * mark page dirty so shrink_page_list will preserve it.
1066		 */
1067		SetPageDirty(page);
1068		unlock_page(page);
1069		page_cache_release(page);
1070
1071		/*
1072		 * Make sure that we aren't completely killing
1073		 * interactive performance.
1074		 */
1075		cond_resched();
1076	}
1077
1078	mmput(start_mm);
1079	if (reset_overflow) {
1080		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1081		swap_overflow = 0;
1082	}
1083	return retval;
1084}
1085
1086/*
1087 * After a successful try_to_unuse, if no swap is now in use, we know
1088 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1089 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1090 * added to the mmlist just after page_duplicate - before would be racy.
1091 */
1092static void drain_mmlist(void)
1093{
1094	struct list_head *p, *next;
1095	unsigned int i;
1096
1097	for (i = 0; i < nr_swapfiles; i++)
1098		if (swap_info[i].inuse_pages)
1099			return;
1100	spin_lock(&mmlist_lock);
1101	list_for_each_safe(p, next, &init_mm.mmlist)
1102		list_del_init(p);
1103	spin_unlock(&mmlist_lock);
1104}
1105
1106/*
1107 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1108 * corresponds to page offset `offset'.
1109 */
1110sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
1111{
1112	struct swap_extent *se = sis->curr_swap_extent;
1113	struct swap_extent *start_se = se;
1114
1115	for ( ; ; ) {
1116		struct list_head *lh;
1117
1118		if (se->start_page <= offset &&
1119				offset < (se->start_page + se->nr_pages)) {
1120			return se->start_block + (offset - se->start_page);
1121		}
1122		lh = se->list.next;
1123		if (lh == &sis->extent_list)
1124			lh = lh->next;
1125		se = list_entry(lh, struct swap_extent, list);
1126		sis->curr_swap_extent = se;
1127		BUG_ON(se == start_se);		/* It *must* be present */
1128	}
1129}
1130
1131#ifdef CONFIG_HIBERNATION
1132/*
1133 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1134 * corresponding to given index in swap_info (swap type).
1135 */
1136sector_t swapdev_block(int swap_type, pgoff_t offset)
1137{
1138	struct swap_info_struct *sis;
1139
1140	if (swap_type >= nr_swapfiles)
1141		return 0;
1142
1143	sis = swap_info + swap_type;
1144	return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1145}
1146#endif /* CONFIG_HIBERNATION */
1147
1148/*
1149 * Free all of a swapdev's extent information
1150 */
1151static void destroy_swap_extents(struct swap_info_struct *sis)
1152{
1153	while (!list_empty(&sis->extent_list)) {
1154		struct swap_extent *se;
1155
1156		se = list_entry(sis->extent_list.next,
1157				struct swap_extent, list);
1158		list_del(&se->list);
1159		kfree(se);
1160	}
1161}
1162
1163/*
1164 * Add a block range (and the corresponding page range) into this swapdev's
1165 * extent list.  The extent list is kept sorted in page order.
1166 *
1167 * This function rather assumes that it is called in ascending page order.
1168 */
1169static int
1170add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1171		unsigned long nr_pages, sector_t start_block)
1172{
1173	struct swap_extent *se;
1174	struct swap_extent *new_se;
1175	struct list_head *lh;
1176
1177	lh = sis->extent_list.prev;	/* The highest page extent */
1178	if (lh != &sis->extent_list) {
1179		se = list_entry(lh, struct swap_extent, list);
1180		BUG_ON(se->start_page + se->nr_pages != start_page);
1181		if (se->start_block + se->nr_pages == start_block) {
1182			/* Merge it */
1183			se->nr_pages += nr_pages;
1184			return 0;
1185		}
1186	}
1187
1188	/*
1189	 * No merge.  Insert a new extent, preserving ordering.
1190	 */
1191	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1192	if (new_se == NULL)
1193		return -ENOMEM;
1194	new_se->start_page = start_page;
1195	new_se->nr_pages = nr_pages;
1196	new_se->start_block = start_block;
1197
1198	list_add_tail(&new_se->list, &sis->extent_list);
1199	return 1;
1200}
1201
1202/*
1203 * A `swap extent' is a simple thing which maps a contiguous range of pages
1204 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1205 * is built at swapon time and is then used at swap_writepage/swap_readpage
1206 * time for locating where on disk a page belongs.
1207 *
1208 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1209 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1210 * swap files identically.
1211 *
1212 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1213 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1214 * swapfiles are handled *identically* after swapon time.
1215 *
1216 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1217 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1218 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1219 * requirements, they are simply tossed out - we will never use those blocks
1220 * for swapping.
1221 *
1222 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1223 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1224 * which will scribble on the fs.
1225 *
1226 * The amount of disk space which a single swap extent represents varies.
1227 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1228 * extents in the list.  To avoid much list walking, we cache the previous
1229 * search location in `curr_swap_extent', and start new searches from there.
1230 * This is extremely effective.  The average number of iterations in
1231 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1232 */
1233static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1234{
1235	struct inode *inode;
1236	unsigned blocks_per_page;
1237	unsigned long page_no;
1238	unsigned blkbits;
1239	sector_t probe_block;
1240	sector_t last_block;
1241	sector_t lowest_block = -1;
1242	sector_t highest_block = 0;
1243	int nr_extents = 0;
1244	int ret;
1245
1246	inode = sis->swap_file->f_mapping->host;
1247	if (S_ISBLK(inode->i_mode)) {
1248		ret = add_swap_extent(sis, 0, sis->max, 0);
1249		*span = sis->pages;
1250		goto done;
1251	}
1252
1253	blkbits = inode->i_blkbits;
1254	blocks_per_page = PAGE_SIZE >> blkbits;
1255
1256	/*
1257	 * Map all the blocks into the extent list.  This code doesn't try
1258	 * to be very smart.
1259	 */
1260	probe_block = 0;
1261	page_no = 0;
1262	last_block = i_size_read(inode) >> blkbits;
1263	while ((probe_block + blocks_per_page) <= last_block &&
1264			page_no < sis->max) {
1265		unsigned block_in_page;
1266		sector_t first_block;
1267
1268		first_block = bmap(inode, probe_block);
1269		if (first_block == 0)
1270			goto bad_bmap;
1271
1272		/*
1273		 * It must be PAGE_SIZE aligned on-disk
1274		 */
1275		if (first_block & (blocks_per_page - 1)) {
1276			probe_block++;
1277			goto reprobe;
1278		}
1279
1280		for (block_in_page = 1; block_in_page < blocks_per_page;
1281					block_in_page++) {
1282			sector_t block;
1283
1284			block = bmap(inode, probe_block + block_in_page);
1285			if (block == 0)
1286				goto bad_bmap;
1287			if (block != first_block + block_in_page) {
1288				/* Discontiguity */
1289				probe_block++;
1290				goto reprobe;
1291			}
1292		}
1293
1294		first_block >>= (PAGE_SHIFT - blkbits);
1295		if (page_no) {	/* exclude the header page */
1296			if (first_block < lowest_block)
1297				lowest_block = first_block;
1298			if (first_block > highest_block)
1299				highest_block = first_block;
1300		}
1301
1302		/*
1303		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1304		 */
1305		ret = add_swap_extent(sis, page_no, 1, first_block);
1306		if (ret < 0)
1307			goto out;
1308		nr_extents += ret;
1309		page_no++;
1310		probe_block += blocks_per_page;
1311reprobe:
1312		continue;
1313	}
1314	ret = nr_extents;
1315	*span = 1 + highest_block - lowest_block;
1316	if (page_no == 0)
1317		page_no = 1;	/* force Empty message */
1318	sis->max = page_no;
1319	sis->pages = page_no - 1;
1320	sis->highest_bit = page_no - 1;
1321done:
1322	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1323					struct swap_extent, list);
1324	goto out;
1325bad_bmap:
1326	printk(KERN_ERR "swapon: swapfile has holes\n");
1327	ret = -EINVAL;
1328out:
1329	return ret;
1330}
1331
1332#if 0	/* We don't need this yet */
1333#include <linux/backing-dev.h>
1334int page_queue_congested(struct page *page)
1335{
1336	struct backing_dev_info *bdi;
1337
1338	VM_BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1339
1340	if (PageSwapCache(page)) {
1341		swp_entry_t entry = { .val = page_private(page) };
1342		struct swap_info_struct *sis;
1343
1344		sis = get_swap_info_struct(swp_type(entry));
1345		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1346	} else
1347		bdi = page->mapping->backing_dev_info;
1348	return bdi_write_congested(bdi);
1349}
1350#endif
1351
1352asmlinkage long sys_swapoff(const char __user * specialfile)
1353{
1354	struct swap_info_struct * p = NULL;
1355	unsigned short *swap_map;
1356	struct file *swap_file, *victim;
1357	struct address_space *mapping;
1358	struct inode *inode;
1359	char * pathname;
1360	int i, type, prev;
1361	int err;
1362
1363	if (!capable(CAP_SYS_ADMIN))
1364		return -EPERM;
1365
1366	pathname = getname(specialfile);
1367	err = PTR_ERR(pathname);
1368	if (IS_ERR(pathname))
1369		goto out;
1370
1371	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1372	putname(pathname);
1373	err = PTR_ERR(victim);
1374	if (IS_ERR(victim))
1375		goto out;
1376
1377	mapping = victim->f_mapping;
1378	prev = -1;
1379	spin_lock(&swap_lock);
1380	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1381		p = swap_info + type;
1382		if (p->flags & SWP_WRITEOK) {
1383			if (p->swap_file->f_mapping == mapping)
1384				break;
1385		}
1386		prev = type;
1387	}
1388	if (type < 0) {
1389		err = -EINVAL;
1390		spin_unlock(&swap_lock);
1391		goto out_dput;
1392	}
1393	if (!security_vm_enough_memory(p->pages))
1394		vm_unacct_memory(p->pages);
1395	else {
1396		err = -ENOMEM;
1397		spin_unlock(&swap_lock);
1398		goto out_dput;
1399	}
1400	if (prev < 0) {
1401		swap_list.head = p->next;
1402	} else {
1403		swap_info[prev].next = p->next;
1404	}
1405	if (type == swap_list.next) {
1406		/* just pick something that's safe... */
1407		swap_list.next = swap_list.head;
1408	}
1409	if (p->prio < 0) {
1410		for (i = p->next; i >= 0; i = swap_info[i].next)
1411			swap_info[i].prio = p->prio--;
1412		least_priority++;
1413	}
1414	nr_swap_pages -= p->pages;
1415	total_swap_pages -= p->pages;
1416	p->flags &= ~SWP_WRITEOK;
1417	spin_unlock(&swap_lock);
1418
1419	current->flags |= PF_SWAPOFF;
1420	err = try_to_unuse(type);
1421	current->flags &= ~PF_SWAPOFF;
1422
1423	if (err) {
1424		/* re-insert swap space back into swap_list */
1425		spin_lock(&swap_lock);
1426		if (p->prio < 0)
1427			p->prio = --least_priority;
1428		prev = -1;
1429		for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1430			if (p->prio >= swap_info[i].prio)
1431				break;
1432			prev = i;
1433		}
1434		p->next = i;
1435		if (prev < 0)
1436			swap_list.head = swap_list.next = p - swap_info;
1437		else
1438			swap_info[prev].next = p - swap_info;
1439		nr_swap_pages += p->pages;
1440		total_swap_pages += p->pages;
1441		p->flags |= SWP_WRITEOK;
1442		spin_unlock(&swap_lock);
1443		goto out_dput;
1444	}
1445
1446	/* wait for any unplug function to finish */
1447	down_write(&swap_unplug_sem);
1448	up_write(&swap_unplug_sem);
1449
1450	destroy_swap_extents(p);
1451	mutex_lock(&swapon_mutex);
1452	spin_lock(&swap_lock);
1453	drain_mmlist();
1454
1455	/* wait for anyone still in scan_swap_map */
1456	p->highest_bit = 0;		/* cuts scans short */
1457	while (p->flags >= SWP_SCANNING) {
1458		spin_unlock(&swap_lock);
1459		schedule_timeout_uninterruptible(1);
1460		spin_lock(&swap_lock);
1461	}
1462
1463	swap_file = p->swap_file;
1464	p->swap_file = NULL;
1465	p->max = 0;
1466	swap_map = p->swap_map;
1467	p->swap_map = NULL;
1468	p->flags = 0;
1469	spin_unlock(&swap_lock);
1470	mutex_unlock(&swapon_mutex);
1471	vfree(swap_map);
1472	inode = mapping->host;
1473	if (S_ISBLK(inode->i_mode)) {
1474		struct block_device *bdev = I_BDEV(inode);
1475		set_blocksize(bdev, p->old_block_size);
1476		bd_release(bdev);
1477	} else {
1478		mutex_lock(&inode->i_mutex);
1479		inode->i_flags &= ~S_SWAPFILE;
1480		mutex_unlock(&inode->i_mutex);
1481	}
1482	filp_close(swap_file, NULL);
1483	err = 0;
1484
1485out_dput:
1486	filp_close(victim, NULL);
1487out:
1488	return err;
1489}
1490
1491#ifdef CONFIG_PROC_FS
1492/* iterator */
1493static void *swap_start(struct seq_file *swap, loff_t *pos)
1494{
1495	struct swap_info_struct *ptr = swap_info;
1496	int i;
1497	loff_t l = *pos;
1498
1499	mutex_lock(&swapon_mutex);
1500
1501	if (!l)
1502		return SEQ_START_TOKEN;
1503
1504	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1505		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1506			continue;
1507		if (!--l)
1508			return ptr;
1509	}
1510
1511	return NULL;
1512}
1513
1514static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1515{
1516	struct swap_info_struct *ptr;
1517	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1518
1519	if (v == SEQ_START_TOKEN)
1520		ptr = swap_info;
1521	else {
1522		ptr = v;
1523		ptr++;
1524	}
1525
1526	for (; ptr < endptr; ptr++) {
1527		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1528			continue;
1529		++*pos;
1530		return ptr;
1531	}
1532
1533	return NULL;
1534}
1535
1536static void swap_stop(struct seq_file *swap, void *v)
1537{
1538	mutex_unlock(&swapon_mutex);
1539}
1540
1541static int swap_show(struct seq_file *swap, void *v)
1542{
1543	struct swap_info_struct *ptr = v;
1544	struct file *file;
1545	int len;
1546
1547	if (ptr == SEQ_START_TOKEN) {
1548		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1549		return 0;
1550	}
1551
1552	file = ptr->swap_file;
1553	len = seq_path(swap, &file->f_path, " \t\n\\");
1554	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1555			len < 40 ? 40 - len : 1, " ",
1556			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1557				"partition" : "file\t",
1558			ptr->pages << (PAGE_SHIFT - 10),
1559			ptr->inuse_pages << (PAGE_SHIFT - 10),
1560			ptr->prio);
1561	return 0;
1562}
1563
1564static const struct seq_operations swaps_op = {
1565	.start =	swap_start,
1566	.next =		swap_next,
1567	.stop =		swap_stop,
1568	.show =		swap_show
1569};
1570
1571static int swaps_open(struct inode *inode, struct file *file)
1572{
1573	return seq_open(file, &swaps_op);
1574}
1575
1576static const struct file_operations proc_swaps_operations = {
1577	.open		= swaps_open,
1578	.read		= seq_read,
1579	.llseek		= seq_lseek,
1580	.release	= seq_release,
1581};
1582
1583static int __init procswaps_init(void)
1584{
1585	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1586	return 0;
1587}
1588__initcall(procswaps_init);
1589#endif /* CONFIG_PROC_FS */
1590
1591#ifdef MAX_SWAPFILES_CHECK
1592static int __init max_swapfiles_check(void)
1593{
1594	MAX_SWAPFILES_CHECK();
1595	return 0;
1596}
1597late_initcall(max_swapfiles_check);
1598#endif
1599
1600/*
1601 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1602 *
1603 * The swapon system call
1604 */
1605asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1606{
1607	struct swap_info_struct * p;
1608	char *name = NULL;
1609	struct block_device *bdev = NULL;
1610	struct file *swap_file = NULL;
1611	struct address_space *mapping;
1612	unsigned int type;
1613	int i, prev;
1614	int error;
1615	union swap_header *swap_header = NULL;
1616	unsigned int nr_good_pages = 0;
1617	int nr_extents = 0;
1618	sector_t span;
1619	unsigned long maxpages = 1;
1620	unsigned long swapfilepages;
1621	unsigned short *swap_map = NULL;
1622	struct page *page = NULL;
1623	struct inode *inode = NULL;
1624	int did_down = 0;
1625
1626	if (!capable(CAP_SYS_ADMIN))
1627		return -EPERM;
1628	spin_lock(&swap_lock);
1629	p = swap_info;
1630	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1631		if (!(p->flags & SWP_USED))
1632			break;
1633	error = -EPERM;
1634	if (type >= MAX_SWAPFILES) {
1635		spin_unlock(&swap_lock);
1636		goto out;
1637	}
1638	if (type >= nr_swapfiles)
1639		nr_swapfiles = type+1;
1640	memset(p, 0, sizeof(*p));
1641	INIT_LIST_HEAD(&p->extent_list);
1642	p->flags = SWP_USED;
1643	p->next = -1;
1644	spin_unlock(&swap_lock);
1645	name = getname(specialfile);
1646	error = PTR_ERR(name);
1647	if (IS_ERR(name)) {
1648		name = NULL;
1649		goto bad_swap_2;
1650	}
1651	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1652	error = PTR_ERR(swap_file);
1653	if (IS_ERR(swap_file)) {
1654		swap_file = NULL;
1655		goto bad_swap_2;
1656	}
1657
1658	p->swap_file = swap_file;
1659	mapping = swap_file->f_mapping;
1660	inode = mapping->host;
1661
1662	error = -EBUSY;
1663	for (i = 0; i < nr_swapfiles; i++) {
1664		struct swap_info_struct *q = &swap_info[i];
1665
1666		if (i == type || !q->swap_file)
1667			continue;
1668		if (mapping == q->swap_file->f_mapping)
1669			goto bad_swap;
1670	}
1671
1672	error = -EINVAL;
1673	if (S_ISBLK(inode->i_mode)) {
1674		bdev = I_BDEV(inode);
1675		error = bd_claim(bdev, sys_swapon);
1676		if (error < 0) {
1677			bdev = NULL;
1678			error = -EINVAL;
1679			goto bad_swap;
1680		}
1681		p->old_block_size = block_size(bdev);
1682		error = set_blocksize(bdev, PAGE_SIZE);
1683		if (error < 0)
1684			goto bad_swap;
1685		p->bdev = bdev;
1686	} else if (S_ISREG(inode->i_mode)) {
1687		p->bdev = inode->i_sb->s_bdev;
1688		mutex_lock(&inode->i_mutex);
1689		did_down = 1;
1690		if (IS_SWAPFILE(inode)) {
1691			error = -EBUSY;
1692			goto bad_swap;
1693		}
1694	} else {
1695		goto bad_swap;
1696	}
1697
1698	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1699
1700	/*
1701	 * Read the swap header.
1702	 */
1703	if (!mapping->a_ops->readpage) {
1704		error = -EINVAL;
1705		goto bad_swap;
1706	}
1707	page = read_mapping_page(mapping, 0, swap_file);
1708	if (IS_ERR(page)) {
1709		error = PTR_ERR(page);
1710		goto bad_swap;
1711	}
1712	swap_header = kmap(page);
1713
1714	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1715		printk(KERN_ERR "Unable to find swap-space signature\n");
1716		error = -EINVAL;
1717		goto bad_swap;
1718	}
1719
1720	/* swap partition endianess hack... */
1721	if (swab32(swap_header->info.version) == 1) {
1722		swab32s(&swap_header->info.version);
1723		swab32s(&swap_header->info.last_page);
1724		swab32s(&swap_header->info.nr_badpages);
1725		for (i = 0; i < swap_header->info.nr_badpages; i++)
1726			swab32s(&swap_header->info.badpages[i]);
1727	}
1728	/* Check the swap header's sub-version */
1729	if (swap_header->info.version != 1) {
1730		printk(KERN_WARNING
1731		       "Unable to handle swap header version %d\n",
1732		       swap_header->info.version);
1733		error = -EINVAL;
1734		goto bad_swap;
1735	}
1736
1737	p->lowest_bit  = 1;
1738	p->cluster_next = 1;
1739
1740	/*
1741	 * Find out how many pages are allowed for a single swap
1742	 * device. There are two limiting factors: 1) the number of
1743	 * bits for the swap offset in the swp_entry_t type and
1744	 * 2) the number of bits in the a swap pte as defined by
1745	 * the different architectures. In order to find the
1746	 * largest possible bit mask a swap entry with swap type 0
1747	 * and swap offset ~0UL is created, encoded to a swap pte,
1748	 * decoded to a swp_entry_t again and finally the swap
1749	 * offset is extracted. This will mask all the bits from
1750	 * the initial ~0UL mask that can't be encoded in either
1751	 * the swp_entry_t or the architecture definition of a
1752	 * swap pte.
1753	 */
1754	maxpages = swp_offset(pte_to_swp_entry(
1755			swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1756	if (maxpages > swap_header->info.last_page)
1757		maxpages = swap_header->info.last_page;
1758	p->highest_bit = maxpages - 1;
1759
1760	error = -EINVAL;
1761	if (!maxpages)
1762		goto bad_swap;
1763	if (swapfilepages && maxpages > swapfilepages) {
1764		printk(KERN_WARNING
1765		       "Swap area shorter than signature indicates\n");
1766		goto bad_swap;
1767	}
1768	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1769		goto bad_swap;
1770	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1771		goto bad_swap;
1772
1773	/* OK, set up the swap map and apply the bad block list */
1774	swap_map = vmalloc(maxpages * sizeof(short));
1775	if (!swap_map) {
1776		error = -ENOMEM;
1777		goto bad_swap;
1778	}
1779
1780	memset(swap_map, 0, maxpages * sizeof(short));
1781	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1782		int page_nr = swap_header->info.badpages[i];
1783		if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1784			error = -EINVAL;
1785			goto bad_swap;
1786		}
1787		swap_map[page_nr] = SWAP_MAP_BAD;
1788	}
1789	nr_good_pages = swap_header->info.last_page -
1790			swap_header->info.nr_badpages -
1791			1 /* header page */;
1792
1793	if (nr_good_pages) {
1794		swap_map[0] = SWAP_MAP_BAD;
1795		p->max = maxpages;
1796		p->pages = nr_good_pages;
1797		nr_extents = setup_swap_extents(p, &span);
1798		if (nr_extents < 0) {
1799			error = nr_extents;
1800			goto bad_swap;
1801		}
1802		nr_good_pages = p->pages;
1803	}
1804	if (!nr_good_pages) {
1805		printk(KERN_WARNING "Empty swap-file\n");
1806		error = -EINVAL;
1807		goto bad_swap;
1808	}
1809
1810	if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1811		p->flags |= SWP_SOLIDSTATE;
1812		srandom32((u32)get_seconds());
1813		p->cluster_next = 1 + (random32() % p->highest_bit);
1814	}
1815	if (discard_swap(p) == 0)
1816		p->flags |= SWP_DISCARDABLE;
1817
1818	mutex_lock(&swapon_mutex);
1819	spin_lock(&swap_lock);
1820	if (swap_flags & SWAP_FLAG_PREFER)
1821		p->prio =
1822		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1823	else
1824		p->prio = --least_priority;
1825	p->swap_map = swap_map;
1826	p->flags |= SWP_WRITEOK;
1827	nr_swap_pages += nr_good_pages;
1828	total_swap_pages += nr_good_pages;
1829
1830	printk(KERN_INFO "Adding %uk swap on %s.  "
1831			"Priority:%d extents:%d across:%lluk %s%s\n",
1832		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1833		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
1834		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
1835		(p->flags & SWP_DISCARDABLE) ? "D" : "");
1836
1837	/* insert swap space into swap_list: */
1838	prev = -1;
1839	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1840		if (p->prio >= swap_info[i].prio) {
1841			break;
1842		}
1843		prev = i;
1844	}
1845	p->next = i;
1846	if (prev < 0) {
1847		swap_list.head = swap_list.next = p - swap_info;
1848	} else {
1849		swap_info[prev].next = p - swap_info;
1850	}
1851	spin_unlock(&swap_lock);
1852	mutex_unlock(&swapon_mutex);
1853	error = 0;
1854	goto out;
1855bad_swap:
1856	if (bdev) {
1857		set_blocksize(bdev, p->old_block_size);
1858		bd_release(bdev);
1859	}
1860	destroy_swap_extents(p);
1861bad_swap_2:
1862	spin_lock(&swap_lock);
1863	p->swap_file = NULL;
1864	p->flags = 0;
1865	spin_unlock(&swap_lock);
1866	vfree(swap_map);
1867	if (swap_file)
1868		filp_close(swap_file, NULL);
1869out:
1870	if (page && !IS_ERR(page)) {
1871		kunmap(page);
1872		page_cache_release(page);
1873	}
1874	if (name)
1875		putname(name);
1876	if (did_down) {
1877		if (!error)
1878			inode->i_flags |= S_SWAPFILE;
1879		mutex_unlock(&inode->i_mutex);
1880	}
1881	return error;
1882}
1883
1884void si_swapinfo(struct sysinfo *val)
1885{
1886	unsigned int i;
1887	unsigned long nr_to_be_unused = 0;
1888
1889	spin_lock(&swap_lock);
1890	for (i = 0; i < nr_swapfiles; i++) {
1891		if (!(swap_info[i].flags & SWP_USED) ||
1892		     (swap_info[i].flags & SWP_WRITEOK))
1893			continue;
1894		nr_to_be_unused += swap_info[i].inuse_pages;
1895	}
1896	val->freeswap = nr_swap_pages + nr_to_be_unused;
1897	val->totalswap = total_swap_pages + nr_to_be_unused;
1898	spin_unlock(&swap_lock);
1899}
1900
1901/*
1902 * Verify that a swap entry is valid and increment its swap map count.
1903 *
1904 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1905 * "permanent", but will be reclaimed by the next swapoff.
1906 */
1907int swap_duplicate(swp_entry_t entry)
1908{
1909	struct swap_info_struct * p;
1910	unsigned long offset, type;
1911	int result = 0;
1912
1913	if (is_migration_entry(entry))
1914		return 1;
1915
1916	type = swp_type(entry);
1917	if (type >= nr_swapfiles)
1918		goto bad_file;
1919	p = type + swap_info;
1920	offset = swp_offset(entry);
1921
1922	spin_lock(&swap_lock);
1923	if (offset < p->max && p->swap_map[offset]) {
1924		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1925			p->swap_map[offset]++;
1926			result = 1;
1927		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1928			if (swap_overflow++ < 5)
1929				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1930			p->swap_map[offset] = SWAP_MAP_MAX;
1931			result = 1;
1932		}
1933	}
1934	spin_unlock(&swap_lock);
1935out:
1936	return result;
1937
1938bad_file:
1939	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1940	goto out;
1941}
1942
1943struct swap_info_struct *
1944get_swap_info_struct(unsigned type)
1945{
1946	return &swap_info[type];
1947}
1948
1949/*
1950 * swap_lock prevents swap_map being freed. Don't grab an extra
1951 * reference on the swaphandle, it doesn't matter if it becomes unused.
1952 */
1953int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1954{
1955	struct swap_info_struct *si;
1956	int our_page_cluster = page_cluster;
1957	pgoff_t target, toff;
1958	pgoff_t base, end;
1959	int nr_pages = 0;
1960
1961	if (!our_page_cluster)	/* no readahead */
1962		return 0;
1963
1964	si = &swap_info[swp_type(entry)];
1965	target = swp_offset(entry);
1966	base = (target >> our_page_cluster) << our_page_cluster;
1967	end = base + (1 << our_page_cluster);
1968	if (!base)		/* first page is swap header */
1969		base++;
1970
1971	spin_lock(&swap_lock);
1972	if (end > si->max)	/* don't go beyond end of map */
1973		end = si->max;
1974
1975	/* Count contiguous allocated slots above our target */
1976	for (toff = target; ++toff < end; nr_pages++) {
1977		/* Don't read in free or bad pages */
1978		if (!si->swap_map[toff])
1979			break;
1980		if (si->swap_map[toff] == SWAP_MAP_BAD)
1981			break;
1982	}
1983	/* Count contiguous allocated slots below our target */
1984	for (toff = target; --toff >= base; nr_pages++) {
1985		/* Don't read in free or bad pages */
1986		if (!si->swap_map[toff])
1987			break;
1988		if (si->swap_map[toff] == SWAP_MAP_BAD)
1989			break;
1990	}
1991	spin_unlock(&swap_lock);
1992
1993	/*
1994	 * Indicate starting offset, and return number of pages to get:
1995	 * if only 1, say 0, since there's then no readahead to be done.
1996	 */
1997	*offset = ++toff;
1998	return nr_pages? ++nr_pages: 0;
1999}
2000