swapfile.c revision 529ae9aaa08378cfe2a4350bded76f32cc8ff0ce
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/writeback.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/rmap.h>
25#include <linux/security.h>
26#include <linux/backing-dev.h>
27#include <linux/mutex.h>
28#include <linux/capability.h>
29#include <linux/syscalls.h>
30#include <linux/memcontrol.h>
31
32#include <asm/pgtable.h>
33#include <asm/tlbflush.h>
34#include <linux/swapops.h>
35
36static DEFINE_SPINLOCK(swap_lock);
37static unsigned int nr_swapfiles;
38long total_swap_pages;
39static int swap_overflow;
40static int least_priority;
41
42static const char Bad_file[] = "Bad swap file entry ";
43static const char Unused_file[] = "Unused swap file entry ";
44static const char Bad_offset[] = "Bad swap offset entry ";
45static const char Unused_offset[] = "Unused swap offset entry ";
46
47static struct swap_list_t swap_list = {-1, -1};
48
49static struct swap_info_struct swap_info[MAX_SWAPFILES];
50
51static DEFINE_MUTEX(swapon_mutex);
52
53/*
54 * We need this because the bdev->unplug_fn can sleep and we cannot
55 * hold swap_lock while calling the unplug_fn. And swap_lock
56 * cannot be turned into a mutex.
57 */
58static DECLARE_RWSEM(swap_unplug_sem);
59
60void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
61{
62	swp_entry_t entry;
63
64	down_read(&swap_unplug_sem);
65	entry.val = page_private(page);
66	if (PageSwapCache(page)) {
67		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
68		struct backing_dev_info *bdi;
69
70		/*
71		 * If the page is removed from swapcache from under us (with a
72		 * racy try_to_unuse/swapoff) we need an additional reference
73		 * count to avoid reading garbage from page_private(page) above.
74		 * If the WARN_ON triggers during a swapoff it maybe the race
75		 * condition and it's harmless. However if it triggers without
76		 * swapoff it signals a problem.
77		 */
78		WARN_ON(page_count(page) <= 1);
79
80		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
81		blk_run_backing_dev(bdi, page);
82	}
83	up_read(&swap_unplug_sem);
84}
85
86#define SWAPFILE_CLUSTER	256
87#define LATENCY_LIMIT		256
88
89static inline unsigned long scan_swap_map(struct swap_info_struct *si)
90{
91	unsigned long offset, last_in_cluster;
92	int latency_ration = LATENCY_LIMIT;
93
94	/*
95	 * We try to cluster swap pages by allocating them sequentially
96	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
97	 * way, however, we resort to first-free allocation, starting
98	 * a new cluster.  This prevents us from scattering swap pages
99	 * all over the entire swap partition, so that we reduce
100	 * overall disk seek times between swap pages.  -- sct
101	 * But we do now try to find an empty cluster.  -Andrea
102	 */
103
104	si->flags += SWP_SCANNING;
105	if (unlikely(!si->cluster_nr)) {
106		si->cluster_nr = SWAPFILE_CLUSTER - 1;
107		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
108			goto lowest;
109		spin_unlock(&swap_lock);
110
111		offset = si->lowest_bit;
112		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
113
114		/* Locate the first empty (unaligned) cluster */
115		for (; last_in_cluster <= si->highest_bit; offset++) {
116			if (si->swap_map[offset])
117				last_in_cluster = offset + SWAPFILE_CLUSTER;
118			else if (offset == last_in_cluster) {
119				spin_lock(&swap_lock);
120				si->cluster_next = offset-SWAPFILE_CLUSTER+1;
121				goto cluster;
122			}
123			if (unlikely(--latency_ration < 0)) {
124				cond_resched();
125				latency_ration = LATENCY_LIMIT;
126			}
127		}
128		spin_lock(&swap_lock);
129		goto lowest;
130	}
131
132	si->cluster_nr--;
133cluster:
134	offset = si->cluster_next;
135	if (offset > si->highest_bit)
136lowest:		offset = si->lowest_bit;
137checks:	if (!(si->flags & SWP_WRITEOK))
138		goto no_page;
139	if (!si->highest_bit)
140		goto no_page;
141	if (!si->swap_map[offset]) {
142		if (offset == si->lowest_bit)
143			si->lowest_bit++;
144		if (offset == si->highest_bit)
145			si->highest_bit--;
146		si->inuse_pages++;
147		if (si->inuse_pages == si->pages) {
148			si->lowest_bit = si->max;
149			si->highest_bit = 0;
150		}
151		si->swap_map[offset] = 1;
152		si->cluster_next = offset + 1;
153		si->flags -= SWP_SCANNING;
154		return offset;
155	}
156
157	spin_unlock(&swap_lock);
158	while (++offset <= si->highest_bit) {
159		if (!si->swap_map[offset]) {
160			spin_lock(&swap_lock);
161			goto checks;
162		}
163		if (unlikely(--latency_ration < 0)) {
164			cond_resched();
165			latency_ration = LATENCY_LIMIT;
166		}
167	}
168	spin_lock(&swap_lock);
169	goto lowest;
170
171no_page:
172	si->flags -= SWP_SCANNING;
173	return 0;
174}
175
176swp_entry_t get_swap_page(void)
177{
178	struct swap_info_struct *si;
179	pgoff_t offset;
180	int type, next;
181	int wrapped = 0;
182
183	spin_lock(&swap_lock);
184	if (nr_swap_pages <= 0)
185		goto noswap;
186	nr_swap_pages--;
187
188	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
189		si = swap_info + type;
190		next = si->next;
191		if (next < 0 ||
192		    (!wrapped && si->prio != swap_info[next].prio)) {
193			next = swap_list.head;
194			wrapped++;
195		}
196
197		if (!si->highest_bit)
198			continue;
199		if (!(si->flags & SWP_WRITEOK))
200			continue;
201
202		swap_list.next = next;
203		offset = scan_swap_map(si);
204		if (offset) {
205			spin_unlock(&swap_lock);
206			return swp_entry(type, offset);
207		}
208		next = swap_list.next;
209	}
210
211	nr_swap_pages++;
212noswap:
213	spin_unlock(&swap_lock);
214	return (swp_entry_t) {0};
215}
216
217swp_entry_t get_swap_page_of_type(int type)
218{
219	struct swap_info_struct *si;
220	pgoff_t offset;
221
222	spin_lock(&swap_lock);
223	si = swap_info + type;
224	if (si->flags & SWP_WRITEOK) {
225		nr_swap_pages--;
226		offset = scan_swap_map(si);
227		if (offset) {
228			spin_unlock(&swap_lock);
229			return swp_entry(type, offset);
230		}
231		nr_swap_pages++;
232	}
233	spin_unlock(&swap_lock);
234	return (swp_entry_t) {0};
235}
236
237static struct swap_info_struct * swap_info_get(swp_entry_t entry)
238{
239	struct swap_info_struct * p;
240	unsigned long offset, type;
241
242	if (!entry.val)
243		goto out;
244	type = swp_type(entry);
245	if (type >= nr_swapfiles)
246		goto bad_nofile;
247	p = & swap_info[type];
248	if (!(p->flags & SWP_USED))
249		goto bad_device;
250	offset = swp_offset(entry);
251	if (offset >= p->max)
252		goto bad_offset;
253	if (!p->swap_map[offset])
254		goto bad_free;
255	spin_lock(&swap_lock);
256	return p;
257
258bad_free:
259	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
260	goto out;
261bad_offset:
262	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
263	goto out;
264bad_device:
265	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
266	goto out;
267bad_nofile:
268	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
269out:
270	return NULL;
271}
272
273static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
274{
275	int count = p->swap_map[offset];
276
277	if (count < SWAP_MAP_MAX) {
278		count--;
279		p->swap_map[offset] = count;
280		if (!count) {
281			if (offset < p->lowest_bit)
282				p->lowest_bit = offset;
283			if (offset > p->highest_bit)
284				p->highest_bit = offset;
285			if (p->prio > swap_info[swap_list.next].prio)
286				swap_list.next = p - swap_info;
287			nr_swap_pages++;
288			p->inuse_pages--;
289		}
290	}
291	return count;
292}
293
294/*
295 * Caller has made sure that the swapdevice corresponding to entry
296 * is still around or has not been recycled.
297 */
298void swap_free(swp_entry_t entry)
299{
300	struct swap_info_struct * p;
301
302	p = swap_info_get(entry);
303	if (p) {
304		swap_entry_free(p, swp_offset(entry));
305		spin_unlock(&swap_lock);
306	}
307}
308
309/*
310 * How many references to page are currently swapped out?
311 */
312static inline int page_swapcount(struct page *page)
313{
314	int count = 0;
315	struct swap_info_struct *p;
316	swp_entry_t entry;
317
318	entry.val = page_private(page);
319	p = swap_info_get(entry);
320	if (p) {
321		/* Subtract the 1 for the swap cache itself */
322		count = p->swap_map[swp_offset(entry)] - 1;
323		spin_unlock(&swap_lock);
324	}
325	return count;
326}
327
328/*
329 * We can use this swap cache entry directly
330 * if there are no other references to it.
331 */
332int can_share_swap_page(struct page *page)
333{
334	int count;
335
336	BUG_ON(!PageLocked(page));
337	count = page_mapcount(page);
338	if (count <= 1 && PageSwapCache(page))
339		count += page_swapcount(page);
340	return count == 1;
341}
342
343/*
344 * Work out if there are any other processes sharing this
345 * swap cache page. Free it if you can. Return success.
346 */
347int remove_exclusive_swap_page(struct page *page)
348{
349	int retval;
350	struct swap_info_struct * p;
351	swp_entry_t entry;
352
353	BUG_ON(PagePrivate(page));
354	BUG_ON(!PageLocked(page));
355
356	if (!PageSwapCache(page))
357		return 0;
358	if (PageWriteback(page))
359		return 0;
360	if (page_count(page) != 2) /* 2: us + cache */
361		return 0;
362
363	entry.val = page_private(page);
364	p = swap_info_get(entry);
365	if (!p)
366		return 0;
367
368	/* Is the only swap cache user the cache itself? */
369	retval = 0;
370	if (p->swap_map[swp_offset(entry)] == 1) {
371		/* Recheck the page count with the swapcache lock held.. */
372		spin_lock_irq(&swapper_space.tree_lock);
373		if ((page_count(page) == 2) && !PageWriteback(page)) {
374			__delete_from_swap_cache(page);
375			SetPageDirty(page);
376			retval = 1;
377		}
378		spin_unlock_irq(&swapper_space.tree_lock);
379	}
380	spin_unlock(&swap_lock);
381
382	if (retval) {
383		swap_free(entry);
384		page_cache_release(page);
385	}
386
387	return retval;
388}
389
390/*
391 * Free the swap entry like above, but also try to
392 * free the page cache entry if it is the last user.
393 */
394void free_swap_and_cache(swp_entry_t entry)
395{
396	struct swap_info_struct * p;
397	struct page *page = NULL;
398
399	if (is_migration_entry(entry))
400		return;
401
402	p = swap_info_get(entry);
403	if (p) {
404		if (swap_entry_free(p, swp_offset(entry)) == 1) {
405			page = find_get_page(&swapper_space, entry.val);
406			if (page && unlikely(!trylock_page(page))) {
407				page_cache_release(page);
408				page = NULL;
409			}
410		}
411		spin_unlock(&swap_lock);
412	}
413	if (page) {
414		int one_user;
415
416		BUG_ON(PagePrivate(page));
417		one_user = (page_count(page) == 2);
418		/* Only cache user (+us), or swap space full? Free it! */
419		/* Also recheck PageSwapCache after page is locked (above) */
420		if (PageSwapCache(page) && !PageWriteback(page) &&
421					(one_user || vm_swap_full())) {
422			delete_from_swap_cache(page);
423			SetPageDirty(page);
424		}
425		unlock_page(page);
426		page_cache_release(page);
427	}
428}
429
430#ifdef CONFIG_HIBERNATION
431/*
432 * Find the swap type that corresponds to given device (if any).
433 *
434 * @offset - number of the PAGE_SIZE-sized block of the device, starting
435 * from 0, in which the swap header is expected to be located.
436 *
437 * This is needed for the suspend to disk (aka swsusp).
438 */
439int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
440{
441	struct block_device *bdev = NULL;
442	int i;
443
444	if (device)
445		bdev = bdget(device);
446
447	spin_lock(&swap_lock);
448	for (i = 0; i < nr_swapfiles; i++) {
449		struct swap_info_struct *sis = swap_info + i;
450
451		if (!(sis->flags & SWP_WRITEOK))
452			continue;
453
454		if (!bdev) {
455			if (bdev_p)
456				*bdev_p = sis->bdev;
457
458			spin_unlock(&swap_lock);
459			return i;
460		}
461		if (bdev == sis->bdev) {
462			struct swap_extent *se;
463
464			se = list_entry(sis->extent_list.next,
465					struct swap_extent, list);
466			if (se->start_block == offset) {
467				if (bdev_p)
468					*bdev_p = sis->bdev;
469
470				spin_unlock(&swap_lock);
471				bdput(bdev);
472				return i;
473			}
474		}
475	}
476	spin_unlock(&swap_lock);
477	if (bdev)
478		bdput(bdev);
479
480	return -ENODEV;
481}
482
483/*
484 * Return either the total number of swap pages of given type, or the number
485 * of free pages of that type (depending on @free)
486 *
487 * This is needed for software suspend
488 */
489unsigned int count_swap_pages(int type, int free)
490{
491	unsigned int n = 0;
492
493	if (type < nr_swapfiles) {
494		spin_lock(&swap_lock);
495		if (swap_info[type].flags & SWP_WRITEOK) {
496			n = swap_info[type].pages;
497			if (free)
498				n -= swap_info[type].inuse_pages;
499		}
500		spin_unlock(&swap_lock);
501	}
502	return n;
503}
504#endif
505
506/*
507 * No need to decide whether this PTE shares the swap entry with others,
508 * just let do_wp_page work it out if a write is requested later - to
509 * force COW, vm_page_prot omits write permission from any private vma.
510 */
511static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
512		unsigned long addr, swp_entry_t entry, struct page *page)
513{
514	spinlock_t *ptl;
515	pte_t *pte;
516	int ret = 1;
517
518	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
519		ret = -ENOMEM;
520
521	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
522	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
523		if (ret > 0)
524			mem_cgroup_uncharge_page(page);
525		ret = 0;
526		goto out;
527	}
528
529	inc_mm_counter(vma->vm_mm, anon_rss);
530	get_page(page);
531	set_pte_at(vma->vm_mm, addr, pte,
532		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
533	page_add_anon_rmap(page, vma, addr);
534	swap_free(entry);
535	/*
536	 * Move the page to the active list so it is not
537	 * immediately swapped out again after swapon.
538	 */
539	activate_page(page);
540out:
541	pte_unmap_unlock(pte, ptl);
542	return ret;
543}
544
545static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
546				unsigned long addr, unsigned long end,
547				swp_entry_t entry, struct page *page)
548{
549	pte_t swp_pte = swp_entry_to_pte(entry);
550	pte_t *pte;
551	int ret = 0;
552
553	/*
554	 * We don't actually need pte lock while scanning for swp_pte: since
555	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
556	 * page table while we're scanning; though it could get zapped, and on
557	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
558	 * of unmatched parts which look like swp_pte, so unuse_pte must
559	 * recheck under pte lock.  Scanning without pte lock lets it be
560	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
561	 */
562	pte = pte_offset_map(pmd, addr);
563	do {
564		/*
565		 * swapoff spends a _lot_ of time in this loop!
566		 * Test inline before going to call unuse_pte.
567		 */
568		if (unlikely(pte_same(*pte, swp_pte))) {
569			pte_unmap(pte);
570			ret = unuse_pte(vma, pmd, addr, entry, page);
571			if (ret)
572				goto out;
573			pte = pte_offset_map(pmd, addr);
574		}
575	} while (pte++, addr += PAGE_SIZE, addr != end);
576	pte_unmap(pte - 1);
577out:
578	return ret;
579}
580
581static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
582				unsigned long addr, unsigned long end,
583				swp_entry_t entry, struct page *page)
584{
585	pmd_t *pmd;
586	unsigned long next;
587	int ret;
588
589	pmd = pmd_offset(pud, addr);
590	do {
591		next = pmd_addr_end(addr, end);
592		if (pmd_none_or_clear_bad(pmd))
593			continue;
594		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
595		if (ret)
596			return ret;
597	} while (pmd++, addr = next, addr != end);
598	return 0;
599}
600
601static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
602				unsigned long addr, unsigned long end,
603				swp_entry_t entry, struct page *page)
604{
605	pud_t *pud;
606	unsigned long next;
607	int ret;
608
609	pud = pud_offset(pgd, addr);
610	do {
611		next = pud_addr_end(addr, end);
612		if (pud_none_or_clear_bad(pud))
613			continue;
614		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
615		if (ret)
616			return ret;
617	} while (pud++, addr = next, addr != end);
618	return 0;
619}
620
621static int unuse_vma(struct vm_area_struct *vma,
622				swp_entry_t entry, struct page *page)
623{
624	pgd_t *pgd;
625	unsigned long addr, end, next;
626	int ret;
627
628	if (page->mapping) {
629		addr = page_address_in_vma(page, vma);
630		if (addr == -EFAULT)
631			return 0;
632		else
633			end = addr + PAGE_SIZE;
634	} else {
635		addr = vma->vm_start;
636		end = vma->vm_end;
637	}
638
639	pgd = pgd_offset(vma->vm_mm, addr);
640	do {
641		next = pgd_addr_end(addr, end);
642		if (pgd_none_or_clear_bad(pgd))
643			continue;
644		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
645		if (ret)
646			return ret;
647	} while (pgd++, addr = next, addr != end);
648	return 0;
649}
650
651static int unuse_mm(struct mm_struct *mm,
652				swp_entry_t entry, struct page *page)
653{
654	struct vm_area_struct *vma;
655	int ret = 0;
656
657	if (!down_read_trylock(&mm->mmap_sem)) {
658		/*
659		 * Activate page so shrink_inactive_list is unlikely to unmap
660		 * its ptes while lock is dropped, so swapoff can make progress.
661		 */
662		activate_page(page);
663		unlock_page(page);
664		down_read(&mm->mmap_sem);
665		lock_page(page);
666	}
667	for (vma = mm->mmap; vma; vma = vma->vm_next) {
668		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
669			break;
670	}
671	up_read(&mm->mmap_sem);
672	return (ret < 0)? ret: 0;
673}
674
675/*
676 * Scan swap_map from current position to next entry still in use.
677 * Recycle to start on reaching the end, returning 0 when empty.
678 */
679static unsigned int find_next_to_unuse(struct swap_info_struct *si,
680					unsigned int prev)
681{
682	unsigned int max = si->max;
683	unsigned int i = prev;
684	int count;
685
686	/*
687	 * No need for swap_lock here: we're just looking
688	 * for whether an entry is in use, not modifying it; false
689	 * hits are okay, and sys_swapoff() has already prevented new
690	 * allocations from this area (while holding swap_lock).
691	 */
692	for (;;) {
693		if (++i >= max) {
694			if (!prev) {
695				i = 0;
696				break;
697			}
698			/*
699			 * No entries in use at top of swap_map,
700			 * loop back to start and recheck there.
701			 */
702			max = prev + 1;
703			prev = 0;
704			i = 1;
705		}
706		count = si->swap_map[i];
707		if (count && count != SWAP_MAP_BAD)
708			break;
709	}
710	return i;
711}
712
713/*
714 * We completely avoid races by reading each swap page in advance,
715 * and then search for the process using it.  All the necessary
716 * page table adjustments can then be made atomically.
717 */
718static int try_to_unuse(unsigned int type)
719{
720	struct swap_info_struct * si = &swap_info[type];
721	struct mm_struct *start_mm;
722	unsigned short *swap_map;
723	unsigned short swcount;
724	struct page *page;
725	swp_entry_t entry;
726	unsigned int i = 0;
727	int retval = 0;
728	int reset_overflow = 0;
729	int shmem;
730
731	/*
732	 * When searching mms for an entry, a good strategy is to
733	 * start at the first mm we freed the previous entry from
734	 * (though actually we don't notice whether we or coincidence
735	 * freed the entry).  Initialize this start_mm with a hold.
736	 *
737	 * A simpler strategy would be to start at the last mm we
738	 * freed the previous entry from; but that would take less
739	 * advantage of mmlist ordering, which clusters forked mms
740	 * together, child after parent.  If we race with dup_mmap(), we
741	 * prefer to resolve parent before child, lest we miss entries
742	 * duplicated after we scanned child: using last mm would invert
743	 * that.  Though it's only a serious concern when an overflowed
744	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
745	 */
746	start_mm = &init_mm;
747	atomic_inc(&init_mm.mm_users);
748
749	/*
750	 * Keep on scanning until all entries have gone.  Usually,
751	 * one pass through swap_map is enough, but not necessarily:
752	 * there are races when an instance of an entry might be missed.
753	 */
754	while ((i = find_next_to_unuse(si, i)) != 0) {
755		if (signal_pending(current)) {
756			retval = -EINTR;
757			break;
758		}
759
760		/*
761		 * Get a page for the entry, using the existing swap
762		 * cache page if there is one.  Otherwise, get a clean
763		 * page and read the swap into it.
764		 */
765		swap_map = &si->swap_map[i];
766		entry = swp_entry(type, i);
767		page = read_swap_cache_async(entry,
768					GFP_HIGHUSER_MOVABLE, NULL, 0);
769		if (!page) {
770			/*
771			 * Either swap_duplicate() failed because entry
772			 * has been freed independently, and will not be
773			 * reused since sys_swapoff() already disabled
774			 * allocation from here, or alloc_page() failed.
775			 */
776			if (!*swap_map)
777				continue;
778			retval = -ENOMEM;
779			break;
780		}
781
782		/*
783		 * Don't hold on to start_mm if it looks like exiting.
784		 */
785		if (atomic_read(&start_mm->mm_users) == 1) {
786			mmput(start_mm);
787			start_mm = &init_mm;
788			atomic_inc(&init_mm.mm_users);
789		}
790
791		/*
792		 * Wait for and lock page.  When do_swap_page races with
793		 * try_to_unuse, do_swap_page can handle the fault much
794		 * faster than try_to_unuse can locate the entry.  This
795		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
796		 * defer to do_swap_page in such a case - in some tests,
797		 * do_swap_page and try_to_unuse repeatedly compete.
798		 */
799		wait_on_page_locked(page);
800		wait_on_page_writeback(page);
801		lock_page(page);
802		wait_on_page_writeback(page);
803
804		/*
805		 * Remove all references to entry.
806		 * Whenever we reach init_mm, there's no address space
807		 * to search, but use it as a reminder to search shmem.
808		 */
809		shmem = 0;
810		swcount = *swap_map;
811		if (swcount > 1) {
812			if (start_mm == &init_mm)
813				shmem = shmem_unuse(entry, page);
814			else
815				retval = unuse_mm(start_mm, entry, page);
816		}
817		if (*swap_map > 1) {
818			int set_start_mm = (*swap_map >= swcount);
819			struct list_head *p = &start_mm->mmlist;
820			struct mm_struct *new_start_mm = start_mm;
821			struct mm_struct *prev_mm = start_mm;
822			struct mm_struct *mm;
823
824			atomic_inc(&new_start_mm->mm_users);
825			atomic_inc(&prev_mm->mm_users);
826			spin_lock(&mmlist_lock);
827			while (*swap_map > 1 && !retval && !shmem &&
828					(p = p->next) != &start_mm->mmlist) {
829				mm = list_entry(p, struct mm_struct, mmlist);
830				if (!atomic_inc_not_zero(&mm->mm_users))
831					continue;
832				spin_unlock(&mmlist_lock);
833				mmput(prev_mm);
834				prev_mm = mm;
835
836				cond_resched();
837
838				swcount = *swap_map;
839				if (swcount <= 1)
840					;
841				else if (mm == &init_mm) {
842					set_start_mm = 1;
843					shmem = shmem_unuse(entry, page);
844				} else
845					retval = unuse_mm(mm, entry, page);
846				if (set_start_mm && *swap_map < swcount) {
847					mmput(new_start_mm);
848					atomic_inc(&mm->mm_users);
849					new_start_mm = mm;
850					set_start_mm = 0;
851				}
852				spin_lock(&mmlist_lock);
853			}
854			spin_unlock(&mmlist_lock);
855			mmput(prev_mm);
856			mmput(start_mm);
857			start_mm = new_start_mm;
858		}
859		if (shmem) {
860			/* page has already been unlocked and released */
861			if (shmem > 0)
862				continue;
863			retval = shmem;
864			break;
865		}
866		if (retval) {
867			unlock_page(page);
868			page_cache_release(page);
869			break;
870		}
871
872		/*
873		 * How could swap count reach 0x7fff when the maximum
874		 * pid is 0x7fff, and there's no way to repeat a swap
875		 * page within an mm (except in shmem, where it's the
876		 * shared object which takes the reference count)?
877		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
878		 *
879		 * If that's wrong, then we should worry more about
880		 * exit_mmap() and do_munmap() cases described above:
881		 * we might be resetting SWAP_MAP_MAX too early here.
882		 * We know "Undead"s can happen, they're okay, so don't
883		 * report them; but do report if we reset SWAP_MAP_MAX.
884		 */
885		if (*swap_map == SWAP_MAP_MAX) {
886			spin_lock(&swap_lock);
887			*swap_map = 1;
888			spin_unlock(&swap_lock);
889			reset_overflow = 1;
890		}
891
892		/*
893		 * If a reference remains (rare), we would like to leave
894		 * the page in the swap cache; but try_to_unmap could
895		 * then re-duplicate the entry once we drop page lock,
896		 * so we might loop indefinitely; also, that page could
897		 * not be swapped out to other storage meanwhile.  So:
898		 * delete from cache even if there's another reference,
899		 * after ensuring that the data has been saved to disk -
900		 * since if the reference remains (rarer), it will be
901		 * read from disk into another page.  Splitting into two
902		 * pages would be incorrect if swap supported "shared
903		 * private" pages, but they are handled by tmpfs files.
904		 */
905		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
906			struct writeback_control wbc = {
907				.sync_mode = WB_SYNC_NONE,
908			};
909
910			swap_writepage(page, &wbc);
911			lock_page(page);
912			wait_on_page_writeback(page);
913		}
914		if (PageSwapCache(page))
915			delete_from_swap_cache(page);
916
917		/*
918		 * So we could skip searching mms once swap count went
919		 * to 1, we did not mark any present ptes as dirty: must
920		 * mark page dirty so shrink_page_list will preserve it.
921		 */
922		SetPageDirty(page);
923		unlock_page(page);
924		page_cache_release(page);
925
926		/*
927		 * Make sure that we aren't completely killing
928		 * interactive performance.
929		 */
930		cond_resched();
931	}
932
933	mmput(start_mm);
934	if (reset_overflow) {
935		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
936		swap_overflow = 0;
937	}
938	return retval;
939}
940
941/*
942 * After a successful try_to_unuse, if no swap is now in use, we know
943 * we can empty the mmlist.  swap_lock must be held on entry and exit.
944 * Note that mmlist_lock nests inside swap_lock, and an mm must be
945 * added to the mmlist just after page_duplicate - before would be racy.
946 */
947static void drain_mmlist(void)
948{
949	struct list_head *p, *next;
950	unsigned int i;
951
952	for (i = 0; i < nr_swapfiles; i++)
953		if (swap_info[i].inuse_pages)
954			return;
955	spin_lock(&mmlist_lock);
956	list_for_each_safe(p, next, &init_mm.mmlist)
957		list_del_init(p);
958	spin_unlock(&mmlist_lock);
959}
960
961/*
962 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
963 * corresponds to page offset `offset'.
964 */
965sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
966{
967	struct swap_extent *se = sis->curr_swap_extent;
968	struct swap_extent *start_se = se;
969
970	for ( ; ; ) {
971		struct list_head *lh;
972
973		if (se->start_page <= offset &&
974				offset < (se->start_page + se->nr_pages)) {
975			return se->start_block + (offset - se->start_page);
976		}
977		lh = se->list.next;
978		if (lh == &sis->extent_list)
979			lh = lh->next;
980		se = list_entry(lh, struct swap_extent, list);
981		sis->curr_swap_extent = se;
982		BUG_ON(se == start_se);		/* It *must* be present */
983	}
984}
985
986#ifdef CONFIG_HIBERNATION
987/*
988 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
989 * corresponding to given index in swap_info (swap type).
990 */
991sector_t swapdev_block(int swap_type, pgoff_t offset)
992{
993	struct swap_info_struct *sis;
994
995	if (swap_type >= nr_swapfiles)
996		return 0;
997
998	sis = swap_info + swap_type;
999	return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1000}
1001#endif /* CONFIG_HIBERNATION */
1002
1003/*
1004 * Free all of a swapdev's extent information
1005 */
1006static void destroy_swap_extents(struct swap_info_struct *sis)
1007{
1008	while (!list_empty(&sis->extent_list)) {
1009		struct swap_extent *se;
1010
1011		se = list_entry(sis->extent_list.next,
1012				struct swap_extent, list);
1013		list_del(&se->list);
1014		kfree(se);
1015	}
1016}
1017
1018/*
1019 * Add a block range (and the corresponding page range) into this swapdev's
1020 * extent list.  The extent list is kept sorted in page order.
1021 *
1022 * This function rather assumes that it is called in ascending page order.
1023 */
1024static int
1025add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1026		unsigned long nr_pages, sector_t start_block)
1027{
1028	struct swap_extent *se;
1029	struct swap_extent *new_se;
1030	struct list_head *lh;
1031
1032	lh = sis->extent_list.prev;	/* The highest page extent */
1033	if (lh != &sis->extent_list) {
1034		se = list_entry(lh, struct swap_extent, list);
1035		BUG_ON(se->start_page + se->nr_pages != start_page);
1036		if (se->start_block + se->nr_pages == start_block) {
1037			/* Merge it */
1038			se->nr_pages += nr_pages;
1039			return 0;
1040		}
1041	}
1042
1043	/*
1044	 * No merge.  Insert a new extent, preserving ordering.
1045	 */
1046	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1047	if (new_se == NULL)
1048		return -ENOMEM;
1049	new_se->start_page = start_page;
1050	new_se->nr_pages = nr_pages;
1051	new_se->start_block = start_block;
1052
1053	list_add_tail(&new_se->list, &sis->extent_list);
1054	return 1;
1055}
1056
1057/*
1058 * A `swap extent' is a simple thing which maps a contiguous range of pages
1059 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1060 * is built at swapon time and is then used at swap_writepage/swap_readpage
1061 * time for locating where on disk a page belongs.
1062 *
1063 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1064 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1065 * swap files identically.
1066 *
1067 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1068 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1069 * swapfiles are handled *identically* after swapon time.
1070 *
1071 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1072 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1073 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1074 * requirements, they are simply tossed out - we will never use those blocks
1075 * for swapping.
1076 *
1077 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1078 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1079 * which will scribble on the fs.
1080 *
1081 * The amount of disk space which a single swap extent represents varies.
1082 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1083 * extents in the list.  To avoid much list walking, we cache the previous
1084 * search location in `curr_swap_extent', and start new searches from there.
1085 * This is extremely effective.  The average number of iterations in
1086 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1087 */
1088static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1089{
1090	struct inode *inode;
1091	unsigned blocks_per_page;
1092	unsigned long page_no;
1093	unsigned blkbits;
1094	sector_t probe_block;
1095	sector_t last_block;
1096	sector_t lowest_block = -1;
1097	sector_t highest_block = 0;
1098	int nr_extents = 0;
1099	int ret;
1100
1101	inode = sis->swap_file->f_mapping->host;
1102	if (S_ISBLK(inode->i_mode)) {
1103		ret = add_swap_extent(sis, 0, sis->max, 0);
1104		*span = sis->pages;
1105		goto done;
1106	}
1107
1108	blkbits = inode->i_blkbits;
1109	blocks_per_page = PAGE_SIZE >> blkbits;
1110
1111	/*
1112	 * Map all the blocks into the extent list.  This code doesn't try
1113	 * to be very smart.
1114	 */
1115	probe_block = 0;
1116	page_no = 0;
1117	last_block = i_size_read(inode) >> blkbits;
1118	while ((probe_block + blocks_per_page) <= last_block &&
1119			page_no < sis->max) {
1120		unsigned block_in_page;
1121		sector_t first_block;
1122
1123		first_block = bmap(inode, probe_block);
1124		if (first_block == 0)
1125			goto bad_bmap;
1126
1127		/*
1128		 * It must be PAGE_SIZE aligned on-disk
1129		 */
1130		if (first_block & (blocks_per_page - 1)) {
1131			probe_block++;
1132			goto reprobe;
1133		}
1134
1135		for (block_in_page = 1; block_in_page < blocks_per_page;
1136					block_in_page++) {
1137			sector_t block;
1138
1139			block = bmap(inode, probe_block + block_in_page);
1140			if (block == 0)
1141				goto bad_bmap;
1142			if (block != first_block + block_in_page) {
1143				/* Discontiguity */
1144				probe_block++;
1145				goto reprobe;
1146			}
1147		}
1148
1149		first_block >>= (PAGE_SHIFT - blkbits);
1150		if (page_no) {	/* exclude the header page */
1151			if (first_block < lowest_block)
1152				lowest_block = first_block;
1153			if (first_block > highest_block)
1154				highest_block = first_block;
1155		}
1156
1157		/*
1158		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1159		 */
1160		ret = add_swap_extent(sis, page_no, 1, first_block);
1161		if (ret < 0)
1162			goto out;
1163		nr_extents += ret;
1164		page_no++;
1165		probe_block += blocks_per_page;
1166reprobe:
1167		continue;
1168	}
1169	ret = nr_extents;
1170	*span = 1 + highest_block - lowest_block;
1171	if (page_no == 0)
1172		page_no = 1;	/* force Empty message */
1173	sis->max = page_no;
1174	sis->pages = page_no - 1;
1175	sis->highest_bit = page_no - 1;
1176done:
1177	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1178					struct swap_extent, list);
1179	goto out;
1180bad_bmap:
1181	printk(KERN_ERR "swapon: swapfile has holes\n");
1182	ret = -EINVAL;
1183out:
1184	return ret;
1185}
1186
1187#if 0	/* We don't need this yet */
1188#include <linux/backing-dev.h>
1189int page_queue_congested(struct page *page)
1190{
1191	struct backing_dev_info *bdi;
1192
1193	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1194
1195	if (PageSwapCache(page)) {
1196		swp_entry_t entry = { .val = page_private(page) };
1197		struct swap_info_struct *sis;
1198
1199		sis = get_swap_info_struct(swp_type(entry));
1200		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1201	} else
1202		bdi = page->mapping->backing_dev_info;
1203	return bdi_write_congested(bdi);
1204}
1205#endif
1206
1207asmlinkage long sys_swapoff(const char __user * specialfile)
1208{
1209	struct swap_info_struct * p = NULL;
1210	unsigned short *swap_map;
1211	struct file *swap_file, *victim;
1212	struct address_space *mapping;
1213	struct inode *inode;
1214	char * pathname;
1215	int i, type, prev;
1216	int err;
1217
1218	if (!capable(CAP_SYS_ADMIN))
1219		return -EPERM;
1220
1221	pathname = getname(specialfile);
1222	err = PTR_ERR(pathname);
1223	if (IS_ERR(pathname))
1224		goto out;
1225
1226	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1227	putname(pathname);
1228	err = PTR_ERR(victim);
1229	if (IS_ERR(victim))
1230		goto out;
1231
1232	mapping = victim->f_mapping;
1233	prev = -1;
1234	spin_lock(&swap_lock);
1235	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1236		p = swap_info + type;
1237		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1238			if (p->swap_file->f_mapping == mapping)
1239				break;
1240		}
1241		prev = type;
1242	}
1243	if (type < 0) {
1244		err = -EINVAL;
1245		spin_unlock(&swap_lock);
1246		goto out_dput;
1247	}
1248	if (!security_vm_enough_memory(p->pages))
1249		vm_unacct_memory(p->pages);
1250	else {
1251		err = -ENOMEM;
1252		spin_unlock(&swap_lock);
1253		goto out_dput;
1254	}
1255	if (prev < 0) {
1256		swap_list.head = p->next;
1257	} else {
1258		swap_info[prev].next = p->next;
1259	}
1260	if (type == swap_list.next) {
1261		/* just pick something that's safe... */
1262		swap_list.next = swap_list.head;
1263	}
1264	if (p->prio < 0) {
1265		for (i = p->next; i >= 0; i = swap_info[i].next)
1266			swap_info[i].prio = p->prio--;
1267		least_priority++;
1268	}
1269	nr_swap_pages -= p->pages;
1270	total_swap_pages -= p->pages;
1271	p->flags &= ~SWP_WRITEOK;
1272	spin_unlock(&swap_lock);
1273
1274	current->flags |= PF_SWAPOFF;
1275	err = try_to_unuse(type);
1276	current->flags &= ~PF_SWAPOFF;
1277
1278	if (err) {
1279		/* re-insert swap space back into swap_list */
1280		spin_lock(&swap_lock);
1281		if (p->prio < 0)
1282			p->prio = --least_priority;
1283		prev = -1;
1284		for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1285			if (p->prio >= swap_info[i].prio)
1286				break;
1287			prev = i;
1288		}
1289		p->next = i;
1290		if (prev < 0)
1291			swap_list.head = swap_list.next = p - swap_info;
1292		else
1293			swap_info[prev].next = p - swap_info;
1294		nr_swap_pages += p->pages;
1295		total_swap_pages += p->pages;
1296		p->flags |= SWP_WRITEOK;
1297		spin_unlock(&swap_lock);
1298		goto out_dput;
1299	}
1300
1301	/* wait for any unplug function to finish */
1302	down_write(&swap_unplug_sem);
1303	up_write(&swap_unplug_sem);
1304
1305	destroy_swap_extents(p);
1306	mutex_lock(&swapon_mutex);
1307	spin_lock(&swap_lock);
1308	drain_mmlist();
1309
1310	/* wait for anyone still in scan_swap_map */
1311	p->highest_bit = 0;		/* cuts scans short */
1312	while (p->flags >= SWP_SCANNING) {
1313		spin_unlock(&swap_lock);
1314		schedule_timeout_uninterruptible(1);
1315		spin_lock(&swap_lock);
1316	}
1317
1318	swap_file = p->swap_file;
1319	p->swap_file = NULL;
1320	p->max = 0;
1321	swap_map = p->swap_map;
1322	p->swap_map = NULL;
1323	p->flags = 0;
1324	spin_unlock(&swap_lock);
1325	mutex_unlock(&swapon_mutex);
1326	vfree(swap_map);
1327	inode = mapping->host;
1328	if (S_ISBLK(inode->i_mode)) {
1329		struct block_device *bdev = I_BDEV(inode);
1330		set_blocksize(bdev, p->old_block_size);
1331		bd_release(bdev);
1332	} else {
1333		mutex_lock(&inode->i_mutex);
1334		inode->i_flags &= ~S_SWAPFILE;
1335		mutex_unlock(&inode->i_mutex);
1336	}
1337	filp_close(swap_file, NULL);
1338	err = 0;
1339
1340out_dput:
1341	filp_close(victim, NULL);
1342out:
1343	return err;
1344}
1345
1346#ifdef CONFIG_PROC_FS
1347/* iterator */
1348static void *swap_start(struct seq_file *swap, loff_t *pos)
1349{
1350	struct swap_info_struct *ptr = swap_info;
1351	int i;
1352	loff_t l = *pos;
1353
1354	mutex_lock(&swapon_mutex);
1355
1356	if (!l)
1357		return SEQ_START_TOKEN;
1358
1359	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1360		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1361			continue;
1362		if (!--l)
1363			return ptr;
1364	}
1365
1366	return NULL;
1367}
1368
1369static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1370{
1371	struct swap_info_struct *ptr;
1372	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1373
1374	if (v == SEQ_START_TOKEN)
1375		ptr = swap_info;
1376	else {
1377		ptr = v;
1378		ptr++;
1379	}
1380
1381	for (; ptr < endptr; ptr++) {
1382		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1383			continue;
1384		++*pos;
1385		return ptr;
1386	}
1387
1388	return NULL;
1389}
1390
1391static void swap_stop(struct seq_file *swap, void *v)
1392{
1393	mutex_unlock(&swapon_mutex);
1394}
1395
1396static int swap_show(struct seq_file *swap, void *v)
1397{
1398	struct swap_info_struct *ptr = v;
1399	struct file *file;
1400	int len;
1401
1402	if (ptr == SEQ_START_TOKEN) {
1403		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1404		return 0;
1405	}
1406
1407	file = ptr->swap_file;
1408	len = seq_path(swap, &file->f_path, " \t\n\\");
1409	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1410		       len < 40 ? 40 - len : 1, " ",
1411		       S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1412				"partition" : "file\t",
1413		       ptr->pages << (PAGE_SHIFT - 10),
1414		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1415		       ptr->prio);
1416	return 0;
1417}
1418
1419static const struct seq_operations swaps_op = {
1420	.start =	swap_start,
1421	.next =		swap_next,
1422	.stop =		swap_stop,
1423	.show =		swap_show
1424};
1425
1426static int swaps_open(struct inode *inode, struct file *file)
1427{
1428	return seq_open(file, &swaps_op);
1429}
1430
1431static const struct file_operations proc_swaps_operations = {
1432	.open		= swaps_open,
1433	.read		= seq_read,
1434	.llseek		= seq_lseek,
1435	.release	= seq_release,
1436};
1437
1438static int __init procswaps_init(void)
1439{
1440	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1441	return 0;
1442}
1443__initcall(procswaps_init);
1444#endif /* CONFIG_PROC_FS */
1445
1446/*
1447 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1448 *
1449 * The swapon system call
1450 */
1451asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1452{
1453	struct swap_info_struct * p;
1454	char *name = NULL;
1455	struct block_device *bdev = NULL;
1456	struct file *swap_file = NULL;
1457	struct address_space *mapping;
1458	unsigned int type;
1459	int i, prev;
1460	int error;
1461	union swap_header *swap_header = NULL;
1462	int swap_header_version;
1463	unsigned int nr_good_pages = 0;
1464	int nr_extents = 0;
1465	sector_t span;
1466	unsigned long maxpages = 1;
1467	int swapfilesize;
1468	unsigned short *swap_map = NULL;
1469	struct page *page = NULL;
1470	struct inode *inode = NULL;
1471	int did_down = 0;
1472
1473	if (!capable(CAP_SYS_ADMIN))
1474		return -EPERM;
1475	spin_lock(&swap_lock);
1476	p = swap_info;
1477	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1478		if (!(p->flags & SWP_USED))
1479			break;
1480	error = -EPERM;
1481	if (type >= MAX_SWAPFILES) {
1482		spin_unlock(&swap_lock);
1483		goto out;
1484	}
1485	if (type >= nr_swapfiles)
1486		nr_swapfiles = type+1;
1487	memset(p, 0, sizeof(*p));
1488	INIT_LIST_HEAD(&p->extent_list);
1489	p->flags = SWP_USED;
1490	p->next = -1;
1491	spin_unlock(&swap_lock);
1492	name = getname(specialfile);
1493	error = PTR_ERR(name);
1494	if (IS_ERR(name)) {
1495		name = NULL;
1496		goto bad_swap_2;
1497	}
1498	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1499	error = PTR_ERR(swap_file);
1500	if (IS_ERR(swap_file)) {
1501		swap_file = NULL;
1502		goto bad_swap_2;
1503	}
1504
1505	p->swap_file = swap_file;
1506	mapping = swap_file->f_mapping;
1507	inode = mapping->host;
1508
1509	error = -EBUSY;
1510	for (i = 0; i < nr_swapfiles; i++) {
1511		struct swap_info_struct *q = &swap_info[i];
1512
1513		if (i == type || !q->swap_file)
1514			continue;
1515		if (mapping == q->swap_file->f_mapping)
1516			goto bad_swap;
1517	}
1518
1519	error = -EINVAL;
1520	if (S_ISBLK(inode->i_mode)) {
1521		bdev = I_BDEV(inode);
1522		error = bd_claim(bdev, sys_swapon);
1523		if (error < 0) {
1524			bdev = NULL;
1525			error = -EINVAL;
1526			goto bad_swap;
1527		}
1528		p->old_block_size = block_size(bdev);
1529		error = set_blocksize(bdev, PAGE_SIZE);
1530		if (error < 0)
1531			goto bad_swap;
1532		p->bdev = bdev;
1533	} else if (S_ISREG(inode->i_mode)) {
1534		p->bdev = inode->i_sb->s_bdev;
1535		mutex_lock(&inode->i_mutex);
1536		did_down = 1;
1537		if (IS_SWAPFILE(inode)) {
1538			error = -EBUSY;
1539			goto bad_swap;
1540		}
1541	} else {
1542		goto bad_swap;
1543	}
1544
1545	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1546
1547	/*
1548	 * Read the swap header.
1549	 */
1550	if (!mapping->a_ops->readpage) {
1551		error = -EINVAL;
1552		goto bad_swap;
1553	}
1554	page = read_mapping_page(mapping, 0, swap_file);
1555	if (IS_ERR(page)) {
1556		error = PTR_ERR(page);
1557		goto bad_swap;
1558	}
1559	kmap(page);
1560	swap_header = page_address(page);
1561
1562	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1563		swap_header_version = 1;
1564	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1565		swap_header_version = 2;
1566	else {
1567		printk(KERN_ERR "Unable to find swap-space signature\n");
1568		error = -EINVAL;
1569		goto bad_swap;
1570	}
1571
1572	switch (swap_header_version) {
1573	case 1:
1574		printk(KERN_ERR "version 0 swap is no longer supported. "
1575			"Use mkswap -v1 %s\n", name);
1576		error = -EINVAL;
1577		goto bad_swap;
1578	case 2:
1579		/* swap partition endianess hack... */
1580		if (swab32(swap_header->info.version) == 1) {
1581			swab32s(&swap_header->info.version);
1582			swab32s(&swap_header->info.last_page);
1583			swab32s(&swap_header->info.nr_badpages);
1584			for (i = 0; i < swap_header->info.nr_badpages; i++)
1585				swab32s(&swap_header->info.badpages[i]);
1586		}
1587		/* Check the swap header's sub-version and the size of
1588                   the swap file and bad block lists */
1589		if (swap_header->info.version != 1) {
1590			printk(KERN_WARNING
1591			       "Unable to handle swap header version %d\n",
1592			       swap_header->info.version);
1593			error = -EINVAL;
1594			goto bad_swap;
1595		}
1596
1597		p->lowest_bit  = 1;
1598		p->cluster_next = 1;
1599
1600		/*
1601		 * Find out how many pages are allowed for a single swap
1602		 * device. There are two limiting factors: 1) the number of
1603		 * bits for the swap offset in the swp_entry_t type and
1604		 * 2) the number of bits in the a swap pte as defined by
1605		 * the different architectures. In order to find the
1606		 * largest possible bit mask a swap entry with swap type 0
1607		 * and swap offset ~0UL is created, encoded to a swap pte,
1608		 * decoded to a swp_entry_t again and finally the swap
1609		 * offset is extracted. This will mask all the bits from
1610		 * the initial ~0UL mask that can't be encoded in either
1611		 * the swp_entry_t or the architecture definition of a
1612		 * swap pte.
1613		 */
1614		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1615		if (maxpages > swap_header->info.last_page)
1616			maxpages = swap_header->info.last_page;
1617		p->highest_bit = maxpages - 1;
1618
1619		error = -EINVAL;
1620		if (!maxpages)
1621			goto bad_swap;
1622		if (swapfilesize && maxpages > swapfilesize) {
1623			printk(KERN_WARNING
1624			       "Swap area shorter than signature indicates\n");
1625			goto bad_swap;
1626		}
1627		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1628			goto bad_swap;
1629		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1630			goto bad_swap;
1631
1632		/* OK, set up the swap map and apply the bad block list */
1633		swap_map = vmalloc(maxpages * sizeof(short));
1634		if (!swap_map) {
1635			error = -ENOMEM;
1636			goto bad_swap;
1637		}
1638
1639		error = 0;
1640		memset(swap_map, 0, maxpages * sizeof(short));
1641		for (i = 0; i < swap_header->info.nr_badpages; i++) {
1642			int page_nr = swap_header->info.badpages[i];
1643			if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1644				error = -EINVAL;
1645			else
1646				swap_map[page_nr] = SWAP_MAP_BAD;
1647		}
1648		nr_good_pages = swap_header->info.last_page -
1649				swap_header->info.nr_badpages -
1650				1 /* header page */;
1651		if (error)
1652			goto bad_swap;
1653	}
1654
1655	if (nr_good_pages) {
1656		swap_map[0] = SWAP_MAP_BAD;
1657		p->max = maxpages;
1658		p->pages = nr_good_pages;
1659		nr_extents = setup_swap_extents(p, &span);
1660		if (nr_extents < 0) {
1661			error = nr_extents;
1662			goto bad_swap;
1663		}
1664		nr_good_pages = p->pages;
1665	}
1666	if (!nr_good_pages) {
1667		printk(KERN_WARNING "Empty swap-file\n");
1668		error = -EINVAL;
1669		goto bad_swap;
1670	}
1671
1672	mutex_lock(&swapon_mutex);
1673	spin_lock(&swap_lock);
1674	if (swap_flags & SWAP_FLAG_PREFER)
1675		p->prio =
1676		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1677	else
1678		p->prio = --least_priority;
1679	p->swap_map = swap_map;
1680	p->flags = SWP_ACTIVE;
1681	nr_swap_pages += nr_good_pages;
1682	total_swap_pages += nr_good_pages;
1683
1684	printk(KERN_INFO "Adding %uk swap on %s.  "
1685			"Priority:%d extents:%d across:%lluk\n",
1686		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1687		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1688
1689	/* insert swap space into swap_list: */
1690	prev = -1;
1691	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1692		if (p->prio >= swap_info[i].prio) {
1693			break;
1694		}
1695		prev = i;
1696	}
1697	p->next = i;
1698	if (prev < 0) {
1699		swap_list.head = swap_list.next = p - swap_info;
1700	} else {
1701		swap_info[prev].next = p - swap_info;
1702	}
1703	spin_unlock(&swap_lock);
1704	mutex_unlock(&swapon_mutex);
1705	error = 0;
1706	goto out;
1707bad_swap:
1708	if (bdev) {
1709		set_blocksize(bdev, p->old_block_size);
1710		bd_release(bdev);
1711	}
1712	destroy_swap_extents(p);
1713bad_swap_2:
1714	spin_lock(&swap_lock);
1715	p->swap_file = NULL;
1716	p->flags = 0;
1717	spin_unlock(&swap_lock);
1718	vfree(swap_map);
1719	if (swap_file)
1720		filp_close(swap_file, NULL);
1721out:
1722	if (page && !IS_ERR(page)) {
1723		kunmap(page);
1724		page_cache_release(page);
1725	}
1726	if (name)
1727		putname(name);
1728	if (did_down) {
1729		if (!error)
1730			inode->i_flags |= S_SWAPFILE;
1731		mutex_unlock(&inode->i_mutex);
1732	}
1733	return error;
1734}
1735
1736void si_swapinfo(struct sysinfo *val)
1737{
1738	unsigned int i;
1739	unsigned long nr_to_be_unused = 0;
1740
1741	spin_lock(&swap_lock);
1742	for (i = 0; i < nr_swapfiles; i++) {
1743		if (!(swap_info[i].flags & SWP_USED) ||
1744		     (swap_info[i].flags & SWP_WRITEOK))
1745			continue;
1746		nr_to_be_unused += swap_info[i].inuse_pages;
1747	}
1748	val->freeswap = nr_swap_pages + nr_to_be_unused;
1749	val->totalswap = total_swap_pages + nr_to_be_unused;
1750	spin_unlock(&swap_lock);
1751}
1752
1753/*
1754 * Verify that a swap entry is valid and increment its swap map count.
1755 *
1756 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1757 * "permanent", but will be reclaimed by the next swapoff.
1758 */
1759int swap_duplicate(swp_entry_t entry)
1760{
1761	struct swap_info_struct * p;
1762	unsigned long offset, type;
1763	int result = 0;
1764
1765	if (is_migration_entry(entry))
1766		return 1;
1767
1768	type = swp_type(entry);
1769	if (type >= nr_swapfiles)
1770		goto bad_file;
1771	p = type + swap_info;
1772	offset = swp_offset(entry);
1773
1774	spin_lock(&swap_lock);
1775	if (offset < p->max && p->swap_map[offset]) {
1776		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1777			p->swap_map[offset]++;
1778			result = 1;
1779		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1780			if (swap_overflow++ < 5)
1781				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1782			p->swap_map[offset] = SWAP_MAP_MAX;
1783			result = 1;
1784		}
1785	}
1786	spin_unlock(&swap_lock);
1787out:
1788	return result;
1789
1790bad_file:
1791	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1792	goto out;
1793}
1794
1795struct swap_info_struct *
1796get_swap_info_struct(unsigned type)
1797{
1798	return &swap_info[type];
1799}
1800
1801/*
1802 * swap_lock prevents swap_map being freed. Don't grab an extra
1803 * reference on the swaphandle, it doesn't matter if it becomes unused.
1804 */
1805int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1806{
1807	struct swap_info_struct *si;
1808	int our_page_cluster = page_cluster;
1809	pgoff_t target, toff;
1810	pgoff_t base, end;
1811	int nr_pages = 0;
1812
1813	if (!our_page_cluster)	/* no readahead */
1814		return 0;
1815
1816	si = &swap_info[swp_type(entry)];
1817	target = swp_offset(entry);
1818	base = (target >> our_page_cluster) << our_page_cluster;
1819	end = base + (1 << our_page_cluster);
1820	if (!base)		/* first page is swap header */
1821		base++;
1822
1823	spin_lock(&swap_lock);
1824	if (end > si->max)	/* don't go beyond end of map */
1825		end = si->max;
1826
1827	/* Count contiguous allocated slots above our target */
1828	for (toff = target; ++toff < end; nr_pages++) {
1829		/* Don't read in free or bad pages */
1830		if (!si->swap_map[toff])
1831			break;
1832		if (si->swap_map[toff] == SWAP_MAP_BAD)
1833			break;
1834	}
1835	/* Count contiguous allocated slots below our target */
1836	for (toff = target; --toff >= base; nr_pages++) {
1837		/* Don't read in free or bad pages */
1838		if (!si->swap_map[toff])
1839			break;
1840		if (si->swap_map[toff] == SWAP_MAP_BAD)
1841			break;
1842	}
1843	spin_unlock(&swap_lock);
1844
1845	/*
1846	 * Indicate starting offset, and return number of pages to get:
1847	 * if only 1, say 0, since there's then no readahead to be done.
1848	 */
1849	*offset = ++toff;
1850	return nr_pages? ++nr_pages: 0;
1851}
1852