swapfile.c revision 6fe6900e1e5b6fa9e5c59aa5061f244fe3f467e2
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/writeback.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/rmap.h>
25#include <linux/security.h>
26#include <linux/backing-dev.h>
27#include <linux/mutex.h>
28#include <linux/capability.h>
29#include <linux/syscalls.h>
30
31#include <asm/pgtable.h>
32#include <asm/tlbflush.h>
33#include <linux/swapops.h>
34
35DEFINE_SPINLOCK(swap_lock);
36unsigned int nr_swapfiles;
37long total_swap_pages;
38static int swap_overflow;
39
40static const char Bad_file[] = "Bad swap file entry ";
41static const char Unused_file[] = "Unused swap file entry ";
42static const char Bad_offset[] = "Bad swap offset entry ";
43static const char Unused_offset[] = "Unused swap offset entry ";
44
45struct swap_list_t swap_list = {-1, -1};
46
47static struct swap_info_struct swap_info[MAX_SWAPFILES];
48
49static DEFINE_MUTEX(swapon_mutex);
50
51/*
52 * We need this because the bdev->unplug_fn can sleep and we cannot
53 * hold swap_lock while calling the unplug_fn. And swap_lock
54 * cannot be turned into a mutex.
55 */
56static DECLARE_RWSEM(swap_unplug_sem);
57
58void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
59{
60	swp_entry_t entry;
61
62	down_read(&swap_unplug_sem);
63	entry.val = page_private(page);
64	if (PageSwapCache(page)) {
65		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
66		struct backing_dev_info *bdi;
67
68		/*
69		 * If the page is removed from swapcache from under us (with a
70		 * racy try_to_unuse/swapoff) we need an additional reference
71		 * count to avoid reading garbage from page_private(page) above.
72		 * If the WARN_ON triggers during a swapoff it maybe the race
73		 * condition and it's harmless. However if it triggers without
74		 * swapoff it signals a problem.
75		 */
76		WARN_ON(page_count(page) <= 1);
77
78		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
79		blk_run_backing_dev(bdi, page);
80	}
81	up_read(&swap_unplug_sem);
82}
83
84#define SWAPFILE_CLUSTER	256
85#define LATENCY_LIMIT		256
86
87static inline unsigned long scan_swap_map(struct swap_info_struct *si)
88{
89	unsigned long offset, last_in_cluster;
90	int latency_ration = LATENCY_LIMIT;
91
92	/*
93	 * We try to cluster swap pages by allocating them sequentially
94	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
95	 * way, however, we resort to first-free allocation, starting
96	 * a new cluster.  This prevents us from scattering swap pages
97	 * all over the entire swap partition, so that we reduce
98	 * overall disk seek times between swap pages.  -- sct
99	 * But we do now try to find an empty cluster.  -Andrea
100	 */
101
102	si->flags += SWP_SCANNING;
103	if (unlikely(!si->cluster_nr)) {
104		si->cluster_nr = SWAPFILE_CLUSTER - 1;
105		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
106			goto lowest;
107		spin_unlock(&swap_lock);
108
109		offset = si->lowest_bit;
110		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
111
112		/* Locate the first empty (unaligned) cluster */
113		for (; last_in_cluster <= si->highest_bit; offset++) {
114			if (si->swap_map[offset])
115				last_in_cluster = offset + SWAPFILE_CLUSTER;
116			else if (offset == last_in_cluster) {
117				spin_lock(&swap_lock);
118				si->cluster_next = offset-SWAPFILE_CLUSTER+1;
119				goto cluster;
120			}
121			if (unlikely(--latency_ration < 0)) {
122				cond_resched();
123				latency_ration = LATENCY_LIMIT;
124			}
125		}
126		spin_lock(&swap_lock);
127		goto lowest;
128	}
129
130	si->cluster_nr--;
131cluster:
132	offset = si->cluster_next;
133	if (offset > si->highest_bit)
134lowest:		offset = si->lowest_bit;
135checks:	if (!(si->flags & SWP_WRITEOK))
136		goto no_page;
137	if (!si->highest_bit)
138		goto no_page;
139	if (!si->swap_map[offset]) {
140		if (offset == si->lowest_bit)
141			si->lowest_bit++;
142		if (offset == si->highest_bit)
143			si->highest_bit--;
144		si->inuse_pages++;
145		if (si->inuse_pages == si->pages) {
146			si->lowest_bit = si->max;
147			si->highest_bit = 0;
148		}
149		si->swap_map[offset] = 1;
150		si->cluster_next = offset + 1;
151		si->flags -= SWP_SCANNING;
152		return offset;
153	}
154
155	spin_unlock(&swap_lock);
156	while (++offset <= si->highest_bit) {
157		if (!si->swap_map[offset]) {
158			spin_lock(&swap_lock);
159			goto checks;
160		}
161		if (unlikely(--latency_ration < 0)) {
162			cond_resched();
163			latency_ration = LATENCY_LIMIT;
164		}
165	}
166	spin_lock(&swap_lock);
167	goto lowest;
168
169no_page:
170	si->flags -= SWP_SCANNING;
171	return 0;
172}
173
174swp_entry_t get_swap_page(void)
175{
176	struct swap_info_struct *si;
177	pgoff_t offset;
178	int type, next;
179	int wrapped = 0;
180
181	spin_lock(&swap_lock);
182	if (nr_swap_pages <= 0)
183		goto noswap;
184	nr_swap_pages--;
185
186	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
187		si = swap_info + type;
188		next = si->next;
189		if (next < 0 ||
190		    (!wrapped && si->prio != swap_info[next].prio)) {
191			next = swap_list.head;
192			wrapped++;
193		}
194
195		if (!si->highest_bit)
196			continue;
197		if (!(si->flags & SWP_WRITEOK))
198			continue;
199
200		swap_list.next = next;
201		offset = scan_swap_map(si);
202		if (offset) {
203			spin_unlock(&swap_lock);
204			return swp_entry(type, offset);
205		}
206		next = swap_list.next;
207	}
208
209	nr_swap_pages++;
210noswap:
211	spin_unlock(&swap_lock);
212	return (swp_entry_t) {0};
213}
214
215swp_entry_t get_swap_page_of_type(int type)
216{
217	struct swap_info_struct *si;
218	pgoff_t offset;
219
220	spin_lock(&swap_lock);
221	si = swap_info + type;
222	if (si->flags & SWP_WRITEOK) {
223		nr_swap_pages--;
224		offset = scan_swap_map(si);
225		if (offset) {
226			spin_unlock(&swap_lock);
227			return swp_entry(type, offset);
228		}
229		nr_swap_pages++;
230	}
231	spin_unlock(&swap_lock);
232	return (swp_entry_t) {0};
233}
234
235static struct swap_info_struct * swap_info_get(swp_entry_t entry)
236{
237	struct swap_info_struct * p;
238	unsigned long offset, type;
239
240	if (!entry.val)
241		goto out;
242	type = swp_type(entry);
243	if (type >= nr_swapfiles)
244		goto bad_nofile;
245	p = & swap_info[type];
246	if (!(p->flags & SWP_USED))
247		goto bad_device;
248	offset = swp_offset(entry);
249	if (offset >= p->max)
250		goto bad_offset;
251	if (!p->swap_map[offset])
252		goto bad_free;
253	spin_lock(&swap_lock);
254	return p;
255
256bad_free:
257	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
258	goto out;
259bad_offset:
260	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
261	goto out;
262bad_device:
263	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
264	goto out;
265bad_nofile:
266	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
267out:
268	return NULL;
269}
270
271static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
272{
273	int count = p->swap_map[offset];
274
275	if (count < SWAP_MAP_MAX) {
276		count--;
277		p->swap_map[offset] = count;
278		if (!count) {
279			if (offset < p->lowest_bit)
280				p->lowest_bit = offset;
281			if (offset > p->highest_bit)
282				p->highest_bit = offset;
283			if (p->prio > swap_info[swap_list.next].prio)
284				swap_list.next = p - swap_info;
285			nr_swap_pages++;
286			p->inuse_pages--;
287		}
288	}
289	return count;
290}
291
292/*
293 * Caller has made sure that the swapdevice corresponding to entry
294 * is still around or has not been recycled.
295 */
296void swap_free(swp_entry_t entry)
297{
298	struct swap_info_struct * p;
299
300	p = swap_info_get(entry);
301	if (p) {
302		swap_entry_free(p, swp_offset(entry));
303		spin_unlock(&swap_lock);
304	}
305}
306
307/*
308 * How many references to page are currently swapped out?
309 */
310static inline int page_swapcount(struct page *page)
311{
312	int count = 0;
313	struct swap_info_struct *p;
314	swp_entry_t entry;
315
316	entry.val = page_private(page);
317	p = swap_info_get(entry);
318	if (p) {
319		/* Subtract the 1 for the swap cache itself */
320		count = p->swap_map[swp_offset(entry)] - 1;
321		spin_unlock(&swap_lock);
322	}
323	return count;
324}
325
326/*
327 * We can use this swap cache entry directly
328 * if there are no other references to it.
329 */
330int can_share_swap_page(struct page *page)
331{
332	int count;
333
334	BUG_ON(!PageLocked(page));
335	count = page_mapcount(page);
336	if (count <= 1 && PageSwapCache(page))
337		count += page_swapcount(page);
338	return count == 1;
339}
340
341/*
342 * Work out if there are any other processes sharing this
343 * swap cache page. Free it if you can. Return success.
344 */
345int remove_exclusive_swap_page(struct page *page)
346{
347	int retval;
348	struct swap_info_struct * p;
349	swp_entry_t entry;
350
351	BUG_ON(PagePrivate(page));
352	BUG_ON(!PageLocked(page));
353
354	if (!PageSwapCache(page))
355		return 0;
356	if (PageWriteback(page))
357		return 0;
358	if (page_count(page) != 2) /* 2: us + cache */
359		return 0;
360
361	entry.val = page_private(page);
362	p = swap_info_get(entry);
363	if (!p)
364		return 0;
365
366	/* Is the only swap cache user the cache itself? */
367	retval = 0;
368	if (p->swap_map[swp_offset(entry)] == 1) {
369		/* Recheck the page count with the swapcache lock held.. */
370		write_lock_irq(&swapper_space.tree_lock);
371		if ((page_count(page) == 2) && !PageWriteback(page)) {
372			__delete_from_swap_cache(page);
373			SetPageDirty(page);
374			retval = 1;
375		}
376		write_unlock_irq(&swapper_space.tree_lock);
377	}
378	spin_unlock(&swap_lock);
379
380	if (retval) {
381		swap_free(entry);
382		page_cache_release(page);
383	}
384
385	return retval;
386}
387
388/*
389 * Free the swap entry like above, but also try to
390 * free the page cache entry if it is the last user.
391 */
392void free_swap_and_cache(swp_entry_t entry)
393{
394	struct swap_info_struct * p;
395	struct page *page = NULL;
396
397	if (is_migration_entry(entry))
398		return;
399
400	p = swap_info_get(entry);
401	if (p) {
402		if (swap_entry_free(p, swp_offset(entry)) == 1) {
403			page = find_get_page(&swapper_space, entry.val);
404			if (page && unlikely(TestSetPageLocked(page))) {
405				page_cache_release(page);
406				page = NULL;
407			}
408		}
409		spin_unlock(&swap_lock);
410	}
411	if (page) {
412		int one_user;
413
414		BUG_ON(PagePrivate(page));
415		one_user = (page_count(page) == 2);
416		/* Only cache user (+us), or swap space full? Free it! */
417		/* Also recheck PageSwapCache after page is locked (above) */
418		if (PageSwapCache(page) && !PageWriteback(page) &&
419					(one_user || vm_swap_full())) {
420			delete_from_swap_cache(page);
421			SetPageDirty(page);
422		}
423		unlock_page(page);
424		page_cache_release(page);
425	}
426}
427
428#ifdef CONFIG_SOFTWARE_SUSPEND
429/*
430 * Find the swap type that corresponds to given device (if any).
431 *
432 * @offset - number of the PAGE_SIZE-sized block of the device, starting
433 * from 0, in which the swap header is expected to be located.
434 *
435 * This is needed for the suspend to disk (aka swsusp).
436 */
437int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
438{
439	struct block_device *bdev = NULL;
440	int i;
441
442	if (device)
443		bdev = bdget(device);
444
445	spin_lock(&swap_lock);
446	for (i = 0; i < nr_swapfiles; i++) {
447		struct swap_info_struct *sis = swap_info + i;
448
449		if (!(sis->flags & SWP_WRITEOK))
450			continue;
451
452		if (!bdev) {
453			if (bdev_p)
454				*bdev_p = sis->bdev;
455
456			spin_unlock(&swap_lock);
457			return i;
458		}
459		if (bdev == sis->bdev) {
460			struct swap_extent *se;
461
462			se = list_entry(sis->extent_list.next,
463					struct swap_extent, list);
464			if (se->start_block == offset) {
465				if (bdev_p)
466					*bdev_p = sis->bdev;
467
468				spin_unlock(&swap_lock);
469				bdput(bdev);
470				return i;
471			}
472		}
473	}
474	spin_unlock(&swap_lock);
475	if (bdev)
476		bdput(bdev);
477
478	return -ENODEV;
479}
480
481/*
482 * Return either the total number of swap pages of given type, or the number
483 * of free pages of that type (depending on @free)
484 *
485 * This is needed for software suspend
486 */
487unsigned int count_swap_pages(int type, int free)
488{
489	unsigned int n = 0;
490
491	if (type < nr_swapfiles) {
492		spin_lock(&swap_lock);
493		if (swap_info[type].flags & SWP_WRITEOK) {
494			n = swap_info[type].pages;
495			if (free)
496				n -= swap_info[type].inuse_pages;
497		}
498		spin_unlock(&swap_lock);
499	}
500	return n;
501}
502#endif
503
504/*
505 * No need to decide whether this PTE shares the swap entry with others,
506 * just let do_wp_page work it out if a write is requested later - to
507 * force COW, vm_page_prot omits write permission from any private vma.
508 */
509static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
510		unsigned long addr, swp_entry_t entry, struct page *page)
511{
512	inc_mm_counter(vma->vm_mm, anon_rss);
513	get_page(page);
514	set_pte_at(vma->vm_mm, addr, pte,
515		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
516	page_add_anon_rmap(page, vma, addr);
517	swap_free(entry);
518	/*
519	 * Move the page to the active list so it is not
520	 * immediately swapped out again after swapon.
521	 */
522	activate_page(page);
523}
524
525static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
526				unsigned long addr, unsigned long end,
527				swp_entry_t entry, struct page *page)
528{
529	pte_t swp_pte = swp_entry_to_pte(entry);
530	pte_t *pte;
531	spinlock_t *ptl;
532	int found = 0;
533
534	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
535	do {
536		/*
537		 * swapoff spends a _lot_ of time in this loop!
538		 * Test inline before going to call unuse_pte.
539		 */
540		if (unlikely(pte_same(*pte, swp_pte))) {
541			unuse_pte(vma, pte++, addr, entry, page);
542			found = 1;
543			break;
544		}
545	} while (pte++, addr += PAGE_SIZE, addr != end);
546	pte_unmap_unlock(pte - 1, ptl);
547	return found;
548}
549
550static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
551				unsigned long addr, unsigned long end,
552				swp_entry_t entry, struct page *page)
553{
554	pmd_t *pmd;
555	unsigned long next;
556
557	pmd = pmd_offset(pud, addr);
558	do {
559		next = pmd_addr_end(addr, end);
560		if (pmd_none_or_clear_bad(pmd))
561			continue;
562		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
563			return 1;
564	} while (pmd++, addr = next, addr != end);
565	return 0;
566}
567
568static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
569				unsigned long addr, unsigned long end,
570				swp_entry_t entry, struct page *page)
571{
572	pud_t *pud;
573	unsigned long next;
574
575	pud = pud_offset(pgd, addr);
576	do {
577		next = pud_addr_end(addr, end);
578		if (pud_none_or_clear_bad(pud))
579			continue;
580		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
581			return 1;
582	} while (pud++, addr = next, addr != end);
583	return 0;
584}
585
586static int unuse_vma(struct vm_area_struct *vma,
587				swp_entry_t entry, struct page *page)
588{
589	pgd_t *pgd;
590	unsigned long addr, end, next;
591
592	if (page->mapping) {
593		addr = page_address_in_vma(page, vma);
594		if (addr == -EFAULT)
595			return 0;
596		else
597			end = addr + PAGE_SIZE;
598	} else {
599		addr = vma->vm_start;
600		end = vma->vm_end;
601	}
602
603	pgd = pgd_offset(vma->vm_mm, addr);
604	do {
605		next = pgd_addr_end(addr, end);
606		if (pgd_none_or_clear_bad(pgd))
607			continue;
608		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
609			return 1;
610	} while (pgd++, addr = next, addr != end);
611	return 0;
612}
613
614static int unuse_mm(struct mm_struct *mm,
615				swp_entry_t entry, struct page *page)
616{
617	struct vm_area_struct *vma;
618
619	if (!down_read_trylock(&mm->mmap_sem)) {
620		/*
621		 * Activate page so shrink_cache is unlikely to unmap its
622		 * ptes while lock is dropped, so swapoff can make progress.
623		 */
624		activate_page(page);
625		unlock_page(page);
626		down_read(&mm->mmap_sem);
627		lock_page(page);
628	}
629	for (vma = mm->mmap; vma; vma = vma->vm_next) {
630		if (vma->anon_vma && unuse_vma(vma, entry, page))
631			break;
632	}
633	up_read(&mm->mmap_sem);
634	/*
635	 * Currently unuse_mm cannot fail, but leave error handling
636	 * at call sites for now, since we change it from time to time.
637	 */
638	return 0;
639}
640
641/*
642 * Scan swap_map from current position to next entry still in use.
643 * Recycle to start on reaching the end, returning 0 when empty.
644 */
645static unsigned int find_next_to_unuse(struct swap_info_struct *si,
646					unsigned int prev)
647{
648	unsigned int max = si->max;
649	unsigned int i = prev;
650	int count;
651
652	/*
653	 * No need for swap_lock here: we're just looking
654	 * for whether an entry is in use, not modifying it; false
655	 * hits are okay, and sys_swapoff() has already prevented new
656	 * allocations from this area (while holding swap_lock).
657	 */
658	for (;;) {
659		if (++i >= max) {
660			if (!prev) {
661				i = 0;
662				break;
663			}
664			/*
665			 * No entries in use at top of swap_map,
666			 * loop back to start and recheck there.
667			 */
668			max = prev + 1;
669			prev = 0;
670			i = 1;
671		}
672		count = si->swap_map[i];
673		if (count && count != SWAP_MAP_BAD)
674			break;
675	}
676	return i;
677}
678
679/*
680 * We completely avoid races by reading each swap page in advance,
681 * and then search for the process using it.  All the necessary
682 * page table adjustments can then be made atomically.
683 */
684static int try_to_unuse(unsigned int type)
685{
686	struct swap_info_struct * si = &swap_info[type];
687	struct mm_struct *start_mm;
688	unsigned short *swap_map;
689	unsigned short swcount;
690	struct page *page;
691	swp_entry_t entry;
692	unsigned int i = 0;
693	int retval = 0;
694	int reset_overflow = 0;
695	int shmem;
696
697	/*
698	 * When searching mms for an entry, a good strategy is to
699	 * start at the first mm we freed the previous entry from
700	 * (though actually we don't notice whether we or coincidence
701	 * freed the entry).  Initialize this start_mm with a hold.
702	 *
703	 * A simpler strategy would be to start at the last mm we
704	 * freed the previous entry from; but that would take less
705	 * advantage of mmlist ordering, which clusters forked mms
706	 * together, child after parent.  If we race with dup_mmap(), we
707	 * prefer to resolve parent before child, lest we miss entries
708	 * duplicated after we scanned child: using last mm would invert
709	 * that.  Though it's only a serious concern when an overflowed
710	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
711	 */
712	start_mm = &init_mm;
713	atomic_inc(&init_mm.mm_users);
714
715	/*
716	 * Keep on scanning until all entries have gone.  Usually,
717	 * one pass through swap_map is enough, but not necessarily:
718	 * there are races when an instance of an entry might be missed.
719	 */
720	while ((i = find_next_to_unuse(si, i)) != 0) {
721		if (signal_pending(current)) {
722			retval = -EINTR;
723			break;
724		}
725
726		/*
727		 * Get a page for the entry, using the existing swap
728		 * cache page if there is one.  Otherwise, get a clean
729		 * page and read the swap into it.
730		 */
731		swap_map = &si->swap_map[i];
732		entry = swp_entry(type, i);
733		page = read_swap_cache_async(entry, NULL, 0);
734		if (!page) {
735			/*
736			 * Either swap_duplicate() failed because entry
737			 * has been freed independently, and will not be
738			 * reused since sys_swapoff() already disabled
739			 * allocation from here, or alloc_page() failed.
740			 */
741			if (!*swap_map)
742				continue;
743			retval = -ENOMEM;
744			break;
745		}
746
747		/*
748		 * Don't hold on to start_mm if it looks like exiting.
749		 */
750		if (atomic_read(&start_mm->mm_users) == 1) {
751			mmput(start_mm);
752			start_mm = &init_mm;
753			atomic_inc(&init_mm.mm_users);
754		}
755
756		/*
757		 * Wait for and lock page.  When do_swap_page races with
758		 * try_to_unuse, do_swap_page can handle the fault much
759		 * faster than try_to_unuse can locate the entry.  This
760		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
761		 * defer to do_swap_page in such a case - in some tests,
762		 * do_swap_page and try_to_unuse repeatedly compete.
763		 */
764		wait_on_page_locked(page);
765		wait_on_page_writeback(page);
766		lock_page(page);
767		wait_on_page_writeback(page);
768
769		/*
770		 * Remove all references to entry.
771		 * Whenever we reach init_mm, there's no address space
772		 * to search, but use it as a reminder to search shmem.
773		 */
774		shmem = 0;
775		swcount = *swap_map;
776		if (swcount > 1) {
777			if (start_mm == &init_mm)
778				shmem = shmem_unuse(entry, page);
779			else
780				retval = unuse_mm(start_mm, entry, page);
781		}
782		if (*swap_map > 1) {
783			int set_start_mm = (*swap_map >= swcount);
784			struct list_head *p = &start_mm->mmlist;
785			struct mm_struct *new_start_mm = start_mm;
786			struct mm_struct *prev_mm = start_mm;
787			struct mm_struct *mm;
788
789			atomic_inc(&new_start_mm->mm_users);
790			atomic_inc(&prev_mm->mm_users);
791			spin_lock(&mmlist_lock);
792			while (*swap_map > 1 && !retval &&
793					(p = p->next) != &start_mm->mmlist) {
794				mm = list_entry(p, struct mm_struct, mmlist);
795				if (!atomic_inc_not_zero(&mm->mm_users))
796					continue;
797				spin_unlock(&mmlist_lock);
798				mmput(prev_mm);
799				prev_mm = mm;
800
801				cond_resched();
802
803				swcount = *swap_map;
804				if (swcount <= 1)
805					;
806				else if (mm == &init_mm) {
807					set_start_mm = 1;
808					shmem = shmem_unuse(entry, page);
809				} else
810					retval = unuse_mm(mm, entry, page);
811				if (set_start_mm && *swap_map < swcount) {
812					mmput(new_start_mm);
813					atomic_inc(&mm->mm_users);
814					new_start_mm = mm;
815					set_start_mm = 0;
816				}
817				spin_lock(&mmlist_lock);
818			}
819			spin_unlock(&mmlist_lock);
820			mmput(prev_mm);
821			mmput(start_mm);
822			start_mm = new_start_mm;
823		}
824		if (retval) {
825			unlock_page(page);
826			page_cache_release(page);
827			break;
828		}
829
830		/*
831		 * How could swap count reach 0x7fff when the maximum
832		 * pid is 0x7fff, and there's no way to repeat a swap
833		 * page within an mm (except in shmem, where it's the
834		 * shared object which takes the reference count)?
835		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
836		 *
837		 * If that's wrong, then we should worry more about
838		 * exit_mmap() and do_munmap() cases described above:
839		 * we might be resetting SWAP_MAP_MAX too early here.
840		 * We know "Undead"s can happen, they're okay, so don't
841		 * report them; but do report if we reset SWAP_MAP_MAX.
842		 */
843		if (*swap_map == SWAP_MAP_MAX) {
844			spin_lock(&swap_lock);
845			*swap_map = 1;
846			spin_unlock(&swap_lock);
847			reset_overflow = 1;
848		}
849
850		/*
851		 * If a reference remains (rare), we would like to leave
852		 * the page in the swap cache; but try_to_unmap could
853		 * then re-duplicate the entry once we drop page lock,
854		 * so we might loop indefinitely; also, that page could
855		 * not be swapped out to other storage meanwhile.  So:
856		 * delete from cache even if there's another reference,
857		 * after ensuring that the data has been saved to disk -
858		 * since if the reference remains (rarer), it will be
859		 * read from disk into another page.  Splitting into two
860		 * pages would be incorrect if swap supported "shared
861		 * private" pages, but they are handled by tmpfs files.
862		 *
863		 * Note shmem_unuse already deleted a swappage from
864		 * the swap cache, unless the move to filepage failed:
865		 * in which case it left swappage in cache, lowered its
866		 * swap count to pass quickly through the loops above,
867		 * and now we must reincrement count to try again later.
868		 */
869		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
870			struct writeback_control wbc = {
871				.sync_mode = WB_SYNC_NONE,
872			};
873
874			swap_writepage(page, &wbc);
875			lock_page(page);
876			wait_on_page_writeback(page);
877		}
878		if (PageSwapCache(page)) {
879			if (shmem)
880				swap_duplicate(entry);
881			else
882				delete_from_swap_cache(page);
883		}
884
885		/*
886		 * So we could skip searching mms once swap count went
887		 * to 1, we did not mark any present ptes as dirty: must
888		 * mark page dirty so shrink_list will preserve it.
889		 */
890		SetPageDirty(page);
891		unlock_page(page);
892		page_cache_release(page);
893
894		/*
895		 * Make sure that we aren't completely killing
896		 * interactive performance.
897		 */
898		cond_resched();
899	}
900
901	mmput(start_mm);
902	if (reset_overflow) {
903		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
904		swap_overflow = 0;
905	}
906	return retval;
907}
908
909/*
910 * After a successful try_to_unuse, if no swap is now in use, we know
911 * we can empty the mmlist.  swap_lock must be held on entry and exit.
912 * Note that mmlist_lock nests inside swap_lock, and an mm must be
913 * added to the mmlist just after page_duplicate - before would be racy.
914 */
915static void drain_mmlist(void)
916{
917	struct list_head *p, *next;
918	unsigned int i;
919
920	for (i = 0; i < nr_swapfiles; i++)
921		if (swap_info[i].inuse_pages)
922			return;
923	spin_lock(&mmlist_lock);
924	list_for_each_safe(p, next, &init_mm.mmlist)
925		list_del_init(p);
926	spin_unlock(&mmlist_lock);
927}
928
929/*
930 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
931 * corresponds to page offset `offset'.
932 */
933sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
934{
935	struct swap_extent *se = sis->curr_swap_extent;
936	struct swap_extent *start_se = se;
937
938	for ( ; ; ) {
939		struct list_head *lh;
940
941		if (se->start_page <= offset &&
942				offset < (se->start_page + se->nr_pages)) {
943			return se->start_block + (offset - se->start_page);
944		}
945		lh = se->list.next;
946		if (lh == &sis->extent_list)
947			lh = lh->next;
948		se = list_entry(lh, struct swap_extent, list);
949		sis->curr_swap_extent = se;
950		BUG_ON(se == start_se);		/* It *must* be present */
951	}
952}
953
954#ifdef CONFIG_SOFTWARE_SUSPEND
955/*
956 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
957 * corresponding to given index in swap_info (swap type).
958 */
959sector_t swapdev_block(int swap_type, pgoff_t offset)
960{
961	struct swap_info_struct *sis;
962
963	if (swap_type >= nr_swapfiles)
964		return 0;
965
966	sis = swap_info + swap_type;
967	return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
968}
969#endif /* CONFIG_SOFTWARE_SUSPEND */
970
971/*
972 * Free all of a swapdev's extent information
973 */
974static void destroy_swap_extents(struct swap_info_struct *sis)
975{
976	while (!list_empty(&sis->extent_list)) {
977		struct swap_extent *se;
978
979		se = list_entry(sis->extent_list.next,
980				struct swap_extent, list);
981		list_del(&se->list);
982		kfree(se);
983	}
984}
985
986/*
987 * Add a block range (and the corresponding page range) into this swapdev's
988 * extent list.  The extent list is kept sorted in page order.
989 *
990 * This function rather assumes that it is called in ascending page order.
991 */
992static int
993add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
994		unsigned long nr_pages, sector_t start_block)
995{
996	struct swap_extent *se;
997	struct swap_extent *new_se;
998	struct list_head *lh;
999
1000	lh = sis->extent_list.prev;	/* The highest page extent */
1001	if (lh != &sis->extent_list) {
1002		se = list_entry(lh, struct swap_extent, list);
1003		BUG_ON(se->start_page + se->nr_pages != start_page);
1004		if (se->start_block + se->nr_pages == start_block) {
1005			/* Merge it */
1006			se->nr_pages += nr_pages;
1007			return 0;
1008		}
1009	}
1010
1011	/*
1012	 * No merge.  Insert a new extent, preserving ordering.
1013	 */
1014	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1015	if (new_se == NULL)
1016		return -ENOMEM;
1017	new_se->start_page = start_page;
1018	new_se->nr_pages = nr_pages;
1019	new_se->start_block = start_block;
1020
1021	list_add_tail(&new_se->list, &sis->extent_list);
1022	return 1;
1023}
1024
1025/*
1026 * A `swap extent' is a simple thing which maps a contiguous range of pages
1027 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1028 * is built at swapon time and is then used at swap_writepage/swap_readpage
1029 * time for locating where on disk a page belongs.
1030 *
1031 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1032 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1033 * swap files identically.
1034 *
1035 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1036 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1037 * swapfiles are handled *identically* after swapon time.
1038 *
1039 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1040 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1041 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1042 * requirements, they are simply tossed out - we will never use those blocks
1043 * for swapping.
1044 *
1045 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1046 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1047 * which will scribble on the fs.
1048 *
1049 * The amount of disk space which a single swap extent represents varies.
1050 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1051 * extents in the list.  To avoid much list walking, we cache the previous
1052 * search location in `curr_swap_extent', and start new searches from there.
1053 * This is extremely effective.  The average number of iterations in
1054 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1055 */
1056static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1057{
1058	struct inode *inode;
1059	unsigned blocks_per_page;
1060	unsigned long page_no;
1061	unsigned blkbits;
1062	sector_t probe_block;
1063	sector_t last_block;
1064	sector_t lowest_block = -1;
1065	sector_t highest_block = 0;
1066	int nr_extents = 0;
1067	int ret;
1068
1069	inode = sis->swap_file->f_mapping->host;
1070	if (S_ISBLK(inode->i_mode)) {
1071		ret = add_swap_extent(sis, 0, sis->max, 0);
1072		*span = sis->pages;
1073		goto done;
1074	}
1075
1076	blkbits = inode->i_blkbits;
1077	blocks_per_page = PAGE_SIZE >> blkbits;
1078
1079	/*
1080	 * Map all the blocks into the extent list.  This code doesn't try
1081	 * to be very smart.
1082	 */
1083	probe_block = 0;
1084	page_no = 0;
1085	last_block = i_size_read(inode) >> blkbits;
1086	while ((probe_block + blocks_per_page) <= last_block &&
1087			page_no < sis->max) {
1088		unsigned block_in_page;
1089		sector_t first_block;
1090
1091		first_block = bmap(inode, probe_block);
1092		if (first_block == 0)
1093			goto bad_bmap;
1094
1095		/*
1096		 * It must be PAGE_SIZE aligned on-disk
1097		 */
1098		if (first_block & (blocks_per_page - 1)) {
1099			probe_block++;
1100			goto reprobe;
1101		}
1102
1103		for (block_in_page = 1; block_in_page < blocks_per_page;
1104					block_in_page++) {
1105			sector_t block;
1106
1107			block = bmap(inode, probe_block + block_in_page);
1108			if (block == 0)
1109				goto bad_bmap;
1110			if (block != first_block + block_in_page) {
1111				/* Discontiguity */
1112				probe_block++;
1113				goto reprobe;
1114			}
1115		}
1116
1117		first_block >>= (PAGE_SHIFT - blkbits);
1118		if (page_no) {	/* exclude the header page */
1119			if (first_block < lowest_block)
1120				lowest_block = first_block;
1121			if (first_block > highest_block)
1122				highest_block = first_block;
1123		}
1124
1125		/*
1126		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1127		 */
1128		ret = add_swap_extent(sis, page_no, 1, first_block);
1129		if (ret < 0)
1130			goto out;
1131		nr_extents += ret;
1132		page_no++;
1133		probe_block += blocks_per_page;
1134reprobe:
1135		continue;
1136	}
1137	ret = nr_extents;
1138	*span = 1 + highest_block - lowest_block;
1139	if (page_no == 0)
1140		page_no = 1;	/* force Empty message */
1141	sis->max = page_no;
1142	sis->pages = page_no - 1;
1143	sis->highest_bit = page_no - 1;
1144done:
1145	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1146					struct swap_extent, list);
1147	goto out;
1148bad_bmap:
1149	printk(KERN_ERR "swapon: swapfile has holes\n");
1150	ret = -EINVAL;
1151out:
1152	return ret;
1153}
1154
1155#if 0	/* We don't need this yet */
1156#include <linux/backing-dev.h>
1157int page_queue_congested(struct page *page)
1158{
1159	struct backing_dev_info *bdi;
1160
1161	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1162
1163	if (PageSwapCache(page)) {
1164		swp_entry_t entry = { .val = page_private(page) };
1165		struct swap_info_struct *sis;
1166
1167		sis = get_swap_info_struct(swp_type(entry));
1168		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1169	} else
1170		bdi = page->mapping->backing_dev_info;
1171	return bdi_write_congested(bdi);
1172}
1173#endif
1174
1175asmlinkage long sys_swapoff(const char __user * specialfile)
1176{
1177	struct swap_info_struct * p = NULL;
1178	unsigned short *swap_map;
1179	struct file *swap_file, *victim;
1180	struct address_space *mapping;
1181	struct inode *inode;
1182	char * pathname;
1183	int i, type, prev;
1184	int err;
1185
1186	if (!capable(CAP_SYS_ADMIN))
1187		return -EPERM;
1188
1189	pathname = getname(specialfile);
1190	err = PTR_ERR(pathname);
1191	if (IS_ERR(pathname))
1192		goto out;
1193
1194	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1195	putname(pathname);
1196	err = PTR_ERR(victim);
1197	if (IS_ERR(victim))
1198		goto out;
1199
1200	mapping = victim->f_mapping;
1201	prev = -1;
1202	spin_lock(&swap_lock);
1203	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1204		p = swap_info + type;
1205		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1206			if (p->swap_file->f_mapping == mapping)
1207				break;
1208		}
1209		prev = type;
1210	}
1211	if (type < 0) {
1212		err = -EINVAL;
1213		spin_unlock(&swap_lock);
1214		goto out_dput;
1215	}
1216	if (!security_vm_enough_memory(p->pages))
1217		vm_unacct_memory(p->pages);
1218	else {
1219		err = -ENOMEM;
1220		spin_unlock(&swap_lock);
1221		goto out_dput;
1222	}
1223	if (prev < 0) {
1224		swap_list.head = p->next;
1225	} else {
1226		swap_info[prev].next = p->next;
1227	}
1228	if (type == swap_list.next) {
1229		/* just pick something that's safe... */
1230		swap_list.next = swap_list.head;
1231	}
1232	nr_swap_pages -= p->pages;
1233	total_swap_pages -= p->pages;
1234	p->flags &= ~SWP_WRITEOK;
1235	spin_unlock(&swap_lock);
1236
1237	current->flags |= PF_SWAPOFF;
1238	err = try_to_unuse(type);
1239	current->flags &= ~PF_SWAPOFF;
1240
1241	if (err) {
1242		/* re-insert swap space back into swap_list */
1243		spin_lock(&swap_lock);
1244		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1245			if (p->prio >= swap_info[i].prio)
1246				break;
1247		p->next = i;
1248		if (prev < 0)
1249			swap_list.head = swap_list.next = p - swap_info;
1250		else
1251			swap_info[prev].next = p - swap_info;
1252		nr_swap_pages += p->pages;
1253		total_swap_pages += p->pages;
1254		p->flags |= SWP_WRITEOK;
1255		spin_unlock(&swap_lock);
1256		goto out_dput;
1257	}
1258
1259	/* wait for any unplug function to finish */
1260	down_write(&swap_unplug_sem);
1261	up_write(&swap_unplug_sem);
1262
1263	destroy_swap_extents(p);
1264	mutex_lock(&swapon_mutex);
1265	spin_lock(&swap_lock);
1266	drain_mmlist();
1267
1268	/* wait for anyone still in scan_swap_map */
1269	p->highest_bit = 0;		/* cuts scans short */
1270	while (p->flags >= SWP_SCANNING) {
1271		spin_unlock(&swap_lock);
1272		schedule_timeout_uninterruptible(1);
1273		spin_lock(&swap_lock);
1274	}
1275
1276	swap_file = p->swap_file;
1277	p->swap_file = NULL;
1278	p->max = 0;
1279	swap_map = p->swap_map;
1280	p->swap_map = NULL;
1281	p->flags = 0;
1282	spin_unlock(&swap_lock);
1283	mutex_unlock(&swapon_mutex);
1284	vfree(swap_map);
1285	inode = mapping->host;
1286	if (S_ISBLK(inode->i_mode)) {
1287		struct block_device *bdev = I_BDEV(inode);
1288		set_blocksize(bdev, p->old_block_size);
1289		bd_release(bdev);
1290	} else {
1291		mutex_lock(&inode->i_mutex);
1292		inode->i_flags &= ~S_SWAPFILE;
1293		mutex_unlock(&inode->i_mutex);
1294	}
1295	filp_close(swap_file, NULL);
1296	err = 0;
1297
1298out_dput:
1299	filp_close(victim, NULL);
1300out:
1301	return err;
1302}
1303
1304#ifdef CONFIG_PROC_FS
1305/* iterator */
1306static void *swap_start(struct seq_file *swap, loff_t *pos)
1307{
1308	struct swap_info_struct *ptr = swap_info;
1309	int i;
1310	loff_t l = *pos;
1311
1312	mutex_lock(&swapon_mutex);
1313
1314	if (!l)
1315		return SEQ_START_TOKEN;
1316
1317	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1318		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1319			continue;
1320		if (!--l)
1321			return ptr;
1322	}
1323
1324	return NULL;
1325}
1326
1327static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1328{
1329	struct swap_info_struct *ptr;
1330	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1331
1332	if (v == SEQ_START_TOKEN)
1333		ptr = swap_info;
1334	else {
1335		ptr = v;
1336		ptr++;
1337	}
1338
1339	for (; ptr < endptr; ptr++) {
1340		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1341			continue;
1342		++*pos;
1343		return ptr;
1344	}
1345
1346	return NULL;
1347}
1348
1349static void swap_stop(struct seq_file *swap, void *v)
1350{
1351	mutex_unlock(&swapon_mutex);
1352}
1353
1354static int swap_show(struct seq_file *swap, void *v)
1355{
1356	struct swap_info_struct *ptr = v;
1357	struct file *file;
1358	int len;
1359
1360	if (ptr == SEQ_START_TOKEN) {
1361		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1362		return 0;
1363	}
1364
1365	file = ptr->swap_file;
1366	len = seq_path(swap, file->f_path.mnt, file->f_path.dentry, " \t\n\\");
1367	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1368		       len < 40 ? 40 - len : 1, " ",
1369		       S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1370				"partition" : "file\t",
1371		       ptr->pages << (PAGE_SHIFT - 10),
1372		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1373		       ptr->prio);
1374	return 0;
1375}
1376
1377static const struct seq_operations swaps_op = {
1378	.start =	swap_start,
1379	.next =		swap_next,
1380	.stop =		swap_stop,
1381	.show =		swap_show
1382};
1383
1384static int swaps_open(struct inode *inode, struct file *file)
1385{
1386	return seq_open(file, &swaps_op);
1387}
1388
1389static const struct file_operations proc_swaps_operations = {
1390	.open		= swaps_open,
1391	.read		= seq_read,
1392	.llseek		= seq_lseek,
1393	.release	= seq_release,
1394};
1395
1396static int __init procswaps_init(void)
1397{
1398	struct proc_dir_entry *entry;
1399
1400	entry = create_proc_entry("swaps", 0, NULL);
1401	if (entry)
1402		entry->proc_fops = &proc_swaps_operations;
1403	return 0;
1404}
1405__initcall(procswaps_init);
1406#endif /* CONFIG_PROC_FS */
1407
1408/*
1409 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1410 *
1411 * The swapon system call
1412 */
1413asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1414{
1415	struct swap_info_struct * p;
1416	char *name = NULL;
1417	struct block_device *bdev = NULL;
1418	struct file *swap_file = NULL;
1419	struct address_space *mapping;
1420	unsigned int type;
1421	int i, prev;
1422	int error;
1423	static int least_priority;
1424	union swap_header *swap_header = NULL;
1425	int swap_header_version;
1426	unsigned int nr_good_pages = 0;
1427	int nr_extents = 0;
1428	sector_t span;
1429	unsigned long maxpages = 1;
1430	int swapfilesize;
1431	unsigned short *swap_map;
1432	struct page *page = NULL;
1433	struct inode *inode = NULL;
1434	int did_down = 0;
1435
1436	if (!capable(CAP_SYS_ADMIN))
1437		return -EPERM;
1438	spin_lock(&swap_lock);
1439	p = swap_info;
1440	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1441		if (!(p->flags & SWP_USED))
1442			break;
1443	error = -EPERM;
1444	if (type >= MAX_SWAPFILES) {
1445		spin_unlock(&swap_lock);
1446		goto out;
1447	}
1448	if (type >= nr_swapfiles)
1449		nr_swapfiles = type+1;
1450	INIT_LIST_HEAD(&p->extent_list);
1451	p->flags = SWP_USED;
1452	p->swap_file = NULL;
1453	p->old_block_size = 0;
1454	p->swap_map = NULL;
1455	p->lowest_bit = 0;
1456	p->highest_bit = 0;
1457	p->cluster_nr = 0;
1458	p->inuse_pages = 0;
1459	p->next = -1;
1460	if (swap_flags & SWAP_FLAG_PREFER) {
1461		p->prio =
1462		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1463	} else {
1464		p->prio = --least_priority;
1465	}
1466	spin_unlock(&swap_lock);
1467	name = getname(specialfile);
1468	error = PTR_ERR(name);
1469	if (IS_ERR(name)) {
1470		name = NULL;
1471		goto bad_swap_2;
1472	}
1473	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1474	error = PTR_ERR(swap_file);
1475	if (IS_ERR(swap_file)) {
1476		swap_file = NULL;
1477		goto bad_swap_2;
1478	}
1479
1480	p->swap_file = swap_file;
1481	mapping = swap_file->f_mapping;
1482	inode = mapping->host;
1483
1484	error = -EBUSY;
1485	for (i = 0; i < nr_swapfiles; i++) {
1486		struct swap_info_struct *q = &swap_info[i];
1487
1488		if (i == type || !q->swap_file)
1489			continue;
1490		if (mapping == q->swap_file->f_mapping)
1491			goto bad_swap;
1492	}
1493
1494	error = -EINVAL;
1495	if (S_ISBLK(inode->i_mode)) {
1496		bdev = I_BDEV(inode);
1497		error = bd_claim(bdev, sys_swapon);
1498		if (error < 0) {
1499			bdev = NULL;
1500			error = -EINVAL;
1501			goto bad_swap;
1502		}
1503		p->old_block_size = block_size(bdev);
1504		error = set_blocksize(bdev, PAGE_SIZE);
1505		if (error < 0)
1506			goto bad_swap;
1507		p->bdev = bdev;
1508	} else if (S_ISREG(inode->i_mode)) {
1509		p->bdev = inode->i_sb->s_bdev;
1510		mutex_lock(&inode->i_mutex);
1511		did_down = 1;
1512		if (IS_SWAPFILE(inode)) {
1513			error = -EBUSY;
1514			goto bad_swap;
1515		}
1516	} else {
1517		goto bad_swap;
1518	}
1519
1520	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1521
1522	/*
1523	 * Read the swap header.
1524	 */
1525	if (!mapping->a_ops->readpage) {
1526		error = -EINVAL;
1527		goto bad_swap;
1528	}
1529	page = read_mapping_page(mapping, 0, swap_file);
1530	if (IS_ERR(page)) {
1531		error = PTR_ERR(page);
1532		goto bad_swap;
1533	}
1534	kmap(page);
1535	swap_header = page_address(page);
1536
1537	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1538		swap_header_version = 1;
1539	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1540		swap_header_version = 2;
1541	else {
1542		printk(KERN_ERR "Unable to find swap-space signature\n");
1543		error = -EINVAL;
1544		goto bad_swap;
1545	}
1546
1547	switch (swap_header_version) {
1548	case 1:
1549		printk(KERN_ERR "version 0 swap is no longer supported. "
1550			"Use mkswap -v1 %s\n", name);
1551		error = -EINVAL;
1552		goto bad_swap;
1553	case 2:
1554		/* Check the swap header's sub-version and the size of
1555                   the swap file and bad block lists */
1556		if (swap_header->info.version != 1) {
1557			printk(KERN_WARNING
1558			       "Unable to handle swap header version %d\n",
1559			       swap_header->info.version);
1560			error = -EINVAL;
1561			goto bad_swap;
1562		}
1563
1564		p->lowest_bit  = 1;
1565		p->cluster_next = 1;
1566
1567		/*
1568		 * Find out how many pages are allowed for a single swap
1569		 * device. There are two limiting factors: 1) the number of
1570		 * bits for the swap offset in the swp_entry_t type and
1571		 * 2) the number of bits in the a swap pte as defined by
1572		 * the different architectures. In order to find the
1573		 * largest possible bit mask a swap entry with swap type 0
1574		 * and swap offset ~0UL is created, encoded to a swap pte,
1575		 * decoded to a swp_entry_t again and finally the swap
1576		 * offset is extracted. This will mask all the bits from
1577		 * the initial ~0UL mask that can't be encoded in either
1578		 * the swp_entry_t or the architecture definition of a
1579		 * swap pte.
1580		 */
1581		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1582		if (maxpages > swap_header->info.last_page)
1583			maxpages = swap_header->info.last_page;
1584		p->highest_bit = maxpages - 1;
1585
1586		error = -EINVAL;
1587		if (!maxpages)
1588			goto bad_swap;
1589		if (swapfilesize && maxpages > swapfilesize) {
1590			printk(KERN_WARNING
1591			       "Swap area shorter than signature indicates\n");
1592			goto bad_swap;
1593		}
1594		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1595			goto bad_swap;
1596		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1597			goto bad_swap;
1598
1599		/* OK, set up the swap map and apply the bad block list */
1600		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1601			error = -ENOMEM;
1602			goto bad_swap;
1603		}
1604
1605		error = 0;
1606		memset(p->swap_map, 0, maxpages * sizeof(short));
1607		for (i = 0; i < swap_header->info.nr_badpages; i++) {
1608			int page_nr = swap_header->info.badpages[i];
1609			if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1610				error = -EINVAL;
1611			else
1612				p->swap_map[page_nr] = SWAP_MAP_BAD;
1613		}
1614		nr_good_pages = swap_header->info.last_page -
1615				swap_header->info.nr_badpages -
1616				1 /* header page */;
1617		if (error)
1618			goto bad_swap;
1619	}
1620
1621	if (nr_good_pages) {
1622		p->swap_map[0] = SWAP_MAP_BAD;
1623		p->max = maxpages;
1624		p->pages = nr_good_pages;
1625		nr_extents = setup_swap_extents(p, &span);
1626		if (nr_extents < 0) {
1627			error = nr_extents;
1628			goto bad_swap;
1629		}
1630		nr_good_pages = p->pages;
1631	}
1632	if (!nr_good_pages) {
1633		printk(KERN_WARNING "Empty swap-file\n");
1634		error = -EINVAL;
1635		goto bad_swap;
1636	}
1637
1638	mutex_lock(&swapon_mutex);
1639	spin_lock(&swap_lock);
1640	p->flags = SWP_ACTIVE;
1641	nr_swap_pages += nr_good_pages;
1642	total_swap_pages += nr_good_pages;
1643
1644	printk(KERN_INFO "Adding %uk swap on %s.  "
1645			"Priority:%d extents:%d across:%lluk\n",
1646		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1647		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1648
1649	/* insert swap space into swap_list: */
1650	prev = -1;
1651	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1652		if (p->prio >= swap_info[i].prio) {
1653			break;
1654		}
1655		prev = i;
1656	}
1657	p->next = i;
1658	if (prev < 0) {
1659		swap_list.head = swap_list.next = p - swap_info;
1660	} else {
1661		swap_info[prev].next = p - swap_info;
1662	}
1663	spin_unlock(&swap_lock);
1664	mutex_unlock(&swapon_mutex);
1665	error = 0;
1666	goto out;
1667bad_swap:
1668	if (bdev) {
1669		set_blocksize(bdev, p->old_block_size);
1670		bd_release(bdev);
1671	}
1672	destroy_swap_extents(p);
1673bad_swap_2:
1674	spin_lock(&swap_lock);
1675	swap_map = p->swap_map;
1676	p->swap_file = NULL;
1677	p->swap_map = NULL;
1678	p->flags = 0;
1679	if (!(swap_flags & SWAP_FLAG_PREFER))
1680		++least_priority;
1681	spin_unlock(&swap_lock);
1682	vfree(swap_map);
1683	if (swap_file)
1684		filp_close(swap_file, NULL);
1685out:
1686	if (page && !IS_ERR(page)) {
1687		kunmap(page);
1688		page_cache_release(page);
1689	}
1690	if (name)
1691		putname(name);
1692	if (did_down) {
1693		if (!error)
1694			inode->i_flags |= S_SWAPFILE;
1695		mutex_unlock(&inode->i_mutex);
1696	}
1697	return error;
1698}
1699
1700void si_swapinfo(struct sysinfo *val)
1701{
1702	unsigned int i;
1703	unsigned long nr_to_be_unused = 0;
1704
1705	spin_lock(&swap_lock);
1706	for (i = 0; i < nr_swapfiles; i++) {
1707		if (!(swap_info[i].flags & SWP_USED) ||
1708		     (swap_info[i].flags & SWP_WRITEOK))
1709			continue;
1710		nr_to_be_unused += swap_info[i].inuse_pages;
1711	}
1712	val->freeswap = nr_swap_pages + nr_to_be_unused;
1713	val->totalswap = total_swap_pages + nr_to_be_unused;
1714	spin_unlock(&swap_lock);
1715}
1716
1717/*
1718 * Verify that a swap entry is valid and increment its swap map count.
1719 *
1720 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1721 * "permanent", but will be reclaimed by the next swapoff.
1722 */
1723int swap_duplicate(swp_entry_t entry)
1724{
1725	struct swap_info_struct * p;
1726	unsigned long offset, type;
1727	int result = 0;
1728
1729	if (is_migration_entry(entry))
1730		return 1;
1731
1732	type = swp_type(entry);
1733	if (type >= nr_swapfiles)
1734		goto bad_file;
1735	p = type + swap_info;
1736	offset = swp_offset(entry);
1737
1738	spin_lock(&swap_lock);
1739	if (offset < p->max && p->swap_map[offset]) {
1740		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1741			p->swap_map[offset]++;
1742			result = 1;
1743		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1744			if (swap_overflow++ < 5)
1745				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1746			p->swap_map[offset] = SWAP_MAP_MAX;
1747			result = 1;
1748		}
1749	}
1750	spin_unlock(&swap_lock);
1751out:
1752	return result;
1753
1754bad_file:
1755	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1756	goto out;
1757}
1758
1759struct swap_info_struct *
1760get_swap_info_struct(unsigned type)
1761{
1762	return &swap_info[type];
1763}
1764
1765/*
1766 * swap_lock prevents swap_map being freed. Don't grab an extra
1767 * reference on the swaphandle, it doesn't matter if it becomes unused.
1768 */
1769int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1770{
1771	int our_page_cluster = page_cluster;
1772	int ret = 0, i = 1 << our_page_cluster;
1773	unsigned long toff;
1774	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1775
1776	if (!our_page_cluster)	/* no readahead */
1777		return 0;
1778	toff = (swp_offset(entry) >> our_page_cluster) << our_page_cluster;
1779	if (!toff)		/* first page is swap header */
1780		toff++, i--;
1781	*offset = toff;
1782
1783	spin_lock(&swap_lock);
1784	do {
1785		/* Don't read-ahead past the end of the swap area */
1786		if (toff >= swapdev->max)
1787			break;
1788		/* Don't read in free or bad pages */
1789		if (!swapdev->swap_map[toff])
1790			break;
1791		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1792			break;
1793		toff++;
1794		ret++;
1795	} while (--i);
1796	spin_unlock(&swap_lock);
1797	return ret;
1798}
1799