swapfile.c revision 349f429eec36cb743fee20f4c193ecde97a3ed2e
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/random.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/ksm.h>
26#include <linux/rmap.h>
27#include <linux/security.h>
28#include <linux/backing-dev.h>
29#include <linux/mutex.h>
30#include <linux/capability.h>
31#include <linux/syscalls.h>
32#include <linux/memcontrol.h>
33
34#include <asm/pgtable.h>
35#include <asm/tlbflush.h>
36#include <linux/swapops.h>
37#include <linux/page_cgroup.h>
38
39static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40				 unsigned char);
41static void free_swap_count_continuations(struct swap_info_struct *);
42static sector_t map_swap_entry(swp_entry_t, struct block_device**);
43
44static DEFINE_SPINLOCK(swap_lock);
45static unsigned int nr_swapfiles;
46long nr_swap_pages;
47long total_swap_pages;
48static int least_priority;
49
50static bool swap_for_hibernation;
51
52static const char Bad_file[] = "Bad swap file entry ";
53static const char Unused_file[] = "Unused swap file entry ";
54static const char Bad_offset[] = "Bad swap offset entry ";
55static const char Unused_offset[] = "Unused swap offset entry ";
56
57static struct swap_list_t swap_list = {-1, -1};
58
59static struct swap_info_struct *swap_info[MAX_SWAPFILES];
60
61static DEFINE_MUTEX(swapon_mutex);
62
63static inline unsigned char swap_count(unsigned char ent)
64{
65	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
66}
67
68/* returns 1 if swap entry is freed */
69static int
70__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
71{
72	swp_entry_t entry = swp_entry(si->type, offset);
73	struct page *page;
74	int ret = 0;
75
76	page = find_get_page(&swapper_space, entry.val);
77	if (!page)
78		return 0;
79	/*
80	 * This function is called from scan_swap_map() and it's called
81	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
82	 * We have to use trylock for avoiding deadlock. This is a special
83	 * case and you should use try_to_free_swap() with explicit lock_page()
84	 * in usual operations.
85	 */
86	if (trylock_page(page)) {
87		ret = try_to_free_swap(page);
88		unlock_page(page);
89	}
90	page_cache_release(page);
91	return ret;
92}
93
94/*
95 * We need this because the bdev->unplug_fn can sleep and we cannot
96 * hold swap_lock while calling the unplug_fn. And swap_lock
97 * cannot be turned into a mutex.
98 */
99static DECLARE_RWSEM(swap_unplug_sem);
100
101void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
102{
103	swp_entry_t entry;
104
105	down_read(&swap_unplug_sem);
106	entry.val = page_private(page);
107	if (PageSwapCache(page)) {
108		struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
109		struct backing_dev_info *bdi;
110
111		/*
112		 * If the page is removed from swapcache from under us (with a
113		 * racy try_to_unuse/swapoff) we need an additional reference
114		 * count to avoid reading garbage from page_private(page) above.
115		 * If the WARN_ON triggers during a swapoff it maybe the race
116		 * condition and it's harmless. However if it triggers without
117		 * swapoff it signals a problem.
118		 */
119		WARN_ON(page_count(page) <= 1);
120
121		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
122		blk_run_backing_dev(bdi, page);
123	}
124	up_read(&swap_unplug_sem);
125}
126
127/*
128 * swapon tell device that all the old swap contents can be discarded,
129 * to allow the swap device to optimize its wear-levelling.
130 */
131static int discard_swap(struct swap_info_struct *si)
132{
133	struct swap_extent *se;
134	sector_t start_block;
135	sector_t nr_blocks;
136	int err = 0;
137
138	/* Do not discard the swap header page! */
139	se = &si->first_swap_extent;
140	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
141	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
142	if (nr_blocks) {
143		err = blkdev_issue_discard(si->bdev, start_block,
144				nr_blocks, GFP_KERNEL, BLKDEV_IFL_WAIT);
145		if (err)
146			return err;
147		cond_resched();
148	}
149
150	list_for_each_entry(se, &si->first_swap_extent.list, list) {
151		start_block = se->start_block << (PAGE_SHIFT - 9);
152		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
153
154		err = blkdev_issue_discard(si->bdev, start_block,
155				nr_blocks, GFP_KERNEL, BLKDEV_IFL_WAIT);
156		if (err)
157			break;
158
159		cond_resched();
160	}
161	return err;		/* That will often be -EOPNOTSUPP */
162}
163
164/*
165 * swap allocation tell device that a cluster of swap can now be discarded,
166 * to allow the swap device to optimize its wear-levelling.
167 */
168static void discard_swap_cluster(struct swap_info_struct *si,
169				 pgoff_t start_page, pgoff_t nr_pages)
170{
171	struct swap_extent *se = si->curr_swap_extent;
172	int found_extent = 0;
173
174	while (nr_pages) {
175		struct list_head *lh;
176
177		if (se->start_page <= start_page &&
178		    start_page < se->start_page + se->nr_pages) {
179			pgoff_t offset = start_page - se->start_page;
180			sector_t start_block = se->start_block + offset;
181			sector_t nr_blocks = se->nr_pages - offset;
182
183			if (nr_blocks > nr_pages)
184				nr_blocks = nr_pages;
185			start_page += nr_blocks;
186			nr_pages -= nr_blocks;
187
188			if (!found_extent++)
189				si->curr_swap_extent = se;
190
191			start_block <<= PAGE_SHIFT - 9;
192			nr_blocks <<= PAGE_SHIFT - 9;
193			if (blkdev_issue_discard(si->bdev, start_block,
194				    nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT))
195				break;
196		}
197
198		lh = se->list.next;
199		se = list_entry(lh, struct swap_extent, list);
200	}
201}
202
203static int wait_for_discard(void *word)
204{
205	schedule();
206	return 0;
207}
208
209#define SWAPFILE_CLUSTER	256
210#define LATENCY_LIMIT		256
211
212static inline unsigned long scan_swap_map(struct swap_info_struct *si,
213					  unsigned char usage)
214{
215	unsigned long offset;
216	unsigned long scan_base;
217	unsigned long last_in_cluster = 0;
218	int latency_ration = LATENCY_LIMIT;
219	int found_free_cluster = 0;
220
221	/*
222	 * We try to cluster swap pages by allocating them sequentially
223	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
224	 * way, however, we resort to first-free allocation, starting
225	 * a new cluster.  This prevents us from scattering swap pages
226	 * all over the entire swap partition, so that we reduce
227	 * overall disk seek times between swap pages.  -- sct
228	 * But we do now try to find an empty cluster.  -Andrea
229	 * And we let swap pages go all over an SSD partition.  Hugh
230	 */
231
232	si->flags += SWP_SCANNING;
233	scan_base = offset = si->cluster_next;
234
235	if (unlikely(!si->cluster_nr--)) {
236		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
237			si->cluster_nr = SWAPFILE_CLUSTER - 1;
238			goto checks;
239		}
240		if (si->flags & SWP_DISCARDABLE) {
241			/*
242			 * Start range check on racing allocations, in case
243			 * they overlap the cluster we eventually decide on
244			 * (we scan without swap_lock to allow preemption).
245			 * It's hardly conceivable that cluster_nr could be
246			 * wrapped during our scan, but don't depend on it.
247			 */
248			if (si->lowest_alloc)
249				goto checks;
250			si->lowest_alloc = si->max;
251			si->highest_alloc = 0;
252		}
253		spin_unlock(&swap_lock);
254
255		/*
256		 * If seek is expensive, start searching for new cluster from
257		 * start of partition, to minimize the span of allocated swap.
258		 * But if seek is cheap, search from our current position, so
259		 * that swap is allocated from all over the partition: if the
260		 * Flash Translation Layer only remaps within limited zones,
261		 * we don't want to wear out the first zone too quickly.
262		 */
263		if (!(si->flags & SWP_SOLIDSTATE))
264			scan_base = offset = si->lowest_bit;
265		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
266
267		/* Locate the first empty (unaligned) cluster */
268		for (; last_in_cluster <= si->highest_bit; offset++) {
269			if (si->swap_map[offset])
270				last_in_cluster = offset + SWAPFILE_CLUSTER;
271			else if (offset == last_in_cluster) {
272				spin_lock(&swap_lock);
273				offset -= SWAPFILE_CLUSTER - 1;
274				si->cluster_next = offset;
275				si->cluster_nr = SWAPFILE_CLUSTER - 1;
276				found_free_cluster = 1;
277				goto checks;
278			}
279			if (unlikely(--latency_ration < 0)) {
280				cond_resched();
281				latency_ration = LATENCY_LIMIT;
282			}
283		}
284
285		offset = si->lowest_bit;
286		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
287
288		/* Locate the first empty (unaligned) cluster */
289		for (; last_in_cluster < scan_base; offset++) {
290			if (si->swap_map[offset])
291				last_in_cluster = offset + SWAPFILE_CLUSTER;
292			else if (offset == last_in_cluster) {
293				spin_lock(&swap_lock);
294				offset -= SWAPFILE_CLUSTER - 1;
295				si->cluster_next = offset;
296				si->cluster_nr = SWAPFILE_CLUSTER - 1;
297				found_free_cluster = 1;
298				goto checks;
299			}
300			if (unlikely(--latency_ration < 0)) {
301				cond_resched();
302				latency_ration = LATENCY_LIMIT;
303			}
304		}
305
306		offset = scan_base;
307		spin_lock(&swap_lock);
308		si->cluster_nr = SWAPFILE_CLUSTER - 1;
309		si->lowest_alloc = 0;
310	}
311
312checks:
313	if (!(si->flags & SWP_WRITEOK))
314		goto no_page;
315	if (!si->highest_bit)
316		goto no_page;
317	if (offset > si->highest_bit)
318		scan_base = offset = si->lowest_bit;
319
320	/* reuse swap entry of cache-only swap if not hibernation. */
321	if (vm_swap_full()
322		&& usage == SWAP_HAS_CACHE
323		&& si->swap_map[offset] == SWAP_HAS_CACHE) {
324		int swap_was_freed;
325		spin_unlock(&swap_lock);
326		swap_was_freed = __try_to_reclaim_swap(si, offset);
327		spin_lock(&swap_lock);
328		/* entry was freed successfully, try to use this again */
329		if (swap_was_freed)
330			goto checks;
331		goto scan; /* check next one */
332	}
333
334	if (si->swap_map[offset])
335		goto scan;
336
337	if (offset == si->lowest_bit)
338		si->lowest_bit++;
339	if (offset == si->highest_bit)
340		si->highest_bit--;
341	si->inuse_pages++;
342	if (si->inuse_pages == si->pages) {
343		si->lowest_bit = si->max;
344		si->highest_bit = 0;
345	}
346	si->swap_map[offset] = usage;
347	si->cluster_next = offset + 1;
348	si->flags -= SWP_SCANNING;
349
350	if (si->lowest_alloc) {
351		/*
352		 * Only set when SWP_DISCARDABLE, and there's a scan
353		 * for a free cluster in progress or just completed.
354		 */
355		if (found_free_cluster) {
356			/*
357			 * To optimize wear-levelling, discard the
358			 * old data of the cluster, taking care not to
359			 * discard any of its pages that have already
360			 * been allocated by racing tasks (offset has
361			 * already stepped over any at the beginning).
362			 */
363			if (offset < si->highest_alloc &&
364			    si->lowest_alloc <= last_in_cluster)
365				last_in_cluster = si->lowest_alloc - 1;
366			si->flags |= SWP_DISCARDING;
367			spin_unlock(&swap_lock);
368
369			if (offset < last_in_cluster)
370				discard_swap_cluster(si, offset,
371					last_in_cluster - offset + 1);
372
373			spin_lock(&swap_lock);
374			si->lowest_alloc = 0;
375			si->flags &= ~SWP_DISCARDING;
376
377			smp_mb();	/* wake_up_bit advises this */
378			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
379
380		} else if (si->flags & SWP_DISCARDING) {
381			/*
382			 * Delay using pages allocated by racing tasks
383			 * until the whole discard has been issued. We
384			 * could defer that delay until swap_writepage,
385			 * but it's easier to keep this self-contained.
386			 */
387			spin_unlock(&swap_lock);
388			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
389				wait_for_discard, TASK_UNINTERRUPTIBLE);
390			spin_lock(&swap_lock);
391		} else {
392			/*
393			 * Note pages allocated by racing tasks while
394			 * scan for a free cluster is in progress, so
395			 * that its final discard can exclude them.
396			 */
397			if (offset < si->lowest_alloc)
398				si->lowest_alloc = offset;
399			if (offset > si->highest_alloc)
400				si->highest_alloc = offset;
401		}
402	}
403	return offset;
404
405scan:
406	spin_unlock(&swap_lock);
407	while (++offset <= si->highest_bit) {
408		if (!si->swap_map[offset]) {
409			spin_lock(&swap_lock);
410			goto checks;
411		}
412		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
413			spin_lock(&swap_lock);
414			goto checks;
415		}
416		if (unlikely(--latency_ration < 0)) {
417			cond_resched();
418			latency_ration = LATENCY_LIMIT;
419		}
420	}
421	offset = si->lowest_bit;
422	while (++offset < scan_base) {
423		if (!si->swap_map[offset]) {
424			spin_lock(&swap_lock);
425			goto checks;
426		}
427		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
428			spin_lock(&swap_lock);
429			goto checks;
430		}
431		if (unlikely(--latency_ration < 0)) {
432			cond_resched();
433			latency_ration = LATENCY_LIMIT;
434		}
435	}
436	spin_lock(&swap_lock);
437
438no_page:
439	si->flags -= SWP_SCANNING;
440	return 0;
441}
442
443swp_entry_t get_swap_page(void)
444{
445	struct swap_info_struct *si;
446	pgoff_t offset;
447	int type, next;
448	int wrapped = 0;
449
450	spin_lock(&swap_lock);
451	if (nr_swap_pages <= 0)
452		goto noswap;
453	if (swap_for_hibernation)
454		goto noswap;
455	nr_swap_pages--;
456
457	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
458		si = swap_info[type];
459		next = si->next;
460		if (next < 0 ||
461		    (!wrapped && si->prio != swap_info[next]->prio)) {
462			next = swap_list.head;
463			wrapped++;
464		}
465
466		if (!si->highest_bit)
467			continue;
468		if (!(si->flags & SWP_WRITEOK))
469			continue;
470
471		swap_list.next = next;
472		/* This is called for allocating swap entry for cache */
473		offset = scan_swap_map(si, SWAP_HAS_CACHE);
474		if (offset) {
475			spin_unlock(&swap_lock);
476			return swp_entry(type, offset);
477		}
478		next = swap_list.next;
479	}
480
481	nr_swap_pages++;
482noswap:
483	spin_unlock(&swap_lock);
484	return (swp_entry_t) {0};
485}
486
487static struct swap_info_struct *swap_info_get(swp_entry_t entry)
488{
489	struct swap_info_struct *p;
490	unsigned long offset, type;
491
492	if (!entry.val)
493		goto out;
494	type = swp_type(entry);
495	if (type >= nr_swapfiles)
496		goto bad_nofile;
497	p = swap_info[type];
498	if (!(p->flags & SWP_USED))
499		goto bad_device;
500	offset = swp_offset(entry);
501	if (offset >= p->max)
502		goto bad_offset;
503	if (!p->swap_map[offset])
504		goto bad_free;
505	spin_lock(&swap_lock);
506	return p;
507
508bad_free:
509	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
510	goto out;
511bad_offset:
512	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
513	goto out;
514bad_device:
515	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
516	goto out;
517bad_nofile:
518	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
519out:
520	return NULL;
521}
522
523static unsigned char swap_entry_free(struct swap_info_struct *p,
524				     swp_entry_t entry, unsigned char usage)
525{
526	unsigned long offset = swp_offset(entry);
527	unsigned char count;
528	unsigned char has_cache;
529
530	count = p->swap_map[offset];
531	has_cache = count & SWAP_HAS_CACHE;
532	count &= ~SWAP_HAS_CACHE;
533
534	if (usage == SWAP_HAS_CACHE) {
535		VM_BUG_ON(!has_cache);
536		has_cache = 0;
537	} else if (count == SWAP_MAP_SHMEM) {
538		/*
539		 * Or we could insist on shmem.c using a special
540		 * swap_shmem_free() and free_shmem_swap_and_cache()...
541		 */
542		count = 0;
543	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
544		if (count == COUNT_CONTINUED) {
545			if (swap_count_continued(p, offset, count))
546				count = SWAP_MAP_MAX | COUNT_CONTINUED;
547			else
548				count = SWAP_MAP_MAX;
549		} else
550			count--;
551	}
552
553	if (!count)
554		mem_cgroup_uncharge_swap(entry);
555
556	usage = count | has_cache;
557	p->swap_map[offset] = usage;
558
559	/* free if no reference */
560	if (!usage) {
561		struct gendisk *disk = p->bdev->bd_disk;
562		if (offset < p->lowest_bit)
563			p->lowest_bit = offset;
564		if (offset > p->highest_bit)
565			p->highest_bit = offset;
566		if (swap_list.next >= 0 &&
567		    p->prio > swap_info[swap_list.next]->prio)
568			swap_list.next = p->type;
569		nr_swap_pages++;
570		p->inuse_pages--;
571		if ((p->flags & SWP_BLKDEV) &&
572				disk->fops->swap_slot_free_notify)
573			disk->fops->swap_slot_free_notify(p->bdev, offset);
574	}
575
576	return usage;
577}
578
579/*
580 * Caller has made sure that the swapdevice corresponding to entry
581 * is still around or has not been recycled.
582 */
583void swap_free(swp_entry_t entry)
584{
585	struct swap_info_struct *p;
586
587	p = swap_info_get(entry);
588	if (p) {
589		swap_entry_free(p, entry, 1);
590		spin_unlock(&swap_lock);
591	}
592}
593
594/*
595 * Called after dropping swapcache to decrease refcnt to swap entries.
596 */
597void swapcache_free(swp_entry_t entry, struct page *page)
598{
599	struct swap_info_struct *p;
600	unsigned char count;
601
602	p = swap_info_get(entry);
603	if (p) {
604		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
605		if (page)
606			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
607		spin_unlock(&swap_lock);
608	}
609}
610
611/*
612 * How many references to page are currently swapped out?
613 * This does not give an exact answer when swap count is continued,
614 * but does include the high COUNT_CONTINUED flag to allow for that.
615 */
616static inline int page_swapcount(struct page *page)
617{
618	int count = 0;
619	struct swap_info_struct *p;
620	swp_entry_t entry;
621
622	entry.val = page_private(page);
623	p = swap_info_get(entry);
624	if (p) {
625		count = swap_count(p->swap_map[swp_offset(entry)]);
626		spin_unlock(&swap_lock);
627	}
628	return count;
629}
630
631/*
632 * We can write to an anon page without COW if there are no other references
633 * to it.  And as a side-effect, free up its swap: because the old content
634 * on disk will never be read, and seeking back there to write new content
635 * later would only waste time away from clustering.
636 */
637int reuse_swap_page(struct page *page)
638{
639	int count;
640
641	VM_BUG_ON(!PageLocked(page));
642	if (unlikely(PageKsm(page)))
643		return 0;
644	count = page_mapcount(page);
645	if (count <= 1 && PageSwapCache(page)) {
646		count += page_swapcount(page);
647		if (count == 1 && !PageWriteback(page)) {
648			delete_from_swap_cache(page);
649			SetPageDirty(page);
650		}
651	}
652	return count <= 1;
653}
654
655/*
656 * If swap is getting full, or if there are no more mappings of this page,
657 * then try_to_free_swap is called to free its swap space.
658 */
659int try_to_free_swap(struct page *page)
660{
661	VM_BUG_ON(!PageLocked(page));
662
663	if (!PageSwapCache(page))
664		return 0;
665	if (PageWriteback(page))
666		return 0;
667	if (page_swapcount(page))
668		return 0;
669
670	delete_from_swap_cache(page);
671	SetPageDirty(page);
672	return 1;
673}
674
675/*
676 * Free the swap entry like above, but also try to
677 * free the page cache entry if it is the last user.
678 */
679int free_swap_and_cache(swp_entry_t entry)
680{
681	struct swap_info_struct *p;
682	struct page *page = NULL;
683
684	if (non_swap_entry(entry))
685		return 1;
686
687	p = swap_info_get(entry);
688	if (p) {
689		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
690			page = find_get_page(&swapper_space, entry.val);
691			if (page && !trylock_page(page)) {
692				page_cache_release(page);
693				page = NULL;
694			}
695		}
696		spin_unlock(&swap_lock);
697	}
698	if (page) {
699		/*
700		 * Not mapped elsewhere, or swap space full? Free it!
701		 * Also recheck PageSwapCache now page is locked (above).
702		 */
703		if (PageSwapCache(page) && !PageWriteback(page) &&
704				(!page_mapped(page) || vm_swap_full())) {
705			delete_from_swap_cache(page);
706			SetPageDirty(page);
707		}
708		unlock_page(page);
709		page_cache_release(page);
710	}
711	return p != NULL;
712}
713
714#ifdef CONFIG_CGROUP_MEM_RES_CTLR
715/**
716 * mem_cgroup_count_swap_user - count the user of a swap entry
717 * @ent: the swap entry to be checked
718 * @pagep: the pointer for the swap cache page of the entry to be stored
719 *
720 * Returns the number of the user of the swap entry. The number is valid only
721 * for swaps of anonymous pages.
722 * If the entry is found on swap cache, the page is stored to pagep with
723 * refcount of it being incremented.
724 */
725int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
726{
727	struct page *page;
728	struct swap_info_struct *p;
729	int count = 0;
730
731	page = find_get_page(&swapper_space, ent.val);
732	if (page)
733		count += page_mapcount(page);
734	p = swap_info_get(ent);
735	if (p) {
736		count += swap_count(p->swap_map[swp_offset(ent)]);
737		spin_unlock(&swap_lock);
738	}
739
740	*pagep = page;
741	return count;
742}
743#endif
744
745#ifdef CONFIG_HIBERNATION
746
747static pgoff_t hibernation_offset[MAX_SWAPFILES];
748/*
749 * Once hibernation starts to use swap, we freeze swap_map[]. Otherwise,
750 * saved swap_map[] image to the disk will be an incomplete because it's
751 * changing without synchronization with hibernation snap shot.
752 * At resume, we just make swap_for_hibernation=false. We can forget
753 * used maps easily.
754 */
755void hibernation_freeze_swap(void)
756{
757	int i;
758
759	spin_lock(&swap_lock);
760
761	printk(KERN_INFO "PM: Freeze Swap\n");
762	swap_for_hibernation = true;
763	for (i = 0; i < MAX_SWAPFILES; i++)
764		hibernation_offset[i] = 1;
765	spin_unlock(&swap_lock);
766}
767
768void hibernation_thaw_swap(void)
769{
770	spin_lock(&swap_lock);
771	if (swap_for_hibernation) {
772		printk(KERN_INFO "PM: Thaw Swap\n");
773		swap_for_hibernation = false;
774	}
775	spin_unlock(&swap_lock);
776}
777
778/*
779 * Because updateing swap_map[] can make not-saved-status-change,
780 * we use our own easy allocator.
781 * Please see kernel/power/swap.c, Used swaps are recorded into
782 * RB-tree.
783 */
784swp_entry_t get_swap_for_hibernation(int type)
785{
786	pgoff_t off;
787	swp_entry_t val = {0};
788	struct swap_info_struct *si;
789
790	spin_lock(&swap_lock);
791
792	si = swap_info[type];
793	if (!si || !(si->flags & SWP_WRITEOK))
794		goto done;
795
796	for (off = hibernation_offset[type]; off < si->max; ++off) {
797		if (!si->swap_map[off])
798			break;
799	}
800	if (off < si->max) {
801		val = swp_entry(type, off);
802		hibernation_offset[type] = off + 1;
803	}
804done:
805	spin_unlock(&swap_lock);
806	return val;
807}
808
809void swap_free_for_hibernation(swp_entry_t ent)
810{
811	/* Nothing to do */
812}
813
814/*
815 * Find the swap type that corresponds to given device (if any).
816 *
817 * @offset - number of the PAGE_SIZE-sized block of the device, starting
818 * from 0, in which the swap header is expected to be located.
819 *
820 * This is needed for the suspend to disk (aka swsusp).
821 */
822int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
823{
824	struct block_device *bdev = NULL;
825	int type;
826
827	if (device)
828		bdev = bdget(device);
829
830	spin_lock(&swap_lock);
831	for (type = 0; type < nr_swapfiles; type++) {
832		struct swap_info_struct *sis = swap_info[type];
833
834		if (!(sis->flags & SWP_WRITEOK))
835			continue;
836
837		if (!bdev) {
838			if (bdev_p)
839				*bdev_p = bdgrab(sis->bdev);
840
841			spin_unlock(&swap_lock);
842			return type;
843		}
844		if (bdev == sis->bdev) {
845			struct swap_extent *se = &sis->first_swap_extent;
846
847			if (se->start_block == offset) {
848				if (bdev_p)
849					*bdev_p = bdgrab(sis->bdev);
850
851				spin_unlock(&swap_lock);
852				bdput(bdev);
853				return type;
854			}
855		}
856	}
857	spin_unlock(&swap_lock);
858	if (bdev)
859		bdput(bdev);
860
861	return -ENODEV;
862}
863
864/*
865 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
866 * corresponding to given index in swap_info (swap type).
867 */
868sector_t swapdev_block(int type, pgoff_t offset)
869{
870	struct block_device *bdev;
871
872	if ((unsigned int)type >= nr_swapfiles)
873		return 0;
874	if (!(swap_info[type]->flags & SWP_WRITEOK))
875		return 0;
876	return map_swap_entry(swp_entry(type, offset), &bdev);
877}
878
879/*
880 * Return either the total number of swap pages of given type, or the number
881 * of free pages of that type (depending on @free)
882 *
883 * This is needed for software suspend
884 */
885unsigned int count_swap_pages(int type, int free)
886{
887	unsigned int n = 0;
888
889	spin_lock(&swap_lock);
890	if ((unsigned int)type < nr_swapfiles) {
891		struct swap_info_struct *sis = swap_info[type];
892
893		if (sis->flags & SWP_WRITEOK) {
894			n = sis->pages;
895			if (free)
896				n -= sis->inuse_pages;
897		}
898	}
899	spin_unlock(&swap_lock);
900	return n;
901}
902#endif /* CONFIG_HIBERNATION */
903
904/*
905 * No need to decide whether this PTE shares the swap entry with others,
906 * just let do_wp_page work it out if a write is requested later - to
907 * force COW, vm_page_prot omits write permission from any private vma.
908 */
909static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
910		unsigned long addr, swp_entry_t entry, struct page *page)
911{
912	struct mem_cgroup *ptr = NULL;
913	spinlock_t *ptl;
914	pte_t *pte;
915	int ret = 1;
916
917	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
918		ret = -ENOMEM;
919		goto out_nolock;
920	}
921
922	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
923	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
924		if (ret > 0)
925			mem_cgroup_cancel_charge_swapin(ptr);
926		ret = 0;
927		goto out;
928	}
929
930	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
931	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
932	get_page(page);
933	set_pte_at(vma->vm_mm, addr, pte,
934		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
935	page_add_anon_rmap(page, vma, addr);
936	mem_cgroup_commit_charge_swapin(page, ptr);
937	swap_free(entry);
938	/*
939	 * Move the page to the active list so it is not
940	 * immediately swapped out again after swapon.
941	 */
942	activate_page(page);
943out:
944	pte_unmap_unlock(pte, ptl);
945out_nolock:
946	return ret;
947}
948
949static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
950				unsigned long addr, unsigned long end,
951				swp_entry_t entry, struct page *page)
952{
953	pte_t swp_pte = swp_entry_to_pte(entry);
954	pte_t *pte;
955	int ret = 0;
956
957	/*
958	 * We don't actually need pte lock while scanning for swp_pte: since
959	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
960	 * page table while we're scanning; though it could get zapped, and on
961	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
962	 * of unmatched parts which look like swp_pte, so unuse_pte must
963	 * recheck under pte lock.  Scanning without pte lock lets it be
964	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
965	 */
966	pte = pte_offset_map(pmd, addr);
967	do {
968		/*
969		 * swapoff spends a _lot_ of time in this loop!
970		 * Test inline before going to call unuse_pte.
971		 */
972		if (unlikely(pte_same(*pte, swp_pte))) {
973			pte_unmap(pte);
974			ret = unuse_pte(vma, pmd, addr, entry, page);
975			if (ret)
976				goto out;
977			pte = pte_offset_map(pmd, addr);
978		}
979	} while (pte++, addr += PAGE_SIZE, addr != end);
980	pte_unmap(pte - 1);
981out:
982	return ret;
983}
984
985static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
986				unsigned long addr, unsigned long end,
987				swp_entry_t entry, struct page *page)
988{
989	pmd_t *pmd;
990	unsigned long next;
991	int ret;
992
993	pmd = pmd_offset(pud, addr);
994	do {
995		next = pmd_addr_end(addr, end);
996		if (pmd_none_or_clear_bad(pmd))
997			continue;
998		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
999		if (ret)
1000			return ret;
1001	} while (pmd++, addr = next, addr != end);
1002	return 0;
1003}
1004
1005static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1006				unsigned long addr, unsigned long end,
1007				swp_entry_t entry, struct page *page)
1008{
1009	pud_t *pud;
1010	unsigned long next;
1011	int ret;
1012
1013	pud = pud_offset(pgd, addr);
1014	do {
1015		next = pud_addr_end(addr, end);
1016		if (pud_none_or_clear_bad(pud))
1017			continue;
1018		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1019		if (ret)
1020			return ret;
1021	} while (pud++, addr = next, addr != end);
1022	return 0;
1023}
1024
1025static int unuse_vma(struct vm_area_struct *vma,
1026				swp_entry_t entry, struct page *page)
1027{
1028	pgd_t *pgd;
1029	unsigned long addr, end, next;
1030	int ret;
1031
1032	if (page_anon_vma(page)) {
1033		addr = page_address_in_vma(page, vma);
1034		if (addr == -EFAULT)
1035			return 0;
1036		else
1037			end = addr + PAGE_SIZE;
1038	} else {
1039		addr = vma->vm_start;
1040		end = vma->vm_end;
1041	}
1042
1043	pgd = pgd_offset(vma->vm_mm, addr);
1044	do {
1045		next = pgd_addr_end(addr, end);
1046		if (pgd_none_or_clear_bad(pgd))
1047			continue;
1048		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1049		if (ret)
1050			return ret;
1051	} while (pgd++, addr = next, addr != end);
1052	return 0;
1053}
1054
1055static int unuse_mm(struct mm_struct *mm,
1056				swp_entry_t entry, struct page *page)
1057{
1058	struct vm_area_struct *vma;
1059	int ret = 0;
1060
1061	if (!down_read_trylock(&mm->mmap_sem)) {
1062		/*
1063		 * Activate page so shrink_inactive_list is unlikely to unmap
1064		 * its ptes while lock is dropped, so swapoff can make progress.
1065		 */
1066		activate_page(page);
1067		unlock_page(page);
1068		down_read(&mm->mmap_sem);
1069		lock_page(page);
1070	}
1071	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1072		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1073			break;
1074	}
1075	up_read(&mm->mmap_sem);
1076	return (ret < 0)? ret: 0;
1077}
1078
1079/*
1080 * Scan swap_map from current position to next entry still in use.
1081 * Recycle to start on reaching the end, returning 0 when empty.
1082 */
1083static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1084					unsigned int prev)
1085{
1086	unsigned int max = si->max;
1087	unsigned int i = prev;
1088	unsigned char count;
1089
1090	/*
1091	 * No need for swap_lock here: we're just looking
1092	 * for whether an entry is in use, not modifying it; false
1093	 * hits are okay, and sys_swapoff() has already prevented new
1094	 * allocations from this area (while holding swap_lock).
1095	 */
1096	for (;;) {
1097		if (++i >= max) {
1098			if (!prev) {
1099				i = 0;
1100				break;
1101			}
1102			/*
1103			 * No entries in use at top of swap_map,
1104			 * loop back to start and recheck there.
1105			 */
1106			max = prev + 1;
1107			prev = 0;
1108			i = 1;
1109		}
1110		count = si->swap_map[i];
1111		if (count && swap_count(count) != SWAP_MAP_BAD)
1112			break;
1113	}
1114	return i;
1115}
1116
1117/*
1118 * We completely avoid races by reading each swap page in advance,
1119 * and then search for the process using it.  All the necessary
1120 * page table adjustments can then be made atomically.
1121 */
1122static int try_to_unuse(unsigned int type)
1123{
1124	struct swap_info_struct *si = swap_info[type];
1125	struct mm_struct *start_mm;
1126	unsigned char *swap_map;
1127	unsigned char swcount;
1128	struct page *page;
1129	swp_entry_t entry;
1130	unsigned int i = 0;
1131	int retval = 0;
1132
1133	/*
1134	 * When searching mms for an entry, a good strategy is to
1135	 * start at the first mm we freed the previous entry from
1136	 * (though actually we don't notice whether we or coincidence
1137	 * freed the entry).  Initialize this start_mm with a hold.
1138	 *
1139	 * A simpler strategy would be to start at the last mm we
1140	 * freed the previous entry from; but that would take less
1141	 * advantage of mmlist ordering, which clusters forked mms
1142	 * together, child after parent.  If we race with dup_mmap(), we
1143	 * prefer to resolve parent before child, lest we miss entries
1144	 * duplicated after we scanned child: using last mm would invert
1145	 * that.
1146	 */
1147	start_mm = &init_mm;
1148	atomic_inc(&init_mm.mm_users);
1149
1150	/*
1151	 * Keep on scanning until all entries have gone.  Usually,
1152	 * one pass through swap_map is enough, but not necessarily:
1153	 * there are races when an instance of an entry might be missed.
1154	 */
1155	while ((i = find_next_to_unuse(si, i)) != 0) {
1156		if (signal_pending(current)) {
1157			retval = -EINTR;
1158			break;
1159		}
1160
1161		/*
1162		 * Get a page for the entry, using the existing swap
1163		 * cache page if there is one.  Otherwise, get a clean
1164		 * page and read the swap into it.
1165		 */
1166		swap_map = &si->swap_map[i];
1167		entry = swp_entry(type, i);
1168		page = read_swap_cache_async(entry,
1169					GFP_HIGHUSER_MOVABLE, NULL, 0);
1170		if (!page) {
1171			/*
1172			 * Either swap_duplicate() failed because entry
1173			 * has been freed independently, and will not be
1174			 * reused since sys_swapoff() already disabled
1175			 * allocation from here, or alloc_page() failed.
1176			 */
1177			if (!*swap_map)
1178				continue;
1179			retval = -ENOMEM;
1180			break;
1181		}
1182
1183		/*
1184		 * Don't hold on to start_mm if it looks like exiting.
1185		 */
1186		if (atomic_read(&start_mm->mm_users) == 1) {
1187			mmput(start_mm);
1188			start_mm = &init_mm;
1189			atomic_inc(&init_mm.mm_users);
1190		}
1191
1192		/*
1193		 * Wait for and lock page.  When do_swap_page races with
1194		 * try_to_unuse, do_swap_page can handle the fault much
1195		 * faster than try_to_unuse can locate the entry.  This
1196		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1197		 * defer to do_swap_page in such a case - in some tests,
1198		 * do_swap_page and try_to_unuse repeatedly compete.
1199		 */
1200		wait_on_page_locked(page);
1201		wait_on_page_writeback(page);
1202		lock_page(page);
1203		wait_on_page_writeback(page);
1204
1205		/*
1206		 * Remove all references to entry.
1207		 */
1208		swcount = *swap_map;
1209		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1210			retval = shmem_unuse(entry, page);
1211			/* page has already been unlocked and released */
1212			if (retval < 0)
1213				break;
1214			continue;
1215		}
1216		if (swap_count(swcount) && start_mm != &init_mm)
1217			retval = unuse_mm(start_mm, entry, page);
1218
1219		if (swap_count(*swap_map)) {
1220			int set_start_mm = (*swap_map >= swcount);
1221			struct list_head *p = &start_mm->mmlist;
1222			struct mm_struct *new_start_mm = start_mm;
1223			struct mm_struct *prev_mm = start_mm;
1224			struct mm_struct *mm;
1225
1226			atomic_inc(&new_start_mm->mm_users);
1227			atomic_inc(&prev_mm->mm_users);
1228			spin_lock(&mmlist_lock);
1229			while (swap_count(*swap_map) && !retval &&
1230					(p = p->next) != &start_mm->mmlist) {
1231				mm = list_entry(p, struct mm_struct, mmlist);
1232				if (!atomic_inc_not_zero(&mm->mm_users))
1233					continue;
1234				spin_unlock(&mmlist_lock);
1235				mmput(prev_mm);
1236				prev_mm = mm;
1237
1238				cond_resched();
1239
1240				swcount = *swap_map;
1241				if (!swap_count(swcount)) /* any usage ? */
1242					;
1243				else if (mm == &init_mm)
1244					set_start_mm = 1;
1245				else
1246					retval = unuse_mm(mm, entry, page);
1247
1248				if (set_start_mm && *swap_map < swcount) {
1249					mmput(new_start_mm);
1250					atomic_inc(&mm->mm_users);
1251					new_start_mm = mm;
1252					set_start_mm = 0;
1253				}
1254				spin_lock(&mmlist_lock);
1255			}
1256			spin_unlock(&mmlist_lock);
1257			mmput(prev_mm);
1258			mmput(start_mm);
1259			start_mm = new_start_mm;
1260		}
1261		if (retval) {
1262			unlock_page(page);
1263			page_cache_release(page);
1264			break;
1265		}
1266
1267		/*
1268		 * If a reference remains (rare), we would like to leave
1269		 * the page in the swap cache; but try_to_unmap could
1270		 * then re-duplicate the entry once we drop page lock,
1271		 * so we might loop indefinitely; also, that page could
1272		 * not be swapped out to other storage meanwhile.  So:
1273		 * delete from cache even if there's another reference,
1274		 * after ensuring that the data has been saved to disk -
1275		 * since if the reference remains (rarer), it will be
1276		 * read from disk into another page.  Splitting into two
1277		 * pages would be incorrect if swap supported "shared
1278		 * private" pages, but they are handled by tmpfs files.
1279		 *
1280		 * Given how unuse_vma() targets one particular offset
1281		 * in an anon_vma, once the anon_vma has been determined,
1282		 * this splitting happens to be just what is needed to
1283		 * handle where KSM pages have been swapped out: re-reading
1284		 * is unnecessarily slow, but we can fix that later on.
1285		 */
1286		if (swap_count(*swap_map) &&
1287		     PageDirty(page) && PageSwapCache(page)) {
1288			struct writeback_control wbc = {
1289				.sync_mode = WB_SYNC_NONE,
1290			};
1291
1292			swap_writepage(page, &wbc);
1293			lock_page(page);
1294			wait_on_page_writeback(page);
1295		}
1296
1297		/*
1298		 * It is conceivable that a racing task removed this page from
1299		 * swap cache just before we acquired the page lock at the top,
1300		 * or while we dropped it in unuse_mm().  The page might even
1301		 * be back in swap cache on another swap area: that we must not
1302		 * delete, since it may not have been written out to swap yet.
1303		 */
1304		if (PageSwapCache(page) &&
1305		    likely(page_private(page) == entry.val))
1306			delete_from_swap_cache(page);
1307
1308		/*
1309		 * So we could skip searching mms once swap count went
1310		 * to 1, we did not mark any present ptes as dirty: must
1311		 * mark page dirty so shrink_page_list will preserve it.
1312		 */
1313		SetPageDirty(page);
1314		unlock_page(page);
1315		page_cache_release(page);
1316
1317		/*
1318		 * Make sure that we aren't completely killing
1319		 * interactive performance.
1320		 */
1321		cond_resched();
1322	}
1323
1324	mmput(start_mm);
1325	return retval;
1326}
1327
1328/*
1329 * After a successful try_to_unuse, if no swap is now in use, we know
1330 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1331 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1332 * added to the mmlist just after page_duplicate - before would be racy.
1333 */
1334static void drain_mmlist(void)
1335{
1336	struct list_head *p, *next;
1337	unsigned int type;
1338
1339	for (type = 0; type < nr_swapfiles; type++)
1340		if (swap_info[type]->inuse_pages)
1341			return;
1342	spin_lock(&mmlist_lock);
1343	list_for_each_safe(p, next, &init_mm.mmlist)
1344		list_del_init(p);
1345	spin_unlock(&mmlist_lock);
1346}
1347
1348/*
1349 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1350 * corresponds to page offset for the specified swap entry.
1351 * Note that the type of this function is sector_t, but it returns page offset
1352 * into the bdev, not sector offset.
1353 */
1354static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1355{
1356	struct swap_info_struct *sis;
1357	struct swap_extent *start_se;
1358	struct swap_extent *se;
1359	pgoff_t offset;
1360
1361	sis = swap_info[swp_type(entry)];
1362	*bdev = sis->bdev;
1363
1364	offset = swp_offset(entry);
1365	start_se = sis->curr_swap_extent;
1366	se = start_se;
1367
1368	for ( ; ; ) {
1369		struct list_head *lh;
1370
1371		if (se->start_page <= offset &&
1372				offset < (se->start_page + se->nr_pages)) {
1373			return se->start_block + (offset - se->start_page);
1374		}
1375		lh = se->list.next;
1376		se = list_entry(lh, struct swap_extent, list);
1377		sis->curr_swap_extent = se;
1378		BUG_ON(se == start_se);		/* It *must* be present */
1379	}
1380}
1381
1382/*
1383 * Returns the page offset into bdev for the specified page's swap entry.
1384 */
1385sector_t map_swap_page(struct page *page, struct block_device **bdev)
1386{
1387	swp_entry_t entry;
1388	entry.val = page_private(page);
1389	return map_swap_entry(entry, bdev);
1390}
1391
1392/*
1393 * Free all of a swapdev's extent information
1394 */
1395static void destroy_swap_extents(struct swap_info_struct *sis)
1396{
1397	while (!list_empty(&sis->first_swap_extent.list)) {
1398		struct swap_extent *se;
1399
1400		se = list_entry(sis->first_swap_extent.list.next,
1401				struct swap_extent, list);
1402		list_del(&se->list);
1403		kfree(se);
1404	}
1405}
1406
1407/*
1408 * Add a block range (and the corresponding page range) into this swapdev's
1409 * extent list.  The extent list is kept sorted in page order.
1410 *
1411 * This function rather assumes that it is called in ascending page order.
1412 */
1413static int
1414add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1415		unsigned long nr_pages, sector_t start_block)
1416{
1417	struct swap_extent *se;
1418	struct swap_extent *new_se;
1419	struct list_head *lh;
1420
1421	if (start_page == 0) {
1422		se = &sis->first_swap_extent;
1423		sis->curr_swap_extent = se;
1424		se->start_page = 0;
1425		se->nr_pages = nr_pages;
1426		se->start_block = start_block;
1427		return 1;
1428	} else {
1429		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1430		se = list_entry(lh, struct swap_extent, list);
1431		BUG_ON(se->start_page + se->nr_pages != start_page);
1432		if (se->start_block + se->nr_pages == start_block) {
1433			/* Merge it */
1434			se->nr_pages += nr_pages;
1435			return 0;
1436		}
1437	}
1438
1439	/*
1440	 * No merge.  Insert a new extent, preserving ordering.
1441	 */
1442	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1443	if (new_se == NULL)
1444		return -ENOMEM;
1445	new_se->start_page = start_page;
1446	new_se->nr_pages = nr_pages;
1447	new_se->start_block = start_block;
1448
1449	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1450	return 1;
1451}
1452
1453/*
1454 * A `swap extent' is a simple thing which maps a contiguous range of pages
1455 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1456 * is built at swapon time and is then used at swap_writepage/swap_readpage
1457 * time for locating where on disk a page belongs.
1458 *
1459 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1460 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1461 * swap files identically.
1462 *
1463 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1464 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1465 * swapfiles are handled *identically* after swapon time.
1466 *
1467 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1468 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1469 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1470 * requirements, they are simply tossed out - we will never use those blocks
1471 * for swapping.
1472 *
1473 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1474 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1475 * which will scribble on the fs.
1476 *
1477 * The amount of disk space which a single swap extent represents varies.
1478 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1479 * extents in the list.  To avoid much list walking, we cache the previous
1480 * search location in `curr_swap_extent', and start new searches from there.
1481 * This is extremely effective.  The average number of iterations in
1482 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1483 */
1484static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1485{
1486	struct inode *inode;
1487	unsigned blocks_per_page;
1488	unsigned long page_no;
1489	unsigned blkbits;
1490	sector_t probe_block;
1491	sector_t last_block;
1492	sector_t lowest_block = -1;
1493	sector_t highest_block = 0;
1494	int nr_extents = 0;
1495	int ret;
1496
1497	inode = sis->swap_file->f_mapping->host;
1498	if (S_ISBLK(inode->i_mode)) {
1499		ret = add_swap_extent(sis, 0, sis->max, 0);
1500		*span = sis->pages;
1501		goto out;
1502	}
1503
1504	blkbits = inode->i_blkbits;
1505	blocks_per_page = PAGE_SIZE >> blkbits;
1506
1507	/*
1508	 * Map all the blocks into the extent list.  This code doesn't try
1509	 * to be very smart.
1510	 */
1511	probe_block = 0;
1512	page_no = 0;
1513	last_block = i_size_read(inode) >> blkbits;
1514	while ((probe_block + blocks_per_page) <= last_block &&
1515			page_no < sis->max) {
1516		unsigned block_in_page;
1517		sector_t first_block;
1518
1519		first_block = bmap(inode, probe_block);
1520		if (first_block == 0)
1521			goto bad_bmap;
1522
1523		/*
1524		 * It must be PAGE_SIZE aligned on-disk
1525		 */
1526		if (first_block & (blocks_per_page - 1)) {
1527			probe_block++;
1528			goto reprobe;
1529		}
1530
1531		for (block_in_page = 1; block_in_page < blocks_per_page;
1532					block_in_page++) {
1533			sector_t block;
1534
1535			block = bmap(inode, probe_block + block_in_page);
1536			if (block == 0)
1537				goto bad_bmap;
1538			if (block != first_block + block_in_page) {
1539				/* Discontiguity */
1540				probe_block++;
1541				goto reprobe;
1542			}
1543		}
1544
1545		first_block >>= (PAGE_SHIFT - blkbits);
1546		if (page_no) {	/* exclude the header page */
1547			if (first_block < lowest_block)
1548				lowest_block = first_block;
1549			if (first_block > highest_block)
1550				highest_block = first_block;
1551		}
1552
1553		/*
1554		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1555		 */
1556		ret = add_swap_extent(sis, page_no, 1, first_block);
1557		if (ret < 0)
1558			goto out;
1559		nr_extents += ret;
1560		page_no++;
1561		probe_block += blocks_per_page;
1562reprobe:
1563		continue;
1564	}
1565	ret = nr_extents;
1566	*span = 1 + highest_block - lowest_block;
1567	if (page_no == 0)
1568		page_no = 1;	/* force Empty message */
1569	sis->max = page_no;
1570	sis->pages = page_no - 1;
1571	sis->highest_bit = page_no - 1;
1572out:
1573	return ret;
1574bad_bmap:
1575	printk(KERN_ERR "swapon: swapfile has holes\n");
1576	ret = -EINVAL;
1577	goto out;
1578}
1579
1580SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1581{
1582	struct swap_info_struct *p = NULL;
1583	unsigned char *swap_map;
1584	struct file *swap_file, *victim;
1585	struct address_space *mapping;
1586	struct inode *inode;
1587	char *pathname;
1588	int i, type, prev;
1589	int err;
1590
1591	if (!capable(CAP_SYS_ADMIN))
1592		return -EPERM;
1593
1594	pathname = getname(specialfile);
1595	err = PTR_ERR(pathname);
1596	if (IS_ERR(pathname))
1597		goto out;
1598
1599	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1600	putname(pathname);
1601	err = PTR_ERR(victim);
1602	if (IS_ERR(victim))
1603		goto out;
1604
1605	mapping = victim->f_mapping;
1606	prev = -1;
1607	spin_lock(&swap_lock);
1608	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1609		p = swap_info[type];
1610		if (p->flags & SWP_WRITEOK) {
1611			if (p->swap_file->f_mapping == mapping)
1612				break;
1613		}
1614		prev = type;
1615	}
1616	if (type < 0) {
1617		err = -EINVAL;
1618		spin_unlock(&swap_lock);
1619		goto out_dput;
1620	}
1621	if (!security_vm_enough_memory(p->pages))
1622		vm_unacct_memory(p->pages);
1623	else {
1624		err = -ENOMEM;
1625		spin_unlock(&swap_lock);
1626		goto out_dput;
1627	}
1628	if (prev < 0)
1629		swap_list.head = p->next;
1630	else
1631		swap_info[prev]->next = p->next;
1632	if (type == swap_list.next) {
1633		/* just pick something that's safe... */
1634		swap_list.next = swap_list.head;
1635	}
1636	if (p->prio < 0) {
1637		for (i = p->next; i >= 0; i = swap_info[i]->next)
1638			swap_info[i]->prio = p->prio--;
1639		least_priority++;
1640	}
1641	nr_swap_pages -= p->pages;
1642	total_swap_pages -= p->pages;
1643	p->flags &= ~SWP_WRITEOK;
1644	spin_unlock(&swap_lock);
1645
1646	current->flags |= PF_OOM_ORIGIN;
1647	err = try_to_unuse(type);
1648	current->flags &= ~PF_OOM_ORIGIN;
1649
1650	if (err) {
1651		/* re-insert swap space back into swap_list */
1652		spin_lock(&swap_lock);
1653		if (p->prio < 0)
1654			p->prio = --least_priority;
1655		prev = -1;
1656		for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1657			if (p->prio >= swap_info[i]->prio)
1658				break;
1659			prev = i;
1660		}
1661		p->next = i;
1662		if (prev < 0)
1663			swap_list.head = swap_list.next = type;
1664		else
1665			swap_info[prev]->next = type;
1666		nr_swap_pages += p->pages;
1667		total_swap_pages += p->pages;
1668		p->flags |= SWP_WRITEOK;
1669		spin_unlock(&swap_lock);
1670		goto out_dput;
1671	}
1672
1673	/* wait for any unplug function to finish */
1674	down_write(&swap_unplug_sem);
1675	up_write(&swap_unplug_sem);
1676
1677	destroy_swap_extents(p);
1678	if (p->flags & SWP_CONTINUED)
1679		free_swap_count_continuations(p);
1680
1681	mutex_lock(&swapon_mutex);
1682	spin_lock(&swap_lock);
1683	drain_mmlist();
1684
1685	/* wait for anyone still in scan_swap_map */
1686	p->highest_bit = 0;		/* cuts scans short */
1687	while (p->flags >= SWP_SCANNING) {
1688		spin_unlock(&swap_lock);
1689		schedule_timeout_uninterruptible(1);
1690		spin_lock(&swap_lock);
1691	}
1692
1693	swap_file = p->swap_file;
1694	p->swap_file = NULL;
1695	p->max = 0;
1696	swap_map = p->swap_map;
1697	p->swap_map = NULL;
1698	p->flags = 0;
1699	spin_unlock(&swap_lock);
1700	mutex_unlock(&swapon_mutex);
1701	vfree(swap_map);
1702	/* Destroy swap account informatin */
1703	swap_cgroup_swapoff(type);
1704
1705	inode = mapping->host;
1706	if (S_ISBLK(inode->i_mode)) {
1707		struct block_device *bdev = I_BDEV(inode);
1708		set_blocksize(bdev, p->old_block_size);
1709		bd_release(bdev);
1710	} else {
1711		mutex_lock(&inode->i_mutex);
1712		inode->i_flags &= ~S_SWAPFILE;
1713		mutex_unlock(&inode->i_mutex);
1714	}
1715	filp_close(swap_file, NULL);
1716	err = 0;
1717
1718out_dput:
1719	filp_close(victim, NULL);
1720out:
1721	return err;
1722}
1723
1724#ifdef CONFIG_PROC_FS
1725/* iterator */
1726static void *swap_start(struct seq_file *swap, loff_t *pos)
1727{
1728	struct swap_info_struct *si;
1729	int type;
1730	loff_t l = *pos;
1731
1732	mutex_lock(&swapon_mutex);
1733
1734	if (!l)
1735		return SEQ_START_TOKEN;
1736
1737	for (type = 0; type < nr_swapfiles; type++) {
1738		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1739		si = swap_info[type];
1740		if (!(si->flags & SWP_USED) || !si->swap_map)
1741			continue;
1742		if (!--l)
1743			return si;
1744	}
1745
1746	return NULL;
1747}
1748
1749static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1750{
1751	struct swap_info_struct *si = v;
1752	int type;
1753
1754	if (v == SEQ_START_TOKEN)
1755		type = 0;
1756	else
1757		type = si->type + 1;
1758
1759	for (; type < nr_swapfiles; type++) {
1760		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1761		si = swap_info[type];
1762		if (!(si->flags & SWP_USED) || !si->swap_map)
1763			continue;
1764		++*pos;
1765		return si;
1766	}
1767
1768	return NULL;
1769}
1770
1771static void swap_stop(struct seq_file *swap, void *v)
1772{
1773	mutex_unlock(&swapon_mutex);
1774}
1775
1776static int swap_show(struct seq_file *swap, void *v)
1777{
1778	struct swap_info_struct *si = v;
1779	struct file *file;
1780	int len;
1781
1782	if (si == SEQ_START_TOKEN) {
1783		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1784		return 0;
1785	}
1786
1787	file = si->swap_file;
1788	len = seq_path(swap, &file->f_path, " \t\n\\");
1789	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1790			len < 40 ? 40 - len : 1, " ",
1791			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1792				"partition" : "file\t",
1793			si->pages << (PAGE_SHIFT - 10),
1794			si->inuse_pages << (PAGE_SHIFT - 10),
1795			si->prio);
1796	return 0;
1797}
1798
1799static const struct seq_operations swaps_op = {
1800	.start =	swap_start,
1801	.next =		swap_next,
1802	.stop =		swap_stop,
1803	.show =		swap_show
1804};
1805
1806static int swaps_open(struct inode *inode, struct file *file)
1807{
1808	return seq_open(file, &swaps_op);
1809}
1810
1811static const struct file_operations proc_swaps_operations = {
1812	.open		= swaps_open,
1813	.read		= seq_read,
1814	.llseek		= seq_lseek,
1815	.release	= seq_release,
1816};
1817
1818static int __init procswaps_init(void)
1819{
1820	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1821	return 0;
1822}
1823__initcall(procswaps_init);
1824#endif /* CONFIG_PROC_FS */
1825
1826#ifdef MAX_SWAPFILES_CHECK
1827static int __init max_swapfiles_check(void)
1828{
1829	MAX_SWAPFILES_CHECK();
1830	return 0;
1831}
1832late_initcall(max_swapfiles_check);
1833#endif
1834
1835/*
1836 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1837 *
1838 * The swapon system call
1839 */
1840SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1841{
1842	struct swap_info_struct *p;
1843	char *name = NULL;
1844	struct block_device *bdev = NULL;
1845	struct file *swap_file = NULL;
1846	struct address_space *mapping;
1847	unsigned int type;
1848	int i, prev;
1849	int error;
1850	union swap_header *swap_header;
1851	unsigned int nr_good_pages;
1852	int nr_extents = 0;
1853	sector_t span;
1854	unsigned long maxpages;
1855	unsigned long swapfilepages;
1856	unsigned char *swap_map = NULL;
1857	struct page *page = NULL;
1858	struct inode *inode = NULL;
1859	int did_down = 0;
1860
1861	if (!capable(CAP_SYS_ADMIN))
1862		return -EPERM;
1863
1864	p = kzalloc(sizeof(*p), GFP_KERNEL);
1865	if (!p)
1866		return -ENOMEM;
1867
1868	spin_lock(&swap_lock);
1869	for (type = 0; type < nr_swapfiles; type++) {
1870		if (!(swap_info[type]->flags & SWP_USED))
1871			break;
1872	}
1873	error = -EPERM;
1874	if (type >= MAX_SWAPFILES) {
1875		spin_unlock(&swap_lock);
1876		kfree(p);
1877		goto out;
1878	}
1879	if (type >= nr_swapfiles) {
1880		p->type = type;
1881		swap_info[type] = p;
1882		/*
1883		 * Write swap_info[type] before nr_swapfiles, in case a
1884		 * racing procfs swap_start() or swap_next() is reading them.
1885		 * (We never shrink nr_swapfiles, we never free this entry.)
1886		 */
1887		smp_wmb();
1888		nr_swapfiles++;
1889	} else {
1890		kfree(p);
1891		p = swap_info[type];
1892		/*
1893		 * Do not memset this entry: a racing procfs swap_next()
1894		 * would be relying on p->type to remain valid.
1895		 */
1896	}
1897	INIT_LIST_HEAD(&p->first_swap_extent.list);
1898	p->flags = SWP_USED;
1899	p->next = -1;
1900	spin_unlock(&swap_lock);
1901
1902	name = getname(specialfile);
1903	error = PTR_ERR(name);
1904	if (IS_ERR(name)) {
1905		name = NULL;
1906		goto bad_swap_2;
1907	}
1908	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1909	error = PTR_ERR(swap_file);
1910	if (IS_ERR(swap_file)) {
1911		swap_file = NULL;
1912		goto bad_swap_2;
1913	}
1914
1915	p->swap_file = swap_file;
1916	mapping = swap_file->f_mapping;
1917	inode = mapping->host;
1918
1919	error = -EBUSY;
1920	for (i = 0; i < nr_swapfiles; i++) {
1921		struct swap_info_struct *q = swap_info[i];
1922
1923		if (i == type || !q->swap_file)
1924			continue;
1925		if (mapping == q->swap_file->f_mapping)
1926			goto bad_swap;
1927	}
1928
1929	error = -EINVAL;
1930	if (S_ISBLK(inode->i_mode)) {
1931		bdev = I_BDEV(inode);
1932		error = bd_claim(bdev, sys_swapon);
1933		if (error < 0) {
1934			bdev = NULL;
1935			error = -EINVAL;
1936			goto bad_swap;
1937		}
1938		p->old_block_size = block_size(bdev);
1939		error = set_blocksize(bdev, PAGE_SIZE);
1940		if (error < 0)
1941			goto bad_swap;
1942		p->bdev = bdev;
1943		p->flags |= SWP_BLKDEV;
1944	} else if (S_ISREG(inode->i_mode)) {
1945		p->bdev = inode->i_sb->s_bdev;
1946		mutex_lock(&inode->i_mutex);
1947		did_down = 1;
1948		if (IS_SWAPFILE(inode)) {
1949			error = -EBUSY;
1950			goto bad_swap;
1951		}
1952	} else {
1953		goto bad_swap;
1954	}
1955
1956	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1957
1958	/*
1959	 * Read the swap header.
1960	 */
1961	if (!mapping->a_ops->readpage) {
1962		error = -EINVAL;
1963		goto bad_swap;
1964	}
1965	page = read_mapping_page(mapping, 0, swap_file);
1966	if (IS_ERR(page)) {
1967		error = PTR_ERR(page);
1968		goto bad_swap;
1969	}
1970	swap_header = kmap(page);
1971
1972	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1973		printk(KERN_ERR "Unable to find swap-space signature\n");
1974		error = -EINVAL;
1975		goto bad_swap;
1976	}
1977
1978	/* swap partition endianess hack... */
1979	if (swab32(swap_header->info.version) == 1) {
1980		swab32s(&swap_header->info.version);
1981		swab32s(&swap_header->info.last_page);
1982		swab32s(&swap_header->info.nr_badpages);
1983		for (i = 0; i < swap_header->info.nr_badpages; i++)
1984			swab32s(&swap_header->info.badpages[i]);
1985	}
1986	/* Check the swap header's sub-version */
1987	if (swap_header->info.version != 1) {
1988		printk(KERN_WARNING
1989		       "Unable to handle swap header version %d\n",
1990		       swap_header->info.version);
1991		error = -EINVAL;
1992		goto bad_swap;
1993	}
1994
1995	p->lowest_bit  = 1;
1996	p->cluster_next = 1;
1997	p->cluster_nr = 0;
1998
1999	/*
2000	 * Find out how many pages are allowed for a single swap
2001	 * device. There are two limiting factors: 1) the number of
2002	 * bits for the swap offset in the swp_entry_t type and
2003	 * 2) the number of bits in the a swap pte as defined by
2004	 * the different architectures. In order to find the
2005	 * largest possible bit mask a swap entry with swap type 0
2006	 * and swap offset ~0UL is created, encoded to a swap pte,
2007	 * decoded to a swp_entry_t again and finally the swap
2008	 * offset is extracted. This will mask all the bits from
2009	 * the initial ~0UL mask that can't be encoded in either
2010	 * the swp_entry_t or the architecture definition of a
2011	 * swap pte.
2012	 */
2013	maxpages = swp_offset(pte_to_swp_entry(
2014			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2015	if (maxpages > swap_header->info.last_page) {
2016		maxpages = swap_header->info.last_page + 1;
2017		/* p->max is an unsigned int: don't overflow it */
2018		if ((unsigned int)maxpages == 0)
2019			maxpages = UINT_MAX;
2020	}
2021	p->highest_bit = maxpages - 1;
2022
2023	error = -EINVAL;
2024	if (!maxpages)
2025		goto bad_swap;
2026	if (swapfilepages && maxpages > swapfilepages) {
2027		printk(KERN_WARNING
2028		       "Swap area shorter than signature indicates\n");
2029		goto bad_swap;
2030	}
2031	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2032		goto bad_swap;
2033	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2034		goto bad_swap;
2035
2036	/* OK, set up the swap map and apply the bad block list */
2037	swap_map = vmalloc(maxpages);
2038	if (!swap_map) {
2039		error = -ENOMEM;
2040		goto bad_swap;
2041	}
2042
2043	memset(swap_map, 0, maxpages);
2044	nr_good_pages = maxpages - 1;	/* omit header page */
2045
2046	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2047		unsigned int page_nr = swap_header->info.badpages[i];
2048		if (page_nr == 0 || page_nr > swap_header->info.last_page) {
2049			error = -EINVAL;
2050			goto bad_swap;
2051		}
2052		if (page_nr < maxpages) {
2053			swap_map[page_nr] = SWAP_MAP_BAD;
2054			nr_good_pages--;
2055		}
2056	}
2057
2058	error = swap_cgroup_swapon(type, maxpages);
2059	if (error)
2060		goto bad_swap;
2061
2062	if (nr_good_pages) {
2063		swap_map[0] = SWAP_MAP_BAD;
2064		p->max = maxpages;
2065		p->pages = nr_good_pages;
2066		nr_extents = setup_swap_extents(p, &span);
2067		if (nr_extents < 0) {
2068			error = nr_extents;
2069			goto bad_swap;
2070		}
2071		nr_good_pages = p->pages;
2072	}
2073	if (!nr_good_pages) {
2074		printk(KERN_WARNING "Empty swap-file\n");
2075		error = -EINVAL;
2076		goto bad_swap;
2077	}
2078
2079	if (p->bdev) {
2080		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2081			p->flags |= SWP_SOLIDSTATE;
2082			p->cluster_next = 1 + (random32() % p->highest_bit);
2083		}
2084		if (discard_swap(p) == 0)
2085			p->flags |= SWP_DISCARDABLE;
2086	}
2087
2088	mutex_lock(&swapon_mutex);
2089	spin_lock(&swap_lock);
2090	if (swap_flags & SWAP_FLAG_PREFER)
2091		p->prio =
2092		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2093	else
2094		p->prio = --least_priority;
2095	p->swap_map = swap_map;
2096	p->flags |= SWP_WRITEOK;
2097	nr_swap_pages += nr_good_pages;
2098	total_swap_pages += nr_good_pages;
2099
2100	printk(KERN_INFO "Adding %uk swap on %s.  "
2101			"Priority:%d extents:%d across:%lluk %s%s\n",
2102		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2103		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2104		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2105		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2106
2107	/* insert swap space into swap_list: */
2108	prev = -1;
2109	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2110		if (p->prio >= swap_info[i]->prio)
2111			break;
2112		prev = i;
2113	}
2114	p->next = i;
2115	if (prev < 0)
2116		swap_list.head = swap_list.next = type;
2117	else
2118		swap_info[prev]->next = type;
2119	spin_unlock(&swap_lock);
2120	mutex_unlock(&swapon_mutex);
2121	error = 0;
2122	goto out;
2123bad_swap:
2124	if (bdev) {
2125		set_blocksize(bdev, p->old_block_size);
2126		bd_release(bdev);
2127	}
2128	destroy_swap_extents(p);
2129	swap_cgroup_swapoff(type);
2130bad_swap_2:
2131	spin_lock(&swap_lock);
2132	p->swap_file = NULL;
2133	p->flags = 0;
2134	spin_unlock(&swap_lock);
2135	vfree(swap_map);
2136	if (swap_file)
2137		filp_close(swap_file, NULL);
2138out:
2139	if (page && !IS_ERR(page)) {
2140		kunmap(page);
2141		page_cache_release(page);
2142	}
2143	if (name)
2144		putname(name);
2145	if (did_down) {
2146		if (!error)
2147			inode->i_flags |= S_SWAPFILE;
2148		mutex_unlock(&inode->i_mutex);
2149	}
2150	return error;
2151}
2152
2153void si_swapinfo(struct sysinfo *val)
2154{
2155	unsigned int type;
2156	unsigned long nr_to_be_unused = 0;
2157
2158	spin_lock(&swap_lock);
2159	for (type = 0; type < nr_swapfiles; type++) {
2160		struct swap_info_struct *si = swap_info[type];
2161
2162		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2163			nr_to_be_unused += si->inuse_pages;
2164	}
2165	val->freeswap = nr_swap_pages + nr_to_be_unused;
2166	val->totalswap = total_swap_pages + nr_to_be_unused;
2167	spin_unlock(&swap_lock);
2168}
2169
2170/*
2171 * Verify that a swap entry is valid and increment its swap map count.
2172 *
2173 * Returns error code in following case.
2174 * - success -> 0
2175 * - swp_entry is invalid -> EINVAL
2176 * - swp_entry is migration entry -> EINVAL
2177 * - swap-cache reference is requested but there is already one. -> EEXIST
2178 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2179 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2180 */
2181static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2182{
2183	struct swap_info_struct *p;
2184	unsigned long offset, type;
2185	unsigned char count;
2186	unsigned char has_cache;
2187	int err = -EINVAL;
2188
2189	if (non_swap_entry(entry))
2190		goto out;
2191
2192	type = swp_type(entry);
2193	if (type >= nr_swapfiles)
2194		goto bad_file;
2195	p = swap_info[type];
2196	offset = swp_offset(entry);
2197
2198	spin_lock(&swap_lock);
2199	if (unlikely(offset >= p->max))
2200		goto unlock_out;
2201
2202	count = p->swap_map[offset];
2203	has_cache = count & SWAP_HAS_CACHE;
2204	count &= ~SWAP_HAS_CACHE;
2205	err = 0;
2206
2207	if (usage == SWAP_HAS_CACHE) {
2208
2209		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2210		if (!has_cache && count)
2211			has_cache = SWAP_HAS_CACHE;
2212		else if (has_cache)		/* someone else added cache */
2213			err = -EEXIST;
2214		else				/* no users remaining */
2215			err = -ENOENT;
2216
2217	} else if (count || has_cache) {
2218
2219		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2220			count += usage;
2221		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2222			err = -EINVAL;
2223		else if (swap_count_continued(p, offset, count))
2224			count = COUNT_CONTINUED;
2225		else
2226			err = -ENOMEM;
2227	} else
2228		err = -ENOENT;			/* unused swap entry */
2229
2230	p->swap_map[offset] = count | has_cache;
2231
2232unlock_out:
2233	spin_unlock(&swap_lock);
2234out:
2235	return err;
2236
2237bad_file:
2238	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2239	goto out;
2240}
2241
2242/*
2243 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2244 * (in which case its reference count is never incremented).
2245 */
2246void swap_shmem_alloc(swp_entry_t entry)
2247{
2248	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2249}
2250
2251/*
2252 * Increase reference count of swap entry by 1.
2253 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2254 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2255 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2256 * might occur if a page table entry has got corrupted.
2257 */
2258int swap_duplicate(swp_entry_t entry)
2259{
2260	int err = 0;
2261
2262	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2263		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2264	return err;
2265}
2266
2267/*
2268 * @entry: swap entry for which we allocate swap cache.
2269 *
2270 * Called when allocating swap cache for existing swap entry,
2271 * This can return error codes. Returns 0 at success.
2272 * -EBUSY means there is a swap cache.
2273 * Note: return code is different from swap_duplicate().
2274 */
2275int swapcache_prepare(swp_entry_t entry)
2276{
2277	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2278}
2279
2280/*
2281 * swap_lock prevents swap_map being freed. Don't grab an extra
2282 * reference on the swaphandle, it doesn't matter if it becomes unused.
2283 */
2284int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2285{
2286	struct swap_info_struct *si;
2287	int our_page_cluster = page_cluster;
2288	pgoff_t target, toff;
2289	pgoff_t base, end;
2290	int nr_pages = 0;
2291
2292	if (!our_page_cluster)	/* no readahead */
2293		return 0;
2294
2295	si = swap_info[swp_type(entry)];
2296	target = swp_offset(entry);
2297	base = (target >> our_page_cluster) << our_page_cluster;
2298	end = base + (1 << our_page_cluster);
2299	if (!base)		/* first page is swap header */
2300		base++;
2301
2302	spin_lock(&swap_lock);
2303	if (end > si->max)	/* don't go beyond end of map */
2304		end = si->max;
2305
2306	/* Count contiguous allocated slots above our target */
2307	for (toff = target; ++toff < end; nr_pages++) {
2308		/* Don't read in free or bad pages */
2309		if (!si->swap_map[toff])
2310			break;
2311		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2312			break;
2313	}
2314	/* Count contiguous allocated slots below our target */
2315	for (toff = target; --toff >= base; nr_pages++) {
2316		/* Don't read in free or bad pages */
2317		if (!si->swap_map[toff])
2318			break;
2319		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2320			break;
2321	}
2322	spin_unlock(&swap_lock);
2323
2324	/*
2325	 * Indicate starting offset, and return number of pages to get:
2326	 * if only 1, say 0, since there's then no readahead to be done.
2327	 */
2328	*offset = ++toff;
2329	return nr_pages? ++nr_pages: 0;
2330}
2331
2332/*
2333 * add_swap_count_continuation - called when a swap count is duplicated
2334 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2335 * page of the original vmalloc'ed swap_map, to hold the continuation count
2336 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2337 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2338 *
2339 * These continuation pages are seldom referenced: the common paths all work
2340 * on the original swap_map, only referring to a continuation page when the
2341 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2342 *
2343 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2344 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2345 * can be called after dropping locks.
2346 */
2347int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2348{
2349	struct swap_info_struct *si;
2350	struct page *head;
2351	struct page *page;
2352	struct page *list_page;
2353	pgoff_t offset;
2354	unsigned char count;
2355
2356	/*
2357	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2358	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2359	 */
2360	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2361
2362	si = swap_info_get(entry);
2363	if (!si) {
2364		/*
2365		 * An acceptable race has occurred since the failing
2366		 * __swap_duplicate(): the swap entry has been freed,
2367		 * perhaps even the whole swap_map cleared for swapoff.
2368		 */
2369		goto outer;
2370	}
2371
2372	offset = swp_offset(entry);
2373	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2374
2375	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2376		/*
2377		 * The higher the swap count, the more likely it is that tasks
2378		 * will race to add swap count continuation: we need to avoid
2379		 * over-provisioning.
2380		 */
2381		goto out;
2382	}
2383
2384	if (!page) {
2385		spin_unlock(&swap_lock);
2386		return -ENOMEM;
2387	}
2388
2389	/*
2390	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2391	 * no architecture is using highmem pages for kernel pagetables: so it
2392	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2393	 */
2394	head = vmalloc_to_page(si->swap_map + offset);
2395	offset &= ~PAGE_MASK;
2396
2397	/*
2398	 * Page allocation does not initialize the page's lru field,
2399	 * but it does always reset its private field.
2400	 */
2401	if (!page_private(head)) {
2402		BUG_ON(count & COUNT_CONTINUED);
2403		INIT_LIST_HEAD(&head->lru);
2404		set_page_private(head, SWP_CONTINUED);
2405		si->flags |= SWP_CONTINUED;
2406	}
2407
2408	list_for_each_entry(list_page, &head->lru, lru) {
2409		unsigned char *map;
2410
2411		/*
2412		 * If the previous map said no continuation, but we've found
2413		 * a continuation page, free our allocation and use this one.
2414		 */
2415		if (!(count & COUNT_CONTINUED))
2416			goto out;
2417
2418		map = kmap_atomic(list_page, KM_USER0) + offset;
2419		count = *map;
2420		kunmap_atomic(map, KM_USER0);
2421
2422		/*
2423		 * If this continuation count now has some space in it,
2424		 * free our allocation and use this one.
2425		 */
2426		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2427			goto out;
2428	}
2429
2430	list_add_tail(&page->lru, &head->lru);
2431	page = NULL;			/* now it's attached, don't free it */
2432out:
2433	spin_unlock(&swap_lock);
2434outer:
2435	if (page)
2436		__free_page(page);
2437	return 0;
2438}
2439
2440/*
2441 * swap_count_continued - when the original swap_map count is incremented
2442 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2443 * into, carry if so, or else fail until a new continuation page is allocated;
2444 * when the original swap_map count is decremented from 0 with continuation,
2445 * borrow from the continuation and report whether it still holds more.
2446 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2447 */
2448static bool swap_count_continued(struct swap_info_struct *si,
2449				 pgoff_t offset, unsigned char count)
2450{
2451	struct page *head;
2452	struct page *page;
2453	unsigned char *map;
2454
2455	head = vmalloc_to_page(si->swap_map + offset);
2456	if (page_private(head) != SWP_CONTINUED) {
2457		BUG_ON(count & COUNT_CONTINUED);
2458		return false;		/* need to add count continuation */
2459	}
2460
2461	offset &= ~PAGE_MASK;
2462	page = list_entry(head->lru.next, struct page, lru);
2463	map = kmap_atomic(page, KM_USER0) + offset;
2464
2465	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2466		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2467
2468	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2469		/*
2470		 * Think of how you add 1 to 999
2471		 */
2472		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2473			kunmap_atomic(map, KM_USER0);
2474			page = list_entry(page->lru.next, struct page, lru);
2475			BUG_ON(page == head);
2476			map = kmap_atomic(page, KM_USER0) + offset;
2477		}
2478		if (*map == SWAP_CONT_MAX) {
2479			kunmap_atomic(map, KM_USER0);
2480			page = list_entry(page->lru.next, struct page, lru);
2481			if (page == head)
2482				return false;	/* add count continuation */
2483			map = kmap_atomic(page, KM_USER0) + offset;
2484init_map:		*map = 0;		/* we didn't zero the page */
2485		}
2486		*map += 1;
2487		kunmap_atomic(map, KM_USER0);
2488		page = list_entry(page->lru.prev, struct page, lru);
2489		while (page != head) {
2490			map = kmap_atomic(page, KM_USER0) + offset;
2491			*map = COUNT_CONTINUED;
2492			kunmap_atomic(map, KM_USER0);
2493			page = list_entry(page->lru.prev, struct page, lru);
2494		}
2495		return true;			/* incremented */
2496
2497	} else {				/* decrementing */
2498		/*
2499		 * Think of how you subtract 1 from 1000
2500		 */
2501		BUG_ON(count != COUNT_CONTINUED);
2502		while (*map == COUNT_CONTINUED) {
2503			kunmap_atomic(map, KM_USER0);
2504			page = list_entry(page->lru.next, struct page, lru);
2505			BUG_ON(page == head);
2506			map = kmap_atomic(page, KM_USER0) + offset;
2507		}
2508		BUG_ON(*map == 0);
2509		*map -= 1;
2510		if (*map == 0)
2511			count = 0;
2512		kunmap_atomic(map, KM_USER0);
2513		page = list_entry(page->lru.prev, struct page, lru);
2514		while (page != head) {
2515			map = kmap_atomic(page, KM_USER0) + offset;
2516			*map = SWAP_CONT_MAX | count;
2517			count = COUNT_CONTINUED;
2518			kunmap_atomic(map, KM_USER0);
2519			page = list_entry(page->lru.prev, struct page, lru);
2520		}
2521		return count == COUNT_CONTINUED;
2522	}
2523}
2524
2525/*
2526 * free_swap_count_continuations - swapoff free all the continuation pages
2527 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2528 */
2529static void free_swap_count_continuations(struct swap_info_struct *si)
2530{
2531	pgoff_t offset;
2532
2533	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2534		struct page *head;
2535		head = vmalloc_to_page(si->swap_map + offset);
2536		if (page_private(head)) {
2537			struct list_head *this, *next;
2538			list_for_each_safe(this, next, &head->lru) {
2539				struct page *page;
2540				page = list_entry(this, struct page, lru);
2541				list_del(this);
2542				__free_page(page);
2543			}
2544		}
2545	}
2546}
2547