swapfile.c revision 6eb396dc4a9781c5e7951143ab56ce5710687ab3
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/config.h>
9#include <linux/mm.h>
10#include <linux/hugetlb.h>
11#include <linux/mman.h>
12#include <linux/slab.h>
13#include <linux/kernel_stat.h>
14#include <linux/swap.h>
15#include <linux/vmalloc.h>
16#include <linux/pagemap.h>
17#include <linux/namei.h>
18#include <linux/shm.h>
19#include <linux/blkdev.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
28#include <linux/syscalls.h>
29
30#include <asm/pgtable.h>
31#include <asm/tlbflush.h>
32#include <linux/swapops.h>
33
34DEFINE_SPINLOCK(swaplock);
35unsigned int nr_swapfiles;
36long total_swap_pages;
37static int swap_overflow;
38
39EXPORT_SYMBOL(total_swap_pages);
40
41static const char Bad_file[] = "Bad swap file entry ";
42static const char Unused_file[] = "Unused swap file entry ";
43static const char Bad_offset[] = "Bad swap offset entry ";
44static const char Unused_offset[] = "Unused swap offset entry ";
45
46struct swap_list_t swap_list = {-1, -1};
47
48struct swap_info_struct swap_info[MAX_SWAPFILES];
49
50static DECLARE_MUTEX(swapon_sem);
51
52/*
53 * We need this because the bdev->unplug_fn can sleep and we cannot
54 * hold swap_list_lock while calling the unplug_fn. And swap_list_lock
55 * cannot be turned into a semaphore.
56 */
57static DECLARE_RWSEM(swap_unplug_sem);
58
59#define SWAPFILE_CLUSTER 256
60
61void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
62{
63	swp_entry_t entry;
64
65	down_read(&swap_unplug_sem);
66	entry.val = page->private;
67	if (PageSwapCache(page)) {
68		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
69		struct backing_dev_info *bdi;
70
71		/*
72		 * If the page is removed from swapcache from under us (with a
73		 * racy try_to_unuse/swapoff) we need an additional reference
74		 * count to avoid reading garbage from page->private above. If
75		 * the WARN_ON triggers during a swapoff it maybe the race
76		 * condition and it's harmless. However if it triggers without
77		 * swapoff it signals a problem.
78		 */
79		WARN_ON(page_count(page) <= 1);
80
81		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
82		blk_run_backing_dev(bdi, page);
83	}
84	up_read(&swap_unplug_sem);
85}
86
87static inline unsigned long scan_swap_map(struct swap_info_struct *si)
88{
89	unsigned long offset;
90	/*
91	 * We try to cluster swap pages by allocating them
92	 * sequentially in swap.  Once we've allocated
93	 * SWAPFILE_CLUSTER pages this way, however, we resort to
94	 * first-free allocation, starting a new cluster.  This
95	 * prevents us from scattering swap pages all over the entire
96	 * swap partition, so that we reduce overall disk seek times
97	 * between swap pages.  -- sct */
98	if (si->cluster_nr) {
99		while (si->cluster_next <= si->highest_bit) {
100			offset = si->cluster_next++;
101			if (si->swap_map[offset])
102				continue;
103			si->cluster_nr--;
104			goto got_page;
105		}
106	}
107	si->cluster_nr = SWAPFILE_CLUSTER;
108
109	/* try to find an empty (even not aligned) cluster. */
110	offset = si->lowest_bit;
111 check_next_cluster:
112	if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit)
113	{
114		unsigned long nr;
115		for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++)
116			if (si->swap_map[nr])
117			{
118				offset = nr+1;
119				goto check_next_cluster;
120			}
121		/* We found a completly empty cluster, so start
122		 * using it.
123		 */
124		goto got_page;
125	}
126	/* No luck, so now go finegrined as usual. -Andrea */
127	for (offset = si->lowest_bit; offset <= si->highest_bit ; offset++) {
128		if (si->swap_map[offset])
129			continue;
130		si->lowest_bit = offset+1;
131	got_page:
132		if (offset == si->lowest_bit)
133			si->lowest_bit++;
134		if (offset == si->highest_bit)
135			si->highest_bit--;
136		if (si->lowest_bit > si->highest_bit) {
137			si->lowest_bit = si->max;
138			si->highest_bit = 0;
139		}
140		si->swap_map[offset] = 1;
141		si->inuse_pages++;
142		nr_swap_pages--;
143		si->cluster_next = offset+1;
144		return offset;
145	}
146	si->lowest_bit = si->max;
147	si->highest_bit = 0;
148	return 0;
149}
150
151swp_entry_t get_swap_page(void)
152{
153	struct swap_info_struct * p;
154	unsigned long offset;
155	swp_entry_t entry;
156	int type, wrapped = 0;
157
158	entry.val = 0;	/* Out of memory */
159	swap_list_lock();
160	type = swap_list.next;
161	if (type < 0)
162		goto out;
163	if (nr_swap_pages <= 0)
164		goto out;
165
166	while (1) {
167		p = &swap_info[type];
168		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
169			swap_device_lock(p);
170			offset = scan_swap_map(p);
171			swap_device_unlock(p);
172			if (offset) {
173				entry = swp_entry(type,offset);
174				type = swap_info[type].next;
175				if (type < 0 ||
176					p->prio != swap_info[type].prio) {
177						swap_list.next = swap_list.head;
178				} else {
179					swap_list.next = type;
180				}
181				goto out;
182			}
183		}
184		type = p->next;
185		if (!wrapped) {
186			if (type < 0 || p->prio != swap_info[type].prio) {
187				type = swap_list.head;
188				wrapped = 1;
189			}
190		} else
191			if (type < 0)
192				goto out;	/* out of swap space */
193	}
194out:
195	swap_list_unlock();
196	return entry;
197}
198
199static struct swap_info_struct * swap_info_get(swp_entry_t entry)
200{
201	struct swap_info_struct * p;
202	unsigned long offset, type;
203
204	if (!entry.val)
205		goto out;
206	type = swp_type(entry);
207	if (type >= nr_swapfiles)
208		goto bad_nofile;
209	p = & swap_info[type];
210	if (!(p->flags & SWP_USED))
211		goto bad_device;
212	offset = swp_offset(entry);
213	if (offset >= p->max)
214		goto bad_offset;
215	if (!p->swap_map[offset])
216		goto bad_free;
217	swap_list_lock();
218	if (p->prio > swap_info[swap_list.next].prio)
219		swap_list.next = type;
220	swap_device_lock(p);
221	return p;
222
223bad_free:
224	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
225	goto out;
226bad_offset:
227	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
228	goto out;
229bad_device:
230	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
231	goto out;
232bad_nofile:
233	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
234out:
235	return NULL;
236}
237
238static void swap_info_put(struct swap_info_struct * p)
239{
240	swap_device_unlock(p);
241	swap_list_unlock();
242}
243
244static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
245{
246	int count = p->swap_map[offset];
247
248	if (count < SWAP_MAP_MAX) {
249		count--;
250		p->swap_map[offset] = count;
251		if (!count) {
252			if (offset < p->lowest_bit)
253				p->lowest_bit = offset;
254			if (offset > p->highest_bit)
255				p->highest_bit = offset;
256			nr_swap_pages++;
257			p->inuse_pages--;
258		}
259	}
260	return count;
261}
262
263/*
264 * Caller has made sure that the swapdevice corresponding to entry
265 * is still around or has not been recycled.
266 */
267void swap_free(swp_entry_t entry)
268{
269	struct swap_info_struct * p;
270
271	p = swap_info_get(entry);
272	if (p) {
273		swap_entry_free(p, swp_offset(entry));
274		swap_info_put(p);
275	}
276}
277
278/*
279 * How many references to page are currently swapped out?
280 */
281static inline int page_swapcount(struct page *page)
282{
283	int count = 0;
284	struct swap_info_struct *p;
285	swp_entry_t entry;
286
287	entry.val = page->private;
288	p = swap_info_get(entry);
289	if (p) {
290		/* Subtract the 1 for the swap cache itself */
291		count = p->swap_map[swp_offset(entry)] - 1;
292		swap_info_put(p);
293	}
294	return count;
295}
296
297/*
298 * We can use this swap cache entry directly
299 * if there are no other references to it.
300 */
301int can_share_swap_page(struct page *page)
302{
303	int count;
304
305	BUG_ON(!PageLocked(page));
306	count = page_mapcount(page);
307	if (count <= 1 && PageSwapCache(page))
308		count += page_swapcount(page);
309	return count == 1;
310}
311
312/*
313 * Work out if there are any other processes sharing this
314 * swap cache page. Free it if you can. Return success.
315 */
316int remove_exclusive_swap_page(struct page *page)
317{
318	int retval;
319	struct swap_info_struct * p;
320	swp_entry_t entry;
321
322	BUG_ON(PagePrivate(page));
323	BUG_ON(!PageLocked(page));
324
325	if (!PageSwapCache(page))
326		return 0;
327	if (PageWriteback(page))
328		return 0;
329	if (page_count(page) != 2) /* 2: us + cache */
330		return 0;
331
332	entry.val = page->private;
333	p = swap_info_get(entry);
334	if (!p)
335		return 0;
336
337	/* Is the only swap cache user the cache itself? */
338	retval = 0;
339	if (p->swap_map[swp_offset(entry)] == 1) {
340		/* Recheck the page count with the swapcache lock held.. */
341		write_lock_irq(&swapper_space.tree_lock);
342		if ((page_count(page) == 2) && !PageWriteback(page)) {
343			__delete_from_swap_cache(page);
344			SetPageDirty(page);
345			retval = 1;
346		}
347		write_unlock_irq(&swapper_space.tree_lock);
348	}
349	swap_info_put(p);
350
351	if (retval) {
352		swap_free(entry);
353		page_cache_release(page);
354	}
355
356	return retval;
357}
358
359/*
360 * Free the swap entry like above, but also try to
361 * free the page cache entry if it is the last user.
362 */
363void free_swap_and_cache(swp_entry_t entry)
364{
365	struct swap_info_struct * p;
366	struct page *page = NULL;
367
368	p = swap_info_get(entry);
369	if (p) {
370		if (swap_entry_free(p, swp_offset(entry)) == 1)
371			page = find_trylock_page(&swapper_space, entry.val);
372		swap_info_put(p);
373	}
374	if (page) {
375		int one_user;
376
377		BUG_ON(PagePrivate(page));
378		page_cache_get(page);
379		one_user = (page_count(page) == 2);
380		/* Only cache user (+us), or swap space full? Free it! */
381		if (!PageWriteback(page) && (one_user || vm_swap_full())) {
382			delete_from_swap_cache(page);
383			SetPageDirty(page);
384		}
385		unlock_page(page);
386		page_cache_release(page);
387	}
388}
389
390/*
391 * Always set the resulting pte to be nowrite (the same as COW pages
392 * after one process has exited).  We don't know just how many PTEs will
393 * share this swap entry, so be cautious and let do_wp_page work out
394 * what to do if a write is requested later.
395 *
396 * vma->vm_mm->page_table_lock is held.
397 */
398static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
399		unsigned long addr, swp_entry_t entry, struct page *page)
400{
401	inc_mm_counter(vma->vm_mm, rss);
402	get_page(page);
403	set_pte_at(vma->vm_mm, addr, pte,
404		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
405	page_add_anon_rmap(page, vma, addr);
406	swap_free(entry);
407	/*
408	 * Move the page to the active list so it is not
409	 * immediately swapped out again after swapon.
410	 */
411	activate_page(page);
412}
413
414static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
415				unsigned long addr, unsigned long end,
416				swp_entry_t entry, struct page *page)
417{
418	pte_t *pte;
419	pte_t swp_pte = swp_entry_to_pte(entry);
420
421	pte = pte_offset_map(pmd, addr);
422	do {
423		/*
424		 * swapoff spends a _lot_ of time in this loop!
425		 * Test inline before going to call unuse_pte.
426		 */
427		if (unlikely(pte_same(*pte, swp_pte))) {
428			unuse_pte(vma, pte, addr, entry, page);
429			pte_unmap(pte);
430			return 1;
431		}
432	} while (pte++, addr += PAGE_SIZE, addr != end);
433	pte_unmap(pte - 1);
434	return 0;
435}
436
437static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
438				unsigned long addr, unsigned long end,
439				swp_entry_t entry, struct page *page)
440{
441	pmd_t *pmd;
442	unsigned long next;
443
444	pmd = pmd_offset(pud, addr);
445	do {
446		next = pmd_addr_end(addr, end);
447		if (pmd_none_or_clear_bad(pmd))
448			continue;
449		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
450			return 1;
451	} while (pmd++, addr = next, addr != end);
452	return 0;
453}
454
455static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
456				unsigned long addr, unsigned long end,
457				swp_entry_t entry, struct page *page)
458{
459	pud_t *pud;
460	unsigned long next;
461
462	pud = pud_offset(pgd, addr);
463	do {
464		next = pud_addr_end(addr, end);
465		if (pud_none_or_clear_bad(pud))
466			continue;
467		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
468			return 1;
469	} while (pud++, addr = next, addr != end);
470	return 0;
471}
472
473static int unuse_vma(struct vm_area_struct *vma,
474				swp_entry_t entry, struct page *page)
475{
476	pgd_t *pgd;
477	unsigned long addr, end, next;
478
479	if (page->mapping) {
480		addr = page_address_in_vma(page, vma);
481		if (addr == -EFAULT)
482			return 0;
483		else
484			end = addr + PAGE_SIZE;
485	} else {
486		addr = vma->vm_start;
487		end = vma->vm_end;
488	}
489
490	pgd = pgd_offset(vma->vm_mm, addr);
491	do {
492		next = pgd_addr_end(addr, end);
493		if (pgd_none_or_clear_bad(pgd))
494			continue;
495		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
496			return 1;
497	} while (pgd++, addr = next, addr != end);
498	return 0;
499}
500
501static int unuse_mm(struct mm_struct *mm,
502				swp_entry_t entry, struct page *page)
503{
504	struct vm_area_struct *vma;
505
506	if (!down_read_trylock(&mm->mmap_sem)) {
507		/*
508		 * Activate page so shrink_cache is unlikely to unmap its
509		 * ptes while lock is dropped, so swapoff can make progress.
510		 */
511		activate_page(page);
512		unlock_page(page);
513		down_read(&mm->mmap_sem);
514		lock_page(page);
515	}
516	spin_lock(&mm->page_table_lock);
517	for (vma = mm->mmap; vma; vma = vma->vm_next) {
518		if (vma->anon_vma && unuse_vma(vma, entry, page))
519			break;
520	}
521	spin_unlock(&mm->page_table_lock);
522	up_read(&mm->mmap_sem);
523	/*
524	 * Currently unuse_mm cannot fail, but leave error handling
525	 * at call sites for now, since we change it from time to time.
526	 */
527	return 0;
528}
529
530/*
531 * Scan swap_map from current position to next entry still in use.
532 * Recycle to start on reaching the end, returning 0 when empty.
533 */
534static unsigned int find_next_to_unuse(struct swap_info_struct *si,
535					unsigned int prev)
536{
537	unsigned int max = si->max;
538	unsigned int i = prev;
539	int count;
540
541	/*
542	 * No need for swap_device_lock(si) here: we're just looking
543	 * for whether an entry is in use, not modifying it; false
544	 * hits are okay, and sys_swapoff() has already prevented new
545	 * allocations from this area (while holding swap_list_lock()).
546	 */
547	for (;;) {
548		if (++i >= max) {
549			if (!prev) {
550				i = 0;
551				break;
552			}
553			/*
554			 * No entries in use at top of swap_map,
555			 * loop back to start and recheck there.
556			 */
557			max = prev + 1;
558			prev = 0;
559			i = 1;
560		}
561		count = si->swap_map[i];
562		if (count && count != SWAP_MAP_BAD)
563			break;
564	}
565	return i;
566}
567
568/*
569 * We completely avoid races by reading each swap page in advance,
570 * and then search for the process using it.  All the necessary
571 * page table adjustments can then be made atomically.
572 */
573static int try_to_unuse(unsigned int type)
574{
575	struct swap_info_struct * si = &swap_info[type];
576	struct mm_struct *start_mm;
577	unsigned short *swap_map;
578	unsigned short swcount;
579	struct page *page;
580	swp_entry_t entry;
581	unsigned int i = 0;
582	int retval = 0;
583	int reset_overflow = 0;
584	int shmem;
585
586	/*
587	 * When searching mms for an entry, a good strategy is to
588	 * start at the first mm we freed the previous entry from
589	 * (though actually we don't notice whether we or coincidence
590	 * freed the entry).  Initialize this start_mm with a hold.
591	 *
592	 * A simpler strategy would be to start at the last mm we
593	 * freed the previous entry from; but that would take less
594	 * advantage of mmlist ordering, which clusters forked mms
595	 * together, child after parent.  If we race with dup_mmap(), we
596	 * prefer to resolve parent before child, lest we miss entries
597	 * duplicated after we scanned child: using last mm would invert
598	 * that.  Though it's only a serious concern when an overflowed
599	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
600	 */
601	start_mm = &init_mm;
602	atomic_inc(&init_mm.mm_users);
603
604	/*
605	 * Keep on scanning until all entries have gone.  Usually,
606	 * one pass through swap_map is enough, but not necessarily:
607	 * there are races when an instance of an entry might be missed.
608	 */
609	while ((i = find_next_to_unuse(si, i)) != 0) {
610		if (signal_pending(current)) {
611			retval = -EINTR;
612			break;
613		}
614
615		/*
616		 * Get a page for the entry, using the existing swap
617		 * cache page if there is one.  Otherwise, get a clean
618		 * page and read the swap into it.
619		 */
620		swap_map = &si->swap_map[i];
621		entry = swp_entry(type, i);
622		page = read_swap_cache_async(entry, NULL, 0);
623		if (!page) {
624			/*
625			 * Either swap_duplicate() failed because entry
626			 * has been freed independently, and will not be
627			 * reused since sys_swapoff() already disabled
628			 * allocation from here, or alloc_page() failed.
629			 */
630			if (!*swap_map)
631				continue;
632			retval = -ENOMEM;
633			break;
634		}
635
636		/*
637		 * Don't hold on to start_mm if it looks like exiting.
638		 */
639		if (atomic_read(&start_mm->mm_users) == 1) {
640			mmput(start_mm);
641			start_mm = &init_mm;
642			atomic_inc(&init_mm.mm_users);
643		}
644
645		/*
646		 * Wait for and lock page.  When do_swap_page races with
647		 * try_to_unuse, do_swap_page can handle the fault much
648		 * faster than try_to_unuse can locate the entry.  This
649		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
650		 * defer to do_swap_page in such a case - in some tests,
651		 * do_swap_page and try_to_unuse repeatedly compete.
652		 */
653		wait_on_page_locked(page);
654		wait_on_page_writeback(page);
655		lock_page(page);
656		wait_on_page_writeback(page);
657
658		/*
659		 * Remove all references to entry.
660		 * Whenever we reach init_mm, there's no address space
661		 * to search, but use it as a reminder to search shmem.
662		 */
663		shmem = 0;
664		swcount = *swap_map;
665		if (swcount > 1) {
666			if (start_mm == &init_mm)
667				shmem = shmem_unuse(entry, page);
668			else
669				retval = unuse_mm(start_mm, entry, page);
670		}
671		if (*swap_map > 1) {
672			int set_start_mm = (*swap_map >= swcount);
673			struct list_head *p = &start_mm->mmlist;
674			struct mm_struct *new_start_mm = start_mm;
675			struct mm_struct *prev_mm = start_mm;
676			struct mm_struct *mm;
677
678			atomic_inc(&new_start_mm->mm_users);
679			atomic_inc(&prev_mm->mm_users);
680			spin_lock(&mmlist_lock);
681			while (*swap_map > 1 && !retval &&
682					(p = p->next) != &start_mm->mmlist) {
683				mm = list_entry(p, struct mm_struct, mmlist);
684				if (atomic_inc_return(&mm->mm_users) == 1) {
685					atomic_dec(&mm->mm_users);
686					continue;
687				}
688				spin_unlock(&mmlist_lock);
689				mmput(prev_mm);
690				prev_mm = mm;
691
692				cond_resched();
693
694				swcount = *swap_map;
695				if (swcount <= 1)
696					;
697				else if (mm == &init_mm) {
698					set_start_mm = 1;
699					shmem = shmem_unuse(entry, page);
700				} else
701					retval = unuse_mm(mm, entry, page);
702				if (set_start_mm && *swap_map < swcount) {
703					mmput(new_start_mm);
704					atomic_inc(&mm->mm_users);
705					new_start_mm = mm;
706					set_start_mm = 0;
707				}
708				spin_lock(&mmlist_lock);
709			}
710			spin_unlock(&mmlist_lock);
711			mmput(prev_mm);
712			mmput(start_mm);
713			start_mm = new_start_mm;
714		}
715		if (retval) {
716			unlock_page(page);
717			page_cache_release(page);
718			break;
719		}
720
721		/*
722		 * How could swap count reach 0x7fff when the maximum
723		 * pid is 0x7fff, and there's no way to repeat a swap
724		 * page within an mm (except in shmem, where it's the
725		 * shared object which takes the reference count)?
726		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
727		 *
728		 * If that's wrong, then we should worry more about
729		 * exit_mmap() and do_munmap() cases described above:
730		 * we might be resetting SWAP_MAP_MAX too early here.
731		 * We know "Undead"s can happen, they're okay, so don't
732		 * report them; but do report if we reset SWAP_MAP_MAX.
733		 */
734		if (*swap_map == SWAP_MAP_MAX) {
735			swap_device_lock(si);
736			*swap_map = 1;
737			swap_device_unlock(si);
738			reset_overflow = 1;
739		}
740
741		/*
742		 * If a reference remains (rare), we would like to leave
743		 * the page in the swap cache; but try_to_unmap could
744		 * then re-duplicate the entry once we drop page lock,
745		 * so we might loop indefinitely; also, that page could
746		 * not be swapped out to other storage meanwhile.  So:
747		 * delete from cache even if there's another reference,
748		 * after ensuring that the data has been saved to disk -
749		 * since if the reference remains (rarer), it will be
750		 * read from disk into another page.  Splitting into two
751		 * pages would be incorrect if swap supported "shared
752		 * private" pages, but they are handled by tmpfs files.
753		 *
754		 * Note shmem_unuse already deleted a swappage from
755		 * the swap cache, unless the move to filepage failed:
756		 * in which case it left swappage in cache, lowered its
757		 * swap count to pass quickly through the loops above,
758		 * and now we must reincrement count to try again later.
759		 */
760		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
761			struct writeback_control wbc = {
762				.sync_mode = WB_SYNC_NONE,
763			};
764
765			swap_writepage(page, &wbc);
766			lock_page(page);
767			wait_on_page_writeback(page);
768		}
769		if (PageSwapCache(page)) {
770			if (shmem)
771				swap_duplicate(entry);
772			else
773				delete_from_swap_cache(page);
774		}
775
776		/*
777		 * So we could skip searching mms once swap count went
778		 * to 1, we did not mark any present ptes as dirty: must
779		 * mark page dirty so shrink_list will preserve it.
780		 */
781		SetPageDirty(page);
782		unlock_page(page);
783		page_cache_release(page);
784
785		/*
786		 * Make sure that we aren't completely killing
787		 * interactive performance.
788		 */
789		cond_resched();
790	}
791
792	mmput(start_mm);
793	if (reset_overflow) {
794		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
795		swap_overflow = 0;
796	}
797	return retval;
798}
799
800/*
801 * After a successful try_to_unuse, if no swap is now in use, we know we
802 * can empty the mmlist.  swap_list_lock must be held on entry and exit.
803 * Note that mmlist_lock nests inside swap_list_lock, and an mm must be
804 * added to the mmlist just after page_duplicate - before would be racy.
805 */
806static void drain_mmlist(void)
807{
808	struct list_head *p, *next;
809	unsigned int i;
810
811	for (i = 0; i < nr_swapfiles; i++)
812		if (swap_info[i].inuse_pages)
813			return;
814	spin_lock(&mmlist_lock);
815	list_for_each_safe(p, next, &init_mm.mmlist)
816		list_del_init(p);
817	spin_unlock(&mmlist_lock);
818}
819
820/*
821 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
822 * corresponds to page offset `offset'.
823 */
824sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
825{
826	struct swap_extent *se = sis->curr_swap_extent;
827	struct swap_extent *start_se = se;
828
829	for ( ; ; ) {
830		struct list_head *lh;
831
832		if (se->start_page <= offset &&
833				offset < (se->start_page + se->nr_pages)) {
834			return se->start_block + (offset - se->start_page);
835		}
836		lh = se->list.next;
837		if (lh == &sis->extent_list)
838			lh = lh->next;
839		se = list_entry(lh, struct swap_extent, list);
840		sis->curr_swap_extent = se;
841		BUG_ON(se == start_se);		/* It *must* be present */
842	}
843}
844
845/*
846 * Free all of a swapdev's extent information
847 */
848static void destroy_swap_extents(struct swap_info_struct *sis)
849{
850	while (!list_empty(&sis->extent_list)) {
851		struct swap_extent *se;
852
853		se = list_entry(sis->extent_list.next,
854				struct swap_extent, list);
855		list_del(&se->list);
856		kfree(se);
857	}
858}
859
860/*
861 * Add a block range (and the corresponding page range) into this swapdev's
862 * extent list.  The extent list is kept sorted in page order.
863 *
864 * This function rather assumes that it is called in ascending page order.
865 */
866static int
867add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
868		unsigned long nr_pages, sector_t start_block)
869{
870	struct swap_extent *se;
871	struct swap_extent *new_se;
872	struct list_head *lh;
873
874	lh = sis->extent_list.prev;	/* The highest page extent */
875	if (lh != &sis->extent_list) {
876		se = list_entry(lh, struct swap_extent, list);
877		BUG_ON(se->start_page + se->nr_pages != start_page);
878		if (se->start_block + se->nr_pages == start_block) {
879			/* Merge it */
880			se->nr_pages += nr_pages;
881			return 0;
882		}
883	}
884
885	/*
886	 * No merge.  Insert a new extent, preserving ordering.
887	 */
888	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
889	if (new_se == NULL)
890		return -ENOMEM;
891	new_se->start_page = start_page;
892	new_se->nr_pages = nr_pages;
893	new_se->start_block = start_block;
894
895	list_add_tail(&new_se->list, &sis->extent_list);
896	return 1;
897}
898
899/*
900 * A `swap extent' is a simple thing which maps a contiguous range of pages
901 * onto a contiguous range of disk blocks.  An ordered list of swap extents
902 * is built at swapon time and is then used at swap_writepage/swap_readpage
903 * time for locating where on disk a page belongs.
904 *
905 * If the swapfile is an S_ISBLK block device, a single extent is installed.
906 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
907 * swap files identically.
908 *
909 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
910 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
911 * swapfiles are handled *identically* after swapon time.
912 *
913 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
914 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
915 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
916 * requirements, they are simply tossed out - we will never use those blocks
917 * for swapping.
918 *
919 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
920 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
921 * which will scribble on the fs.
922 *
923 * The amount of disk space which a single swap extent represents varies.
924 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
925 * extents in the list.  To avoid much list walking, we cache the previous
926 * search location in `curr_swap_extent', and start new searches from there.
927 * This is extremely effective.  The average number of iterations in
928 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
929 */
930static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
931{
932	struct inode *inode;
933	unsigned blocks_per_page;
934	unsigned long page_no;
935	unsigned blkbits;
936	sector_t probe_block;
937	sector_t last_block;
938	sector_t lowest_block = -1;
939	sector_t highest_block = 0;
940	int nr_extents = 0;
941	int ret;
942
943	inode = sis->swap_file->f_mapping->host;
944	if (S_ISBLK(inode->i_mode)) {
945		ret = add_swap_extent(sis, 0, sis->max, 0);
946		*span = sis->pages;
947		goto done;
948	}
949
950	blkbits = inode->i_blkbits;
951	blocks_per_page = PAGE_SIZE >> blkbits;
952
953	/*
954	 * Map all the blocks into the extent list.  This code doesn't try
955	 * to be very smart.
956	 */
957	probe_block = 0;
958	page_no = 0;
959	last_block = i_size_read(inode) >> blkbits;
960	while ((probe_block + blocks_per_page) <= last_block &&
961			page_no < sis->max) {
962		unsigned block_in_page;
963		sector_t first_block;
964
965		first_block = bmap(inode, probe_block);
966		if (first_block == 0)
967			goto bad_bmap;
968
969		/*
970		 * It must be PAGE_SIZE aligned on-disk
971		 */
972		if (first_block & (blocks_per_page - 1)) {
973			probe_block++;
974			goto reprobe;
975		}
976
977		for (block_in_page = 1; block_in_page < blocks_per_page;
978					block_in_page++) {
979			sector_t block;
980
981			block = bmap(inode, probe_block + block_in_page);
982			if (block == 0)
983				goto bad_bmap;
984			if (block != first_block + block_in_page) {
985				/* Discontiguity */
986				probe_block++;
987				goto reprobe;
988			}
989		}
990
991		first_block >>= (PAGE_SHIFT - blkbits);
992		if (page_no) {	/* exclude the header page */
993			if (first_block < lowest_block)
994				lowest_block = first_block;
995			if (first_block > highest_block)
996				highest_block = first_block;
997		}
998
999		/*
1000		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1001		 */
1002		ret = add_swap_extent(sis, page_no, 1, first_block);
1003		if (ret < 0)
1004			goto out;
1005		nr_extents += ret;
1006		page_no++;
1007		probe_block += blocks_per_page;
1008reprobe:
1009		continue;
1010	}
1011	ret = nr_extents;
1012	*span = 1 + highest_block - lowest_block;
1013	if (page_no == 0)
1014		page_no = 1;	/* force Empty message */
1015	sis->max = page_no;
1016	sis->pages = page_no - 1;
1017	sis->highest_bit = page_no - 1;
1018done:
1019	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1020					struct swap_extent, list);
1021	goto out;
1022bad_bmap:
1023	printk(KERN_ERR "swapon: swapfile has holes\n");
1024	ret = -EINVAL;
1025out:
1026	return ret;
1027}
1028
1029#if 0	/* We don't need this yet */
1030#include <linux/backing-dev.h>
1031int page_queue_congested(struct page *page)
1032{
1033	struct backing_dev_info *bdi;
1034
1035	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1036
1037	if (PageSwapCache(page)) {
1038		swp_entry_t entry = { .val = page->private };
1039		struct swap_info_struct *sis;
1040
1041		sis = get_swap_info_struct(swp_type(entry));
1042		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1043	} else
1044		bdi = page->mapping->backing_dev_info;
1045	return bdi_write_congested(bdi);
1046}
1047#endif
1048
1049asmlinkage long sys_swapoff(const char __user * specialfile)
1050{
1051	struct swap_info_struct * p = NULL;
1052	unsigned short *swap_map;
1053	struct file *swap_file, *victim;
1054	struct address_space *mapping;
1055	struct inode *inode;
1056	char * pathname;
1057	int i, type, prev;
1058	int err;
1059
1060	if (!capable(CAP_SYS_ADMIN))
1061		return -EPERM;
1062
1063	pathname = getname(specialfile);
1064	err = PTR_ERR(pathname);
1065	if (IS_ERR(pathname))
1066		goto out;
1067
1068	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1069	putname(pathname);
1070	err = PTR_ERR(victim);
1071	if (IS_ERR(victim))
1072		goto out;
1073
1074	mapping = victim->f_mapping;
1075	prev = -1;
1076	swap_list_lock();
1077	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1078		p = swap_info + type;
1079		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1080			if (p->swap_file->f_mapping == mapping)
1081				break;
1082		}
1083		prev = type;
1084	}
1085	if (type < 0) {
1086		err = -EINVAL;
1087		swap_list_unlock();
1088		goto out_dput;
1089	}
1090	if (!security_vm_enough_memory(p->pages))
1091		vm_unacct_memory(p->pages);
1092	else {
1093		err = -ENOMEM;
1094		swap_list_unlock();
1095		goto out_dput;
1096	}
1097	if (prev < 0) {
1098		swap_list.head = p->next;
1099	} else {
1100		swap_info[prev].next = p->next;
1101	}
1102	if (type == swap_list.next) {
1103		/* just pick something that's safe... */
1104		swap_list.next = swap_list.head;
1105	}
1106	nr_swap_pages -= p->pages;
1107	total_swap_pages -= p->pages;
1108	p->flags &= ~SWP_WRITEOK;
1109	swap_list_unlock();
1110	current->flags |= PF_SWAPOFF;
1111	err = try_to_unuse(type);
1112	current->flags &= ~PF_SWAPOFF;
1113
1114	/* wait for any unplug function to finish */
1115	down_write(&swap_unplug_sem);
1116	up_write(&swap_unplug_sem);
1117
1118	if (err) {
1119		/* re-insert swap space back into swap_list */
1120		swap_list_lock();
1121		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1122			if (p->prio >= swap_info[i].prio)
1123				break;
1124		p->next = i;
1125		if (prev < 0)
1126			swap_list.head = swap_list.next = p - swap_info;
1127		else
1128			swap_info[prev].next = p - swap_info;
1129		nr_swap_pages += p->pages;
1130		total_swap_pages += p->pages;
1131		p->flags |= SWP_WRITEOK;
1132		swap_list_unlock();
1133		goto out_dput;
1134	}
1135	destroy_swap_extents(p);
1136	down(&swapon_sem);
1137	swap_list_lock();
1138	drain_mmlist();
1139	swap_device_lock(p);
1140	swap_file = p->swap_file;
1141	p->swap_file = NULL;
1142	p->max = 0;
1143	swap_map = p->swap_map;
1144	p->swap_map = NULL;
1145	p->flags = 0;
1146	swap_device_unlock(p);
1147	swap_list_unlock();
1148	up(&swapon_sem);
1149	vfree(swap_map);
1150	inode = mapping->host;
1151	if (S_ISBLK(inode->i_mode)) {
1152		struct block_device *bdev = I_BDEV(inode);
1153		set_blocksize(bdev, p->old_block_size);
1154		bd_release(bdev);
1155	} else {
1156		down(&inode->i_sem);
1157		inode->i_flags &= ~S_SWAPFILE;
1158		up(&inode->i_sem);
1159	}
1160	filp_close(swap_file, NULL);
1161	err = 0;
1162
1163out_dput:
1164	filp_close(victim, NULL);
1165out:
1166	return err;
1167}
1168
1169#ifdef CONFIG_PROC_FS
1170/* iterator */
1171static void *swap_start(struct seq_file *swap, loff_t *pos)
1172{
1173	struct swap_info_struct *ptr = swap_info;
1174	int i;
1175	loff_t l = *pos;
1176
1177	down(&swapon_sem);
1178
1179	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1180		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1181			continue;
1182		if (!l--)
1183			return ptr;
1184	}
1185
1186	return NULL;
1187}
1188
1189static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1190{
1191	struct swap_info_struct *ptr = v;
1192	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1193
1194	for (++ptr; ptr < endptr; ptr++) {
1195		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1196			continue;
1197		++*pos;
1198		return ptr;
1199	}
1200
1201	return NULL;
1202}
1203
1204static void swap_stop(struct seq_file *swap, void *v)
1205{
1206	up(&swapon_sem);
1207}
1208
1209static int swap_show(struct seq_file *swap, void *v)
1210{
1211	struct swap_info_struct *ptr = v;
1212	struct file *file;
1213	int len;
1214
1215	if (v == swap_info)
1216		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1217
1218	file = ptr->swap_file;
1219	len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1220	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1221		       len < 40 ? 40 - len : 1, " ",
1222		       S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1223				"partition" : "file\t",
1224		       ptr->pages << (PAGE_SHIFT - 10),
1225		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1226		       ptr->prio);
1227	return 0;
1228}
1229
1230static struct seq_operations swaps_op = {
1231	.start =	swap_start,
1232	.next =		swap_next,
1233	.stop =		swap_stop,
1234	.show =		swap_show
1235};
1236
1237static int swaps_open(struct inode *inode, struct file *file)
1238{
1239	return seq_open(file, &swaps_op);
1240}
1241
1242static struct file_operations proc_swaps_operations = {
1243	.open		= swaps_open,
1244	.read		= seq_read,
1245	.llseek		= seq_lseek,
1246	.release	= seq_release,
1247};
1248
1249static int __init procswaps_init(void)
1250{
1251	struct proc_dir_entry *entry;
1252
1253	entry = create_proc_entry("swaps", 0, NULL);
1254	if (entry)
1255		entry->proc_fops = &proc_swaps_operations;
1256	return 0;
1257}
1258__initcall(procswaps_init);
1259#endif /* CONFIG_PROC_FS */
1260
1261/*
1262 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1263 *
1264 * The swapon system call
1265 */
1266asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1267{
1268	struct swap_info_struct * p;
1269	char *name = NULL;
1270	struct block_device *bdev = NULL;
1271	struct file *swap_file = NULL;
1272	struct address_space *mapping;
1273	unsigned int type;
1274	int i, prev;
1275	int error;
1276	static int least_priority;
1277	union swap_header *swap_header = NULL;
1278	int swap_header_version;
1279	unsigned int nr_good_pages = 0;
1280	int nr_extents = 0;
1281	sector_t span;
1282	unsigned long maxpages = 1;
1283	int swapfilesize;
1284	unsigned short *swap_map;
1285	struct page *page = NULL;
1286	struct inode *inode = NULL;
1287	int did_down = 0;
1288
1289	if (!capable(CAP_SYS_ADMIN))
1290		return -EPERM;
1291	swap_list_lock();
1292	p = swap_info;
1293	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1294		if (!(p->flags & SWP_USED))
1295			break;
1296	error = -EPERM;
1297	/*
1298	 * Test if adding another swap device is possible. There are
1299	 * two limiting factors: 1) the number of bits for the swap
1300	 * type swp_entry_t definition and 2) the number of bits for
1301	 * the swap type in the swap ptes as defined by the different
1302	 * architectures. To honor both limitations a swap entry
1303	 * with swap offset 0 and swap type ~0UL is created, encoded
1304	 * to a swap pte, decoded to a swp_entry_t again and finally
1305	 * the swap type part is extracted. This will mask all bits
1306	 * from the initial ~0UL that can't be encoded in either the
1307	 * swp_entry_t or the architecture definition of a swap pte.
1308	 */
1309	if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1310		swap_list_unlock();
1311		goto out;
1312	}
1313	if (type >= nr_swapfiles)
1314		nr_swapfiles = type+1;
1315	INIT_LIST_HEAD(&p->extent_list);
1316	p->flags = SWP_USED;
1317	p->swap_file = NULL;
1318	p->old_block_size = 0;
1319	p->swap_map = NULL;
1320	p->lowest_bit = 0;
1321	p->highest_bit = 0;
1322	p->cluster_nr = 0;
1323	p->inuse_pages = 0;
1324	spin_lock_init(&p->sdev_lock);
1325	p->next = -1;
1326	if (swap_flags & SWAP_FLAG_PREFER) {
1327		p->prio =
1328		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1329	} else {
1330		p->prio = --least_priority;
1331	}
1332	swap_list_unlock();
1333	name = getname(specialfile);
1334	error = PTR_ERR(name);
1335	if (IS_ERR(name)) {
1336		name = NULL;
1337		goto bad_swap_2;
1338	}
1339	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1340	error = PTR_ERR(swap_file);
1341	if (IS_ERR(swap_file)) {
1342		swap_file = NULL;
1343		goto bad_swap_2;
1344	}
1345
1346	p->swap_file = swap_file;
1347	mapping = swap_file->f_mapping;
1348	inode = mapping->host;
1349
1350	error = -EBUSY;
1351	for (i = 0; i < nr_swapfiles; i++) {
1352		struct swap_info_struct *q = &swap_info[i];
1353
1354		if (i == type || !q->swap_file)
1355			continue;
1356		if (mapping == q->swap_file->f_mapping)
1357			goto bad_swap;
1358	}
1359
1360	error = -EINVAL;
1361	if (S_ISBLK(inode->i_mode)) {
1362		bdev = I_BDEV(inode);
1363		error = bd_claim(bdev, sys_swapon);
1364		if (error < 0) {
1365			bdev = NULL;
1366			goto bad_swap;
1367		}
1368		p->old_block_size = block_size(bdev);
1369		error = set_blocksize(bdev, PAGE_SIZE);
1370		if (error < 0)
1371			goto bad_swap;
1372		p->bdev = bdev;
1373	} else if (S_ISREG(inode->i_mode)) {
1374		p->bdev = inode->i_sb->s_bdev;
1375		down(&inode->i_sem);
1376		did_down = 1;
1377		if (IS_SWAPFILE(inode)) {
1378			error = -EBUSY;
1379			goto bad_swap;
1380		}
1381	} else {
1382		goto bad_swap;
1383	}
1384
1385	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1386
1387	/*
1388	 * Read the swap header.
1389	 */
1390	if (!mapping->a_ops->readpage) {
1391		error = -EINVAL;
1392		goto bad_swap;
1393	}
1394	page = read_cache_page(mapping, 0,
1395			(filler_t *)mapping->a_ops->readpage, swap_file);
1396	if (IS_ERR(page)) {
1397		error = PTR_ERR(page);
1398		goto bad_swap;
1399	}
1400	wait_on_page_locked(page);
1401	if (!PageUptodate(page))
1402		goto bad_swap;
1403	kmap(page);
1404	swap_header = page_address(page);
1405
1406	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1407		swap_header_version = 1;
1408	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1409		swap_header_version = 2;
1410	else {
1411		printk("Unable to find swap-space signature\n");
1412		error = -EINVAL;
1413		goto bad_swap;
1414	}
1415
1416	switch (swap_header_version) {
1417	case 1:
1418		printk(KERN_ERR "version 0 swap is no longer supported. "
1419			"Use mkswap -v1 %s\n", name);
1420		error = -EINVAL;
1421		goto bad_swap;
1422	case 2:
1423		/* Check the swap header's sub-version and the size of
1424                   the swap file and bad block lists */
1425		if (swap_header->info.version != 1) {
1426			printk(KERN_WARNING
1427			       "Unable to handle swap header version %d\n",
1428			       swap_header->info.version);
1429			error = -EINVAL;
1430			goto bad_swap;
1431		}
1432
1433		p->lowest_bit  = 1;
1434		/*
1435		 * Find out how many pages are allowed for a single swap
1436		 * device. There are two limiting factors: 1) the number of
1437		 * bits for the swap offset in the swp_entry_t type and
1438		 * 2) the number of bits in the a swap pte as defined by
1439		 * the different architectures. In order to find the
1440		 * largest possible bit mask a swap entry with swap type 0
1441		 * and swap offset ~0UL is created, encoded to a swap pte,
1442		 * decoded to a swp_entry_t again and finally the swap
1443		 * offset is extracted. This will mask all the bits from
1444		 * the initial ~0UL mask that can't be encoded in either
1445		 * the swp_entry_t or the architecture definition of a
1446		 * swap pte.
1447		 */
1448		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1449		if (maxpages > swap_header->info.last_page)
1450			maxpages = swap_header->info.last_page;
1451		p->highest_bit = maxpages - 1;
1452
1453		error = -EINVAL;
1454		if (!maxpages)
1455			goto bad_swap;
1456		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1457			goto bad_swap;
1458		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1459			goto bad_swap;
1460
1461		/* OK, set up the swap map and apply the bad block list */
1462		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1463			error = -ENOMEM;
1464			goto bad_swap;
1465		}
1466
1467		error = 0;
1468		memset(p->swap_map, 0, maxpages * sizeof(short));
1469		for (i=0; i<swap_header->info.nr_badpages; i++) {
1470			int page = swap_header->info.badpages[i];
1471			if (page <= 0 || page >= swap_header->info.last_page)
1472				error = -EINVAL;
1473			else
1474				p->swap_map[page] = SWAP_MAP_BAD;
1475		}
1476		nr_good_pages = swap_header->info.last_page -
1477				swap_header->info.nr_badpages -
1478				1 /* header page */;
1479		if (error)
1480			goto bad_swap;
1481	}
1482
1483	if (swapfilesize && maxpages > swapfilesize) {
1484		printk(KERN_WARNING
1485		       "Swap area shorter than signature indicates\n");
1486		error = -EINVAL;
1487		goto bad_swap;
1488	}
1489	if (nr_good_pages) {
1490		p->swap_map[0] = SWAP_MAP_BAD;
1491		p->max = maxpages;
1492		p->pages = nr_good_pages;
1493		nr_extents = setup_swap_extents(p, &span);
1494		if (nr_extents < 0) {
1495			error = nr_extents;
1496			goto bad_swap;
1497		}
1498		nr_good_pages = p->pages;
1499	}
1500	if (!nr_good_pages) {
1501		printk(KERN_WARNING "Empty swap-file\n");
1502		error = -EINVAL;
1503		goto bad_swap;
1504	}
1505
1506	down(&swapon_sem);
1507	swap_list_lock();
1508	swap_device_lock(p);
1509	p->flags = SWP_ACTIVE;
1510	nr_swap_pages += nr_good_pages;
1511	total_swap_pages += nr_good_pages;
1512
1513	printk(KERN_INFO "Adding %uk swap on %s.  "
1514			"Priority:%d extents:%d across:%lluk\n",
1515		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1516		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1517
1518	/* insert swap space into swap_list: */
1519	prev = -1;
1520	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1521		if (p->prio >= swap_info[i].prio) {
1522			break;
1523		}
1524		prev = i;
1525	}
1526	p->next = i;
1527	if (prev < 0) {
1528		swap_list.head = swap_list.next = p - swap_info;
1529	} else {
1530		swap_info[prev].next = p - swap_info;
1531	}
1532	swap_device_unlock(p);
1533	swap_list_unlock();
1534	up(&swapon_sem);
1535	error = 0;
1536	goto out;
1537bad_swap:
1538	if (bdev) {
1539		set_blocksize(bdev, p->old_block_size);
1540		bd_release(bdev);
1541	}
1542	destroy_swap_extents(p);
1543bad_swap_2:
1544	swap_list_lock();
1545	swap_map = p->swap_map;
1546	p->swap_file = NULL;
1547	p->swap_map = NULL;
1548	p->flags = 0;
1549	if (!(swap_flags & SWAP_FLAG_PREFER))
1550		++least_priority;
1551	swap_list_unlock();
1552	vfree(swap_map);
1553	if (swap_file)
1554		filp_close(swap_file, NULL);
1555out:
1556	if (page && !IS_ERR(page)) {
1557		kunmap(page);
1558		page_cache_release(page);
1559	}
1560	if (name)
1561		putname(name);
1562	if (did_down) {
1563		if (!error)
1564			inode->i_flags |= S_SWAPFILE;
1565		up(&inode->i_sem);
1566	}
1567	return error;
1568}
1569
1570void si_swapinfo(struct sysinfo *val)
1571{
1572	unsigned int i;
1573	unsigned long nr_to_be_unused = 0;
1574
1575	swap_list_lock();
1576	for (i = 0; i < nr_swapfiles; i++) {
1577		if (!(swap_info[i].flags & SWP_USED) ||
1578		     (swap_info[i].flags & SWP_WRITEOK))
1579			continue;
1580		nr_to_be_unused += swap_info[i].inuse_pages;
1581	}
1582	val->freeswap = nr_swap_pages + nr_to_be_unused;
1583	val->totalswap = total_swap_pages + nr_to_be_unused;
1584	swap_list_unlock();
1585}
1586
1587/*
1588 * Verify that a swap entry is valid and increment its swap map count.
1589 *
1590 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1591 * "permanent", but will be reclaimed by the next swapoff.
1592 */
1593int swap_duplicate(swp_entry_t entry)
1594{
1595	struct swap_info_struct * p;
1596	unsigned long offset, type;
1597	int result = 0;
1598
1599	type = swp_type(entry);
1600	if (type >= nr_swapfiles)
1601		goto bad_file;
1602	p = type + swap_info;
1603	offset = swp_offset(entry);
1604
1605	swap_device_lock(p);
1606	if (offset < p->max && p->swap_map[offset]) {
1607		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1608			p->swap_map[offset]++;
1609			result = 1;
1610		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1611			if (swap_overflow++ < 5)
1612				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1613			p->swap_map[offset] = SWAP_MAP_MAX;
1614			result = 1;
1615		}
1616	}
1617	swap_device_unlock(p);
1618out:
1619	return result;
1620
1621bad_file:
1622	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1623	goto out;
1624}
1625
1626struct swap_info_struct *
1627get_swap_info_struct(unsigned type)
1628{
1629	return &swap_info[type];
1630}
1631
1632/*
1633 * swap_device_lock prevents swap_map being freed. Don't grab an extra
1634 * reference on the swaphandle, it doesn't matter if it becomes unused.
1635 */
1636int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1637{
1638	int ret = 0, i = 1 << page_cluster;
1639	unsigned long toff;
1640	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1641
1642	if (!page_cluster)	/* no readahead */
1643		return 0;
1644	toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1645	if (!toff)		/* first page is swap header */
1646		toff++, i--;
1647	*offset = toff;
1648
1649	swap_device_lock(swapdev);
1650	do {
1651		/* Don't read-ahead past the end of the swap area */
1652		if (toff >= swapdev->max)
1653			break;
1654		/* Don't read in free or bad pages */
1655		if (!swapdev->swap_map[toff])
1656			break;
1657		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1658			break;
1659		toff++;
1660		ret++;
1661	} while (--i);
1662	swap_device_unlock(swapdev);
1663	return ret;
1664}
1665