swapfile.c revision 570a335b8e22579e2a51a68136d2b1f907a20eec
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/random.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
28#include <linux/mutex.h>
29#include <linux/capability.h>
30#include <linux/syscalls.h>
31#include <linux/memcontrol.h>
32
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <linux/swapops.h>
36#include <linux/page_cgroup.h>
37
38static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
39				 unsigned char);
40static void free_swap_count_continuations(struct swap_info_struct *);
41
42static DEFINE_SPINLOCK(swap_lock);
43static unsigned int nr_swapfiles;
44long nr_swap_pages;
45long total_swap_pages;
46static int least_priority;
47
48static const char Bad_file[] = "Bad swap file entry ";
49static const char Unused_file[] = "Unused swap file entry ";
50static const char Bad_offset[] = "Bad swap offset entry ";
51static const char Unused_offset[] = "Unused swap offset entry ";
52
53static struct swap_list_t swap_list = {-1, -1};
54
55static struct swap_info_struct *swap_info[MAX_SWAPFILES];
56
57static DEFINE_MUTEX(swapon_mutex);
58
59static inline unsigned char swap_count(unsigned char ent)
60{
61	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
62}
63
64/* returns 1 if swap entry is freed */
65static int
66__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
67{
68	swp_entry_t entry = swp_entry(si->type, offset);
69	struct page *page;
70	int ret = 0;
71
72	page = find_get_page(&swapper_space, entry.val);
73	if (!page)
74		return 0;
75	/*
76	 * This function is called from scan_swap_map() and it's called
77	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
78	 * We have to use trylock for avoiding deadlock. This is a special
79	 * case and you should use try_to_free_swap() with explicit lock_page()
80	 * in usual operations.
81	 */
82	if (trylock_page(page)) {
83		ret = try_to_free_swap(page);
84		unlock_page(page);
85	}
86	page_cache_release(page);
87	return ret;
88}
89
90/*
91 * We need this because the bdev->unplug_fn can sleep and we cannot
92 * hold swap_lock while calling the unplug_fn. And swap_lock
93 * cannot be turned into a mutex.
94 */
95static DECLARE_RWSEM(swap_unplug_sem);
96
97void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
98{
99	swp_entry_t entry;
100
101	down_read(&swap_unplug_sem);
102	entry.val = page_private(page);
103	if (PageSwapCache(page)) {
104		struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
105		struct backing_dev_info *bdi;
106
107		/*
108		 * If the page is removed from swapcache from under us (with a
109		 * racy try_to_unuse/swapoff) we need an additional reference
110		 * count to avoid reading garbage from page_private(page) above.
111		 * If the WARN_ON triggers during a swapoff it maybe the race
112		 * condition and it's harmless. However if it triggers without
113		 * swapoff it signals a problem.
114		 */
115		WARN_ON(page_count(page) <= 1);
116
117		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
118		blk_run_backing_dev(bdi, page);
119	}
120	up_read(&swap_unplug_sem);
121}
122
123/*
124 * swapon tell device that all the old swap contents can be discarded,
125 * to allow the swap device to optimize its wear-levelling.
126 */
127static int discard_swap(struct swap_info_struct *si)
128{
129	struct swap_extent *se;
130	sector_t start_block;
131	sector_t nr_blocks;
132	int err = 0;
133
134	/* Do not discard the swap header page! */
135	se = &si->first_swap_extent;
136	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
137	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
138	if (nr_blocks) {
139		err = blkdev_issue_discard(si->bdev, start_block,
140				nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
141		if (err)
142			return err;
143		cond_resched();
144	}
145
146	list_for_each_entry(se, &si->first_swap_extent.list, list) {
147		start_block = se->start_block << (PAGE_SHIFT - 9);
148		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
149
150		err = blkdev_issue_discard(si->bdev, start_block,
151				nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
152		if (err)
153			break;
154
155		cond_resched();
156	}
157	return err;		/* That will often be -EOPNOTSUPP */
158}
159
160/*
161 * swap allocation tell device that a cluster of swap can now be discarded,
162 * to allow the swap device to optimize its wear-levelling.
163 */
164static void discard_swap_cluster(struct swap_info_struct *si,
165				 pgoff_t start_page, pgoff_t nr_pages)
166{
167	struct swap_extent *se = si->curr_swap_extent;
168	int found_extent = 0;
169
170	while (nr_pages) {
171		struct list_head *lh;
172
173		if (se->start_page <= start_page &&
174		    start_page < se->start_page + se->nr_pages) {
175			pgoff_t offset = start_page - se->start_page;
176			sector_t start_block = se->start_block + offset;
177			sector_t nr_blocks = se->nr_pages - offset;
178
179			if (nr_blocks > nr_pages)
180				nr_blocks = nr_pages;
181			start_page += nr_blocks;
182			nr_pages -= nr_blocks;
183
184			if (!found_extent++)
185				si->curr_swap_extent = se;
186
187			start_block <<= PAGE_SHIFT - 9;
188			nr_blocks <<= PAGE_SHIFT - 9;
189			if (blkdev_issue_discard(si->bdev, start_block,
190				    nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
191				break;
192		}
193
194		lh = se->list.next;
195		se = list_entry(lh, struct swap_extent, list);
196	}
197}
198
199static int wait_for_discard(void *word)
200{
201	schedule();
202	return 0;
203}
204
205#define SWAPFILE_CLUSTER	256
206#define LATENCY_LIMIT		256
207
208static inline unsigned long scan_swap_map(struct swap_info_struct *si,
209					  unsigned char usage)
210{
211	unsigned long offset;
212	unsigned long scan_base;
213	unsigned long last_in_cluster = 0;
214	int latency_ration = LATENCY_LIMIT;
215	int found_free_cluster = 0;
216
217	/*
218	 * We try to cluster swap pages by allocating them sequentially
219	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
220	 * way, however, we resort to first-free allocation, starting
221	 * a new cluster.  This prevents us from scattering swap pages
222	 * all over the entire swap partition, so that we reduce
223	 * overall disk seek times between swap pages.  -- sct
224	 * But we do now try to find an empty cluster.  -Andrea
225	 * And we let swap pages go all over an SSD partition.  Hugh
226	 */
227
228	si->flags += SWP_SCANNING;
229	scan_base = offset = si->cluster_next;
230
231	if (unlikely(!si->cluster_nr--)) {
232		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
233			si->cluster_nr = SWAPFILE_CLUSTER - 1;
234			goto checks;
235		}
236		if (si->flags & SWP_DISCARDABLE) {
237			/*
238			 * Start range check on racing allocations, in case
239			 * they overlap the cluster we eventually decide on
240			 * (we scan without swap_lock to allow preemption).
241			 * It's hardly conceivable that cluster_nr could be
242			 * wrapped during our scan, but don't depend on it.
243			 */
244			if (si->lowest_alloc)
245				goto checks;
246			si->lowest_alloc = si->max;
247			si->highest_alloc = 0;
248		}
249		spin_unlock(&swap_lock);
250
251		/*
252		 * If seek is expensive, start searching for new cluster from
253		 * start of partition, to minimize the span of allocated swap.
254		 * But if seek is cheap, search from our current position, so
255		 * that swap is allocated from all over the partition: if the
256		 * Flash Translation Layer only remaps within limited zones,
257		 * we don't want to wear out the first zone too quickly.
258		 */
259		if (!(si->flags & SWP_SOLIDSTATE))
260			scan_base = offset = si->lowest_bit;
261		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
262
263		/* Locate the first empty (unaligned) cluster */
264		for (; last_in_cluster <= si->highest_bit; offset++) {
265			if (si->swap_map[offset])
266				last_in_cluster = offset + SWAPFILE_CLUSTER;
267			else if (offset == last_in_cluster) {
268				spin_lock(&swap_lock);
269				offset -= SWAPFILE_CLUSTER - 1;
270				si->cluster_next = offset;
271				si->cluster_nr = SWAPFILE_CLUSTER - 1;
272				found_free_cluster = 1;
273				goto checks;
274			}
275			if (unlikely(--latency_ration < 0)) {
276				cond_resched();
277				latency_ration = LATENCY_LIMIT;
278			}
279		}
280
281		offset = si->lowest_bit;
282		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
283
284		/* Locate the first empty (unaligned) cluster */
285		for (; last_in_cluster < scan_base; offset++) {
286			if (si->swap_map[offset])
287				last_in_cluster = offset + SWAPFILE_CLUSTER;
288			else if (offset == last_in_cluster) {
289				spin_lock(&swap_lock);
290				offset -= SWAPFILE_CLUSTER - 1;
291				si->cluster_next = offset;
292				si->cluster_nr = SWAPFILE_CLUSTER - 1;
293				found_free_cluster = 1;
294				goto checks;
295			}
296			if (unlikely(--latency_ration < 0)) {
297				cond_resched();
298				latency_ration = LATENCY_LIMIT;
299			}
300		}
301
302		offset = scan_base;
303		spin_lock(&swap_lock);
304		si->cluster_nr = SWAPFILE_CLUSTER - 1;
305		si->lowest_alloc = 0;
306	}
307
308checks:
309	if (!(si->flags & SWP_WRITEOK))
310		goto no_page;
311	if (!si->highest_bit)
312		goto no_page;
313	if (offset > si->highest_bit)
314		scan_base = offset = si->lowest_bit;
315
316	/* reuse swap entry of cache-only swap if not busy. */
317	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
318		int swap_was_freed;
319		spin_unlock(&swap_lock);
320		swap_was_freed = __try_to_reclaim_swap(si, offset);
321		spin_lock(&swap_lock);
322		/* entry was freed successfully, try to use this again */
323		if (swap_was_freed)
324			goto checks;
325		goto scan; /* check next one */
326	}
327
328	if (si->swap_map[offset])
329		goto scan;
330
331	if (offset == si->lowest_bit)
332		si->lowest_bit++;
333	if (offset == si->highest_bit)
334		si->highest_bit--;
335	si->inuse_pages++;
336	if (si->inuse_pages == si->pages) {
337		si->lowest_bit = si->max;
338		si->highest_bit = 0;
339	}
340	si->swap_map[offset] = usage;
341	si->cluster_next = offset + 1;
342	si->flags -= SWP_SCANNING;
343
344	if (si->lowest_alloc) {
345		/*
346		 * Only set when SWP_DISCARDABLE, and there's a scan
347		 * for a free cluster in progress or just completed.
348		 */
349		if (found_free_cluster) {
350			/*
351			 * To optimize wear-levelling, discard the
352			 * old data of the cluster, taking care not to
353			 * discard any of its pages that have already
354			 * been allocated by racing tasks (offset has
355			 * already stepped over any at the beginning).
356			 */
357			if (offset < si->highest_alloc &&
358			    si->lowest_alloc <= last_in_cluster)
359				last_in_cluster = si->lowest_alloc - 1;
360			si->flags |= SWP_DISCARDING;
361			spin_unlock(&swap_lock);
362
363			if (offset < last_in_cluster)
364				discard_swap_cluster(si, offset,
365					last_in_cluster - offset + 1);
366
367			spin_lock(&swap_lock);
368			si->lowest_alloc = 0;
369			si->flags &= ~SWP_DISCARDING;
370
371			smp_mb();	/* wake_up_bit advises this */
372			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
373
374		} else if (si->flags & SWP_DISCARDING) {
375			/*
376			 * Delay using pages allocated by racing tasks
377			 * until the whole discard has been issued. We
378			 * could defer that delay until swap_writepage,
379			 * but it's easier to keep this self-contained.
380			 */
381			spin_unlock(&swap_lock);
382			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
383				wait_for_discard, TASK_UNINTERRUPTIBLE);
384			spin_lock(&swap_lock);
385		} else {
386			/*
387			 * Note pages allocated by racing tasks while
388			 * scan for a free cluster is in progress, so
389			 * that its final discard can exclude them.
390			 */
391			if (offset < si->lowest_alloc)
392				si->lowest_alloc = offset;
393			if (offset > si->highest_alloc)
394				si->highest_alloc = offset;
395		}
396	}
397	return offset;
398
399scan:
400	spin_unlock(&swap_lock);
401	while (++offset <= si->highest_bit) {
402		if (!si->swap_map[offset]) {
403			spin_lock(&swap_lock);
404			goto checks;
405		}
406		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
407			spin_lock(&swap_lock);
408			goto checks;
409		}
410		if (unlikely(--latency_ration < 0)) {
411			cond_resched();
412			latency_ration = LATENCY_LIMIT;
413		}
414	}
415	offset = si->lowest_bit;
416	while (++offset < scan_base) {
417		if (!si->swap_map[offset]) {
418			spin_lock(&swap_lock);
419			goto checks;
420		}
421		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
422			spin_lock(&swap_lock);
423			goto checks;
424		}
425		if (unlikely(--latency_ration < 0)) {
426			cond_resched();
427			latency_ration = LATENCY_LIMIT;
428		}
429	}
430	spin_lock(&swap_lock);
431
432no_page:
433	si->flags -= SWP_SCANNING;
434	return 0;
435}
436
437swp_entry_t get_swap_page(void)
438{
439	struct swap_info_struct *si;
440	pgoff_t offset;
441	int type, next;
442	int wrapped = 0;
443
444	spin_lock(&swap_lock);
445	if (nr_swap_pages <= 0)
446		goto noswap;
447	nr_swap_pages--;
448
449	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
450		si = swap_info[type];
451		next = si->next;
452		if (next < 0 ||
453		    (!wrapped && si->prio != swap_info[next]->prio)) {
454			next = swap_list.head;
455			wrapped++;
456		}
457
458		if (!si->highest_bit)
459			continue;
460		if (!(si->flags & SWP_WRITEOK))
461			continue;
462
463		swap_list.next = next;
464		/* This is called for allocating swap entry for cache */
465		offset = scan_swap_map(si, SWAP_HAS_CACHE);
466		if (offset) {
467			spin_unlock(&swap_lock);
468			return swp_entry(type, offset);
469		}
470		next = swap_list.next;
471	}
472
473	nr_swap_pages++;
474noswap:
475	spin_unlock(&swap_lock);
476	return (swp_entry_t) {0};
477}
478
479/* The only caller of this function is now susupend routine */
480swp_entry_t get_swap_page_of_type(int type)
481{
482	struct swap_info_struct *si;
483	pgoff_t offset;
484
485	spin_lock(&swap_lock);
486	si = swap_info[type];
487	if (si && (si->flags & SWP_WRITEOK)) {
488		nr_swap_pages--;
489		/* This is called for allocating swap entry, not cache */
490		offset = scan_swap_map(si, 1);
491		if (offset) {
492			spin_unlock(&swap_lock);
493			return swp_entry(type, offset);
494		}
495		nr_swap_pages++;
496	}
497	spin_unlock(&swap_lock);
498	return (swp_entry_t) {0};
499}
500
501static struct swap_info_struct *swap_info_get(swp_entry_t entry)
502{
503	struct swap_info_struct *p;
504	unsigned long offset, type;
505
506	if (!entry.val)
507		goto out;
508	type = swp_type(entry);
509	if (type >= nr_swapfiles)
510		goto bad_nofile;
511	p = swap_info[type];
512	if (!(p->flags & SWP_USED))
513		goto bad_device;
514	offset = swp_offset(entry);
515	if (offset >= p->max)
516		goto bad_offset;
517	if (!p->swap_map[offset])
518		goto bad_free;
519	spin_lock(&swap_lock);
520	return p;
521
522bad_free:
523	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
524	goto out;
525bad_offset:
526	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
527	goto out;
528bad_device:
529	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
530	goto out;
531bad_nofile:
532	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
533out:
534	return NULL;
535}
536
537static unsigned char swap_entry_free(struct swap_info_struct *p,
538				     swp_entry_t entry, unsigned char usage)
539{
540	unsigned long offset = swp_offset(entry);
541	unsigned char count;
542	unsigned char has_cache;
543
544	count = p->swap_map[offset];
545	has_cache = count & SWAP_HAS_CACHE;
546	count &= ~SWAP_HAS_CACHE;
547
548	if (usage == SWAP_HAS_CACHE) {
549		VM_BUG_ON(!has_cache);
550		has_cache = 0;
551	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
552		if (count == COUNT_CONTINUED) {
553			if (swap_count_continued(p, offset, count))
554				count = SWAP_MAP_MAX | COUNT_CONTINUED;
555			else
556				count = SWAP_MAP_MAX;
557		} else
558			count--;
559	}
560
561	if (!count)
562		mem_cgroup_uncharge_swap(entry);
563
564	usage = count | has_cache;
565	p->swap_map[offset] = usage;
566
567	/* free if no reference */
568	if (!usage) {
569		if (offset < p->lowest_bit)
570			p->lowest_bit = offset;
571		if (offset > p->highest_bit)
572			p->highest_bit = offset;
573		if (swap_list.next >= 0 &&
574		    p->prio > swap_info[swap_list.next]->prio)
575			swap_list.next = p->type;
576		nr_swap_pages++;
577		p->inuse_pages--;
578	}
579
580	return usage;
581}
582
583/*
584 * Caller has made sure that the swapdevice corresponding to entry
585 * is still around or has not been recycled.
586 */
587void swap_free(swp_entry_t entry)
588{
589	struct swap_info_struct *p;
590
591	p = swap_info_get(entry);
592	if (p) {
593		swap_entry_free(p, entry, 1);
594		spin_unlock(&swap_lock);
595	}
596}
597
598/*
599 * Called after dropping swapcache to decrease refcnt to swap entries.
600 */
601void swapcache_free(swp_entry_t entry, struct page *page)
602{
603	struct swap_info_struct *p;
604	unsigned char count;
605
606	p = swap_info_get(entry);
607	if (p) {
608		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
609		if (page)
610			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
611		spin_unlock(&swap_lock);
612	}
613}
614
615/*
616 * How many references to page are currently swapped out?
617 * This does not give an exact answer when swap count is continued,
618 * but does include the high COUNT_CONTINUED flag to allow for that.
619 */
620static inline int page_swapcount(struct page *page)
621{
622	int count = 0;
623	struct swap_info_struct *p;
624	swp_entry_t entry;
625
626	entry.val = page_private(page);
627	p = swap_info_get(entry);
628	if (p) {
629		count = swap_count(p->swap_map[swp_offset(entry)]);
630		spin_unlock(&swap_lock);
631	}
632	return count;
633}
634
635/*
636 * We can write to an anon page without COW if there are no other references
637 * to it.  And as a side-effect, free up its swap: because the old content
638 * on disk will never be read, and seeking back there to write new content
639 * later would only waste time away from clustering.
640 */
641int reuse_swap_page(struct page *page)
642{
643	int count;
644
645	VM_BUG_ON(!PageLocked(page));
646	count = page_mapcount(page);
647	if (count <= 1 && PageSwapCache(page)) {
648		count += page_swapcount(page);
649		if (count == 1 && !PageWriteback(page)) {
650			delete_from_swap_cache(page);
651			SetPageDirty(page);
652		}
653	}
654	return count == 1;
655}
656
657/*
658 * If swap is getting full, or if there are no more mappings of this page,
659 * then try_to_free_swap is called to free its swap space.
660 */
661int try_to_free_swap(struct page *page)
662{
663	VM_BUG_ON(!PageLocked(page));
664
665	if (!PageSwapCache(page))
666		return 0;
667	if (PageWriteback(page))
668		return 0;
669	if (page_swapcount(page))
670		return 0;
671
672	delete_from_swap_cache(page);
673	SetPageDirty(page);
674	return 1;
675}
676
677/*
678 * Free the swap entry like above, but also try to
679 * free the page cache entry if it is the last user.
680 */
681int free_swap_and_cache(swp_entry_t entry)
682{
683	struct swap_info_struct *p;
684	struct page *page = NULL;
685
686	if (non_swap_entry(entry))
687		return 1;
688
689	p = swap_info_get(entry);
690	if (p) {
691		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
692			page = find_get_page(&swapper_space, entry.val);
693			if (page && !trylock_page(page)) {
694				page_cache_release(page);
695				page = NULL;
696			}
697		}
698		spin_unlock(&swap_lock);
699	}
700	if (page) {
701		/*
702		 * Not mapped elsewhere, or swap space full? Free it!
703		 * Also recheck PageSwapCache now page is locked (above).
704		 */
705		if (PageSwapCache(page) && !PageWriteback(page) &&
706				(!page_mapped(page) || vm_swap_full())) {
707			delete_from_swap_cache(page);
708			SetPageDirty(page);
709		}
710		unlock_page(page);
711		page_cache_release(page);
712	}
713	return p != NULL;
714}
715
716#ifdef CONFIG_HIBERNATION
717/*
718 * Find the swap type that corresponds to given device (if any).
719 *
720 * @offset - number of the PAGE_SIZE-sized block of the device, starting
721 * from 0, in which the swap header is expected to be located.
722 *
723 * This is needed for the suspend to disk (aka swsusp).
724 */
725int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
726{
727	struct block_device *bdev = NULL;
728	int type;
729
730	if (device)
731		bdev = bdget(device);
732
733	spin_lock(&swap_lock);
734	for (type = 0; type < nr_swapfiles; type++) {
735		struct swap_info_struct *sis = swap_info[type];
736
737		if (!(sis->flags & SWP_WRITEOK))
738			continue;
739
740		if (!bdev) {
741			if (bdev_p)
742				*bdev_p = bdgrab(sis->bdev);
743
744			spin_unlock(&swap_lock);
745			return type;
746		}
747		if (bdev == sis->bdev) {
748			struct swap_extent *se = &sis->first_swap_extent;
749
750			if (se->start_block == offset) {
751				if (bdev_p)
752					*bdev_p = bdgrab(sis->bdev);
753
754				spin_unlock(&swap_lock);
755				bdput(bdev);
756				return type;
757			}
758		}
759	}
760	spin_unlock(&swap_lock);
761	if (bdev)
762		bdput(bdev);
763
764	return -ENODEV;
765}
766
767/*
768 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
769 * corresponding to given index in swap_info (swap type).
770 */
771sector_t swapdev_block(int type, pgoff_t offset)
772{
773	struct block_device *bdev;
774
775	if ((unsigned int)type >= nr_swapfiles)
776		return 0;
777	if (!(swap_info[type]->flags & SWP_WRITEOK))
778		return 0;
779	return map_swap_page(swp_entry(type, offset), &bdev);
780}
781
782/*
783 * Return either the total number of swap pages of given type, or the number
784 * of free pages of that type (depending on @free)
785 *
786 * This is needed for software suspend
787 */
788unsigned int count_swap_pages(int type, int free)
789{
790	unsigned int n = 0;
791
792	spin_lock(&swap_lock);
793	if ((unsigned int)type < nr_swapfiles) {
794		struct swap_info_struct *sis = swap_info[type];
795
796		if (sis->flags & SWP_WRITEOK) {
797			n = sis->pages;
798			if (free)
799				n -= sis->inuse_pages;
800		}
801	}
802	spin_unlock(&swap_lock);
803	return n;
804}
805#endif /* CONFIG_HIBERNATION */
806
807/*
808 * No need to decide whether this PTE shares the swap entry with others,
809 * just let do_wp_page work it out if a write is requested later - to
810 * force COW, vm_page_prot omits write permission from any private vma.
811 */
812static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
813		unsigned long addr, swp_entry_t entry, struct page *page)
814{
815	struct mem_cgroup *ptr = NULL;
816	spinlock_t *ptl;
817	pte_t *pte;
818	int ret = 1;
819
820	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
821		ret = -ENOMEM;
822		goto out_nolock;
823	}
824
825	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
826	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
827		if (ret > 0)
828			mem_cgroup_cancel_charge_swapin(ptr);
829		ret = 0;
830		goto out;
831	}
832
833	inc_mm_counter(vma->vm_mm, anon_rss);
834	get_page(page);
835	set_pte_at(vma->vm_mm, addr, pte,
836		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
837	page_add_anon_rmap(page, vma, addr);
838	mem_cgroup_commit_charge_swapin(page, ptr);
839	swap_free(entry);
840	/*
841	 * Move the page to the active list so it is not
842	 * immediately swapped out again after swapon.
843	 */
844	activate_page(page);
845out:
846	pte_unmap_unlock(pte, ptl);
847out_nolock:
848	return ret;
849}
850
851static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
852				unsigned long addr, unsigned long end,
853				swp_entry_t entry, struct page *page)
854{
855	pte_t swp_pte = swp_entry_to_pte(entry);
856	pte_t *pte;
857	int ret = 0;
858
859	/*
860	 * We don't actually need pte lock while scanning for swp_pte: since
861	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
862	 * page table while we're scanning; though it could get zapped, and on
863	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
864	 * of unmatched parts which look like swp_pte, so unuse_pte must
865	 * recheck under pte lock.  Scanning without pte lock lets it be
866	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
867	 */
868	pte = pte_offset_map(pmd, addr);
869	do {
870		/*
871		 * swapoff spends a _lot_ of time in this loop!
872		 * Test inline before going to call unuse_pte.
873		 */
874		if (unlikely(pte_same(*pte, swp_pte))) {
875			pte_unmap(pte);
876			ret = unuse_pte(vma, pmd, addr, entry, page);
877			if (ret)
878				goto out;
879			pte = pte_offset_map(pmd, addr);
880		}
881	} while (pte++, addr += PAGE_SIZE, addr != end);
882	pte_unmap(pte - 1);
883out:
884	return ret;
885}
886
887static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
888				unsigned long addr, unsigned long end,
889				swp_entry_t entry, struct page *page)
890{
891	pmd_t *pmd;
892	unsigned long next;
893	int ret;
894
895	pmd = pmd_offset(pud, addr);
896	do {
897		next = pmd_addr_end(addr, end);
898		if (pmd_none_or_clear_bad(pmd))
899			continue;
900		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
901		if (ret)
902			return ret;
903	} while (pmd++, addr = next, addr != end);
904	return 0;
905}
906
907static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
908				unsigned long addr, unsigned long end,
909				swp_entry_t entry, struct page *page)
910{
911	pud_t *pud;
912	unsigned long next;
913	int ret;
914
915	pud = pud_offset(pgd, addr);
916	do {
917		next = pud_addr_end(addr, end);
918		if (pud_none_or_clear_bad(pud))
919			continue;
920		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
921		if (ret)
922			return ret;
923	} while (pud++, addr = next, addr != end);
924	return 0;
925}
926
927static int unuse_vma(struct vm_area_struct *vma,
928				swp_entry_t entry, struct page *page)
929{
930	pgd_t *pgd;
931	unsigned long addr, end, next;
932	int ret;
933
934	if (page->mapping) {
935		addr = page_address_in_vma(page, vma);
936		if (addr == -EFAULT)
937			return 0;
938		else
939			end = addr + PAGE_SIZE;
940	} else {
941		addr = vma->vm_start;
942		end = vma->vm_end;
943	}
944
945	pgd = pgd_offset(vma->vm_mm, addr);
946	do {
947		next = pgd_addr_end(addr, end);
948		if (pgd_none_or_clear_bad(pgd))
949			continue;
950		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
951		if (ret)
952			return ret;
953	} while (pgd++, addr = next, addr != end);
954	return 0;
955}
956
957static int unuse_mm(struct mm_struct *mm,
958				swp_entry_t entry, struct page *page)
959{
960	struct vm_area_struct *vma;
961	int ret = 0;
962
963	if (!down_read_trylock(&mm->mmap_sem)) {
964		/*
965		 * Activate page so shrink_inactive_list is unlikely to unmap
966		 * its ptes while lock is dropped, so swapoff can make progress.
967		 */
968		activate_page(page);
969		unlock_page(page);
970		down_read(&mm->mmap_sem);
971		lock_page(page);
972	}
973	for (vma = mm->mmap; vma; vma = vma->vm_next) {
974		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
975			break;
976	}
977	up_read(&mm->mmap_sem);
978	return (ret < 0)? ret: 0;
979}
980
981/*
982 * Scan swap_map from current position to next entry still in use.
983 * Recycle to start on reaching the end, returning 0 when empty.
984 */
985static unsigned int find_next_to_unuse(struct swap_info_struct *si,
986					unsigned int prev)
987{
988	unsigned int max = si->max;
989	unsigned int i = prev;
990	unsigned char count;
991
992	/*
993	 * No need for swap_lock here: we're just looking
994	 * for whether an entry is in use, not modifying it; false
995	 * hits are okay, and sys_swapoff() has already prevented new
996	 * allocations from this area (while holding swap_lock).
997	 */
998	for (;;) {
999		if (++i >= max) {
1000			if (!prev) {
1001				i = 0;
1002				break;
1003			}
1004			/*
1005			 * No entries in use at top of swap_map,
1006			 * loop back to start and recheck there.
1007			 */
1008			max = prev + 1;
1009			prev = 0;
1010			i = 1;
1011		}
1012		count = si->swap_map[i];
1013		if (count && swap_count(count) != SWAP_MAP_BAD)
1014			break;
1015	}
1016	return i;
1017}
1018
1019/*
1020 * We completely avoid races by reading each swap page in advance,
1021 * and then search for the process using it.  All the necessary
1022 * page table adjustments can then be made atomically.
1023 */
1024static int try_to_unuse(unsigned int type)
1025{
1026	struct swap_info_struct *si = swap_info[type];
1027	struct mm_struct *start_mm;
1028	unsigned char *swap_map;
1029	unsigned char swcount;
1030	struct page *page;
1031	swp_entry_t entry;
1032	unsigned int i = 0;
1033	int retval = 0;
1034	int shmem;
1035
1036	/*
1037	 * When searching mms for an entry, a good strategy is to
1038	 * start at the first mm we freed the previous entry from
1039	 * (though actually we don't notice whether we or coincidence
1040	 * freed the entry).  Initialize this start_mm with a hold.
1041	 *
1042	 * A simpler strategy would be to start at the last mm we
1043	 * freed the previous entry from; but that would take less
1044	 * advantage of mmlist ordering, which clusters forked mms
1045	 * together, child after parent.  If we race with dup_mmap(), we
1046	 * prefer to resolve parent before child, lest we miss entries
1047	 * duplicated after we scanned child: using last mm would invert
1048	 * that.
1049	 */
1050	start_mm = &init_mm;
1051	atomic_inc(&init_mm.mm_users);
1052
1053	/*
1054	 * Keep on scanning until all entries have gone.  Usually,
1055	 * one pass through swap_map is enough, but not necessarily:
1056	 * there are races when an instance of an entry might be missed.
1057	 */
1058	while ((i = find_next_to_unuse(si, i)) != 0) {
1059		if (signal_pending(current)) {
1060			retval = -EINTR;
1061			break;
1062		}
1063
1064		/*
1065		 * Get a page for the entry, using the existing swap
1066		 * cache page if there is one.  Otherwise, get a clean
1067		 * page and read the swap into it.
1068		 */
1069		swap_map = &si->swap_map[i];
1070		entry = swp_entry(type, i);
1071		page = read_swap_cache_async(entry,
1072					GFP_HIGHUSER_MOVABLE, NULL, 0);
1073		if (!page) {
1074			/*
1075			 * Either swap_duplicate() failed because entry
1076			 * has been freed independently, and will not be
1077			 * reused since sys_swapoff() already disabled
1078			 * allocation from here, or alloc_page() failed.
1079			 */
1080			if (!*swap_map)
1081				continue;
1082			retval = -ENOMEM;
1083			break;
1084		}
1085
1086		/*
1087		 * Don't hold on to start_mm if it looks like exiting.
1088		 */
1089		if (atomic_read(&start_mm->mm_users) == 1) {
1090			mmput(start_mm);
1091			start_mm = &init_mm;
1092			atomic_inc(&init_mm.mm_users);
1093		}
1094
1095		/*
1096		 * Wait for and lock page.  When do_swap_page races with
1097		 * try_to_unuse, do_swap_page can handle the fault much
1098		 * faster than try_to_unuse can locate the entry.  This
1099		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1100		 * defer to do_swap_page in such a case - in some tests,
1101		 * do_swap_page and try_to_unuse repeatedly compete.
1102		 */
1103		wait_on_page_locked(page);
1104		wait_on_page_writeback(page);
1105		lock_page(page);
1106		wait_on_page_writeback(page);
1107
1108		/*
1109		 * Remove all references to entry.
1110		 * Whenever we reach init_mm, there's no address space
1111		 * to search, but use it as a reminder to search shmem.
1112		 */
1113		shmem = 0;
1114		swcount = *swap_map;
1115		if (swap_count(swcount)) {
1116			if (start_mm == &init_mm)
1117				shmem = shmem_unuse(entry, page);
1118			else
1119				retval = unuse_mm(start_mm, entry, page);
1120		}
1121		if (swap_count(*swap_map)) {
1122			int set_start_mm = (*swap_map >= swcount);
1123			struct list_head *p = &start_mm->mmlist;
1124			struct mm_struct *new_start_mm = start_mm;
1125			struct mm_struct *prev_mm = start_mm;
1126			struct mm_struct *mm;
1127
1128			atomic_inc(&new_start_mm->mm_users);
1129			atomic_inc(&prev_mm->mm_users);
1130			spin_lock(&mmlist_lock);
1131			while (swap_count(*swap_map) && !retval && !shmem &&
1132					(p = p->next) != &start_mm->mmlist) {
1133				mm = list_entry(p, struct mm_struct, mmlist);
1134				if (!atomic_inc_not_zero(&mm->mm_users))
1135					continue;
1136				spin_unlock(&mmlist_lock);
1137				mmput(prev_mm);
1138				prev_mm = mm;
1139
1140				cond_resched();
1141
1142				swcount = *swap_map;
1143				if (!swap_count(swcount)) /* any usage ? */
1144					;
1145				else if (mm == &init_mm) {
1146					set_start_mm = 1;
1147					shmem = shmem_unuse(entry, page);
1148				} else
1149					retval = unuse_mm(mm, entry, page);
1150
1151				if (set_start_mm && *swap_map < swcount) {
1152					mmput(new_start_mm);
1153					atomic_inc(&mm->mm_users);
1154					new_start_mm = mm;
1155					set_start_mm = 0;
1156				}
1157				spin_lock(&mmlist_lock);
1158			}
1159			spin_unlock(&mmlist_lock);
1160			mmput(prev_mm);
1161			mmput(start_mm);
1162			start_mm = new_start_mm;
1163		}
1164		if (shmem) {
1165			/* page has already been unlocked and released */
1166			if (shmem > 0)
1167				continue;
1168			retval = shmem;
1169			break;
1170		}
1171		if (retval) {
1172			unlock_page(page);
1173			page_cache_release(page);
1174			break;
1175		}
1176
1177		/*
1178		 * If a reference remains (rare), we would like to leave
1179		 * the page in the swap cache; but try_to_unmap could
1180		 * then re-duplicate the entry once we drop page lock,
1181		 * so we might loop indefinitely; also, that page could
1182		 * not be swapped out to other storage meanwhile.  So:
1183		 * delete from cache even if there's another reference,
1184		 * after ensuring that the data has been saved to disk -
1185		 * since if the reference remains (rarer), it will be
1186		 * read from disk into another page.  Splitting into two
1187		 * pages would be incorrect if swap supported "shared
1188		 * private" pages, but they are handled by tmpfs files.
1189		 */
1190		if (swap_count(*swap_map) &&
1191		     PageDirty(page) && PageSwapCache(page)) {
1192			struct writeback_control wbc = {
1193				.sync_mode = WB_SYNC_NONE,
1194			};
1195
1196			swap_writepage(page, &wbc);
1197			lock_page(page);
1198			wait_on_page_writeback(page);
1199		}
1200
1201		/*
1202		 * It is conceivable that a racing task removed this page from
1203		 * swap cache just before we acquired the page lock at the top,
1204		 * or while we dropped it in unuse_mm().  The page might even
1205		 * be back in swap cache on another swap area: that we must not
1206		 * delete, since it may not have been written out to swap yet.
1207		 */
1208		if (PageSwapCache(page) &&
1209		    likely(page_private(page) == entry.val))
1210			delete_from_swap_cache(page);
1211
1212		/*
1213		 * So we could skip searching mms once swap count went
1214		 * to 1, we did not mark any present ptes as dirty: must
1215		 * mark page dirty so shrink_page_list will preserve it.
1216		 */
1217		SetPageDirty(page);
1218		unlock_page(page);
1219		page_cache_release(page);
1220
1221		/*
1222		 * Make sure that we aren't completely killing
1223		 * interactive performance.
1224		 */
1225		cond_resched();
1226	}
1227
1228	mmput(start_mm);
1229	return retval;
1230}
1231
1232/*
1233 * After a successful try_to_unuse, if no swap is now in use, we know
1234 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1235 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1236 * added to the mmlist just after page_duplicate - before would be racy.
1237 */
1238static void drain_mmlist(void)
1239{
1240	struct list_head *p, *next;
1241	unsigned int type;
1242
1243	for (type = 0; type < nr_swapfiles; type++)
1244		if (swap_info[type]->inuse_pages)
1245			return;
1246	spin_lock(&mmlist_lock);
1247	list_for_each_safe(p, next, &init_mm.mmlist)
1248		list_del_init(p);
1249	spin_unlock(&mmlist_lock);
1250}
1251
1252/*
1253 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1254 * corresponds to page offset `offset'.  Note that the type of this function
1255 * is sector_t, but it returns page offset into the bdev, not sector offset.
1256 */
1257sector_t map_swap_page(swp_entry_t entry, struct block_device **bdev)
1258{
1259	struct swap_info_struct *sis;
1260	struct swap_extent *start_se;
1261	struct swap_extent *se;
1262	pgoff_t offset;
1263
1264	sis = swap_info[swp_type(entry)];
1265	*bdev = sis->bdev;
1266
1267	offset = swp_offset(entry);
1268	start_se = sis->curr_swap_extent;
1269	se = start_se;
1270
1271	for ( ; ; ) {
1272		struct list_head *lh;
1273
1274		if (se->start_page <= offset &&
1275				offset < (se->start_page + se->nr_pages)) {
1276			return se->start_block + (offset - se->start_page);
1277		}
1278		lh = se->list.next;
1279		se = list_entry(lh, struct swap_extent, list);
1280		sis->curr_swap_extent = se;
1281		BUG_ON(se == start_se);		/* It *must* be present */
1282	}
1283}
1284
1285/*
1286 * Free all of a swapdev's extent information
1287 */
1288static void destroy_swap_extents(struct swap_info_struct *sis)
1289{
1290	while (!list_empty(&sis->first_swap_extent.list)) {
1291		struct swap_extent *se;
1292
1293		se = list_entry(sis->first_swap_extent.list.next,
1294				struct swap_extent, list);
1295		list_del(&se->list);
1296		kfree(se);
1297	}
1298}
1299
1300/*
1301 * Add a block range (and the corresponding page range) into this swapdev's
1302 * extent list.  The extent list is kept sorted in page order.
1303 *
1304 * This function rather assumes that it is called in ascending page order.
1305 */
1306static int
1307add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1308		unsigned long nr_pages, sector_t start_block)
1309{
1310	struct swap_extent *se;
1311	struct swap_extent *new_se;
1312	struct list_head *lh;
1313
1314	if (start_page == 0) {
1315		se = &sis->first_swap_extent;
1316		sis->curr_swap_extent = se;
1317		se->start_page = 0;
1318		se->nr_pages = nr_pages;
1319		se->start_block = start_block;
1320		return 1;
1321	} else {
1322		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1323		se = list_entry(lh, struct swap_extent, list);
1324		BUG_ON(se->start_page + se->nr_pages != start_page);
1325		if (se->start_block + se->nr_pages == start_block) {
1326			/* Merge it */
1327			se->nr_pages += nr_pages;
1328			return 0;
1329		}
1330	}
1331
1332	/*
1333	 * No merge.  Insert a new extent, preserving ordering.
1334	 */
1335	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1336	if (new_se == NULL)
1337		return -ENOMEM;
1338	new_se->start_page = start_page;
1339	new_se->nr_pages = nr_pages;
1340	new_se->start_block = start_block;
1341
1342	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1343	return 1;
1344}
1345
1346/*
1347 * A `swap extent' is a simple thing which maps a contiguous range of pages
1348 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1349 * is built at swapon time and is then used at swap_writepage/swap_readpage
1350 * time for locating where on disk a page belongs.
1351 *
1352 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1353 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1354 * swap files identically.
1355 *
1356 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1357 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1358 * swapfiles are handled *identically* after swapon time.
1359 *
1360 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1361 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1362 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1363 * requirements, they are simply tossed out - we will never use those blocks
1364 * for swapping.
1365 *
1366 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1367 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1368 * which will scribble on the fs.
1369 *
1370 * The amount of disk space which a single swap extent represents varies.
1371 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1372 * extents in the list.  To avoid much list walking, we cache the previous
1373 * search location in `curr_swap_extent', and start new searches from there.
1374 * This is extremely effective.  The average number of iterations in
1375 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1376 */
1377static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1378{
1379	struct inode *inode;
1380	unsigned blocks_per_page;
1381	unsigned long page_no;
1382	unsigned blkbits;
1383	sector_t probe_block;
1384	sector_t last_block;
1385	sector_t lowest_block = -1;
1386	sector_t highest_block = 0;
1387	int nr_extents = 0;
1388	int ret;
1389
1390	inode = sis->swap_file->f_mapping->host;
1391	if (S_ISBLK(inode->i_mode)) {
1392		ret = add_swap_extent(sis, 0, sis->max, 0);
1393		*span = sis->pages;
1394		goto out;
1395	}
1396
1397	blkbits = inode->i_blkbits;
1398	blocks_per_page = PAGE_SIZE >> blkbits;
1399
1400	/*
1401	 * Map all the blocks into the extent list.  This code doesn't try
1402	 * to be very smart.
1403	 */
1404	probe_block = 0;
1405	page_no = 0;
1406	last_block = i_size_read(inode) >> blkbits;
1407	while ((probe_block + blocks_per_page) <= last_block &&
1408			page_no < sis->max) {
1409		unsigned block_in_page;
1410		sector_t first_block;
1411
1412		first_block = bmap(inode, probe_block);
1413		if (first_block == 0)
1414			goto bad_bmap;
1415
1416		/*
1417		 * It must be PAGE_SIZE aligned on-disk
1418		 */
1419		if (first_block & (blocks_per_page - 1)) {
1420			probe_block++;
1421			goto reprobe;
1422		}
1423
1424		for (block_in_page = 1; block_in_page < blocks_per_page;
1425					block_in_page++) {
1426			sector_t block;
1427
1428			block = bmap(inode, probe_block + block_in_page);
1429			if (block == 0)
1430				goto bad_bmap;
1431			if (block != first_block + block_in_page) {
1432				/* Discontiguity */
1433				probe_block++;
1434				goto reprobe;
1435			}
1436		}
1437
1438		first_block >>= (PAGE_SHIFT - blkbits);
1439		if (page_no) {	/* exclude the header page */
1440			if (first_block < lowest_block)
1441				lowest_block = first_block;
1442			if (first_block > highest_block)
1443				highest_block = first_block;
1444		}
1445
1446		/*
1447		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1448		 */
1449		ret = add_swap_extent(sis, page_no, 1, first_block);
1450		if (ret < 0)
1451			goto out;
1452		nr_extents += ret;
1453		page_no++;
1454		probe_block += blocks_per_page;
1455reprobe:
1456		continue;
1457	}
1458	ret = nr_extents;
1459	*span = 1 + highest_block - lowest_block;
1460	if (page_no == 0)
1461		page_no = 1;	/* force Empty message */
1462	sis->max = page_no;
1463	sis->pages = page_no - 1;
1464	sis->highest_bit = page_no - 1;
1465out:
1466	return ret;
1467bad_bmap:
1468	printk(KERN_ERR "swapon: swapfile has holes\n");
1469	ret = -EINVAL;
1470	goto out;
1471}
1472
1473SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1474{
1475	struct swap_info_struct *p = NULL;
1476	unsigned char *swap_map;
1477	struct file *swap_file, *victim;
1478	struct address_space *mapping;
1479	struct inode *inode;
1480	char *pathname;
1481	int i, type, prev;
1482	int err;
1483
1484	if (!capable(CAP_SYS_ADMIN))
1485		return -EPERM;
1486
1487	pathname = getname(specialfile);
1488	err = PTR_ERR(pathname);
1489	if (IS_ERR(pathname))
1490		goto out;
1491
1492	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1493	putname(pathname);
1494	err = PTR_ERR(victim);
1495	if (IS_ERR(victim))
1496		goto out;
1497
1498	mapping = victim->f_mapping;
1499	prev = -1;
1500	spin_lock(&swap_lock);
1501	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1502		p = swap_info[type];
1503		if (p->flags & SWP_WRITEOK) {
1504			if (p->swap_file->f_mapping == mapping)
1505				break;
1506		}
1507		prev = type;
1508	}
1509	if (type < 0) {
1510		err = -EINVAL;
1511		spin_unlock(&swap_lock);
1512		goto out_dput;
1513	}
1514	if (!security_vm_enough_memory(p->pages))
1515		vm_unacct_memory(p->pages);
1516	else {
1517		err = -ENOMEM;
1518		spin_unlock(&swap_lock);
1519		goto out_dput;
1520	}
1521	if (prev < 0)
1522		swap_list.head = p->next;
1523	else
1524		swap_info[prev]->next = p->next;
1525	if (type == swap_list.next) {
1526		/* just pick something that's safe... */
1527		swap_list.next = swap_list.head;
1528	}
1529	if (p->prio < 0) {
1530		for (i = p->next; i >= 0; i = swap_info[i]->next)
1531			swap_info[i]->prio = p->prio--;
1532		least_priority++;
1533	}
1534	nr_swap_pages -= p->pages;
1535	total_swap_pages -= p->pages;
1536	p->flags &= ~SWP_WRITEOK;
1537	spin_unlock(&swap_lock);
1538
1539	current->flags |= PF_OOM_ORIGIN;
1540	err = try_to_unuse(type);
1541	current->flags &= ~PF_OOM_ORIGIN;
1542
1543	if (err) {
1544		/* re-insert swap space back into swap_list */
1545		spin_lock(&swap_lock);
1546		if (p->prio < 0)
1547			p->prio = --least_priority;
1548		prev = -1;
1549		for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1550			if (p->prio >= swap_info[i]->prio)
1551				break;
1552			prev = i;
1553		}
1554		p->next = i;
1555		if (prev < 0)
1556			swap_list.head = swap_list.next = type;
1557		else
1558			swap_info[prev]->next = type;
1559		nr_swap_pages += p->pages;
1560		total_swap_pages += p->pages;
1561		p->flags |= SWP_WRITEOK;
1562		spin_unlock(&swap_lock);
1563		goto out_dput;
1564	}
1565
1566	/* wait for any unplug function to finish */
1567	down_write(&swap_unplug_sem);
1568	up_write(&swap_unplug_sem);
1569
1570	destroy_swap_extents(p);
1571	if (p->flags & SWP_CONTINUED)
1572		free_swap_count_continuations(p);
1573
1574	mutex_lock(&swapon_mutex);
1575	spin_lock(&swap_lock);
1576	drain_mmlist();
1577
1578	/* wait for anyone still in scan_swap_map */
1579	p->highest_bit = 0;		/* cuts scans short */
1580	while (p->flags >= SWP_SCANNING) {
1581		spin_unlock(&swap_lock);
1582		schedule_timeout_uninterruptible(1);
1583		spin_lock(&swap_lock);
1584	}
1585
1586	swap_file = p->swap_file;
1587	p->swap_file = NULL;
1588	p->max = 0;
1589	swap_map = p->swap_map;
1590	p->swap_map = NULL;
1591	p->flags = 0;
1592	spin_unlock(&swap_lock);
1593	mutex_unlock(&swapon_mutex);
1594	vfree(swap_map);
1595	/* Destroy swap account informatin */
1596	swap_cgroup_swapoff(type);
1597
1598	inode = mapping->host;
1599	if (S_ISBLK(inode->i_mode)) {
1600		struct block_device *bdev = I_BDEV(inode);
1601		set_blocksize(bdev, p->old_block_size);
1602		bd_release(bdev);
1603	} else {
1604		mutex_lock(&inode->i_mutex);
1605		inode->i_flags &= ~S_SWAPFILE;
1606		mutex_unlock(&inode->i_mutex);
1607	}
1608	filp_close(swap_file, NULL);
1609	err = 0;
1610
1611out_dput:
1612	filp_close(victim, NULL);
1613out:
1614	return err;
1615}
1616
1617#ifdef CONFIG_PROC_FS
1618/* iterator */
1619static void *swap_start(struct seq_file *swap, loff_t *pos)
1620{
1621	struct swap_info_struct *si;
1622	int type;
1623	loff_t l = *pos;
1624
1625	mutex_lock(&swapon_mutex);
1626
1627	if (!l)
1628		return SEQ_START_TOKEN;
1629
1630	for (type = 0; type < nr_swapfiles; type++) {
1631		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1632		si = swap_info[type];
1633		if (!(si->flags & SWP_USED) || !si->swap_map)
1634			continue;
1635		if (!--l)
1636			return si;
1637	}
1638
1639	return NULL;
1640}
1641
1642static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1643{
1644	struct swap_info_struct *si = v;
1645	int type;
1646
1647	if (v == SEQ_START_TOKEN)
1648		type = 0;
1649	else
1650		type = si->type + 1;
1651
1652	for (; type < nr_swapfiles; type++) {
1653		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1654		si = swap_info[type];
1655		if (!(si->flags & SWP_USED) || !si->swap_map)
1656			continue;
1657		++*pos;
1658		return si;
1659	}
1660
1661	return NULL;
1662}
1663
1664static void swap_stop(struct seq_file *swap, void *v)
1665{
1666	mutex_unlock(&swapon_mutex);
1667}
1668
1669static int swap_show(struct seq_file *swap, void *v)
1670{
1671	struct swap_info_struct *si = v;
1672	struct file *file;
1673	int len;
1674
1675	if (si == SEQ_START_TOKEN) {
1676		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1677		return 0;
1678	}
1679
1680	file = si->swap_file;
1681	len = seq_path(swap, &file->f_path, " \t\n\\");
1682	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1683			len < 40 ? 40 - len : 1, " ",
1684			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1685				"partition" : "file\t",
1686			si->pages << (PAGE_SHIFT - 10),
1687			si->inuse_pages << (PAGE_SHIFT - 10),
1688			si->prio);
1689	return 0;
1690}
1691
1692static const struct seq_operations swaps_op = {
1693	.start =	swap_start,
1694	.next =		swap_next,
1695	.stop =		swap_stop,
1696	.show =		swap_show
1697};
1698
1699static int swaps_open(struct inode *inode, struct file *file)
1700{
1701	return seq_open(file, &swaps_op);
1702}
1703
1704static const struct file_operations proc_swaps_operations = {
1705	.open		= swaps_open,
1706	.read		= seq_read,
1707	.llseek		= seq_lseek,
1708	.release	= seq_release,
1709};
1710
1711static int __init procswaps_init(void)
1712{
1713	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1714	return 0;
1715}
1716__initcall(procswaps_init);
1717#endif /* CONFIG_PROC_FS */
1718
1719#ifdef MAX_SWAPFILES_CHECK
1720static int __init max_swapfiles_check(void)
1721{
1722	MAX_SWAPFILES_CHECK();
1723	return 0;
1724}
1725late_initcall(max_swapfiles_check);
1726#endif
1727
1728/*
1729 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1730 *
1731 * The swapon system call
1732 */
1733SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1734{
1735	struct swap_info_struct *p;
1736	char *name = NULL;
1737	struct block_device *bdev = NULL;
1738	struct file *swap_file = NULL;
1739	struct address_space *mapping;
1740	unsigned int type;
1741	int i, prev;
1742	int error;
1743	union swap_header *swap_header = NULL;
1744	unsigned int nr_good_pages = 0;
1745	int nr_extents = 0;
1746	sector_t span;
1747	unsigned long maxpages = 1;
1748	unsigned long swapfilepages;
1749	unsigned char *swap_map = NULL;
1750	struct page *page = NULL;
1751	struct inode *inode = NULL;
1752	int did_down = 0;
1753
1754	if (!capable(CAP_SYS_ADMIN))
1755		return -EPERM;
1756
1757	p = kzalloc(sizeof(*p), GFP_KERNEL);
1758	if (!p)
1759		return -ENOMEM;
1760
1761	spin_lock(&swap_lock);
1762	for (type = 0; type < nr_swapfiles; type++) {
1763		if (!(swap_info[type]->flags & SWP_USED))
1764			break;
1765	}
1766	error = -EPERM;
1767	if (type >= MAX_SWAPFILES) {
1768		spin_unlock(&swap_lock);
1769		kfree(p);
1770		goto out;
1771	}
1772	if (type >= nr_swapfiles) {
1773		p->type = type;
1774		swap_info[type] = p;
1775		/*
1776		 * Write swap_info[type] before nr_swapfiles, in case a
1777		 * racing procfs swap_start() or swap_next() is reading them.
1778		 * (We never shrink nr_swapfiles, we never free this entry.)
1779		 */
1780		smp_wmb();
1781		nr_swapfiles++;
1782	} else {
1783		kfree(p);
1784		p = swap_info[type];
1785		/*
1786		 * Do not memset this entry: a racing procfs swap_next()
1787		 * would be relying on p->type to remain valid.
1788		 */
1789	}
1790	INIT_LIST_HEAD(&p->first_swap_extent.list);
1791	p->flags = SWP_USED;
1792	p->next = -1;
1793	spin_unlock(&swap_lock);
1794
1795	name = getname(specialfile);
1796	error = PTR_ERR(name);
1797	if (IS_ERR(name)) {
1798		name = NULL;
1799		goto bad_swap_2;
1800	}
1801	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1802	error = PTR_ERR(swap_file);
1803	if (IS_ERR(swap_file)) {
1804		swap_file = NULL;
1805		goto bad_swap_2;
1806	}
1807
1808	p->swap_file = swap_file;
1809	mapping = swap_file->f_mapping;
1810	inode = mapping->host;
1811
1812	error = -EBUSY;
1813	for (i = 0; i < nr_swapfiles; i++) {
1814		struct swap_info_struct *q = swap_info[i];
1815
1816		if (i == type || !q->swap_file)
1817			continue;
1818		if (mapping == q->swap_file->f_mapping)
1819			goto bad_swap;
1820	}
1821
1822	error = -EINVAL;
1823	if (S_ISBLK(inode->i_mode)) {
1824		bdev = I_BDEV(inode);
1825		error = bd_claim(bdev, sys_swapon);
1826		if (error < 0) {
1827			bdev = NULL;
1828			error = -EINVAL;
1829			goto bad_swap;
1830		}
1831		p->old_block_size = block_size(bdev);
1832		error = set_blocksize(bdev, PAGE_SIZE);
1833		if (error < 0)
1834			goto bad_swap;
1835		p->bdev = bdev;
1836	} else if (S_ISREG(inode->i_mode)) {
1837		p->bdev = inode->i_sb->s_bdev;
1838		mutex_lock(&inode->i_mutex);
1839		did_down = 1;
1840		if (IS_SWAPFILE(inode)) {
1841			error = -EBUSY;
1842			goto bad_swap;
1843		}
1844	} else {
1845		goto bad_swap;
1846	}
1847
1848	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1849
1850	/*
1851	 * Read the swap header.
1852	 */
1853	if (!mapping->a_ops->readpage) {
1854		error = -EINVAL;
1855		goto bad_swap;
1856	}
1857	page = read_mapping_page(mapping, 0, swap_file);
1858	if (IS_ERR(page)) {
1859		error = PTR_ERR(page);
1860		goto bad_swap;
1861	}
1862	swap_header = kmap(page);
1863
1864	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1865		printk(KERN_ERR "Unable to find swap-space signature\n");
1866		error = -EINVAL;
1867		goto bad_swap;
1868	}
1869
1870	/* swap partition endianess hack... */
1871	if (swab32(swap_header->info.version) == 1) {
1872		swab32s(&swap_header->info.version);
1873		swab32s(&swap_header->info.last_page);
1874		swab32s(&swap_header->info.nr_badpages);
1875		for (i = 0; i < swap_header->info.nr_badpages; i++)
1876			swab32s(&swap_header->info.badpages[i]);
1877	}
1878	/* Check the swap header's sub-version */
1879	if (swap_header->info.version != 1) {
1880		printk(KERN_WARNING
1881		       "Unable to handle swap header version %d\n",
1882		       swap_header->info.version);
1883		error = -EINVAL;
1884		goto bad_swap;
1885	}
1886
1887	p->lowest_bit  = 1;
1888	p->cluster_next = 1;
1889	p->cluster_nr = 0;
1890
1891	/*
1892	 * Find out how many pages are allowed for a single swap
1893	 * device. There are two limiting factors: 1) the number of
1894	 * bits for the swap offset in the swp_entry_t type and
1895	 * 2) the number of bits in the a swap pte as defined by
1896	 * the different architectures. In order to find the
1897	 * largest possible bit mask a swap entry with swap type 0
1898	 * and swap offset ~0UL is created, encoded to a swap pte,
1899	 * decoded to a swp_entry_t again and finally the swap
1900	 * offset is extracted. This will mask all the bits from
1901	 * the initial ~0UL mask that can't be encoded in either
1902	 * the swp_entry_t or the architecture definition of a
1903	 * swap pte.
1904	 */
1905	maxpages = swp_offset(pte_to_swp_entry(
1906			swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1907	if (maxpages > swap_header->info.last_page)
1908		maxpages = swap_header->info.last_page;
1909	p->highest_bit = maxpages - 1;
1910
1911	error = -EINVAL;
1912	if (!maxpages)
1913		goto bad_swap;
1914	if (swapfilepages && maxpages > swapfilepages) {
1915		printk(KERN_WARNING
1916		       "Swap area shorter than signature indicates\n");
1917		goto bad_swap;
1918	}
1919	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1920		goto bad_swap;
1921	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1922		goto bad_swap;
1923
1924	/* OK, set up the swap map and apply the bad block list */
1925	swap_map = vmalloc(maxpages);
1926	if (!swap_map) {
1927		error = -ENOMEM;
1928		goto bad_swap;
1929	}
1930
1931	memset(swap_map, 0, maxpages);
1932	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1933		int page_nr = swap_header->info.badpages[i];
1934		if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1935			error = -EINVAL;
1936			goto bad_swap;
1937		}
1938		swap_map[page_nr] = SWAP_MAP_BAD;
1939	}
1940
1941	error = swap_cgroup_swapon(type, maxpages);
1942	if (error)
1943		goto bad_swap;
1944
1945	nr_good_pages = swap_header->info.last_page -
1946			swap_header->info.nr_badpages -
1947			1 /* header page */;
1948
1949	if (nr_good_pages) {
1950		swap_map[0] = SWAP_MAP_BAD;
1951		p->max = maxpages;
1952		p->pages = nr_good_pages;
1953		nr_extents = setup_swap_extents(p, &span);
1954		if (nr_extents < 0) {
1955			error = nr_extents;
1956			goto bad_swap;
1957		}
1958		nr_good_pages = p->pages;
1959	}
1960	if (!nr_good_pages) {
1961		printk(KERN_WARNING "Empty swap-file\n");
1962		error = -EINVAL;
1963		goto bad_swap;
1964	}
1965
1966	if (p->bdev) {
1967		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1968			p->flags |= SWP_SOLIDSTATE;
1969			p->cluster_next = 1 + (random32() % p->highest_bit);
1970		}
1971		if (discard_swap(p) == 0)
1972			p->flags |= SWP_DISCARDABLE;
1973	}
1974
1975	mutex_lock(&swapon_mutex);
1976	spin_lock(&swap_lock);
1977	if (swap_flags & SWAP_FLAG_PREFER)
1978		p->prio =
1979		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1980	else
1981		p->prio = --least_priority;
1982	p->swap_map = swap_map;
1983	p->flags |= SWP_WRITEOK;
1984	nr_swap_pages += nr_good_pages;
1985	total_swap_pages += nr_good_pages;
1986
1987	printk(KERN_INFO "Adding %uk swap on %s.  "
1988			"Priority:%d extents:%d across:%lluk %s%s\n",
1989		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1990		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
1991		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
1992		(p->flags & SWP_DISCARDABLE) ? "D" : "");
1993
1994	/* insert swap space into swap_list: */
1995	prev = -1;
1996	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1997		if (p->prio >= swap_info[i]->prio)
1998			break;
1999		prev = i;
2000	}
2001	p->next = i;
2002	if (prev < 0)
2003		swap_list.head = swap_list.next = type;
2004	else
2005		swap_info[prev]->next = type;
2006	spin_unlock(&swap_lock);
2007	mutex_unlock(&swapon_mutex);
2008	error = 0;
2009	goto out;
2010bad_swap:
2011	if (bdev) {
2012		set_blocksize(bdev, p->old_block_size);
2013		bd_release(bdev);
2014	}
2015	destroy_swap_extents(p);
2016	swap_cgroup_swapoff(type);
2017bad_swap_2:
2018	spin_lock(&swap_lock);
2019	p->swap_file = NULL;
2020	p->flags = 0;
2021	spin_unlock(&swap_lock);
2022	vfree(swap_map);
2023	if (swap_file)
2024		filp_close(swap_file, NULL);
2025out:
2026	if (page && !IS_ERR(page)) {
2027		kunmap(page);
2028		page_cache_release(page);
2029	}
2030	if (name)
2031		putname(name);
2032	if (did_down) {
2033		if (!error)
2034			inode->i_flags |= S_SWAPFILE;
2035		mutex_unlock(&inode->i_mutex);
2036	}
2037	return error;
2038}
2039
2040void si_swapinfo(struct sysinfo *val)
2041{
2042	unsigned int type;
2043	unsigned long nr_to_be_unused = 0;
2044
2045	spin_lock(&swap_lock);
2046	for (type = 0; type < nr_swapfiles; type++) {
2047		struct swap_info_struct *si = swap_info[type];
2048
2049		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2050			nr_to_be_unused += si->inuse_pages;
2051	}
2052	val->freeswap = nr_swap_pages + nr_to_be_unused;
2053	val->totalswap = total_swap_pages + nr_to_be_unused;
2054	spin_unlock(&swap_lock);
2055}
2056
2057/*
2058 * Verify that a swap entry is valid and increment its swap map count.
2059 *
2060 * Returns error code in following case.
2061 * - success -> 0
2062 * - swp_entry is invalid -> EINVAL
2063 * - swp_entry is migration entry -> EINVAL
2064 * - swap-cache reference is requested but there is already one. -> EEXIST
2065 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2066 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2067 */
2068static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2069{
2070	struct swap_info_struct *p;
2071	unsigned long offset, type;
2072	unsigned char count;
2073	unsigned char has_cache;
2074	int err = -EINVAL;
2075
2076	if (non_swap_entry(entry))
2077		goto out;
2078
2079	type = swp_type(entry);
2080	if (type >= nr_swapfiles)
2081		goto bad_file;
2082	p = swap_info[type];
2083	offset = swp_offset(entry);
2084
2085	spin_lock(&swap_lock);
2086	if (unlikely(offset >= p->max))
2087		goto unlock_out;
2088
2089	count = p->swap_map[offset];
2090	has_cache = count & SWAP_HAS_CACHE;
2091	count &= ~SWAP_HAS_CACHE;
2092	err = 0;
2093
2094	if (usage == SWAP_HAS_CACHE) {
2095
2096		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2097		if (!has_cache && count)
2098			has_cache = SWAP_HAS_CACHE;
2099		else if (has_cache)		/* someone else added cache */
2100			err = -EEXIST;
2101		else				/* no users remaining */
2102			err = -ENOENT;
2103
2104	} else if (count || has_cache) {
2105
2106		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2107			count += usage;
2108		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2109			err = -EINVAL;
2110		else if (swap_count_continued(p, offset, count))
2111			count = COUNT_CONTINUED;
2112		else
2113			err = -ENOMEM;
2114	} else
2115		err = -ENOENT;			/* unused swap entry */
2116
2117	p->swap_map[offset] = count | has_cache;
2118
2119unlock_out:
2120	spin_unlock(&swap_lock);
2121out:
2122	return err;
2123
2124bad_file:
2125	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2126	goto out;
2127}
2128
2129/*
2130 * increase reference count of swap entry by 1.
2131 */
2132int swap_duplicate(swp_entry_t entry)
2133{
2134	int err = 0;
2135
2136	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2137		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2138	return err;
2139}
2140
2141/*
2142 * @entry: swap entry for which we allocate swap cache.
2143 *
2144 * Called when allocating swap cache for existing swap entry,
2145 * This can return error codes. Returns 0 at success.
2146 * -EBUSY means there is a swap cache.
2147 * Note: return code is different from swap_duplicate().
2148 */
2149int swapcache_prepare(swp_entry_t entry)
2150{
2151	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2152}
2153
2154/*
2155 * swap_lock prevents swap_map being freed. Don't grab an extra
2156 * reference on the swaphandle, it doesn't matter if it becomes unused.
2157 */
2158int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2159{
2160	struct swap_info_struct *si;
2161	int our_page_cluster = page_cluster;
2162	pgoff_t target, toff;
2163	pgoff_t base, end;
2164	int nr_pages = 0;
2165
2166	if (!our_page_cluster)	/* no readahead */
2167		return 0;
2168
2169	si = swap_info[swp_type(entry)];
2170	target = swp_offset(entry);
2171	base = (target >> our_page_cluster) << our_page_cluster;
2172	end = base + (1 << our_page_cluster);
2173	if (!base)		/* first page is swap header */
2174		base++;
2175
2176	spin_lock(&swap_lock);
2177	if (end > si->max)	/* don't go beyond end of map */
2178		end = si->max;
2179
2180	/* Count contiguous allocated slots above our target */
2181	for (toff = target; ++toff < end; nr_pages++) {
2182		/* Don't read in free or bad pages */
2183		if (!si->swap_map[toff])
2184			break;
2185		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2186			break;
2187	}
2188	/* Count contiguous allocated slots below our target */
2189	for (toff = target; --toff >= base; nr_pages++) {
2190		/* Don't read in free or bad pages */
2191		if (!si->swap_map[toff])
2192			break;
2193		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2194			break;
2195	}
2196	spin_unlock(&swap_lock);
2197
2198	/*
2199	 * Indicate starting offset, and return number of pages to get:
2200	 * if only 1, say 0, since there's then no readahead to be done.
2201	 */
2202	*offset = ++toff;
2203	return nr_pages? ++nr_pages: 0;
2204}
2205
2206/*
2207 * add_swap_count_continuation - called when a swap count is duplicated
2208 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2209 * page of the original vmalloc'ed swap_map, to hold the continuation count
2210 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2211 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2212 *
2213 * These continuation pages are seldom referenced: the common paths all work
2214 * on the original swap_map, only referring to a continuation page when the
2215 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2216 *
2217 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2218 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2219 * can be called after dropping locks.
2220 */
2221int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2222{
2223	struct swap_info_struct *si;
2224	struct page *head;
2225	struct page *page;
2226	struct page *list_page;
2227	pgoff_t offset;
2228	unsigned char count;
2229
2230	/*
2231	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2232	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2233	 */
2234	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2235
2236	si = swap_info_get(entry);
2237	if (!si) {
2238		/*
2239		 * An acceptable race has occurred since the failing
2240		 * __swap_duplicate(): the swap entry has been freed,
2241		 * perhaps even the whole swap_map cleared for swapoff.
2242		 */
2243		goto outer;
2244	}
2245
2246	offset = swp_offset(entry);
2247	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2248
2249	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2250		/*
2251		 * The higher the swap count, the more likely it is that tasks
2252		 * will race to add swap count continuation: we need to avoid
2253		 * over-provisioning.
2254		 */
2255		goto out;
2256	}
2257
2258	if (!page) {
2259		spin_unlock(&swap_lock);
2260		return -ENOMEM;
2261	}
2262
2263	/*
2264	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2265	 * no architecture is using highmem pages for kernel pagetables: so it
2266	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2267	 */
2268	head = vmalloc_to_page(si->swap_map + offset);
2269	offset &= ~PAGE_MASK;
2270
2271	/*
2272	 * Page allocation does not initialize the page's lru field,
2273	 * but it does always reset its private field.
2274	 */
2275	if (!page_private(head)) {
2276		BUG_ON(count & COUNT_CONTINUED);
2277		INIT_LIST_HEAD(&head->lru);
2278		set_page_private(head, SWP_CONTINUED);
2279		si->flags |= SWP_CONTINUED;
2280	}
2281
2282	list_for_each_entry(list_page, &head->lru, lru) {
2283		unsigned char *map;
2284
2285		/*
2286		 * If the previous map said no continuation, but we've found
2287		 * a continuation page, free our allocation and use this one.
2288		 */
2289		if (!(count & COUNT_CONTINUED))
2290			goto out;
2291
2292		map = kmap_atomic(list_page, KM_USER0) + offset;
2293		count = *map;
2294		kunmap_atomic(map, KM_USER0);
2295
2296		/*
2297		 * If this continuation count now has some space in it,
2298		 * free our allocation and use this one.
2299		 */
2300		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2301			goto out;
2302	}
2303
2304	list_add_tail(&page->lru, &head->lru);
2305	page = NULL;			/* now it's attached, don't free it */
2306out:
2307	spin_unlock(&swap_lock);
2308outer:
2309	if (page)
2310		__free_page(page);
2311	return 0;
2312}
2313
2314/*
2315 * swap_count_continued - when the original swap_map count is incremented
2316 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2317 * into, carry if so, or else fail until a new continuation page is allocated;
2318 * when the original swap_map count is decremented from 0 with continuation,
2319 * borrow from the continuation and report whether it still holds more.
2320 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2321 */
2322static bool swap_count_continued(struct swap_info_struct *si,
2323				 pgoff_t offset, unsigned char count)
2324{
2325	struct page *head;
2326	struct page *page;
2327	unsigned char *map;
2328
2329	head = vmalloc_to_page(si->swap_map + offset);
2330	if (page_private(head) != SWP_CONTINUED) {
2331		BUG_ON(count & COUNT_CONTINUED);
2332		return false;		/* need to add count continuation */
2333	}
2334
2335	offset &= ~PAGE_MASK;
2336	page = list_entry(head->lru.next, struct page, lru);
2337	map = kmap_atomic(page, KM_USER0) + offset;
2338
2339	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2340		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2341
2342	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2343		/*
2344		 * Think of how you add 1 to 999
2345		 */
2346		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2347			kunmap_atomic(map, KM_USER0);
2348			page = list_entry(page->lru.next, struct page, lru);
2349			BUG_ON(page == head);
2350			map = kmap_atomic(page, KM_USER0) + offset;
2351		}
2352		if (*map == SWAP_CONT_MAX) {
2353			kunmap_atomic(map, KM_USER0);
2354			page = list_entry(page->lru.next, struct page, lru);
2355			if (page == head)
2356				return false;	/* add count continuation */
2357			map = kmap_atomic(page, KM_USER0) + offset;
2358init_map:		*map = 0;		/* we didn't zero the page */
2359		}
2360		*map += 1;
2361		kunmap_atomic(map, KM_USER0);
2362		page = list_entry(page->lru.prev, struct page, lru);
2363		while (page != head) {
2364			map = kmap_atomic(page, KM_USER0) + offset;
2365			*map = COUNT_CONTINUED;
2366			kunmap_atomic(map, KM_USER0);
2367			page = list_entry(page->lru.prev, struct page, lru);
2368		}
2369		return true;			/* incremented */
2370
2371	} else {				/* decrementing */
2372		/*
2373		 * Think of how you subtract 1 from 1000
2374		 */
2375		BUG_ON(count != COUNT_CONTINUED);
2376		while (*map == COUNT_CONTINUED) {
2377			kunmap_atomic(map, KM_USER0);
2378			page = list_entry(page->lru.next, struct page, lru);
2379			BUG_ON(page == head);
2380			map = kmap_atomic(page, KM_USER0) + offset;
2381		}
2382		BUG_ON(*map == 0);
2383		*map -= 1;
2384		if (*map == 0)
2385			count = 0;
2386		kunmap_atomic(map, KM_USER0);
2387		page = list_entry(page->lru.prev, struct page, lru);
2388		while (page != head) {
2389			map = kmap_atomic(page, KM_USER0) + offset;
2390			*map = SWAP_CONT_MAX | count;
2391			count = COUNT_CONTINUED;
2392			kunmap_atomic(map, KM_USER0);
2393			page = list_entry(page->lru.prev, struct page, lru);
2394		}
2395		return count == COUNT_CONTINUED;
2396	}
2397}
2398
2399/*
2400 * free_swap_count_continuations - swapoff free all the continuation pages
2401 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2402 */
2403static void free_swap_count_continuations(struct swap_info_struct *si)
2404{
2405	pgoff_t offset;
2406
2407	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2408		struct page *head;
2409		head = vmalloc_to_page(si->swap_map + offset);
2410		if (page_private(head)) {
2411			struct list_head *this, *next;
2412			list_for_each_safe(this, next, &head->lru) {
2413				struct page *page;
2414				page = list_entry(this, struct page, lru);
2415				list_del(this);
2416				__free_page(page);
2417			}
2418		}
2419	}
2420}
2421