swapfile.c revision 5ad6468801d28c4d4ac9f48ec19297817c915f6a
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/random.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/ksm.h>
26#include <linux/rmap.h>
27#include <linux/security.h>
28#include <linux/backing-dev.h>
29#include <linux/mutex.h>
30#include <linux/capability.h>
31#include <linux/syscalls.h>
32#include <linux/memcontrol.h>
33
34#include <asm/pgtable.h>
35#include <asm/tlbflush.h>
36#include <linux/swapops.h>
37#include <linux/page_cgroup.h>
38
39static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40				 unsigned char);
41static void free_swap_count_continuations(struct swap_info_struct *);
42static sector_t map_swap_entry(swp_entry_t, struct block_device**);
43
44static DEFINE_SPINLOCK(swap_lock);
45static unsigned int nr_swapfiles;
46long nr_swap_pages;
47long total_swap_pages;
48static int least_priority;
49
50static const char Bad_file[] = "Bad swap file entry ";
51static const char Unused_file[] = "Unused swap file entry ";
52static const char Bad_offset[] = "Bad swap offset entry ";
53static const char Unused_offset[] = "Unused swap offset entry ";
54
55static struct swap_list_t swap_list = {-1, -1};
56
57static struct swap_info_struct *swap_info[MAX_SWAPFILES];
58
59static DEFINE_MUTEX(swapon_mutex);
60
61static inline unsigned char swap_count(unsigned char ent)
62{
63	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
64}
65
66/* returns 1 if swap entry is freed */
67static int
68__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
69{
70	swp_entry_t entry = swp_entry(si->type, offset);
71	struct page *page;
72	int ret = 0;
73
74	page = find_get_page(&swapper_space, entry.val);
75	if (!page)
76		return 0;
77	/*
78	 * This function is called from scan_swap_map() and it's called
79	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80	 * We have to use trylock for avoiding deadlock. This is a special
81	 * case and you should use try_to_free_swap() with explicit lock_page()
82	 * in usual operations.
83	 */
84	if (trylock_page(page)) {
85		ret = try_to_free_swap(page);
86		unlock_page(page);
87	}
88	page_cache_release(page);
89	return ret;
90}
91
92/*
93 * We need this because the bdev->unplug_fn can sleep and we cannot
94 * hold swap_lock while calling the unplug_fn. And swap_lock
95 * cannot be turned into a mutex.
96 */
97static DECLARE_RWSEM(swap_unplug_sem);
98
99void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
100{
101	swp_entry_t entry;
102
103	down_read(&swap_unplug_sem);
104	entry.val = page_private(page);
105	if (PageSwapCache(page)) {
106		struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107		struct backing_dev_info *bdi;
108
109		/*
110		 * If the page is removed from swapcache from under us (with a
111		 * racy try_to_unuse/swapoff) we need an additional reference
112		 * count to avoid reading garbage from page_private(page) above.
113		 * If the WARN_ON triggers during a swapoff it maybe the race
114		 * condition and it's harmless. However if it triggers without
115		 * swapoff it signals a problem.
116		 */
117		WARN_ON(page_count(page) <= 1);
118
119		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120		blk_run_backing_dev(bdi, page);
121	}
122	up_read(&swap_unplug_sem);
123}
124
125/*
126 * swapon tell device that all the old swap contents can be discarded,
127 * to allow the swap device to optimize its wear-levelling.
128 */
129static int discard_swap(struct swap_info_struct *si)
130{
131	struct swap_extent *se;
132	sector_t start_block;
133	sector_t nr_blocks;
134	int err = 0;
135
136	/* Do not discard the swap header page! */
137	se = &si->first_swap_extent;
138	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140	if (nr_blocks) {
141		err = blkdev_issue_discard(si->bdev, start_block,
142				nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
143		if (err)
144			return err;
145		cond_resched();
146	}
147
148	list_for_each_entry(se, &si->first_swap_extent.list, list) {
149		start_block = se->start_block << (PAGE_SHIFT - 9);
150		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
151
152		err = blkdev_issue_discard(si->bdev, start_block,
153				nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
154		if (err)
155			break;
156
157		cond_resched();
158	}
159	return err;		/* That will often be -EOPNOTSUPP */
160}
161
162/*
163 * swap allocation tell device that a cluster of swap can now be discarded,
164 * to allow the swap device to optimize its wear-levelling.
165 */
166static void discard_swap_cluster(struct swap_info_struct *si,
167				 pgoff_t start_page, pgoff_t nr_pages)
168{
169	struct swap_extent *se = si->curr_swap_extent;
170	int found_extent = 0;
171
172	while (nr_pages) {
173		struct list_head *lh;
174
175		if (se->start_page <= start_page &&
176		    start_page < se->start_page + se->nr_pages) {
177			pgoff_t offset = start_page - se->start_page;
178			sector_t start_block = se->start_block + offset;
179			sector_t nr_blocks = se->nr_pages - offset;
180
181			if (nr_blocks > nr_pages)
182				nr_blocks = nr_pages;
183			start_page += nr_blocks;
184			nr_pages -= nr_blocks;
185
186			if (!found_extent++)
187				si->curr_swap_extent = se;
188
189			start_block <<= PAGE_SHIFT - 9;
190			nr_blocks <<= PAGE_SHIFT - 9;
191			if (blkdev_issue_discard(si->bdev, start_block,
192				    nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
193				break;
194		}
195
196		lh = se->list.next;
197		se = list_entry(lh, struct swap_extent, list);
198	}
199}
200
201static int wait_for_discard(void *word)
202{
203	schedule();
204	return 0;
205}
206
207#define SWAPFILE_CLUSTER	256
208#define LATENCY_LIMIT		256
209
210static inline unsigned long scan_swap_map(struct swap_info_struct *si,
211					  unsigned char usage)
212{
213	unsigned long offset;
214	unsigned long scan_base;
215	unsigned long last_in_cluster = 0;
216	int latency_ration = LATENCY_LIMIT;
217	int found_free_cluster = 0;
218
219	/*
220	 * We try to cluster swap pages by allocating them sequentially
221	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
222	 * way, however, we resort to first-free allocation, starting
223	 * a new cluster.  This prevents us from scattering swap pages
224	 * all over the entire swap partition, so that we reduce
225	 * overall disk seek times between swap pages.  -- sct
226	 * But we do now try to find an empty cluster.  -Andrea
227	 * And we let swap pages go all over an SSD partition.  Hugh
228	 */
229
230	si->flags += SWP_SCANNING;
231	scan_base = offset = si->cluster_next;
232
233	if (unlikely(!si->cluster_nr--)) {
234		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
235			si->cluster_nr = SWAPFILE_CLUSTER - 1;
236			goto checks;
237		}
238		if (si->flags & SWP_DISCARDABLE) {
239			/*
240			 * Start range check on racing allocations, in case
241			 * they overlap the cluster we eventually decide on
242			 * (we scan without swap_lock to allow preemption).
243			 * It's hardly conceivable that cluster_nr could be
244			 * wrapped during our scan, but don't depend on it.
245			 */
246			if (si->lowest_alloc)
247				goto checks;
248			si->lowest_alloc = si->max;
249			si->highest_alloc = 0;
250		}
251		spin_unlock(&swap_lock);
252
253		/*
254		 * If seek is expensive, start searching for new cluster from
255		 * start of partition, to minimize the span of allocated swap.
256		 * But if seek is cheap, search from our current position, so
257		 * that swap is allocated from all over the partition: if the
258		 * Flash Translation Layer only remaps within limited zones,
259		 * we don't want to wear out the first zone too quickly.
260		 */
261		if (!(si->flags & SWP_SOLIDSTATE))
262			scan_base = offset = si->lowest_bit;
263		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
264
265		/* Locate the first empty (unaligned) cluster */
266		for (; last_in_cluster <= si->highest_bit; offset++) {
267			if (si->swap_map[offset])
268				last_in_cluster = offset + SWAPFILE_CLUSTER;
269			else if (offset == last_in_cluster) {
270				spin_lock(&swap_lock);
271				offset -= SWAPFILE_CLUSTER - 1;
272				si->cluster_next = offset;
273				si->cluster_nr = SWAPFILE_CLUSTER - 1;
274				found_free_cluster = 1;
275				goto checks;
276			}
277			if (unlikely(--latency_ration < 0)) {
278				cond_resched();
279				latency_ration = LATENCY_LIMIT;
280			}
281		}
282
283		offset = si->lowest_bit;
284		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
285
286		/* Locate the first empty (unaligned) cluster */
287		for (; last_in_cluster < scan_base; offset++) {
288			if (si->swap_map[offset])
289				last_in_cluster = offset + SWAPFILE_CLUSTER;
290			else if (offset == last_in_cluster) {
291				spin_lock(&swap_lock);
292				offset -= SWAPFILE_CLUSTER - 1;
293				si->cluster_next = offset;
294				si->cluster_nr = SWAPFILE_CLUSTER - 1;
295				found_free_cluster = 1;
296				goto checks;
297			}
298			if (unlikely(--latency_ration < 0)) {
299				cond_resched();
300				latency_ration = LATENCY_LIMIT;
301			}
302		}
303
304		offset = scan_base;
305		spin_lock(&swap_lock);
306		si->cluster_nr = SWAPFILE_CLUSTER - 1;
307		si->lowest_alloc = 0;
308	}
309
310checks:
311	if (!(si->flags & SWP_WRITEOK))
312		goto no_page;
313	if (!si->highest_bit)
314		goto no_page;
315	if (offset > si->highest_bit)
316		scan_base = offset = si->lowest_bit;
317
318	/* reuse swap entry of cache-only swap if not busy. */
319	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
320		int swap_was_freed;
321		spin_unlock(&swap_lock);
322		swap_was_freed = __try_to_reclaim_swap(si, offset);
323		spin_lock(&swap_lock);
324		/* entry was freed successfully, try to use this again */
325		if (swap_was_freed)
326			goto checks;
327		goto scan; /* check next one */
328	}
329
330	if (si->swap_map[offset])
331		goto scan;
332
333	if (offset == si->lowest_bit)
334		si->lowest_bit++;
335	if (offset == si->highest_bit)
336		si->highest_bit--;
337	si->inuse_pages++;
338	if (si->inuse_pages == si->pages) {
339		si->lowest_bit = si->max;
340		si->highest_bit = 0;
341	}
342	si->swap_map[offset] = usage;
343	si->cluster_next = offset + 1;
344	si->flags -= SWP_SCANNING;
345
346	if (si->lowest_alloc) {
347		/*
348		 * Only set when SWP_DISCARDABLE, and there's a scan
349		 * for a free cluster in progress or just completed.
350		 */
351		if (found_free_cluster) {
352			/*
353			 * To optimize wear-levelling, discard the
354			 * old data of the cluster, taking care not to
355			 * discard any of its pages that have already
356			 * been allocated by racing tasks (offset has
357			 * already stepped over any at the beginning).
358			 */
359			if (offset < si->highest_alloc &&
360			    si->lowest_alloc <= last_in_cluster)
361				last_in_cluster = si->lowest_alloc - 1;
362			si->flags |= SWP_DISCARDING;
363			spin_unlock(&swap_lock);
364
365			if (offset < last_in_cluster)
366				discard_swap_cluster(si, offset,
367					last_in_cluster - offset + 1);
368
369			spin_lock(&swap_lock);
370			si->lowest_alloc = 0;
371			si->flags &= ~SWP_DISCARDING;
372
373			smp_mb();	/* wake_up_bit advises this */
374			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
375
376		} else if (si->flags & SWP_DISCARDING) {
377			/*
378			 * Delay using pages allocated by racing tasks
379			 * until the whole discard has been issued. We
380			 * could defer that delay until swap_writepage,
381			 * but it's easier to keep this self-contained.
382			 */
383			spin_unlock(&swap_lock);
384			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
385				wait_for_discard, TASK_UNINTERRUPTIBLE);
386			spin_lock(&swap_lock);
387		} else {
388			/*
389			 * Note pages allocated by racing tasks while
390			 * scan for a free cluster is in progress, so
391			 * that its final discard can exclude them.
392			 */
393			if (offset < si->lowest_alloc)
394				si->lowest_alloc = offset;
395			if (offset > si->highest_alloc)
396				si->highest_alloc = offset;
397		}
398	}
399	return offset;
400
401scan:
402	spin_unlock(&swap_lock);
403	while (++offset <= si->highest_bit) {
404		if (!si->swap_map[offset]) {
405			spin_lock(&swap_lock);
406			goto checks;
407		}
408		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
409			spin_lock(&swap_lock);
410			goto checks;
411		}
412		if (unlikely(--latency_ration < 0)) {
413			cond_resched();
414			latency_ration = LATENCY_LIMIT;
415		}
416	}
417	offset = si->lowest_bit;
418	while (++offset < scan_base) {
419		if (!si->swap_map[offset]) {
420			spin_lock(&swap_lock);
421			goto checks;
422		}
423		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
424			spin_lock(&swap_lock);
425			goto checks;
426		}
427		if (unlikely(--latency_ration < 0)) {
428			cond_resched();
429			latency_ration = LATENCY_LIMIT;
430		}
431	}
432	spin_lock(&swap_lock);
433
434no_page:
435	si->flags -= SWP_SCANNING;
436	return 0;
437}
438
439swp_entry_t get_swap_page(void)
440{
441	struct swap_info_struct *si;
442	pgoff_t offset;
443	int type, next;
444	int wrapped = 0;
445
446	spin_lock(&swap_lock);
447	if (nr_swap_pages <= 0)
448		goto noswap;
449	nr_swap_pages--;
450
451	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
452		si = swap_info[type];
453		next = si->next;
454		if (next < 0 ||
455		    (!wrapped && si->prio != swap_info[next]->prio)) {
456			next = swap_list.head;
457			wrapped++;
458		}
459
460		if (!si->highest_bit)
461			continue;
462		if (!(si->flags & SWP_WRITEOK))
463			continue;
464
465		swap_list.next = next;
466		/* This is called for allocating swap entry for cache */
467		offset = scan_swap_map(si, SWAP_HAS_CACHE);
468		if (offset) {
469			spin_unlock(&swap_lock);
470			return swp_entry(type, offset);
471		}
472		next = swap_list.next;
473	}
474
475	nr_swap_pages++;
476noswap:
477	spin_unlock(&swap_lock);
478	return (swp_entry_t) {0};
479}
480
481/* The only caller of this function is now susupend routine */
482swp_entry_t get_swap_page_of_type(int type)
483{
484	struct swap_info_struct *si;
485	pgoff_t offset;
486
487	spin_lock(&swap_lock);
488	si = swap_info[type];
489	if (si && (si->flags & SWP_WRITEOK)) {
490		nr_swap_pages--;
491		/* This is called for allocating swap entry, not cache */
492		offset = scan_swap_map(si, 1);
493		if (offset) {
494			spin_unlock(&swap_lock);
495			return swp_entry(type, offset);
496		}
497		nr_swap_pages++;
498	}
499	spin_unlock(&swap_lock);
500	return (swp_entry_t) {0};
501}
502
503static struct swap_info_struct *swap_info_get(swp_entry_t entry)
504{
505	struct swap_info_struct *p;
506	unsigned long offset, type;
507
508	if (!entry.val)
509		goto out;
510	type = swp_type(entry);
511	if (type >= nr_swapfiles)
512		goto bad_nofile;
513	p = swap_info[type];
514	if (!(p->flags & SWP_USED))
515		goto bad_device;
516	offset = swp_offset(entry);
517	if (offset >= p->max)
518		goto bad_offset;
519	if (!p->swap_map[offset])
520		goto bad_free;
521	spin_lock(&swap_lock);
522	return p;
523
524bad_free:
525	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
526	goto out;
527bad_offset:
528	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
529	goto out;
530bad_device:
531	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
532	goto out;
533bad_nofile:
534	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
535out:
536	return NULL;
537}
538
539static unsigned char swap_entry_free(struct swap_info_struct *p,
540				     swp_entry_t entry, unsigned char usage)
541{
542	unsigned long offset = swp_offset(entry);
543	unsigned char count;
544	unsigned char has_cache;
545
546	count = p->swap_map[offset];
547	has_cache = count & SWAP_HAS_CACHE;
548	count &= ~SWAP_HAS_CACHE;
549
550	if (usage == SWAP_HAS_CACHE) {
551		VM_BUG_ON(!has_cache);
552		has_cache = 0;
553	} else if (count == SWAP_MAP_SHMEM) {
554		/*
555		 * Or we could insist on shmem.c using a special
556		 * swap_shmem_free() and free_shmem_swap_and_cache()...
557		 */
558		count = 0;
559	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
560		if (count == COUNT_CONTINUED) {
561			if (swap_count_continued(p, offset, count))
562				count = SWAP_MAP_MAX | COUNT_CONTINUED;
563			else
564				count = SWAP_MAP_MAX;
565		} else
566			count--;
567	}
568
569	if (!count)
570		mem_cgroup_uncharge_swap(entry);
571
572	usage = count | has_cache;
573	p->swap_map[offset] = usage;
574
575	/* free if no reference */
576	if (!usage) {
577		if (offset < p->lowest_bit)
578			p->lowest_bit = offset;
579		if (offset > p->highest_bit)
580			p->highest_bit = offset;
581		if (swap_list.next >= 0 &&
582		    p->prio > swap_info[swap_list.next]->prio)
583			swap_list.next = p->type;
584		nr_swap_pages++;
585		p->inuse_pages--;
586	}
587
588	return usage;
589}
590
591/*
592 * Caller has made sure that the swapdevice corresponding to entry
593 * is still around or has not been recycled.
594 */
595void swap_free(swp_entry_t entry)
596{
597	struct swap_info_struct *p;
598
599	p = swap_info_get(entry);
600	if (p) {
601		swap_entry_free(p, entry, 1);
602		spin_unlock(&swap_lock);
603	}
604}
605
606/*
607 * Called after dropping swapcache to decrease refcnt to swap entries.
608 */
609void swapcache_free(swp_entry_t entry, struct page *page)
610{
611	struct swap_info_struct *p;
612	unsigned char count;
613
614	p = swap_info_get(entry);
615	if (p) {
616		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
617		if (page)
618			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
619		spin_unlock(&swap_lock);
620	}
621}
622
623/*
624 * How many references to page are currently swapped out?
625 * This does not give an exact answer when swap count is continued,
626 * but does include the high COUNT_CONTINUED flag to allow for that.
627 */
628static inline int page_swapcount(struct page *page)
629{
630	int count = 0;
631	struct swap_info_struct *p;
632	swp_entry_t entry;
633
634	entry.val = page_private(page);
635	p = swap_info_get(entry);
636	if (p) {
637		count = swap_count(p->swap_map[swp_offset(entry)]);
638		spin_unlock(&swap_lock);
639	}
640	return count;
641}
642
643/*
644 * We can write to an anon page without COW if there are no other references
645 * to it.  And as a side-effect, free up its swap: because the old content
646 * on disk will never be read, and seeking back there to write new content
647 * later would only waste time away from clustering.
648 */
649int reuse_swap_page(struct page *page)
650{
651	int count;
652
653	VM_BUG_ON(!PageLocked(page));
654	if (unlikely(PageKsm(page)))
655		return 0;
656	count = page_mapcount(page);
657	if (count <= 1 && PageSwapCache(page)) {
658		count += page_swapcount(page);
659		if (count == 1 && !PageWriteback(page)) {
660			delete_from_swap_cache(page);
661			SetPageDirty(page);
662		}
663	}
664	return count <= 1;
665}
666
667/*
668 * If swap is getting full, or if there are no more mappings of this page,
669 * then try_to_free_swap is called to free its swap space.
670 */
671int try_to_free_swap(struct page *page)
672{
673	VM_BUG_ON(!PageLocked(page));
674
675	if (!PageSwapCache(page))
676		return 0;
677	if (PageWriteback(page))
678		return 0;
679	if (page_swapcount(page))
680		return 0;
681
682	delete_from_swap_cache(page);
683	SetPageDirty(page);
684	return 1;
685}
686
687/*
688 * Free the swap entry like above, but also try to
689 * free the page cache entry if it is the last user.
690 */
691int free_swap_and_cache(swp_entry_t entry)
692{
693	struct swap_info_struct *p;
694	struct page *page = NULL;
695
696	if (non_swap_entry(entry))
697		return 1;
698
699	p = swap_info_get(entry);
700	if (p) {
701		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
702			page = find_get_page(&swapper_space, entry.val);
703			if (page && !trylock_page(page)) {
704				page_cache_release(page);
705				page = NULL;
706			}
707		}
708		spin_unlock(&swap_lock);
709	}
710	if (page) {
711		/*
712		 * Not mapped elsewhere, or swap space full? Free it!
713		 * Also recheck PageSwapCache now page is locked (above).
714		 */
715		if (PageSwapCache(page) && !PageWriteback(page) &&
716				(!page_mapped(page) || vm_swap_full())) {
717			delete_from_swap_cache(page);
718			SetPageDirty(page);
719		}
720		unlock_page(page);
721		page_cache_release(page);
722	}
723	return p != NULL;
724}
725
726#ifdef CONFIG_HIBERNATION
727/*
728 * Find the swap type that corresponds to given device (if any).
729 *
730 * @offset - number of the PAGE_SIZE-sized block of the device, starting
731 * from 0, in which the swap header is expected to be located.
732 *
733 * This is needed for the suspend to disk (aka swsusp).
734 */
735int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
736{
737	struct block_device *bdev = NULL;
738	int type;
739
740	if (device)
741		bdev = bdget(device);
742
743	spin_lock(&swap_lock);
744	for (type = 0; type < nr_swapfiles; type++) {
745		struct swap_info_struct *sis = swap_info[type];
746
747		if (!(sis->flags & SWP_WRITEOK))
748			continue;
749
750		if (!bdev) {
751			if (bdev_p)
752				*bdev_p = bdgrab(sis->bdev);
753
754			spin_unlock(&swap_lock);
755			return type;
756		}
757		if (bdev == sis->bdev) {
758			struct swap_extent *se = &sis->first_swap_extent;
759
760			if (se->start_block == offset) {
761				if (bdev_p)
762					*bdev_p = bdgrab(sis->bdev);
763
764				spin_unlock(&swap_lock);
765				bdput(bdev);
766				return type;
767			}
768		}
769	}
770	spin_unlock(&swap_lock);
771	if (bdev)
772		bdput(bdev);
773
774	return -ENODEV;
775}
776
777/*
778 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
779 * corresponding to given index in swap_info (swap type).
780 */
781sector_t swapdev_block(int type, pgoff_t offset)
782{
783	struct block_device *bdev;
784
785	if ((unsigned int)type >= nr_swapfiles)
786		return 0;
787	if (!(swap_info[type]->flags & SWP_WRITEOK))
788		return 0;
789	return map_swap_entry(swp_entry(type, offset), &bdev);
790}
791
792/*
793 * Return either the total number of swap pages of given type, or the number
794 * of free pages of that type (depending on @free)
795 *
796 * This is needed for software suspend
797 */
798unsigned int count_swap_pages(int type, int free)
799{
800	unsigned int n = 0;
801
802	spin_lock(&swap_lock);
803	if ((unsigned int)type < nr_swapfiles) {
804		struct swap_info_struct *sis = swap_info[type];
805
806		if (sis->flags & SWP_WRITEOK) {
807			n = sis->pages;
808			if (free)
809				n -= sis->inuse_pages;
810		}
811	}
812	spin_unlock(&swap_lock);
813	return n;
814}
815#endif /* CONFIG_HIBERNATION */
816
817/*
818 * No need to decide whether this PTE shares the swap entry with others,
819 * just let do_wp_page work it out if a write is requested later - to
820 * force COW, vm_page_prot omits write permission from any private vma.
821 */
822static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
823		unsigned long addr, swp_entry_t entry, struct page *page)
824{
825	struct mem_cgroup *ptr = NULL;
826	spinlock_t *ptl;
827	pte_t *pte;
828	int ret = 1;
829
830	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
831		ret = -ENOMEM;
832		goto out_nolock;
833	}
834
835	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
836	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
837		if (ret > 0)
838			mem_cgroup_cancel_charge_swapin(ptr);
839		ret = 0;
840		goto out;
841	}
842
843	inc_mm_counter(vma->vm_mm, anon_rss);
844	get_page(page);
845	set_pte_at(vma->vm_mm, addr, pte,
846		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
847	page_add_anon_rmap(page, vma, addr);
848	mem_cgroup_commit_charge_swapin(page, ptr);
849	swap_free(entry);
850	/*
851	 * Move the page to the active list so it is not
852	 * immediately swapped out again after swapon.
853	 */
854	activate_page(page);
855out:
856	pte_unmap_unlock(pte, ptl);
857out_nolock:
858	return ret;
859}
860
861static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
862				unsigned long addr, unsigned long end,
863				swp_entry_t entry, struct page *page)
864{
865	pte_t swp_pte = swp_entry_to_pte(entry);
866	pte_t *pte;
867	int ret = 0;
868
869	/*
870	 * We don't actually need pte lock while scanning for swp_pte: since
871	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
872	 * page table while we're scanning; though it could get zapped, and on
873	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
874	 * of unmatched parts which look like swp_pte, so unuse_pte must
875	 * recheck under pte lock.  Scanning without pte lock lets it be
876	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
877	 */
878	pte = pte_offset_map(pmd, addr);
879	do {
880		/*
881		 * swapoff spends a _lot_ of time in this loop!
882		 * Test inline before going to call unuse_pte.
883		 */
884		if (unlikely(pte_same(*pte, swp_pte))) {
885			pte_unmap(pte);
886			ret = unuse_pte(vma, pmd, addr, entry, page);
887			if (ret)
888				goto out;
889			pte = pte_offset_map(pmd, addr);
890		}
891	} while (pte++, addr += PAGE_SIZE, addr != end);
892	pte_unmap(pte - 1);
893out:
894	return ret;
895}
896
897static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
898				unsigned long addr, unsigned long end,
899				swp_entry_t entry, struct page *page)
900{
901	pmd_t *pmd;
902	unsigned long next;
903	int ret;
904
905	pmd = pmd_offset(pud, addr);
906	do {
907		next = pmd_addr_end(addr, end);
908		if (pmd_none_or_clear_bad(pmd))
909			continue;
910		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
911		if (ret)
912			return ret;
913	} while (pmd++, addr = next, addr != end);
914	return 0;
915}
916
917static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
918				unsigned long addr, unsigned long end,
919				swp_entry_t entry, struct page *page)
920{
921	pud_t *pud;
922	unsigned long next;
923	int ret;
924
925	pud = pud_offset(pgd, addr);
926	do {
927		next = pud_addr_end(addr, end);
928		if (pud_none_or_clear_bad(pud))
929			continue;
930		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
931		if (ret)
932			return ret;
933	} while (pud++, addr = next, addr != end);
934	return 0;
935}
936
937static int unuse_vma(struct vm_area_struct *vma,
938				swp_entry_t entry, struct page *page)
939{
940	pgd_t *pgd;
941	unsigned long addr, end, next;
942	int ret;
943
944	if (page_anon_vma(page)) {
945		addr = page_address_in_vma(page, vma);
946		if (addr == -EFAULT)
947			return 0;
948		else
949			end = addr + PAGE_SIZE;
950	} else {
951		addr = vma->vm_start;
952		end = vma->vm_end;
953	}
954
955	pgd = pgd_offset(vma->vm_mm, addr);
956	do {
957		next = pgd_addr_end(addr, end);
958		if (pgd_none_or_clear_bad(pgd))
959			continue;
960		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
961		if (ret)
962			return ret;
963	} while (pgd++, addr = next, addr != end);
964	return 0;
965}
966
967static int unuse_mm(struct mm_struct *mm,
968				swp_entry_t entry, struct page *page)
969{
970	struct vm_area_struct *vma;
971	int ret = 0;
972
973	if (!down_read_trylock(&mm->mmap_sem)) {
974		/*
975		 * Activate page so shrink_inactive_list is unlikely to unmap
976		 * its ptes while lock is dropped, so swapoff can make progress.
977		 */
978		activate_page(page);
979		unlock_page(page);
980		down_read(&mm->mmap_sem);
981		lock_page(page);
982	}
983	for (vma = mm->mmap; vma; vma = vma->vm_next) {
984		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
985			break;
986	}
987	up_read(&mm->mmap_sem);
988	return (ret < 0)? ret: 0;
989}
990
991/*
992 * Scan swap_map from current position to next entry still in use.
993 * Recycle to start on reaching the end, returning 0 when empty.
994 */
995static unsigned int find_next_to_unuse(struct swap_info_struct *si,
996					unsigned int prev)
997{
998	unsigned int max = si->max;
999	unsigned int i = prev;
1000	unsigned char count;
1001
1002	/*
1003	 * No need for swap_lock here: we're just looking
1004	 * for whether an entry is in use, not modifying it; false
1005	 * hits are okay, and sys_swapoff() has already prevented new
1006	 * allocations from this area (while holding swap_lock).
1007	 */
1008	for (;;) {
1009		if (++i >= max) {
1010			if (!prev) {
1011				i = 0;
1012				break;
1013			}
1014			/*
1015			 * No entries in use at top of swap_map,
1016			 * loop back to start and recheck there.
1017			 */
1018			max = prev + 1;
1019			prev = 0;
1020			i = 1;
1021		}
1022		count = si->swap_map[i];
1023		if (count && swap_count(count) != SWAP_MAP_BAD)
1024			break;
1025	}
1026	return i;
1027}
1028
1029/*
1030 * We completely avoid races by reading each swap page in advance,
1031 * and then search for the process using it.  All the necessary
1032 * page table adjustments can then be made atomically.
1033 */
1034static int try_to_unuse(unsigned int type)
1035{
1036	struct swap_info_struct *si = swap_info[type];
1037	struct mm_struct *start_mm;
1038	unsigned char *swap_map;
1039	unsigned char swcount;
1040	struct page *page;
1041	swp_entry_t entry;
1042	unsigned int i = 0;
1043	int retval = 0;
1044
1045	/*
1046	 * When searching mms for an entry, a good strategy is to
1047	 * start at the first mm we freed the previous entry from
1048	 * (though actually we don't notice whether we or coincidence
1049	 * freed the entry).  Initialize this start_mm with a hold.
1050	 *
1051	 * A simpler strategy would be to start at the last mm we
1052	 * freed the previous entry from; but that would take less
1053	 * advantage of mmlist ordering, which clusters forked mms
1054	 * together, child after parent.  If we race with dup_mmap(), we
1055	 * prefer to resolve parent before child, lest we miss entries
1056	 * duplicated after we scanned child: using last mm would invert
1057	 * that.
1058	 */
1059	start_mm = &init_mm;
1060	atomic_inc(&init_mm.mm_users);
1061
1062	/*
1063	 * Keep on scanning until all entries have gone.  Usually,
1064	 * one pass through swap_map is enough, but not necessarily:
1065	 * there are races when an instance of an entry might be missed.
1066	 */
1067	while ((i = find_next_to_unuse(si, i)) != 0) {
1068		if (signal_pending(current)) {
1069			retval = -EINTR;
1070			break;
1071		}
1072
1073		/*
1074		 * Get a page for the entry, using the existing swap
1075		 * cache page if there is one.  Otherwise, get a clean
1076		 * page and read the swap into it.
1077		 */
1078		swap_map = &si->swap_map[i];
1079		entry = swp_entry(type, i);
1080		page = read_swap_cache_async(entry,
1081					GFP_HIGHUSER_MOVABLE, NULL, 0);
1082		if (!page) {
1083			/*
1084			 * Either swap_duplicate() failed because entry
1085			 * has been freed independently, and will not be
1086			 * reused since sys_swapoff() already disabled
1087			 * allocation from here, or alloc_page() failed.
1088			 */
1089			if (!*swap_map)
1090				continue;
1091			retval = -ENOMEM;
1092			break;
1093		}
1094
1095		/*
1096		 * Don't hold on to start_mm if it looks like exiting.
1097		 */
1098		if (atomic_read(&start_mm->mm_users) == 1) {
1099			mmput(start_mm);
1100			start_mm = &init_mm;
1101			atomic_inc(&init_mm.mm_users);
1102		}
1103
1104		/*
1105		 * Wait for and lock page.  When do_swap_page races with
1106		 * try_to_unuse, do_swap_page can handle the fault much
1107		 * faster than try_to_unuse can locate the entry.  This
1108		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1109		 * defer to do_swap_page in such a case - in some tests,
1110		 * do_swap_page and try_to_unuse repeatedly compete.
1111		 */
1112		wait_on_page_locked(page);
1113		wait_on_page_writeback(page);
1114		lock_page(page);
1115		wait_on_page_writeback(page);
1116
1117		/*
1118		 * Remove all references to entry.
1119		 */
1120		swcount = *swap_map;
1121		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1122			retval = shmem_unuse(entry, page);
1123			/* page has already been unlocked and released */
1124			if (retval < 0)
1125				break;
1126			continue;
1127		}
1128		if (swap_count(swcount) && start_mm != &init_mm)
1129			retval = unuse_mm(start_mm, entry, page);
1130
1131		if (swap_count(*swap_map)) {
1132			int set_start_mm = (*swap_map >= swcount);
1133			struct list_head *p = &start_mm->mmlist;
1134			struct mm_struct *new_start_mm = start_mm;
1135			struct mm_struct *prev_mm = start_mm;
1136			struct mm_struct *mm;
1137
1138			atomic_inc(&new_start_mm->mm_users);
1139			atomic_inc(&prev_mm->mm_users);
1140			spin_lock(&mmlist_lock);
1141			while (swap_count(*swap_map) && !retval &&
1142					(p = p->next) != &start_mm->mmlist) {
1143				mm = list_entry(p, struct mm_struct, mmlist);
1144				if (!atomic_inc_not_zero(&mm->mm_users))
1145					continue;
1146				spin_unlock(&mmlist_lock);
1147				mmput(prev_mm);
1148				prev_mm = mm;
1149
1150				cond_resched();
1151
1152				swcount = *swap_map;
1153				if (!swap_count(swcount)) /* any usage ? */
1154					;
1155				else if (mm == &init_mm)
1156					set_start_mm = 1;
1157				else
1158					retval = unuse_mm(mm, entry, page);
1159
1160				if (set_start_mm && *swap_map < swcount) {
1161					mmput(new_start_mm);
1162					atomic_inc(&mm->mm_users);
1163					new_start_mm = mm;
1164					set_start_mm = 0;
1165				}
1166				spin_lock(&mmlist_lock);
1167			}
1168			spin_unlock(&mmlist_lock);
1169			mmput(prev_mm);
1170			mmput(start_mm);
1171			start_mm = new_start_mm;
1172		}
1173		if (retval) {
1174			unlock_page(page);
1175			page_cache_release(page);
1176			break;
1177		}
1178
1179		/*
1180		 * If a reference remains (rare), we would like to leave
1181		 * the page in the swap cache; but try_to_unmap could
1182		 * then re-duplicate the entry once we drop page lock,
1183		 * so we might loop indefinitely; also, that page could
1184		 * not be swapped out to other storage meanwhile.  So:
1185		 * delete from cache even if there's another reference,
1186		 * after ensuring that the data has been saved to disk -
1187		 * since if the reference remains (rarer), it will be
1188		 * read from disk into another page.  Splitting into two
1189		 * pages would be incorrect if swap supported "shared
1190		 * private" pages, but they are handled by tmpfs files.
1191		 *
1192		 * Given how unuse_vma() targets one particular offset
1193		 * in an anon_vma, once the anon_vma has been determined,
1194		 * this splitting happens to be just what is needed to
1195		 * handle where KSM pages have been swapped out: re-reading
1196		 * is unnecessarily slow, but we can fix that later on.
1197		 */
1198		if (swap_count(*swap_map) &&
1199		     PageDirty(page) && PageSwapCache(page)) {
1200			struct writeback_control wbc = {
1201				.sync_mode = WB_SYNC_NONE,
1202			};
1203
1204			swap_writepage(page, &wbc);
1205			lock_page(page);
1206			wait_on_page_writeback(page);
1207		}
1208
1209		/*
1210		 * It is conceivable that a racing task removed this page from
1211		 * swap cache just before we acquired the page lock at the top,
1212		 * or while we dropped it in unuse_mm().  The page might even
1213		 * be back in swap cache on another swap area: that we must not
1214		 * delete, since it may not have been written out to swap yet.
1215		 */
1216		if (PageSwapCache(page) &&
1217		    likely(page_private(page) == entry.val))
1218			delete_from_swap_cache(page);
1219
1220		/*
1221		 * So we could skip searching mms once swap count went
1222		 * to 1, we did not mark any present ptes as dirty: must
1223		 * mark page dirty so shrink_page_list will preserve it.
1224		 */
1225		SetPageDirty(page);
1226		unlock_page(page);
1227		page_cache_release(page);
1228
1229		/*
1230		 * Make sure that we aren't completely killing
1231		 * interactive performance.
1232		 */
1233		cond_resched();
1234	}
1235
1236	mmput(start_mm);
1237	return retval;
1238}
1239
1240/*
1241 * After a successful try_to_unuse, if no swap is now in use, we know
1242 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1243 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1244 * added to the mmlist just after page_duplicate - before would be racy.
1245 */
1246static void drain_mmlist(void)
1247{
1248	struct list_head *p, *next;
1249	unsigned int type;
1250
1251	for (type = 0; type < nr_swapfiles; type++)
1252		if (swap_info[type]->inuse_pages)
1253			return;
1254	spin_lock(&mmlist_lock);
1255	list_for_each_safe(p, next, &init_mm.mmlist)
1256		list_del_init(p);
1257	spin_unlock(&mmlist_lock);
1258}
1259
1260/*
1261 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1262 * corresponds to page offset for the specified swap entry.
1263 * Note that the type of this function is sector_t, but it returns page offset
1264 * into the bdev, not sector offset.
1265 */
1266static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1267{
1268	struct swap_info_struct *sis;
1269	struct swap_extent *start_se;
1270	struct swap_extent *se;
1271	pgoff_t offset;
1272
1273	sis = swap_info[swp_type(entry)];
1274	*bdev = sis->bdev;
1275
1276	offset = swp_offset(entry);
1277	start_se = sis->curr_swap_extent;
1278	se = start_se;
1279
1280	for ( ; ; ) {
1281		struct list_head *lh;
1282
1283		if (se->start_page <= offset &&
1284				offset < (se->start_page + se->nr_pages)) {
1285			return se->start_block + (offset - se->start_page);
1286		}
1287		lh = se->list.next;
1288		se = list_entry(lh, struct swap_extent, list);
1289		sis->curr_swap_extent = se;
1290		BUG_ON(se == start_se);		/* It *must* be present */
1291	}
1292}
1293
1294/*
1295 * Returns the page offset into bdev for the specified page's swap entry.
1296 */
1297sector_t map_swap_page(struct page *page, struct block_device **bdev)
1298{
1299	swp_entry_t entry;
1300	entry.val = page_private(page);
1301	return map_swap_entry(entry, bdev);
1302}
1303
1304/*
1305 * Free all of a swapdev's extent information
1306 */
1307static void destroy_swap_extents(struct swap_info_struct *sis)
1308{
1309	while (!list_empty(&sis->first_swap_extent.list)) {
1310		struct swap_extent *se;
1311
1312		se = list_entry(sis->first_swap_extent.list.next,
1313				struct swap_extent, list);
1314		list_del(&se->list);
1315		kfree(se);
1316	}
1317}
1318
1319/*
1320 * Add a block range (and the corresponding page range) into this swapdev's
1321 * extent list.  The extent list is kept sorted in page order.
1322 *
1323 * This function rather assumes that it is called in ascending page order.
1324 */
1325static int
1326add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1327		unsigned long nr_pages, sector_t start_block)
1328{
1329	struct swap_extent *se;
1330	struct swap_extent *new_se;
1331	struct list_head *lh;
1332
1333	if (start_page == 0) {
1334		se = &sis->first_swap_extent;
1335		sis->curr_swap_extent = se;
1336		se->start_page = 0;
1337		se->nr_pages = nr_pages;
1338		se->start_block = start_block;
1339		return 1;
1340	} else {
1341		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1342		se = list_entry(lh, struct swap_extent, list);
1343		BUG_ON(se->start_page + se->nr_pages != start_page);
1344		if (se->start_block + se->nr_pages == start_block) {
1345			/* Merge it */
1346			se->nr_pages += nr_pages;
1347			return 0;
1348		}
1349	}
1350
1351	/*
1352	 * No merge.  Insert a new extent, preserving ordering.
1353	 */
1354	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1355	if (new_se == NULL)
1356		return -ENOMEM;
1357	new_se->start_page = start_page;
1358	new_se->nr_pages = nr_pages;
1359	new_se->start_block = start_block;
1360
1361	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1362	return 1;
1363}
1364
1365/*
1366 * A `swap extent' is a simple thing which maps a contiguous range of pages
1367 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1368 * is built at swapon time and is then used at swap_writepage/swap_readpage
1369 * time for locating where on disk a page belongs.
1370 *
1371 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1372 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1373 * swap files identically.
1374 *
1375 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1376 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1377 * swapfiles are handled *identically* after swapon time.
1378 *
1379 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1380 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1381 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1382 * requirements, they are simply tossed out - we will never use those blocks
1383 * for swapping.
1384 *
1385 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1386 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1387 * which will scribble on the fs.
1388 *
1389 * The amount of disk space which a single swap extent represents varies.
1390 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1391 * extents in the list.  To avoid much list walking, we cache the previous
1392 * search location in `curr_swap_extent', and start new searches from there.
1393 * This is extremely effective.  The average number of iterations in
1394 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1395 */
1396static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1397{
1398	struct inode *inode;
1399	unsigned blocks_per_page;
1400	unsigned long page_no;
1401	unsigned blkbits;
1402	sector_t probe_block;
1403	sector_t last_block;
1404	sector_t lowest_block = -1;
1405	sector_t highest_block = 0;
1406	int nr_extents = 0;
1407	int ret;
1408
1409	inode = sis->swap_file->f_mapping->host;
1410	if (S_ISBLK(inode->i_mode)) {
1411		ret = add_swap_extent(sis, 0, sis->max, 0);
1412		*span = sis->pages;
1413		goto out;
1414	}
1415
1416	blkbits = inode->i_blkbits;
1417	blocks_per_page = PAGE_SIZE >> blkbits;
1418
1419	/*
1420	 * Map all the blocks into the extent list.  This code doesn't try
1421	 * to be very smart.
1422	 */
1423	probe_block = 0;
1424	page_no = 0;
1425	last_block = i_size_read(inode) >> blkbits;
1426	while ((probe_block + blocks_per_page) <= last_block &&
1427			page_no < sis->max) {
1428		unsigned block_in_page;
1429		sector_t first_block;
1430
1431		first_block = bmap(inode, probe_block);
1432		if (first_block == 0)
1433			goto bad_bmap;
1434
1435		/*
1436		 * It must be PAGE_SIZE aligned on-disk
1437		 */
1438		if (first_block & (blocks_per_page - 1)) {
1439			probe_block++;
1440			goto reprobe;
1441		}
1442
1443		for (block_in_page = 1; block_in_page < blocks_per_page;
1444					block_in_page++) {
1445			sector_t block;
1446
1447			block = bmap(inode, probe_block + block_in_page);
1448			if (block == 0)
1449				goto bad_bmap;
1450			if (block != first_block + block_in_page) {
1451				/* Discontiguity */
1452				probe_block++;
1453				goto reprobe;
1454			}
1455		}
1456
1457		first_block >>= (PAGE_SHIFT - blkbits);
1458		if (page_no) {	/* exclude the header page */
1459			if (first_block < lowest_block)
1460				lowest_block = first_block;
1461			if (first_block > highest_block)
1462				highest_block = first_block;
1463		}
1464
1465		/*
1466		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1467		 */
1468		ret = add_swap_extent(sis, page_no, 1, first_block);
1469		if (ret < 0)
1470			goto out;
1471		nr_extents += ret;
1472		page_no++;
1473		probe_block += blocks_per_page;
1474reprobe:
1475		continue;
1476	}
1477	ret = nr_extents;
1478	*span = 1 + highest_block - lowest_block;
1479	if (page_no == 0)
1480		page_no = 1;	/* force Empty message */
1481	sis->max = page_no;
1482	sis->pages = page_no - 1;
1483	sis->highest_bit = page_no - 1;
1484out:
1485	return ret;
1486bad_bmap:
1487	printk(KERN_ERR "swapon: swapfile has holes\n");
1488	ret = -EINVAL;
1489	goto out;
1490}
1491
1492SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1493{
1494	struct swap_info_struct *p = NULL;
1495	unsigned char *swap_map;
1496	struct file *swap_file, *victim;
1497	struct address_space *mapping;
1498	struct inode *inode;
1499	char *pathname;
1500	int i, type, prev;
1501	int err;
1502
1503	if (!capable(CAP_SYS_ADMIN))
1504		return -EPERM;
1505
1506	pathname = getname(specialfile);
1507	err = PTR_ERR(pathname);
1508	if (IS_ERR(pathname))
1509		goto out;
1510
1511	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1512	putname(pathname);
1513	err = PTR_ERR(victim);
1514	if (IS_ERR(victim))
1515		goto out;
1516
1517	mapping = victim->f_mapping;
1518	prev = -1;
1519	spin_lock(&swap_lock);
1520	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1521		p = swap_info[type];
1522		if (p->flags & SWP_WRITEOK) {
1523			if (p->swap_file->f_mapping == mapping)
1524				break;
1525		}
1526		prev = type;
1527	}
1528	if (type < 0) {
1529		err = -EINVAL;
1530		spin_unlock(&swap_lock);
1531		goto out_dput;
1532	}
1533	if (!security_vm_enough_memory(p->pages))
1534		vm_unacct_memory(p->pages);
1535	else {
1536		err = -ENOMEM;
1537		spin_unlock(&swap_lock);
1538		goto out_dput;
1539	}
1540	if (prev < 0)
1541		swap_list.head = p->next;
1542	else
1543		swap_info[prev]->next = p->next;
1544	if (type == swap_list.next) {
1545		/* just pick something that's safe... */
1546		swap_list.next = swap_list.head;
1547	}
1548	if (p->prio < 0) {
1549		for (i = p->next; i >= 0; i = swap_info[i]->next)
1550			swap_info[i]->prio = p->prio--;
1551		least_priority++;
1552	}
1553	nr_swap_pages -= p->pages;
1554	total_swap_pages -= p->pages;
1555	p->flags &= ~SWP_WRITEOK;
1556	spin_unlock(&swap_lock);
1557
1558	current->flags |= PF_OOM_ORIGIN;
1559	err = try_to_unuse(type);
1560	current->flags &= ~PF_OOM_ORIGIN;
1561
1562	if (err) {
1563		/* re-insert swap space back into swap_list */
1564		spin_lock(&swap_lock);
1565		if (p->prio < 0)
1566			p->prio = --least_priority;
1567		prev = -1;
1568		for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1569			if (p->prio >= swap_info[i]->prio)
1570				break;
1571			prev = i;
1572		}
1573		p->next = i;
1574		if (prev < 0)
1575			swap_list.head = swap_list.next = type;
1576		else
1577			swap_info[prev]->next = type;
1578		nr_swap_pages += p->pages;
1579		total_swap_pages += p->pages;
1580		p->flags |= SWP_WRITEOK;
1581		spin_unlock(&swap_lock);
1582		goto out_dput;
1583	}
1584
1585	/* wait for any unplug function to finish */
1586	down_write(&swap_unplug_sem);
1587	up_write(&swap_unplug_sem);
1588
1589	destroy_swap_extents(p);
1590	if (p->flags & SWP_CONTINUED)
1591		free_swap_count_continuations(p);
1592
1593	mutex_lock(&swapon_mutex);
1594	spin_lock(&swap_lock);
1595	drain_mmlist();
1596
1597	/* wait for anyone still in scan_swap_map */
1598	p->highest_bit = 0;		/* cuts scans short */
1599	while (p->flags >= SWP_SCANNING) {
1600		spin_unlock(&swap_lock);
1601		schedule_timeout_uninterruptible(1);
1602		spin_lock(&swap_lock);
1603	}
1604
1605	swap_file = p->swap_file;
1606	p->swap_file = NULL;
1607	p->max = 0;
1608	swap_map = p->swap_map;
1609	p->swap_map = NULL;
1610	p->flags = 0;
1611	spin_unlock(&swap_lock);
1612	mutex_unlock(&swapon_mutex);
1613	vfree(swap_map);
1614	/* Destroy swap account informatin */
1615	swap_cgroup_swapoff(type);
1616
1617	inode = mapping->host;
1618	if (S_ISBLK(inode->i_mode)) {
1619		struct block_device *bdev = I_BDEV(inode);
1620		set_blocksize(bdev, p->old_block_size);
1621		bd_release(bdev);
1622	} else {
1623		mutex_lock(&inode->i_mutex);
1624		inode->i_flags &= ~S_SWAPFILE;
1625		mutex_unlock(&inode->i_mutex);
1626	}
1627	filp_close(swap_file, NULL);
1628	err = 0;
1629
1630out_dput:
1631	filp_close(victim, NULL);
1632out:
1633	return err;
1634}
1635
1636#ifdef CONFIG_PROC_FS
1637/* iterator */
1638static void *swap_start(struct seq_file *swap, loff_t *pos)
1639{
1640	struct swap_info_struct *si;
1641	int type;
1642	loff_t l = *pos;
1643
1644	mutex_lock(&swapon_mutex);
1645
1646	if (!l)
1647		return SEQ_START_TOKEN;
1648
1649	for (type = 0; type < nr_swapfiles; type++) {
1650		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1651		si = swap_info[type];
1652		if (!(si->flags & SWP_USED) || !si->swap_map)
1653			continue;
1654		if (!--l)
1655			return si;
1656	}
1657
1658	return NULL;
1659}
1660
1661static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1662{
1663	struct swap_info_struct *si = v;
1664	int type;
1665
1666	if (v == SEQ_START_TOKEN)
1667		type = 0;
1668	else
1669		type = si->type + 1;
1670
1671	for (; type < nr_swapfiles; type++) {
1672		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1673		si = swap_info[type];
1674		if (!(si->flags & SWP_USED) || !si->swap_map)
1675			continue;
1676		++*pos;
1677		return si;
1678	}
1679
1680	return NULL;
1681}
1682
1683static void swap_stop(struct seq_file *swap, void *v)
1684{
1685	mutex_unlock(&swapon_mutex);
1686}
1687
1688static int swap_show(struct seq_file *swap, void *v)
1689{
1690	struct swap_info_struct *si = v;
1691	struct file *file;
1692	int len;
1693
1694	if (si == SEQ_START_TOKEN) {
1695		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1696		return 0;
1697	}
1698
1699	file = si->swap_file;
1700	len = seq_path(swap, &file->f_path, " \t\n\\");
1701	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1702			len < 40 ? 40 - len : 1, " ",
1703			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1704				"partition" : "file\t",
1705			si->pages << (PAGE_SHIFT - 10),
1706			si->inuse_pages << (PAGE_SHIFT - 10),
1707			si->prio);
1708	return 0;
1709}
1710
1711static const struct seq_operations swaps_op = {
1712	.start =	swap_start,
1713	.next =		swap_next,
1714	.stop =		swap_stop,
1715	.show =		swap_show
1716};
1717
1718static int swaps_open(struct inode *inode, struct file *file)
1719{
1720	return seq_open(file, &swaps_op);
1721}
1722
1723static const struct file_operations proc_swaps_operations = {
1724	.open		= swaps_open,
1725	.read		= seq_read,
1726	.llseek		= seq_lseek,
1727	.release	= seq_release,
1728};
1729
1730static int __init procswaps_init(void)
1731{
1732	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1733	return 0;
1734}
1735__initcall(procswaps_init);
1736#endif /* CONFIG_PROC_FS */
1737
1738#ifdef MAX_SWAPFILES_CHECK
1739static int __init max_swapfiles_check(void)
1740{
1741	MAX_SWAPFILES_CHECK();
1742	return 0;
1743}
1744late_initcall(max_swapfiles_check);
1745#endif
1746
1747/*
1748 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1749 *
1750 * The swapon system call
1751 */
1752SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1753{
1754	struct swap_info_struct *p;
1755	char *name = NULL;
1756	struct block_device *bdev = NULL;
1757	struct file *swap_file = NULL;
1758	struct address_space *mapping;
1759	unsigned int type;
1760	int i, prev;
1761	int error;
1762	union swap_header *swap_header = NULL;
1763	unsigned int nr_good_pages = 0;
1764	int nr_extents = 0;
1765	sector_t span;
1766	unsigned long maxpages = 1;
1767	unsigned long swapfilepages;
1768	unsigned char *swap_map = NULL;
1769	struct page *page = NULL;
1770	struct inode *inode = NULL;
1771	int did_down = 0;
1772
1773	if (!capable(CAP_SYS_ADMIN))
1774		return -EPERM;
1775
1776	p = kzalloc(sizeof(*p), GFP_KERNEL);
1777	if (!p)
1778		return -ENOMEM;
1779
1780	spin_lock(&swap_lock);
1781	for (type = 0; type < nr_swapfiles; type++) {
1782		if (!(swap_info[type]->flags & SWP_USED))
1783			break;
1784	}
1785	error = -EPERM;
1786	if (type >= MAX_SWAPFILES) {
1787		spin_unlock(&swap_lock);
1788		kfree(p);
1789		goto out;
1790	}
1791	if (type >= nr_swapfiles) {
1792		p->type = type;
1793		swap_info[type] = p;
1794		/*
1795		 * Write swap_info[type] before nr_swapfiles, in case a
1796		 * racing procfs swap_start() or swap_next() is reading them.
1797		 * (We never shrink nr_swapfiles, we never free this entry.)
1798		 */
1799		smp_wmb();
1800		nr_swapfiles++;
1801	} else {
1802		kfree(p);
1803		p = swap_info[type];
1804		/*
1805		 * Do not memset this entry: a racing procfs swap_next()
1806		 * would be relying on p->type to remain valid.
1807		 */
1808	}
1809	INIT_LIST_HEAD(&p->first_swap_extent.list);
1810	p->flags = SWP_USED;
1811	p->next = -1;
1812	spin_unlock(&swap_lock);
1813
1814	name = getname(specialfile);
1815	error = PTR_ERR(name);
1816	if (IS_ERR(name)) {
1817		name = NULL;
1818		goto bad_swap_2;
1819	}
1820	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1821	error = PTR_ERR(swap_file);
1822	if (IS_ERR(swap_file)) {
1823		swap_file = NULL;
1824		goto bad_swap_2;
1825	}
1826
1827	p->swap_file = swap_file;
1828	mapping = swap_file->f_mapping;
1829	inode = mapping->host;
1830
1831	error = -EBUSY;
1832	for (i = 0; i < nr_swapfiles; i++) {
1833		struct swap_info_struct *q = swap_info[i];
1834
1835		if (i == type || !q->swap_file)
1836			continue;
1837		if (mapping == q->swap_file->f_mapping)
1838			goto bad_swap;
1839	}
1840
1841	error = -EINVAL;
1842	if (S_ISBLK(inode->i_mode)) {
1843		bdev = I_BDEV(inode);
1844		error = bd_claim(bdev, sys_swapon);
1845		if (error < 0) {
1846			bdev = NULL;
1847			error = -EINVAL;
1848			goto bad_swap;
1849		}
1850		p->old_block_size = block_size(bdev);
1851		error = set_blocksize(bdev, PAGE_SIZE);
1852		if (error < 0)
1853			goto bad_swap;
1854		p->bdev = bdev;
1855	} else if (S_ISREG(inode->i_mode)) {
1856		p->bdev = inode->i_sb->s_bdev;
1857		mutex_lock(&inode->i_mutex);
1858		did_down = 1;
1859		if (IS_SWAPFILE(inode)) {
1860			error = -EBUSY;
1861			goto bad_swap;
1862		}
1863	} else {
1864		goto bad_swap;
1865	}
1866
1867	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1868
1869	/*
1870	 * Read the swap header.
1871	 */
1872	if (!mapping->a_ops->readpage) {
1873		error = -EINVAL;
1874		goto bad_swap;
1875	}
1876	page = read_mapping_page(mapping, 0, swap_file);
1877	if (IS_ERR(page)) {
1878		error = PTR_ERR(page);
1879		goto bad_swap;
1880	}
1881	swap_header = kmap(page);
1882
1883	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1884		printk(KERN_ERR "Unable to find swap-space signature\n");
1885		error = -EINVAL;
1886		goto bad_swap;
1887	}
1888
1889	/* swap partition endianess hack... */
1890	if (swab32(swap_header->info.version) == 1) {
1891		swab32s(&swap_header->info.version);
1892		swab32s(&swap_header->info.last_page);
1893		swab32s(&swap_header->info.nr_badpages);
1894		for (i = 0; i < swap_header->info.nr_badpages; i++)
1895			swab32s(&swap_header->info.badpages[i]);
1896	}
1897	/* Check the swap header's sub-version */
1898	if (swap_header->info.version != 1) {
1899		printk(KERN_WARNING
1900		       "Unable to handle swap header version %d\n",
1901		       swap_header->info.version);
1902		error = -EINVAL;
1903		goto bad_swap;
1904	}
1905
1906	p->lowest_bit  = 1;
1907	p->cluster_next = 1;
1908	p->cluster_nr = 0;
1909
1910	/*
1911	 * Find out how many pages are allowed for a single swap
1912	 * device. There are two limiting factors: 1) the number of
1913	 * bits for the swap offset in the swp_entry_t type and
1914	 * 2) the number of bits in the a swap pte as defined by
1915	 * the different architectures. In order to find the
1916	 * largest possible bit mask a swap entry with swap type 0
1917	 * and swap offset ~0UL is created, encoded to a swap pte,
1918	 * decoded to a swp_entry_t again and finally the swap
1919	 * offset is extracted. This will mask all the bits from
1920	 * the initial ~0UL mask that can't be encoded in either
1921	 * the swp_entry_t or the architecture definition of a
1922	 * swap pte.
1923	 */
1924	maxpages = swp_offset(pte_to_swp_entry(
1925			swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1926	if (maxpages > swap_header->info.last_page)
1927		maxpages = swap_header->info.last_page;
1928	p->highest_bit = maxpages - 1;
1929
1930	error = -EINVAL;
1931	if (!maxpages)
1932		goto bad_swap;
1933	if (swapfilepages && maxpages > swapfilepages) {
1934		printk(KERN_WARNING
1935		       "Swap area shorter than signature indicates\n");
1936		goto bad_swap;
1937	}
1938	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1939		goto bad_swap;
1940	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1941		goto bad_swap;
1942
1943	/* OK, set up the swap map and apply the bad block list */
1944	swap_map = vmalloc(maxpages);
1945	if (!swap_map) {
1946		error = -ENOMEM;
1947		goto bad_swap;
1948	}
1949
1950	memset(swap_map, 0, maxpages);
1951	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1952		int page_nr = swap_header->info.badpages[i];
1953		if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1954			error = -EINVAL;
1955			goto bad_swap;
1956		}
1957		swap_map[page_nr] = SWAP_MAP_BAD;
1958	}
1959
1960	error = swap_cgroup_swapon(type, maxpages);
1961	if (error)
1962		goto bad_swap;
1963
1964	nr_good_pages = swap_header->info.last_page -
1965			swap_header->info.nr_badpages -
1966			1 /* header page */;
1967
1968	if (nr_good_pages) {
1969		swap_map[0] = SWAP_MAP_BAD;
1970		p->max = maxpages;
1971		p->pages = nr_good_pages;
1972		nr_extents = setup_swap_extents(p, &span);
1973		if (nr_extents < 0) {
1974			error = nr_extents;
1975			goto bad_swap;
1976		}
1977		nr_good_pages = p->pages;
1978	}
1979	if (!nr_good_pages) {
1980		printk(KERN_WARNING "Empty swap-file\n");
1981		error = -EINVAL;
1982		goto bad_swap;
1983	}
1984
1985	if (p->bdev) {
1986		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1987			p->flags |= SWP_SOLIDSTATE;
1988			p->cluster_next = 1 + (random32() % p->highest_bit);
1989		}
1990		if (discard_swap(p) == 0)
1991			p->flags |= SWP_DISCARDABLE;
1992	}
1993
1994	mutex_lock(&swapon_mutex);
1995	spin_lock(&swap_lock);
1996	if (swap_flags & SWAP_FLAG_PREFER)
1997		p->prio =
1998		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1999	else
2000		p->prio = --least_priority;
2001	p->swap_map = swap_map;
2002	p->flags |= SWP_WRITEOK;
2003	nr_swap_pages += nr_good_pages;
2004	total_swap_pages += nr_good_pages;
2005
2006	printk(KERN_INFO "Adding %uk swap on %s.  "
2007			"Priority:%d extents:%d across:%lluk %s%s\n",
2008		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2009		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2010		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2011		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2012
2013	/* insert swap space into swap_list: */
2014	prev = -1;
2015	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2016		if (p->prio >= swap_info[i]->prio)
2017			break;
2018		prev = i;
2019	}
2020	p->next = i;
2021	if (prev < 0)
2022		swap_list.head = swap_list.next = type;
2023	else
2024		swap_info[prev]->next = type;
2025	spin_unlock(&swap_lock);
2026	mutex_unlock(&swapon_mutex);
2027	error = 0;
2028	goto out;
2029bad_swap:
2030	if (bdev) {
2031		set_blocksize(bdev, p->old_block_size);
2032		bd_release(bdev);
2033	}
2034	destroy_swap_extents(p);
2035	swap_cgroup_swapoff(type);
2036bad_swap_2:
2037	spin_lock(&swap_lock);
2038	p->swap_file = NULL;
2039	p->flags = 0;
2040	spin_unlock(&swap_lock);
2041	vfree(swap_map);
2042	if (swap_file)
2043		filp_close(swap_file, NULL);
2044out:
2045	if (page && !IS_ERR(page)) {
2046		kunmap(page);
2047		page_cache_release(page);
2048	}
2049	if (name)
2050		putname(name);
2051	if (did_down) {
2052		if (!error)
2053			inode->i_flags |= S_SWAPFILE;
2054		mutex_unlock(&inode->i_mutex);
2055	}
2056	return error;
2057}
2058
2059void si_swapinfo(struct sysinfo *val)
2060{
2061	unsigned int type;
2062	unsigned long nr_to_be_unused = 0;
2063
2064	spin_lock(&swap_lock);
2065	for (type = 0; type < nr_swapfiles; type++) {
2066		struct swap_info_struct *si = swap_info[type];
2067
2068		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2069			nr_to_be_unused += si->inuse_pages;
2070	}
2071	val->freeswap = nr_swap_pages + nr_to_be_unused;
2072	val->totalswap = total_swap_pages + nr_to_be_unused;
2073	spin_unlock(&swap_lock);
2074}
2075
2076/*
2077 * Verify that a swap entry is valid and increment its swap map count.
2078 *
2079 * Returns error code in following case.
2080 * - success -> 0
2081 * - swp_entry is invalid -> EINVAL
2082 * - swp_entry is migration entry -> EINVAL
2083 * - swap-cache reference is requested but there is already one. -> EEXIST
2084 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2085 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2086 */
2087static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2088{
2089	struct swap_info_struct *p;
2090	unsigned long offset, type;
2091	unsigned char count;
2092	unsigned char has_cache;
2093	int err = -EINVAL;
2094
2095	if (non_swap_entry(entry))
2096		goto out;
2097
2098	type = swp_type(entry);
2099	if (type >= nr_swapfiles)
2100		goto bad_file;
2101	p = swap_info[type];
2102	offset = swp_offset(entry);
2103
2104	spin_lock(&swap_lock);
2105	if (unlikely(offset >= p->max))
2106		goto unlock_out;
2107
2108	count = p->swap_map[offset];
2109	has_cache = count & SWAP_HAS_CACHE;
2110	count &= ~SWAP_HAS_CACHE;
2111	err = 0;
2112
2113	if (usage == SWAP_HAS_CACHE) {
2114
2115		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2116		if (!has_cache && count)
2117			has_cache = SWAP_HAS_CACHE;
2118		else if (has_cache)		/* someone else added cache */
2119			err = -EEXIST;
2120		else				/* no users remaining */
2121			err = -ENOENT;
2122
2123	} else if (count || has_cache) {
2124
2125		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2126			count += usage;
2127		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2128			err = -EINVAL;
2129		else if (swap_count_continued(p, offset, count))
2130			count = COUNT_CONTINUED;
2131		else
2132			err = -ENOMEM;
2133	} else
2134		err = -ENOENT;			/* unused swap entry */
2135
2136	p->swap_map[offset] = count | has_cache;
2137
2138unlock_out:
2139	spin_unlock(&swap_lock);
2140out:
2141	return err;
2142
2143bad_file:
2144	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2145	goto out;
2146}
2147
2148/*
2149 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2150 * (in which case its reference count is never incremented).
2151 */
2152void swap_shmem_alloc(swp_entry_t entry)
2153{
2154	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2155}
2156
2157/*
2158 * increase reference count of swap entry by 1.
2159 */
2160int swap_duplicate(swp_entry_t entry)
2161{
2162	int err = 0;
2163
2164	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2165		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2166	return err;
2167}
2168
2169/*
2170 * @entry: swap entry for which we allocate swap cache.
2171 *
2172 * Called when allocating swap cache for existing swap entry,
2173 * This can return error codes. Returns 0 at success.
2174 * -EBUSY means there is a swap cache.
2175 * Note: return code is different from swap_duplicate().
2176 */
2177int swapcache_prepare(swp_entry_t entry)
2178{
2179	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2180}
2181
2182/*
2183 * swap_lock prevents swap_map being freed. Don't grab an extra
2184 * reference on the swaphandle, it doesn't matter if it becomes unused.
2185 */
2186int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2187{
2188	struct swap_info_struct *si;
2189	int our_page_cluster = page_cluster;
2190	pgoff_t target, toff;
2191	pgoff_t base, end;
2192	int nr_pages = 0;
2193
2194	if (!our_page_cluster)	/* no readahead */
2195		return 0;
2196
2197	si = swap_info[swp_type(entry)];
2198	target = swp_offset(entry);
2199	base = (target >> our_page_cluster) << our_page_cluster;
2200	end = base + (1 << our_page_cluster);
2201	if (!base)		/* first page is swap header */
2202		base++;
2203
2204	spin_lock(&swap_lock);
2205	if (end > si->max)	/* don't go beyond end of map */
2206		end = si->max;
2207
2208	/* Count contiguous allocated slots above our target */
2209	for (toff = target; ++toff < end; nr_pages++) {
2210		/* Don't read in free or bad pages */
2211		if (!si->swap_map[toff])
2212			break;
2213		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2214			break;
2215	}
2216	/* Count contiguous allocated slots below our target */
2217	for (toff = target; --toff >= base; nr_pages++) {
2218		/* Don't read in free or bad pages */
2219		if (!si->swap_map[toff])
2220			break;
2221		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2222			break;
2223	}
2224	spin_unlock(&swap_lock);
2225
2226	/*
2227	 * Indicate starting offset, and return number of pages to get:
2228	 * if only 1, say 0, since there's then no readahead to be done.
2229	 */
2230	*offset = ++toff;
2231	return nr_pages? ++nr_pages: 0;
2232}
2233
2234/*
2235 * add_swap_count_continuation - called when a swap count is duplicated
2236 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2237 * page of the original vmalloc'ed swap_map, to hold the continuation count
2238 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2239 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2240 *
2241 * These continuation pages are seldom referenced: the common paths all work
2242 * on the original swap_map, only referring to a continuation page when the
2243 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2244 *
2245 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2246 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2247 * can be called after dropping locks.
2248 */
2249int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2250{
2251	struct swap_info_struct *si;
2252	struct page *head;
2253	struct page *page;
2254	struct page *list_page;
2255	pgoff_t offset;
2256	unsigned char count;
2257
2258	/*
2259	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2260	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2261	 */
2262	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2263
2264	si = swap_info_get(entry);
2265	if (!si) {
2266		/*
2267		 * An acceptable race has occurred since the failing
2268		 * __swap_duplicate(): the swap entry has been freed,
2269		 * perhaps even the whole swap_map cleared for swapoff.
2270		 */
2271		goto outer;
2272	}
2273
2274	offset = swp_offset(entry);
2275	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2276
2277	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2278		/*
2279		 * The higher the swap count, the more likely it is that tasks
2280		 * will race to add swap count continuation: we need to avoid
2281		 * over-provisioning.
2282		 */
2283		goto out;
2284	}
2285
2286	if (!page) {
2287		spin_unlock(&swap_lock);
2288		return -ENOMEM;
2289	}
2290
2291	/*
2292	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2293	 * no architecture is using highmem pages for kernel pagetables: so it
2294	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2295	 */
2296	head = vmalloc_to_page(si->swap_map + offset);
2297	offset &= ~PAGE_MASK;
2298
2299	/*
2300	 * Page allocation does not initialize the page's lru field,
2301	 * but it does always reset its private field.
2302	 */
2303	if (!page_private(head)) {
2304		BUG_ON(count & COUNT_CONTINUED);
2305		INIT_LIST_HEAD(&head->lru);
2306		set_page_private(head, SWP_CONTINUED);
2307		si->flags |= SWP_CONTINUED;
2308	}
2309
2310	list_for_each_entry(list_page, &head->lru, lru) {
2311		unsigned char *map;
2312
2313		/*
2314		 * If the previous map said no continuation, but we've found
2315		 * a continuation page, free our allocation and use this one.
2316		 */
2317		if (!(count & COUNT_CONTINUED))
2318			goto out;
2319
2320		map = kmap_atomic(list_page, KM_USER0) + offset;
2321		count = *map;
2322		kunmap_atomic(map, KM_USER0);
2323
2324		/*
2325		 * If this continuation count now has some space in it,
2326		 * free our allocation and use this one.
2327		 */
2328		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2329			goto out;
2330	}
2331
2332	list_add_tail(&page->lru, &head->lru);
2333	page = NULL;			/* now it's attached, don't free it */
2334out:
2335	spin_unlock(&swap_lock);
2336outer:
2337	if (page)
2338		__free_page(page);
2339	return 0;
2340}
2341
2342/*
2343 * swap_count_continued - when the original swap_map count is incremented
2344 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2345 * into, carry if so, or else fail until a new continuation page is allocated;
2346 * when the original swap_map count is decremented from 0 with continuation,
2347 * borrow from the continuation and report whether it still holds more.
2348 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2349 */
2350static bool swap_count_continued(struct swap_info_struct *si,
2351				 pgoff_t offset, unsigned char count)
2352{
2353	struct page *head;
2354	struct page *page;
2355	unsigned char *map;
2356
2357	head = vmalloc_to_page(si->swap_map + offset);
2358	if (page_private(head) != SWP_CONTINUED) {
2359		BUG_ON(count & COUNT_CONTINUED);
2360		return false;		/* need to add count continuation */
2361	}
2362
2363	offset &= ~PAGE_MASK;
2364	page = list_entry(head->lru.next, struct page, lru);
2365	map = kmap_atomic(page, KM_USER0) + offset;
2366
2367	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2368		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2369
2370	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2371		/*
2372		 * Think of how you add 1 to 999
2373		 */
2374		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2375			kunmap_atomic(map, KM_USER0);
2376			page = list_entry(page->lru.next, struct page, lru);
2377			BUG_ON(page == head);
2378			map = kmap_atomic(page, KM_USER0) + offset;
2379		}
2380		if (*map == SWAP_CONT_MAX) {
2381			kunmap_atomic(map, KM_USER0);
2382			page = list_entry(page->lru.next, struct page, lru);
2383			if (page == head)
2384				return false;	/* add count continuation */
2385			map = kmap_atomic(page, KM_USER0) + offset;
2386init_map:		*map = 0;		/* we didn't zero the page */
2387		}
2388		*map += 1;
2389		kunmap_atomic(map, KM_USER0);
2390		page = list_entry(page->lru.prev, struct page, lru);
2391		while (page != head) {
2392			map = kmap_atomic(page, KM_USER0) + offset;
2393			*map = COUNT_CONTINUED;
2394			kunmap_atomic(map, KM_USER0);
2395			page = list_entry(page->lru.prev, struct page, lru);
2396		}
2397		return true;			/* incremented */
2398
2399	} else {				/* decrementing */
2400		/*
2401		 * Think of how you subtract 1 from 1000
2402		 */
2403		BUG_ON(count != COUNT_CONTINUED);
2404		while (*map == COUNT_CONTINUED) {
2405			kunmap_atomic(map, KM_USER0);
2406			page = list_entry(page->lru.next, struct page, lru);
2407			BUG_ON(page == head);
2408			map = kmap_atomic(page, KM_USER0) + offset;
2409		}
2410		BUG_ON(*map == 0);
2411		*map -= 1;
2412		if (*map == 0)
2413			count = 0;
2414		kunmap_atomic(map, KM_USER0);
2415		page = list_entry(page->lru.prev, struct page, lru);
2416		while (page != head) {
2417			map = kmap_atomic(page, KM_USER0) + offset;
2418			*map = SWAP_CONT_MAX | count;
2419			count = COUNT_CONTINUED;
2420			kunmap_atomic(map, KM_USER0);
2421			page = list_entry(page->lru.prev, struct page, lru);
2422		}
2423		return count == COUNT_CONTINUED;
2424	}
2425}
2426
2427/*
2428 * free_swap_count_continuations - swapoff free all the continuation pages
2429 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2430 */
2431static void free_swap_count_continuations(struct swap_info_struct *si)
2432{
2433	pgoff_t offset;
2434
2435	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2436		struct page *head;
2437		head = vmalloc_to_page(si->swap_map + offset);
2438		if (page_private(head)) {
2439			struct list_head *this, *next;
2440			list_for_each_safe(this, next, &head->lru) {
2441				struct page *page;
2442				page = list_entry(this, struct page, lru);
2443				list_del(this);
2444				__free_page(page);
2445			}
2446		}
2447	}
2448}
2449