swapfile.c revision 253d553ba75ab26b3e9e2f70cbf6fbf0813f7e86
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/random.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
28#include <linux/mutex.h>
29#include <linux/capability.h>
30#include <linux/syscalls.h>
31#include <linux/memcontrol.h>
32
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <linux/swapops.h>
36#include <linux/page_cgroup.h>
37
38static DEFINE_SPINLOCK(swap_lock);
39static unsigned int nr_swapfiles;
40long nr_swap_pages;
41long total_swap_pages;
42static int swap_overflow;
43static int least_priority;
44
45static const char Bad_file[] = "Bad swap file entry ";
46static const char Unused_file[] = "Unused swap file entry ";
47static const char Bad_offset[] = "Bad swap offset entry ";
48static const char Unused_offset[] = "Unused swap offset entry ";
49
50static struct swap_list_t swap_list = {-1, -1};
51
52static struct swap_info_struct *swap_info[MAX_SWAPFILES];
53
54static DEFINE_MUTEX(swapon_mutex);
55
56static inline int swap_count(unsigned short ent)
57{
58	return ent & ~SWAP_HAS_CACHE;
59}
60
61/* returns 1 if swap entry is freed */
62static int
63__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
64{
65	swp_entry_t entry = swp_entry(si->type, offset);
66	struct page *page;
67	int ret = 0;
68
69	page = find_get_page(&swapper_space, entry.val);
70	if (!page)
71		return 0;
72	/*
73	 * This function is called from scan_swap_map() and it's called
74	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
75	 * We have to use trylock for avoiding deadlock. This is a special
76	 * case and you should use try_to_free_swap() with explicit lock_page()
77	 * in usual operations.
78	 */
79	if (trylock_page(page)) {
80		ret = try_to_free_swap(page);
81		unlock_page(page);
82	}
83	page_cache_release(page);
84	return ret;
85}
86
87/*
88 * We need this because the bdev->unplug_fn can sleep and we cannot
89 * hold swap_lock while calling the unplug_fn. And swap_lock
90 * cannot be turned into a mutex.
91 */
92static DECLARE_RWSEM(swap_unplug_sem);
93
94void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
95{
96	swp_entry_t entry;
97
98	down_read(&swap_unplug_sem);
99	entry.val = page_private(page);
100	if (PageSwapCache(page)) {
101		struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
102		struct backing_dev_info *bdi;
103
104		/*
105		 * If the page is removed from swapcache from under us (with a
106		 * racy try_to_unuse/swapoff) we need an additional reference
107		 * count to avoid reading garbage from page_private(page) above.
108		 * If the WARN_ON triggers during a swapoff it maybe the race
109		 * condition and it's harmless. However if it triggers without
110		 * swapoff it signals a problem.
111		 */
112		WARN_ON(page_count(page) <= 1);
113
114		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
115		blk_run_backing_dev(bdi, page);
116	}
117	up_read(&swap_unplug_sem);
118}
119
120/*
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
123 */
124static int discard_swap(struct swap_info_struct *si)
125{
126	struct swap_extent *se;
127	sector_t start_block;
128	sector_t nr_blocks;
129	int err = 0;
130
131	/* Do not discard the swap header page! */
132	se = &si->first_swap_extent;
133	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135	if (nr_blocks) {
136		err = blkdev_issue_discard(si->bdev, start_block,
137				nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
138		if (err)
139			return err;
140		cond_resched();
141	}
142
143	list_for_each_entry(se, &si->first_swap_extent.list, list) {
144		start_block = se->start_block << (PAGE_SHIFT - 9);
145		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146
147		err = blkdev_issue_discard(si->bdev, start_block,
148				nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
149		if (err)
150			break;
151
152		cond_resched();
153	}
154	return err;		/* That will often be -EOPNOTSUPP */
155}
156
157/*
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
160 */
161static void discard_swap_cluster(struct swap_info_struct *si,
162				 pgoff_t start_page, pgoff_t nr_pages)
163{
164	struct swap_extent *se = si->curr_swap_extent;
165	int found_extent = 0;
166
167	while (nr_pages) {
168		struct list_head *lh;
169
170		if (se->start_page <= start_page &&
171		    start_page < se->start_page + se->nr_pages) {
172			pgoff_t offset = start_page - se->start_page;
173			sector_t start_block = se->start_block + offset;
174			sector_t nr_blocks = se->nr_pages - offset;
175
176			if (nr_blocks > nr_pages)
177				nr_blocks = nr_pages;
178			start_page += nr_blocks;
179			nr_pages -= nr_blocks;
180
181			if (!found_extent++)
182				si->curr_swap_extent = se;
183
184			start_block <<= PAGE_SHIFT - 9;
185			nr_blocks <<= PAGE_SHIFT - 9;
186			if (blkdev_issue_discard(si->bdev, start_block,
187				    nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
188				break;
189		}
190
191		lh = se->list.next;
192		se = list_entry(lh, struct swap_extent, list);
193	}
194}
195
196static int wait_for_discard(void *word)
197{
198	schedule();
199	return 0;
200}
201
202#define SWAPFILE_CLUSTER	256
203#define LATENCY_LIMIT		256
204
205static inline unsigned long scan_swap_map(struct swap_info_struct *si,
206					  unsigned short usage)
207{
208	unsigned long offset;
209	unsigned long scan_base;
210	unsigned long last_in_cluster = 0;
211	int latency_ration = LATENCY_LIMIT;
212	int found_free_cluster = 0;
213
214	/*
215	 * We try to cluster swap pages by allocating them sequentially
216	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
217	 * way, however, we resort to first-free allocation, starting
218	 * a new cluster.  This prevents us from scattering swap pages
219	 * all over the entire swap partition, so that we reduce
220	 * overall disk seek times between swap pages.  -- sct
221	 * But we do now try to find an empty cluster.  -Andrea
222	 * And we let swap pages go all over an SSD partition.  Hugh
223	 */
224
225	si->flags += SWP_SCANNING;
226	scan_base = offset = si->cluster_next;
227
228	if (unlikely(!si->cluster_nr--)) {
229		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
230			si->cluster_nr = SWAPFILE_CLUSTER - 1;
231			goto checks;
232		}
233		if (si->flags & SWP_DISCARDABLE) {
234			/*
235			 * Start range check on racing allocations, in case
236			 * they overlap the cluster we eventually decide on
237			 * (we scan without swap_lock to allow preemption).
238			 * It's hardly conceivable that cluster_nr could be
239			 * wrapped during our scan, but don't depend on it.
240			 */
241			if (si->lowest_alloc)
242				goto checks;
243			si->lowest_alloc = si->max;
244			si->highest_alloc = 0;
245		}
246		spin_unlock(&swap_lock);
247
248		/*
249		 * If seek is expensive, start searching for new cluster from
250		 * start of partition, to minimize the span of allocated swap.
251		 * But if seek is cheap, search from our current position, so
252		 * that swap is allocated from all over the partition: if the
253		 * Flash Translation Layer only remaps within limited zones,
254		 * we don't want to wear out the first zone too quickly.
255		 */
256		if (!(si->flags & SWP_SOLIDSTATE))
257			scan_base = offset = si->lowest_bit;
258		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
259
260		/* Locate the first empty (unaligned) cluster */
261		for (; last_in_cluster <= si->highest_bit; offset++) {
262			if (si->swap_map[offset])
263				last_in_cluster = offset + SWAPFILE_CLUSTER;
264			else if (offset == last_in_cluster) {
265				spin_lock(&swap_lock);
266				offset -= SWAPFILE_CLUSTER - 1;
267				si->cluster_next = offset;
268				si->cluster_nr = SWAPFILE_CLUSTER - 1;
269				found_free_cluster = 1;
270				goto checks;
271			}
272			if (unlikely(--latency_ration < 0)) {
273				cond_resched();
274				latency_ration = LATENCY_LIMIT;
275			}
276		}
277
278		offset = si->lowest_bit;
279		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
280
281		/* Locate the first empty (unaligned) cluster */
282		for (; last_in_cluster < scan_base; offset++) {
283			if (si->swap_map[offset])
284				last_in_cluster = offset + SWAPFILE_CLUSTER;
285			else if (offset == last_in_cluster) {
286				spin_lock(&swap_lock);
287				offset -= SWAPFILE_CLUSTER - 1;
288				si->cluster_next = offset;
289				si->cluster_nr = SWAPFILE_CLUSTER - 1;
290				found_free_cluster = 1;
291				goto checks;
292			}
293			if (unlikely(--latency_ration < 0)) {
294				cond_resched();
295				latency_ration = LATENCY_LIMIT;
296			}
297		}
298
299		offset = scan_base;
300		spin_lock(&swap_lock);
301		si->cluster_nr = SWAPFILE_CLUSTER - 1;
302		si->lowest_alloc = 0;
303	}
304
305checks:
306	if (!(si->flags & SWP_WRITEOK))
307		goto no_page;
308	if (!si->highest_bit)
309		goto no_page;
310	if (offset > si->highest_bit)
311		scan_base = offset = si->lowest_bit;
312
313	/* reuse swap entry of cache-only swap if not busy. */
314	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
315		int swap_was_freed;
316		spin_unlock(&swap_lock);
317		swap_was_freed = __try_to_reclaim_swap(si, offset);
318		spin_lock(&swap_lock);
319		/* entry was freed successfully, try to use this again */
320		if (swap_was_freed)
321			goto checks;
322		goto scan; /* check next one */
323	}
324
325	if (si->swap_map[offset])
326		goto scan;
327
328	if (offset == si->lowest_bit)
329		si->lowest_bit++;
330	if (offset == si->highest_bit)
331		si->highest_bit--;
332	si->inuse_pages++;
333	if (si->inuse_pages == si->pages) {
334		si->lowest_bit = si->max;
335		si->highest_bit = 0;
336	}
337	si->swap_map[offset] = usage;
338	si->cluster_next = offset + 1;
339	si->flags -= SWP_SCANNING;
340
341	if (si->lowest_alloc) {
342		/*
343		 * Only set when SWP_DISCARDABLE, and there's a scan
344		 * for a free cluster in progress or just completed.
345		 */
346		if (found_free_cluster) {
347			/*
348			 * To optimize wear-levelling, discard the
349			 * old data of the cluster, taking care not to
350			 * discard any of its pages that have already
351			 * been allocated by racing tasks (offset has
352			 * already stepped over any at the beginning).
353			 */
354			if (offset < si->highest_alloc &&
355			    si->lowest_alloc <= last_in_cluster)
356				last_in_cluster = si->lowest_alloc - 1;
357			si->flags |= SWP_DISCARDING;
358			spin_unlock(&swap_lock);
359
360			if (offset < last_in_cluster)
361				discard_swap_cluster(si, offset,
362					last_in_cluster - offset + 1);
363
364			spin_lock(&swap_lock);
365			si->lowest_alloc = 0;
366			si->flags &= ~SWP_DISCARDING;
367
368			smp_mb();	/* wake_up_bit advises this */
369			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
370
371		} else if (si->flags & SWP_DISCARDING) {
372			/*
373			 * Delay using pages allocated by racing tasks
374			 * until the whole discard has been issued. We
375			 * could defer that delay until swap_writepage,
376			 * but it's easier to keep this self-contained.
377			 */
378			spin_unlock(&swap_lock);
379			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
380				wait_for_discard, TASK_UNINTERRUPTIBLE);
381			spin_lock(&swap_lock);
382		} else {
383			/*
384			 * Note pages allocated by racing tasks while
385			 * scan for a free cluster is in progress, so
386			 * that its final discard can exclude them.
387			 */
388			if (offset < si->lowest_alloc)
389				si->lowest_alloc = offset;
390			if (offset > si->highest_alloc)
391				si->highest_alloc = offset;
392		}
393	}
394	return offset;
395
396scan:
397	spin_unlock(&swap_lock);
398	while (++offset <= si->highest_bit) {
399		if (!si->swap_map[offset]) {
400			spin_lock(&swap_lock);
401			goto checks;
402		}
403		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
404			spin_lock(&swap_lock);
405			goto checks;
406		}
407		if (unlikely(--latency_ration < 0)) {
408			cond_resched();
409			latency_ration = LATENCY_LIMIT;
410		}
411	}
412	offset = si->lowest_bit;
413	while (++offset < scan_base) {
414		if (!si->swap_map[offset]) {
415			spin_lock(&swap_lock);
416			goto checks;
417		}
418		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
419			spin_lock(&swap_lock);
420			goto checks;
421		}
422		if (unlikely(--latency_ration < 0)) {
423			cond_resched();
424			latency_ration = LATENCY_LIMIT;
425		}
426	}
427	spin_lock(&swap_lock);
428
429no_page:
430	si->flags -= SWP_SCANNING;
431	return 0;
432}
433
434swp_entry_t get_swap_page(void)
435{
436	struct swap_info_struct *si;
437	pgoff_t offset;
438	int type, next;
439	int wrapped = 0;
440
441	spin_lock(&swap_lock);
442	if (nr_swap_pages <= 0)
443		goto noswap;
444	nr_swap_pages--;
445
446	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
447		si = swap_info[type];
448		next = si->next;
449		if (next < 0 ||
450		    (!wrapped && si->prio != swap_info[next]->prio)) {
451			next = swap_list.head;
452			wrapped++;
453		}
454
455		if (!si->highest_bit)
456			continue;
457		if (!(si->flags & SWP_WRITEOK))
458			continue;
459
460		swap_list.next = next;
461		/* This is called for allocating swap entry for cache */
462		offset = scan_swap_map(si, SWAP_HAS_CACHE);
463		if (offset) {
464			spin_unlock(&swap_lock);
465			return swp_entry(type, offset);
466		}
467		next = swap_list.next;
468	}
469
470	nr_swap_pages++;
471noswap:
472	spin_unlock(&swap_lock);
473	return (swp_entry_t) {0};
474}
475
476/* The only caller of this function is now susupend routine */
477swp_entry_t get_swap_page_of_type(int type)
478{
479	struct swap_info_struct *si;
480	pgoff_t offset;
481
482	spin_lock(&swap_lock);
483	si = swap_info[type];
484	if (si && (si->flags & SWP_WRITEOK)) {
485		nr_swap_pages--;
486		/* This is called for allocating swap entry, not cache */
487		offset = scan_swap_map(si, 1);
488		if (offset) {
489			spin_unlock(&swap_lock);
490			return swp_entry(type, offset);
491		}
492		nr_swap_pages++;
493	}
494	spin_unlock(&swap_lock);
495	return (swp_entry_t) {0};
496}
497
498static struct swap_info_struct *swap_info_get(swp_entry_t entry)
499{
500	struct swap_info_struct *p;
501	unsigned long offset, type;
502
503	if (!entry.val)
504		goto out;
505	type = swp_type(entry);
506	if (type >= nr_swapfiles)
507		goto bad_nofile;
508	p = swap_info[type];
509	if (!(p->flags & SWP_USED))
510		goto bad_device;
511	offset = swp_offset(entry);
512	if (offset >= p->max)
513		goto bad_offset;
514	if (!p->swap_map[offset])
515		goto bad_free;
516	spin_lock(&swap_lock);
517	return p;
518
519bad_free:
520	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
521	goto out;
522bad_offset:
523	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
524	goto out;
525bad_device:
526	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
527	goto out;
528bad_nofile:
529	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
530out:
531	return NULL;
532}
533
534static unsigned short swap_entry_free(struct swap_info_struct *p,
535			   swp_entry_t entry, unsigned short usage)
536{
537	unsigned long offset = swp_offset(entry);
538	unsigned short count;
539	unsigned short has_cache;
540
541	count = p->swap_map[offset];
542	has_cache = count & SWAP_HAS_CACHE;
543	count &= ~SWAP_HAS_CACHE;
544
545	if (usage == SWAP_HAS_CACHE) {
546		VM_BUG_ON(!has_cache);
547		has_cache = 0;
548	} else if (count < SWAP_MAP_MAX)
549		count--;
550
551	if (!count)
552		mem_cgroup_uncharge_swap(entry);
553
554	usage = count | has_cache;
555	p->swap_map[offset] = usage;
556
557	/* free if no reference */
558	if (!usage) {
559		if (offset < p->lowest_bit)
560			p->lowest_bit = offset;
561		if (offset > p->highest_bit)
562			p->highest_bit = offset;
563		if (swap_list.next >= 0 &&
564		    p->prio > swap_info[swap_list.next]->prio)
565			swap_list.next = p->type;
566		nr_swap_pages++;
567		p->inuse_pages--;
568	}
569
570	return usage;
571}
572
573/*
574 * Caller has made sure that the swapdevice corresponding to entry
575 * is still around or has not been recycled.
576 */
577void swap_free(swp_entry_t entry)
578{
579	struct swap_info_struct *p;
580
581	p = swap_info_get(entry);
582	if (p) {
583		swap_entry_free(p, entry, 1);
584		spin_unlock(&swap_lock);
585	}
586}
587
588/*
589 * Called after dropping swapcache to decrease refcnt to swap entries.
590 */
591void swapcache_free(swp_entry_t entry, struct page *page)
592{
593	struct swap_info_struct *p;
594	unsigned short count;
595
596	p = swap_info_get(entry);
597	if (p) {
598		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
599		if (page)
600			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
601		spin_unlock(&swap_lock);
602	}
603}
604
605/*
606 * How many references to page are currently swapped out?
607 */
608static inline int page_swapcount(struct page *page)
609{
610	int count = 0;
611	struct swap_info_struct *p;
612	swp_entry_t entry;
613
614	entry.val = page_private(page);
615	p = swap_info_get(entry);
616	if (p) {
617		count = swap_count(p->swap_map[swp_offset(entry)]);
618		spin_unlock(&swap_lock);
619	}
620	return count;
621}
622
623/*
624 * We can write to an anon page without COW if there are no other references
625 * to it.  And as a side-effect, free up its swap: because the old content
626 * on disk will never be read, and seeking back there to write new content
627 * later would only waste time away from clustering.
628 */
629int reuse_swap_page(struct page *page)
630{
631	int count;
632
633	VM_BUG_ON(!PageLocked(page));
634	count = page_mapcount(page);
635	if (count <= 1 && PageSwapCache(page)) {
636		count += page_swapcount(page);
637		if (count == 1 && !PageWriteback(page)) {
638			delete_from_swap_cache(page);
639			SetPageDirty(page);
640		}
641	}
642	return count == 1;
643}
644
645/*
646 * If swap is getting full, or if there are no more mappings of this page,
647 * then try_to_free_swap is called to free its swap space.
648 */
649int try_to_free_swap(struct page *page)
650{
651	VM_BUG_ON(!PageLocked(page));
652
653	if (!PageSwapCache(page))
654		return 0;
655	if (PageWriteback(page))
656		return 0;
657	if (page_swapcount(page))
658		return 0;
659
660	delete_from_swap_cache(page);
661	SetPageDirty(page);
662	return 1;
663}
664
665/*
666 * Free the swap entry like above, but also try to
667 * free the page cache entry if it is the last user.
668 */
669int free_swap_and_cache(swp_entry_t entry)
670{
671	struct swap_info_struct *p;
672	struct page *page = NULL;
673
674	if (non_swap_entry(entry))
675		return 1;
676
677	p = swap_info_get(entry);
678	if (p) {
679		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
680			page = find_get_page(&swapper_space, entry.val);
681			if (page && !trylock_page(page)) {
682				page_cache_release(page);
683				page = NULL;
684			}
685		}
686		spin_unlock(&swap_lock);
687	}
688	if (page) {
689		/*
690		 * Not mapped elsewhere, or swap space full? Free it!
691		 * Also recheck PageSwapCache now page is locked (above).
692		 */
693		if (PageSwapCache(page) && !PageWriteback(page) &&
694				(!page_mapped(page) || vm_swap_full())) {
695			delete_from_swap_cache(page);
696			SetPageDirty(page);
697		}
698		unlock_page(page);
699		page_cache_release(page);
700	}
701	return p != NULL;
702}
703
704#ifdef CONFIG_HIBERNATION
705/*
706 * Find the swap type that corresponds to given device (if any).
707 *
708 * @offset - number of the PAGE_SIZE-sized block of the device, starting
709 * from 0, in which the swap header is expected to be located.
710 *
711 * This is needed for the suspend to disk (aka swsusp).
712 */
713int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
714{
715	struct block_device *bdev = NULL;
716	int type;
717
718	if (device)
719		bdev = bdget(device);
720
721	spin_lock(&swap_lock);
722	for (type = 0; type < nr_swapfiles; type++) {
723		struct swap_info_struct *sis = swap_info[type];
724
725		if (!(sis->flags & SWP_WRITEOK))
726			continue;
727
728		if (!bdev) {
729			if (bdev_p)
730				*bdev_p = bdgrab(sis->bdev);
731
732			spin_unlock(&swap_lock);
733			return type;
734		}
735		if (bdev == sis->bdev) {
736			struct swap_extent *se = &sis->first_swap_extent;
737
738			if (se->start_block == offset) {
739				if (bdev_p)
740					*bdev_p = bdgrab(sis->bdev);
741
742				spin_unlock(&swap_lock);
743				bdput(bdev);
744				return type;
745			}
746		}
747	}
748	spin_unlock(&swap_lock);
749	if (bdev)
750		bdput(bdev);
751
752	return -ENODEV;
753}
754
755/*
756 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
757 * corresponding to given index in swap_info (swap type).
758 */
759sector_t swapdev_block(int type, pgoff_t offset)
760{
761	struct block_device *bdev;
762
763	if ((unsigned int)type >= nr_swapfiles)
764		return 0;
765	if (!(swap_info[type]->flags & SWP_WRITEOK))
766		return 0;
767	return map_swap_page(swp_entry(type, offset), &bdev);
768}
769
770/*
771 * Return either the total number of swap pages of given type, or the number
772 * of free pages of that type (depending on @free)
773 *
774 * This is needed for software suspend
775 */
776unsigned int count_swap_pages(int type, int free)
777{
778	unsigned int n = 0;
779
780	spin_lock(&swap_lock);
781	if ((unsigned int)type < nr_swapfiles) {
782		struct swap_info_struct *sis = swap_info[type];
783
784		if (sis->flags & SWP_WRITEOK) {
785			n = sis->pages;
786			if (free)
787				n -= sis->inuse_pages;
788		}
789	}
790	spin_unlock(&swap_lock);
791	return n;
792}
793#endif /* CONFIG_HIBERNATION */
794
795/*
796 * No need to decide whether this PTE shares the swap entry with others,
797 * just let do_wp_page work it out if a write is requested later - to
798 * force COW, vm_page_prot omits write permission from any private vma.
799 */
800static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
801		unsigned long addr, swp_entry_t entry, struct page *page)
802{
803	struct mem_cgroup *ptr = NULL;
804	spinlock_t *ptl;
805	pte_t *pte;
806	int ret = 1;
807
808	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
809		ret = -ENOMEM;
810		goto out_nolock;
811	}
812
813	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
814	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
815		if (ret > 0)
816			mem_cgroup_cancel_charge_swapin(ptr);
817		ret = 0;
818		goto out;
819	}
820
821	inc_mm_counter(vma->vm_mm, anon_rss);
822	get_page(page);
823	set_pte_at(vma->vm_mm, addr, pte,
824		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
825	page_add_anon_rmap(page, vma, addr);
826	mem_cgroup_commit_charge_swapin(page, ptr);
827	swap_free(entry);
828	/*
829	 * Move the page to the active list so it is not
830	 * immediately swapped out again after swapon.
831	 */
832	activate_page(page);
833out:
834	pte_unmap_unlock(pte, ptl);
835out_nolock:
836	return ret;
837}
838
839static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
840				unsigned long addr, unsigned long end,
841				swp_entry_t entry, struct page *page)
842{
843	pte_t swp_pte = swp_entry_to_pte(entry);
844	pte_t *pte;
845	int ret = 0;
846
847	/*
848	 * We don't actually need pte lock while scanning for swp_pte: since
849	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
850	 * page table while we're scanning; though it could get zapped, and on
851	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
852	 * of unmatched parts which look like swp_pte, so unuse_pte must
853	 * recheck under pte lock.  Scanning without pte lock lets it be
854	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
855	 */
856	pte = pte_offset_map(pmd, addr);
857	do {
858		/*
859		 * swapoff spends a _lot_ of time in this loop!
860		 * Test inline before going to call unuse_pte.
861		 */
862		if (unlikely(pte_same(*pte, swp_pte))) {
863			pte_unmap(pte);
864			ret = unuse_pte(vma, pmd, addr, entry, page);
865			if (ret)
866				goto out;
867			pte = pte_offset_map(pmd, addr);
868		}
869	} while (pte++, addr += PAGE_SIZE, addr != end);
870	pte_unmap(pte - 1);
871out:
872	return ret;
873}
874
875static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
876				unsigned long addr, unsigned long end,
877				swp_entry_t entry, struct page *page)
878{
879	pmd_t *pmd;
880	unsigned long next;
881	int ret;
882
883	pmd = pmd_offset(pud, addr);
884	do {
885		next = pmd_addr_end(addr, end);
886		if (pmd_none_or_clear_bad(pmd))
887			continue;
888		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
889		if (ret)
890			return ret;
891	} while (pmd++, addr = next, addr != end);
892	return 0;
893}
894
895static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
896				unsigned long addr, unsigned long end,
897				swp_entry_t entry, struct page *page)
898{
899	pud_t *pud;
900	unsigned long next;
901	int ret;
902
903	pud = pud_offset(pgd, addr);
904	do {
905		next = pud_addr_end(addr, end);
906		if (pud_none_or_clear_bad(pud))
907			continue;
908		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
909		if (ret)
910			return ret;
911	} while (pud++, addr = next, addr != end);
912	return 0;
913}
914
915static int unuse_vma(struct vm_area_struct *vma,
916				swp_entry_t entry, struct page *page)
917{
918	pgd_t *pgd;
919	unsigned long addr, end, next;
920	int ret;
921
922	if (page->mapping) {
923		addr = page_address_in_vma(page, vma);
924		if (addr == -EFAULT)
925			return 0;
926		else
927			end = addr + PAGE_SIZE;
928	} else {
929		addr = vma->vm_start;
930		end = vma->vm_end;
931	}
932
933	pgd = pgd_offset(vma->vm_mm, addr);
934	do {
935		next = pgd_addr_end(addr, end);
936		if (pgd_none_or_clear_bad(pgd))
937			continue;
938		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
939		if (ret)
940			return ret;
941	} while (pgd++, addr = next, addr != end);
942	return 0;
943}
944
945static int unuse_mm(struct mm_struct *mm,
946				swp_entry_t entry, struct page *page)
947{
948	struct vm_area_struct *vma;
949	int ret = 0;
950
951	if (!down_read_trylock(&mm->mmap_sem)) {
952		/*
953		 * Activate page so shrink_inactive_list is unlikely to unmap
954		 * its ptes while lock is dropped, so swapoff can make progress.
955		 */
956		activate_page(page);
957		unlock_page(page);
958		down_read(&mm->mmap_sem);
959		lock_page(page);
960	}
961	for (vma = mm->mmap; vma; vma = vma->vm_next) {
962		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
963			break;
964	}
965	up_read(&mm->mmap_sem);
966	return (ret < 0)? ret: 0;
967}
968
969/*
970 * Scan swap_map from current position to next entry still in use.
971 * Recycle to start on reaching the end, returning 0 when empty.
972 */
973static unsigned int find_next_to_unuse(struct swap_info_struct *si,
974					unsigned int prev)
975{
976	unsigned int max = si->max;
977	unsigned int i = prev;
978	int count;
979
980	/*
981	 * No need for swap_lock here: we're just looking
982	 * for whether an entry is in use, not modifying it; false
983	 * hits are okay, and sys_swapoff() has already prevented new
984	 * allocations from this area (while holding swap_lock).
985	 */
986	for (;;) {
987		if (++i >= max) {
988			if (!prev) {
989				i = 0;
990				break;
991			}
992			/*
993			 * No entries in use at top of swap_map,
994			 * loop back to start and recheck there.
995			 */
996			max = prev + 1;
997			prev = 0;
998			i = 1;
999		}
1000		count = si->swap_map[i];
1001		if (count && swap_count(count) != SWAP_MAP_BAD)
1002			break;
1003	}
1004	return i;
1005}
1006
1007/*
1008 * We completely avoid races by reading each swap page in advance,
1009 * and then search for the process using it.  All the necessary
1010 * page table adjustments can then be made atomically.
1011 */
1012static int try_to_unuse(unsigned int type)
1013{
1014	struct swap_info_struct *si = swap_info[type];
1015	struct mm_struct *start_mm;
1016	unsigned short *swap_map;
1017	unsigned short swcount;
1018	struct page *page;
1019	swp_entry_t entry;
1020	unsigned int i = 0;
1021	int retval = 0;
1022	int reset_overflow = 0;
1023	int shmem;
1024
1025	/*
1026	 * When searching mms for an entry, a good strategy is to
1027	 * start at the first mm we freed the previous entry from
1028	 * (though actually we don't notice whether we or coincidence
1029	 * freed the entry).  Initialize this start_mm with a hold.
1030	 *
1031	 * A simpler strategy would be to start at the last mm we
1032	 * freed the previous entry from; but that would take less
1033	 * advantage of mmlist ordering, which clusters forked mms
1034	 * together, child after parent.  If we race with dup_mmap(), we
1035	 * prefer to resolve parent before child, lest we miss entries
1036	 * duplicated after we scanned child: using last mm would invert
1037	 * that.  Though it's only a serious concern when an overflowed
1038	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1039	 */
1040	start_mm = &init_mm;
1041	atomic_inc(&init_mm.mm_users);
1042
1043	/*
1044	 * Keep on scanning until all entries have gone.  Usually,
1045	 * one pass through swap_map is enough, but not necessarily:
1046	 * there are races when an instance of an entry might be missed.
1047	 */
1048	while ((i = find_next_to_unuse(si, i)) != 0) {
1049		if (signal_pending(current)) {
1050			retval = -EINTR;
1051			break;
1052		}
1053
1054		/*
1055		 * Get a page for the entry, using the existing swap
1056		 * cache page if there is one.  Otherwise, get a clean
1057		 * page and read the swap into it.
1058		 */
1059		swap_map = &si->swap_map[i];
1060		entry = swp_entry(type, i);
1061		page = read_swap_cache_async(entry,
1062					GFP_HIGHUSER_MOVABLE, NULL, 0);
1063		if (!page) {
1064			/*
1065			 * Either swap_duplicate() failed because entry
1066			 * has been freed independently, and will not be
1067			 * reused since sys_swapoff() already disabled
1068			 * allocation from here, or alloc_page() failed.
1069			 */
1070			if (!*swap_map)
1071				continue;
1072			retval = -ENOMEM;
1073			break;
1074		}
1075
1076		/*
1077		 * Don't hold on to start_mm if it looks like exiting.
1078		 */
1079		if (atomic_read(&start_mm->mm_users) == 1) {
1080			mmput(start_mm);
1081			start_mm = &init_mm;
1082			atomic_inc(&init_mm.mm_users);
1083		}
1084
1085		/*
1086		 * Wait for and lock page.  When do_swap_page races with
1087		 * try_to_unuse, do_swap_page can handle the fault much
1088		 * faster than try_to_unuse can locate the entry.  This
1089		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1090		 * defer to do_swap_page in such a case - in some tests,
1091		 * do_swap_page and try_to_unuse repeatedly compete.
1092		 */
1093		wait_on_page_locked(page);
1094		wait_on_page_writeback(page);
1095		lock_page(page);
1096		wait_on_page_writeback(page);
1097
1098		/*
1099		 * Remove all references to entry.
1100		 * Whenever we reach init_mm, there's no address space
1101		 * to search, but use it as a reminder to search shmem.
1102		 */
1103		shmem = 0;
1104		swcount = *swap_map;
1105		if (swap_count(swcount)) {
1106			if (start_mm == &init_mm)
1107				shmem = shmem_unuse(entry, page);
1108			else
1109				retval = unuse_mm(start_mm, entry, page);
1110		}
1111		if (swap_count(*swap_map)) {
1112			int set_start_mm = (*swap_map >= swcount);
1113			struct list_head *p = &start_mm->mmlist;
1114			struct mm_struct *new_start_mm = start_mm;
1115			struct mm_struct *prev_mm = start_mm;
1116			struct mm_struct *mm;
1117
1118			atomic_inc(&new_start_mm->mm_users);
1119			atomic_inc(&prev_mm->mm_users);
1120			spin_lock(&mmlist_lock);
1121			while (swap_count(*swap_map) && !retval && !shmem &&
1122					(p = p->next) != &start_mm->mmlist) {
1123				mm = list_entry(p, struct mm_struct, mmlist);
1124				if (!atomic_inc_not_zero(&mm->mm_users))
1125					continue;
1126				spin_unlock(&mmlist_lock);
1127				mmput(prev_mm);
1128				prev_mm = mm;
1129
1130				cond_resched();
1131
1132				swcount = *swap_map;
1133				if (!swap_count(swcount)) /* any usage ? */
1134					;
1135				else if (mm == &init_mm) {
1136					set_start_mm = 1;
1137					shmem = shmem_unuse(entry, page);
1138				} else
1139					retval = unuse_mm(mm, entry, page);
1140
1141				if (set_start_mm && *swap_map < swcount) {
1142					mmput(new_start_mm);
1143					atomic_inc(&mm->mm_users);
1144					new_start_mm = mm;
1145					set_start_mm = 0;
1146				}
1147				spin_lock(&mmlist_lock);
1148			}
1149			spin_unlock(&mmlist_lock);
1150			mmput(prev_mm);
1151			mmput(start_mm);
1152			start_mm = new_start_mm;
1153		}
1154		if (shmem) {
1155			/* page has already been unlocked and released */
1156			if (shmem > 0)
1157				continue;
1158			retval = shmem;
1159			break;
1160		}
1161		if (retval) {
1162			unlock_page(page);
1163			page_cache_release(page);
1164			break;
1165		}
1166
1167		/*
1168		 * How could swap count reach 0x7ffe ?
1169		 * There's no way to repeat a swap page within an mm
1170		 * (except in shmem, where it's the shared object which takes
1171		 * the reference count)?
1172		 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1173		 * short is too small....)
1174		 * If that's wrong, then we should worry more about
1175		 * exit_mmap() and do_munmap() cases described above:
1176		 * we might be resetting SWAP_MAP_MAX too early here.
1177		 * We know "Undead"s can happen, they're okay, so don't
1178		 * report them; but do report if we reset SWAP_MAP_MAX.
1179		 */
1180		/* We might release the lock_page() in unuse_mm(). */
1181		if (!PageSwapCache(page) || page_private(page) != entry.val)
1182			goto retry;
1183
1184		if (swap_count(*swap_map) == SWAP_MAP_MAX) {
1185			spin_lock(&swap_lock);
1186			*swap_map = SWAP_HAS_CACHE;
1187			spin_unlock(&swap_lock);
1188			reset_overflow = 1;
1189		}
1190
1191		/*
1192		 * If a reference remains (rare), we would like to leave
1193		 * the page in the swap cache; but try_to_unmap could
1194		 * then re-duplicate the entry once we drop page lock,
1195		 * so we might loop indefinitely; also, that page could
1196		 * not be swapped out to other storage meanwhile.  So:
1197		 * delete from cache even if there's another reference,
1198		 * after ensuring that the data has been saved to disk -
1199		 * since if the reference remains (rarer), it will be
1200		 * read from disk into another page.  Splitting into two
1201		 * pages would be incorrect if swap supported "shared
1202		 * private" pages, but they are handled by tmpfs files.
1203		 */
1204		if (swap_count(*swap_map) &&
1205		     PageDirty(page) && PageSwapCache(page)) {
1206			struct writeback_control wbc = {
1207				.sync_mode = WB_SYNC_NONE,
1208			};
1209
1210			swap_writepage(page, &wbc);
1211			lock_page(page);
1212			wait_on_page_writeback(page);
1213		}
1214
1215		/*
1216		 * It is conceivable that a racing task removed this page from
1217		 * swap cache just before we acquired the page lock at the top,
1218		 * or while we dropped it in unuse_mm().  The page might even
1219		 * be back in swap cache on another swap area: that we must not
1220		 * delete, since it may not have been written out to swap yet.
1221		 */
1222		if (PageSwapCache(page) &&
1223		    likely(page_private(page) == entry.val))
1224			delete_from_swap_cache(page);
1225
1226		/*
1227		 * So we could skip searching mms once swap count went
1228		 * to 1, we did not mark any present ptes as dirty: must
1229		 * mark page dirty so shrink_page_list will preserve it.
1230		 */
1231		SetPageDirty(page);
1232retry:
1233		unlock_page(page);
1234		page_cache_release(page);
1235
1236		/*
1237		 * Make sure that we aren't completely killing
1238		 * interactive performance.
1239		 */
1240		cond_resched();
1241	}
1242
1243	mmput(start_mm);
1244	if (reset_overflow) {
1245		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1246		swap_overflow = 0;
1247	}
1248	return retval;
1249}
1250
1251/*
1252 * After a successful try_to_unuse, if no swap is now in use, we know
1253 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1254 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1255 * added to the mmlist just after page_duplicate - before would be racy.
1256 */
1257static void drain_mmlist(void)
1258{
1259	struct list_head *p, *next;
1260	unsigned int type;
1261
1262	for (type = 0; type < nr_swapfiles; type++)
1263		if (swap_info[type]->inuse_pages)
1264			return;
1265	spin_lock(&mmlist_lock);
1266	list_for_each_safe(p, next, &init_mm.mmlist)
1267		list_del_init(p);
1268	spin_unlock(&mmlist_lock);
1269}
1270
1271/*
1272 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1273 * corresponds to page offset `offset'.  Note that the type of this function
1274 * is sector_t, but it returns page offset into the bdev, not sector offset.
1275 */
1276sector_t map_swap_page(swp_entry_t entry, struct block_device **bdev)
1277{
1278	struct swap_info_struct *sis;
1279	struct swap_extent *start_se;
1280	struct swap_extent *se;
1281	pgoff_t offset;
1282
1283	sis = swap_info[swp_type(entry)];
1284	*bdev = sis->bdev;
1285
1286	offset = swp_offset(entry);
1287	start_se = sis->curr_swap_extent;
1288	se = start_se;
1289
1290	for ( ; ; ) {
1291		struct list_head *lh;
1292
1293		if (se->start_page <= offset &&
1294				offset < (se->start_page + se->nr_pages)) {
1295			return se->start_block + (offset - se->start_page);
1296		}
1297		lh = se->list.next;
1298		se = list_entry(lh, struct swap_extent, list);
1299		sis->curr_swap_extent = se;
1300		BUG_ON(se == start_se);		/* It *must* be present */
1301	}
1302}
1303
1304/*
1305 * Free all of a swapdev's extent information
1306 */
1307static void destroy_swap_extents(struct swap_info_struct *sis)
1308{
1309	while (!list_empty(&sis->first_swap_extent.list)) {
1310		struct swap_extent *se;
1311
1312		se = list_entry(sis->first_swap_extent.list.next,
1313				struct swap_extent, list);
1314		list_del(&se->list);
1315		kfree(se);
1316	}
1317}
1318
1319/*
1320 * Add a block range (and the corresponding page range) into this swapdev's
1321 * extent list.  The extent list is kept sorted in page order.
1322 *
1323 * This function rather assumes that it is called in ascending page order.
1324 */
1325static int
1326add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1327		unsigned long nr_pages, sector_t start_block)
1328{
1329	struct swap_extent *se;
1330	struct swap_extent *new_se;
1331	struct list_head *lh;
1332
1333	if (start_page == 0) {
1334		se = &sis->first_swap_extent;
1335		sis->curr_swap_extent = se;
1336		se->start_page = 0;
1337		se->nr_pages = nr_pages;
1338		se->start_block = start_block;
1339		return 1;
1340	} else {
1341		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1342		se = list_entry(lh, struct swap_extent, list);
1343		BUG_ON(se->start_page + se->nr_pages != start_page);
1344		if (se->start_block + se->nr_pages == start_block) {
1345			/* Merge it */
1346			se->nr_pages += nr_pages;
1347			return 0;
1348		}
1349	}
1350
1351	/*
1352	 * No merge.  Insert a new extent, preserving ordering.
1353	 */
1354	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1355	if (new_se == NULL)
1356		return -ENOMEM;
1357	new_se->start_page = start_page;
1358	new_se->nr_pages = nr_pages;
1359	new_se->start_block = start_block;
1360
1361	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1362	return 1;
1363}
1364
1365/*
1366 * A `swap extent' is a simple thing which maps a contiguous range of pages
1367 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1368 * is built at swapon time and is then used at swap_writepage/swap_readpage
1369 * time for locating where on disk a page belongs.
1370 *
1371 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1372 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1373 * swap files identically.
1374 *
1375 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1376 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1377 * swapfiles are handled *identically* after swapon time.
1378 *
1379 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1380 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1381 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1382 * requirements, they are simply tossed out - we will never use those blocks
1383 * for swapping.
1384 *
1385 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1386 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1387 * which will scribble on the fs.
1388 *
1389 * The amount of disk space which a single swap extent represents varies.
1390 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1391 * extents in the list.  To avoid much list walking, we cache the previous
1392 * search location in `curr_swap_extent', and start new searches from there.
1393 * This is extremely effective.  The average number of iterations in
1394 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1395 */
1396static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1397{
1398	struct inode *inode;
1399	unsigned blocks_per_page;
1400	unsigned long page_no;
1401	unsigned blkbits;
1402	sector_t probe_block;
1403	sector_t last_block;
1404	sector_t lowest_block = -1;
1405	sector_t highest_block = 0;
1406	int nr_extents = 0;
1407	int ret;
1408
1409	inode = sis->swap_file->f_mapping->host;
1410	if (S_ISBLK(inode->i_mode)) {
1411		ret = add_swap_extent(sis, 0, sis->max, 0);
1412		*span = sis->pages;
1413		goto out;
1414	}
1415
1416	blkbits = inode->i_blkbits;
1417	blocks_per_page = PAGE_SIZE >> blkbits;
1418
1419	/*
1420	 * Map all the blocks into the extent list.  This code doesn't try
1421	 * to be very smart.
1422	 */
1423	probe_block = 0;
1424	page_no = 0;
1425	last_block = i_size_read(inode) >> blkbits;
1426	while ((probe_block + blocks_per_page) <= last_block &&
1427			page_no < sis->max) {
1428		unsigned block_in_page;
1429		sector_t first_block;
1430
1431		first_block = bmap(inode, probe_block);
1432		if (first_block == 0)
1433			goto bad_bmap;
1434
1435		/*
1436		 * It must be PAGE_SIZE aligned on-disk
1437		 */
1438		if (first_block & (blocks_per_page - 1)) {
1439			probe_block++;
1440			goto reprobe;
1441		}
1442
1443		for (block_in_page = 1; block_in_page < blocks_per_page;
1444					block_in_page++) {
1445			sector_t block;
1446
1447			block = bmap(inode, probe_block + block_in_page);
1448			if (block == 0)
1449				goto bad_bmap;
1450			if (block != first_block + block_in_page) {
1451				/* Discontiguity */
1452				probe_block++;
1453				goto reprobe;
1454			}
1455		}
1456
1457		first_block >>= (PAGE_SHIFT - blkbits);
1458		if (page_no) {	/* exclude the header page */
1459			if (first_block < lowest_block)
1460				lowest_block = first_block;
1461			if (first_block > highest_block)
1462				highest_block = first_block;
1463		}
1464
1465		/*
1466		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1467		 */
1468		ret = add_swap_extent(sis, page_no, 1, first_block);
1469		if (ret < 0)
1470			goto out;
1471		nr_extents += ret;
1472		page_no++;
1473		probe_block += blocks_per_page;
1474reprobe:
1475		continue;
1476	}
1477	ret = nr_extents;
1478	*span = 1 + highest_block - lowest_block;
1479	if (page_no == 0)
1480		page_no = 1;	/* force Empty message */
1481	sis->max = page_no;
1482	sis->pages = page_no - 1;
1483	sis->highest_bit = page_no - 1;
1484out:
1485	return ret;
1486bad_bmap:
1487	printk(KERN_ERR "swapon: swapfile has holes\n");
1488	ret = -EINVAL;
1489	goto out;
1490}
1491
1492SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1493{
1494	struct swap_info_struct *p = NULL;
1495	unsigned short *swap_map;
1496	struct file *swap_file, *victim;
1497	struct address_space *mapping;
1498	struct inode *inode;
1499	char *pathname;
1500	int i, type, prev;
1501	int err;
1502
1503	if (!capable(CAP_SYS_ADMIN))
1504		return -EPERM;
1505
1506	pathname = getname(specialfile);
1507	err = PTR_ERR(pathname);
1508	if (IS_ERR(pathname))
1509		goto out;
1510
1511	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1512	putname(pathname);
1513	err = PTR_ERR(victim);
1514	if (IS_ERR(victim))
1515		goto out;
1516
1517	mapping = victim->f_mapping;
1518	prev = -1;
1519	spin_lock(&swap_lock);
1520	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1521		p = swap_info[type];
1522		if (p->flags & SWP_WRITEOK) {
1523			if (p->swap_file->f_mapping == mapping)
1524				break;
1525		}
1526		prev = type;
1527	}
1528	if (type < 0) {
1529		err = -EINVAL;
1530		spin_unlock(&swap_lock);
1531		goto out_dput;
1532	}
1533	if (!security_vm_enough_memory(p->pages))
1534		vm_unacct_memory(p->pages);
1535	else {
1536		err = -ENOMEM;
1537		spin_unlock(&swap_lock);
1538		goto out_dput;
1539	}
1540	if (prev < 0)
1541		swap_list.head = p->next;
1542	else
1543		swap_info[prev]->next = p->next;
1544	if (type == swap_list.next) {
1545		/* just pick something that's safe... */
1546		swap_list.next = swap_list.head;
1547	}
1548	if (p->prio < 0) {
1549		for (i = p->next; i >= 0; i = swap_info[i]->next)
1550			swap_info[i]->prio = p->prio--;
1551		least_priority++;
1552	}
1553	nr_swap_pages -= p->pages;
1554	total_swap_pages -= p->pages;
1555	p->flags &= ~SWP_WRITEOK;
1556	spin_unlock(&swap_lock);
1557
1558	current->flags |= PF_OOM_ORIGIN;
1559	err = try_to_unuse(type);
1560	current->flags &= ~PF_OOM_ORIGIN;
1561
1562	if (err) {
1563		/* re-insert swap space back into swap_list */
1564		spin_lock(&swap_lock);
1565		if (p->prio < 0)
1566			p->prio = --least_priority;
1567		prev = -1;
1568		for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1569			if (p->prio >= swap_info[i]->prio)
1570				break;
1571			prev = i;
1572		}
1573		p->next = i;
1574		if (prev < 0)
1575			swap_list.head = swap_list.next = type;
1576		else
1577			swap_info[prev]->next = type;
1578		nr_swap_pages += p->pages;
1579		total_swap_pages += p->pages;
1580		p->flags |= SWP_WRITEOK;
1581		spin_unlock(&swap_lock);
1582		goto out_dput;
1583	}
1584
1585	/* wait for any unplug function to finish */
1586	down_write(&swap_unplug_sem);
1587	up_write(&swap_unplug_sem);
1588
1589	destroy_swap_extents(p);
1590	mutex_lock(&swapon_mutex);
1591	spin_lock(&swap_lock);
1592	drain_mmlist();
1593
1594	/* wait for anyone still in scan_swap_map */
1595	p->highest_bit = 0;		/* cuts scans short */
1596	while (p->flags >= SWP_SCANNING) {
1597		spin_unlock(&swap_lock);
1598		schedule_timeout_uninterruptible(1);
1599		spin_lock(&swap_lock);
1600	}
1601
1602	swap_file = p->swap_file;
1603	p->swap_file = NULL;
1604	p->max = 0;
1605	swap_map = p->swap_map;
1606	p->swap_map = NULL;
1607	p->flags = 0;
1608	spin_unlock(&swap_lock);
1609	mutex_unlock(&swapon_mutex);
1610	vfree(swap_map);
1611	/* Destroy swap account informatin */
1612	swap_cgroup_swapoff(type);
1613
1614	inode = mapping->host;
1615	if (S_ISBLK(inode->i_mode)) {
1616		struct block_device *bdev = I_BDEV(inode);
1617		set_blocksize(bdev, p->old_block_size);
1618		bd_release(bdev);
1619	} else {
1620		mutex_lock(&inode->i_mutex);
1621		inode->i_flags &= ~S_SWAPFILE;
1622		mutex_unlock(&inode->i_mutex);
1623	}
1624	filp_close(swap_file, NULL);
1625	err = 0;
1626
1627out_dput:
1628	filp_close(victim, NULL);
1629out:
1630	return err;
1631}
1632
1633#ifdef CONFIG_PROC_FS
1634/* iterator */
1635static void *swap_start(struct seq_file *swap, loff_t *pos)
1636{
1637	struct swap_info_struct *si;
1638	int type;
1639	loff_t l = *pos;
1640
1641	mutex_lock(&swapon_mutex);
1642
1643	if (!l)
1644		return SEQ_START_TOKEN;
1645
1646	for (type = 0; type < nr_swapfiles; type++) {
1647		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1648		si = swap_info[type];
1649		if (!(si->flags & SWP_USED) || !si->swap_map)
1650			continue;
1651		if (!--l)
1652			return si;
1653	}
1654
1655	return NULL;
1656}
1657
1658static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1659{
1660	struct swap_info_struct *si = v;
1661	int type;
1662
1663	if (v == SEQ_START_TOKEN)
1664		type = 0;
1665	else
1666		type = si->type + 1;
1667
1668	for (; type < nr_swapfiles; type++) {
1669		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1670		si = swap_info[type];
1671		if (!(si->flags & SWP_USED) || !si->swap_map)
1672			continue;
1673		++*pos;
1674		return si;
1675	}
1676
1677	return NULL;
1678}
1679
1680static void swap_stop(struct seq_file *swap, void *v)
1681{
1682	mutex_unlock(&swapon_mutex);
1683}
1684
1685static int swap_show(struct seq_file *swap, void *v)
1686{
1687	struct swap_info_struct *si = v;
1688	struct file *file;
1689	int len;
1690
1691	if (si == SEQ_START_TOKEN) {
1692		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1693		return 0;
1694	}
1695
1696	file = si->swap_file;
1697	len = seq_path(swap, &file->f_path, " \t\n\\");
1698	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1699			len < 40 ? 40 - len : 1, " ",
1700			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1701				"partition" : "file\t",
1702			si->pages << (PAGE_SHIFT - 10),
1703			si->inuse_pages << (PAGE_SHIFT - 10),
1704			si->prio);
1705	return 0;
1706}
1707
1708static const struct seq_operations swaps_op = {
1709	.start =	swap_start,
1710	.next =		swap_next,
1711	.stop =		swap_stop,
1712	.show =		swap_show
1713};
1714
1715static int swaps_open(struct inode *inode, struct file *file)
1716{
1717	return seq_open(file, &swaps_op);
1718}
1719
1720static const struct file_operations proc_swaps_operations = {
1721	.open		= swaps_open,
1722	.read		= seq_read,
1723	.llseek		= seq_lseek,
1724	.release	= seq_release,
1725};
1726
1727static int __init procswaps_init(void)
1728{
1729	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1730	return 0;
1731}
1732__initcall(procswaps_init);
1733#endif /* CONFIG_PROC_FS */
1734
1735#ifdef MAX_SWAPFILES_CHECK
1736static int __init max_swapfiles_check(void)
1737{
1738	MAX_SWAPFILES_CHECK();
1739	return 0;
1740}
1741late_initcall(max_swapfiles_check);
1742#endif
1743
1744/*
1745 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1746 *
1747 * The swapon system call
1748 */
1749SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1750{
1751	struct swap_info_struct *p;
1752	char *name = NULL;
1753	struct block_device *bdev = NULL;
1754	struct file *swap_file = NULL;
1755	struct address_space *mapping;
1756	unsigned int type;
1757	int i, prev;
1758	int error;
1759	union swap_header *swap_header = NULL;
1760	unsigned int nr_good_pages = 0;
1761	int nr_extents = 0;
1762	sector_t span;
1763	unsigned long maxpages = 1;
1764	unsigned long swapfilepages;
1765	unsigned short *swap_map = NULL;
1766	struct page *page = NULL;
1767	struct inode *inode = NULL;
1768	int did_down = 0;
1769
1770	if (!capable(CAP_SYS_ADMIN))
1771		return -EPERM;
1772
1773	p = kzalloc(sizeof(*p), GFP_KERNEL);
1774	if (!p)
1775		return -ENOMEM;
1776
1777	spin_lock(&swap_lock);
1778	for (type = 0; type < nr_swapfiles; type++) {
1779		if (!(swap_info[type]->flags & SWP_USED))
1780			break;
1781	}
1782	error = -EPERM;
1783	if (type >= MAX_SWAPFILES) {
1784		spin_unlock(&swap_lock);
1785		kfree(p);
1786		goto out;
1787	}
1788	if (type >= nr_swapfiles) {
1789		p->type = type;
1790		swap_info[type] = p;
1791		/*
1792		 * Write swap_info[type] before nr_swapfiles, in case a
1793		 * racing procfs swap_start() or swap_next() is reading them.
1794		 * (We never shrink nr_swapfiles, we never free this entry.)
1795		 */
1796		smp_wmb();
1797		nr_swapfiles++;
1798	} else {
1799		kfree(p);
1800		p = swap_info[type];
1801		/*
1802		 * Do not memset this entry: a racing procfs swap_next()
1803		 * would be relying on p->type to remain valid.
1804		 */
1805	}
1806	INIT_LIST_HEAD(&p->first_swap_extent.list);
1807	p->flags = SWP_USED;
1808	p->next = -1;
1809	spin_unlock(&swap_lock);
1810
1811	name = getname(specialfile);
1812	error = PTR_ERR(name);
1813	if (IS_ERR(name)) {
1814		name = NULL;
1815		goto bad_swap_2;
1816	}
1817	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1818	error = PTR_ERR(swap_file);
1819	if (IS_ERR(swap_file)) {
1820		swap_file = NULL;
1821		goto bad_swap_2;
1822	}
1823
1824	p->swap_file = swap_file;
1825	mapping = swap_file->f_mapping;
1826	inode = mapping->host;
1827
1828	error = -EBUSY;
1829	for (i = 0; i < nr_swapfiles; i++) {
1830		struct swap_info_struct *q = swap_info[i];
1831
1832		if (i == type || !q->swap_file)
1833			continue;
1834		if (mapping == q->swap_file->f_mapping)
1835			goto bad_swap;
1836	}
1837
1838	error = -EINVAL;
1839	if (S_ISBLK(inode->i_mode)) {
1840		bdev = I_BDEV(inode);
1841		error = bd_claim(bdev, sys_swapon);
1842		if (error < 0) {
1843			bdev = NULL;
1844			error = -EINVAL;
1845			goto bad_swap;
1846		}
1847		p->old_block_size = block_size(bdev);
1848		error = set_blocksize(bdev, PAGE_SIZE);
1849		if (error < 0)
1850			goto bad_swap;
1851		p->bdev = bdev;
1852	} else if (S_ISREG(inode->i_mode)) {
1853		p->bdev = inode->i_sb->s_bdev;
1854		mutex_lock(&inode->i_mutex);
1855		did_down = 1;
1856		if (IS_SWAPFILE(inode)) {
1857			error = -EBUSY;
1858			goto bad_swap;
1859		}
1860	} else {
1861		goto bad_swap;
1862	}
1863
1864	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1865
1866	/*
1867	 * Read the swap header.
1868	 */
1869	if (!mapping->a_ops->readpage) {
1870		error = -EINVAL;
1871		goto bad_swap;
1872	}
1873	page = read_mapping_page(mapping, 0, swap_file);
1874	if (IS_ERR(page)) {
1875		error = PTR_ERR(page);
1876		goto bad_swap;
1877	}
1878	swap_header = kmap(page);
1879
1880	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1881		printk(KERN_ERR "Unable to find swap-space signature\n");
1882		error = -EINVAL;
1883		goto bad_swap;
1884	}
1885
1886	/* swap partition endianess hack... */
1887	if (swab32(swap_header->info.version) == 1) {
1888		swab32s(&swap_header->info.version);
1889		swab32s(&swap_header->info.last_page);
1890		swab32s(&swap_header->info.nr_badpages);
1891		for (i = 0; i < swap_header->info.nr_badpages; i++)
1892			swab32s(&swap_header->info.badpages[i]);
1893	}
1894	/* Check the swap header's sub-version */
1895	if (swap_header->info.version != 1) {
1896		printk(KERN_WARNING
1897		       "Unable to handle swap header version %d\n",
1898		       swap_header->info.version);
1899		error = -EINVAL;
1900		goto bad_swap;
1901	}
1902
1903	p->lowest_bit  = 1;
1904	p->cluster_next = 1;
1905	p->cluster_nr = 0;
1906
1907	/*
1908	 * Find out how many pages are allowed for a single swap
1909	 * device. There are two limiting factors: 1) the number of
1910	 * bits for the swap offset in the swp_entry_t type and
1911	 * 2) the number of bits in the a swap pte as defined by
1912	 * the different architectures. In order to find the
1913	 * largest possible bit mask a swap entry with swap type 0
1914	 * and swap offset ~0UL is created, encoded to a swap pte,
1915	 * decoded to a swp_entry_t again and finally the swap
1916	 * offset is extracted. This will mask all the bits from
1917	 * the initial ~0UL mask that can't be encoded in either
1918	 * the swp_entry_t or the architecture definition of a
1919	 * swap pte.
1920	 */
1921	maxpages = swp_offset(pte_to_swp_entry(
1922			swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1923	if (maxpages > swap_header->info.last_page)
1924		maxpages = swap_header->info.last_page;
1925	p->highest_bit = maxpages - 1;
1926
1927	error = -EINVAL;
1928	if (!maxpages)
1929		goto bad_swap;
1930	if (swapfilepages && maxpages > swapfilepages) {
1931		printk(KERN_WARNING
1932		       "Swap area shorter than signature indicates\n");
1933		goto bad_swap;
1934	}
1935	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1936		goto bad_swap;
1937	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1938		goto bad_swap;
1939
1940	/* OK, set up the swap map and apply the bad block list */
1941	swap_map = vmalloc(maxpages * sizeof(short));
1942	if (!swap_map) {
1943		error = -ENOMEM;
1944		goto bad_swap;
1945	}
1946
1947	memset(swap_map, 0, maxpages * sizeof(short));
1948	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1949		int page_nr = swap_header->info.badpages[i];
1950		if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1951			error = -EINVAL;
1952			goto bad_swap;
1953		}
1954		swap_map[page_nr] = SWAP_MAP_BAD;
1955	}
1956
1957	error = swap_cgroup_swapon(type, maxpages);
1958	if (error)
1959		goto bad_swap;
1960
1961	nr_good_pages = swap_header->info.last_page -
1962			swap_header->info.nr_badpages -
1963			1 /* header page */;
1964
1965	if (nr_good_pages) {
1966		swap_map[0] = SWAP_MAP_BAD;
1967		p->max = maxpages;
1968		p->pages = nr_good_pages;
1969		nr_extents = setup_swap_extents(p, &span);
1970		if (nr_extents < 0) {
1971			error = nr_extents;
1972			goto bad_swap;
1973		}
1974		nr_good_pages = p->pages;
1975	}
1976	if (!nr_good_pages) {
1977		printk(KERN_WARNING "Empty swap-file\n");
1978		error = -EINVAL;
1979		goto bad_swap;
1980	}
1981
1982	if (p->bdev) {
1983		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1984			p->flags |= SWP_SOLIDSTATE;
1985			p->cluster_next = 1 + (random32() % p->highest_bit);
1986		}
1987		if (discard_swap(p) == 0)
1988			p->flags |= SWP_DISCARDABLE;
1989	}
1990
1991	mutex_lock(&swapon_mutex);
1992	spin_lock(&swap_lock);
1993	if (swap_flags & SWAP_FLAG_PREFER)
1994		p->prio =
1995		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1996	else
1997		p->prio = --least_priority;
1998	p->swap_map = swap_map;
1999	p->flags |= SWP_WRITEOK;
2000	nr_swap_pages += nr_good_pages;
2001	total_swap_pages += nr_good_pages;
2002
2003	printk(KERN_INFO "Adding %uk swap on %s.  "
2004			"Priority:%d extents:%d across:%lluk %s%s\n",
2005		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2006		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2007		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2008		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2009
2010	/* insert swap space into swap_list: */
2011	prev = -1;
2012	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2013		if (p->prio >= swap_info[i]->prio)
2014			break;
2015		prev = i;
2016	}
2017	p->next = i;
2018	if (prev < 0)
2019		swap_list.head = swap_list.next = type;
2020	else
2021		swap_info[prev]->next = type;
2022	spin_unlock(&swap_lock);
2023	mutex_unlock(&swapon_mutex);
2024	error = 0;
2025	goto out;
2026bad_swap:
2027	if (bdev) {
2028		set_blocksize(bdev, p->old_block_size);
2029		bd_release(bdev);
2030	}
2031	destroy_swap_extents(p);
2032	swap_cgroup_swapoff(type);
2033bad_swap_2:
2034	spin_lock(&swap_lock);
2035	p->swap_file = NULL;
2036	p->flags = 0;
2037	spin_unlock(&swap_lock);
2038	vfree(swap_map);
2039	if (swap_file)
2040		filp_close(swap_file, NULL);
2041out:
2042	if (page && !IS_ERR(page)) {
2043		kunmap(page);
2044		page_cache_release(page);
2045	}
2046	if (name)
2047		putname(name);
2048	if (did_down) {
2049		if (!error)
2050			inode->i_flags |= S_SWAPFILE;
2051		mutex_unlock(&inode->i_mutex);
2052	}
2053	return error;
2054}
2055
2056void si_swapinfo(struct sysinfo *val)
2057{
2058	unsigned int type;
2059	unsigned long nr_to_be_unused = 0;
2060
2061	spin_lock(&swap_lock);
2062	for (type = 0; type < nr_swapfiles; type++) {
2063		struct swap_info_struct *si = swap_info[type];
2064
2065		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2066			nr_to_be_unused += si->inuse_pages;
2067	}
2068	val->freeswap = nr_swap_pages + nr_to_be_unused;
2069	val->totalswap = total_swap_pages + nr_to_be_unused;
2070	spin_unlock(&swap_lock);
2071}
2072
2073/*
2074 * Verify that a swap entry is valid and increment its swap map count.
2075 *
2076 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2077 * "permanent", but will be reclaimed by the next swapoff.
2078 * Returns error code in following case.
2079 * - success -> 0
2080 * - swp_entry is invalid -> EINVAL
2081 * - swp_entry is migration entry -> EINVAL
2082 * - swap-cache reference is requested but there is already one. -> EEXIST
2083 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2084 */
2085static int __swap_duplicate(swp_entry_t entry, unsigned short usage)
2086{
2087	struct swap_info_struct *p;
2088	unsigned long offset, type;
2089	unsigned short count;
2090	unsigned short has_cache;
2091	int err = -EINVAL;
2092
2093	if (non_swap_entry(entry))
2094		goto out;
2095
2096	type = swp_type(entry);
2097	if (type >= nr_swapfiles)
2098		goto bad_file;
2099	p = swap_info[type];
2100	offset = swp_offset(entry);
2101
2102	spin_lock(&swap_lock);
2103	if (unlikely(offset >= p->max))
2104		goto unlock_out;
2105
2106	count = p->swap_map[offset];
2107	has_cache = count & SWAP_HAS_CACHE;
2108	count &= ~SWAP_HAS_CACHE;
2109	err = 0;
2110
2111	if (usage == SWAP_HAS_CACHE) {
2112
2113		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2114		if (!has_cache && count)
2115			has_cache = SWAP_HAS_CACHE;
2116		else if (has_cache)		/* someone else added cache */
2117			err = -EEXIST;
2118		else				/* no users remaining */
2119			err = -ENOENT;
2120
2121	} else if (count || has_cache) {
2122
2123		if (count < SWAP_MAP_MAX - 1)
2124			count++;
2125		else if (count <= SWAP_MAP_MAX) {
2126			if (swap_overflow++ < 5)
2127				printk(KERN_WARNING
2128				       "swap_dup: swap entry overflow\n");
2129			count = SWAP_MAP_MAX;
2130		} else
2131			err = -EINVAL;
2132	} else
2133		err = -ENOENT;			/* unused swap entry */
2134
2135	p->swap_map[offset] = count | has_cache;
2136
2137unlock_out:
2138	spin_unlock(&swap_lock);
2139out:
2140	return err;
2141
2142bad_file:
2143	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2144	goto out;
2145}
2146
2147/*
2148 * increase reference count of swap entry by 1.
2149 */
2150void swap_duplicate(swp_entry_t entry)
2151{
2152	__swap_duplicate(entry, 1);
2153}
2154
2155/*
2156 * @entry: swap entry for which we allocate swap cache.
2157 *
2158 * Called when allocating swap cache for existing swap entry,
2159 * This can return error codes. Returns 0 at success.
2160 * -EBUSY means there is a swap cache.
2161 * Note: return code is different from swap_duplicate().
2162 */
2163int swapcache_prepare(swp_entry_t entry)
2164{
2165	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2166}
2167
2168/*
2169 * swap_lock prevents swap_map being freed. Don't grab an extra
2170 * reference on the swaphandle, it doesn't matter if it becomes unused.
2171 */
2172int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2173{
2174	struct swap_info_struct *si;
2175	int our_page_cluster = page_cluster;
2176	pgoff_t target, toff;
2177	pgoff_t base, end;
2178	int nr_pages = 0;
2179
2180	if (!our_page_cluster)	/* no readahead */
2181		return 0;
2182
2183	si = swap_info[swp_type(entry)];
2184	target = swp_offset(entry);
2185	base = (target >> our_page_cluster) << our_page_cluster;
2186	end = base + (1 << our_page_cluster);
2187	if (!base)		/* first page is swap header */
2188		base++;
2189
2190	spin_lock(&swap_lock);
2191	if (end > si->max)	/* don't go beyond end of map */
2192		end = si->max;
2193
2194	/* Count contiguous allocated slots above our target */
2195	for (toff = target; ++toff < end; nr_pages++) {
2196		/* Don't read in free or bad pages */
2197		if (!si->swap_map[toff])
2198			break;
2199		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2200			break;
2201	}
2202	/* Count contiguous allocated slots below our target */
2203	for (toff = target; --toff >= base; nr_pages++) {
2204		/* Don't read in free or bad pages */
2205		if (!si->swap_map[toff])
2206			break;
2207		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2208			break;
2209	}
2210	spin_unlock(&swap_lock);
2211
2212	/*
2213	 * Indicate starting offset, and return number of pages to get:
2214	 * if only 1, say 0, since there's then no readahead to be done.
2215	 */
2216	*offset = ++toff;
2217	return nr_pages? ++nr_pages: 0;
2218}
2219