swapfile.c revision 705e87c0c3c38424f7f30556c85bc20e808d2f59
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/config.h>
9#include <linux/mm.h>
10#include <linux/hugetlb.h>
11#include <linux/mman.h>
12#include <linux/slab.h>
13#include <linux/kernel_stat.h>
14#include <linux/swap.h>
15#include <linux/vmalloc.h>
16#include <linux/pagemap.h>
17#include <linux/namei.h>
18#include <linux/shm.h>
19#include <linux/blkdev.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
28#include <linux/syscalls.h>
29
30#include <asm/pgtable.h>
31#include <asm/tlbflush.h>
32#include <linux/swapops.h>
33
34DEFINE_SPINLOCK(swap_lock);
35unsigned int nr_swapfiles;
36long total_swap_pages;
37static int swap_overflow;
38
39EXPORT_SYMBOL(total_swap_pages);
40
41static const char Bad_file[] = "Bad swap file entry ";
42static const char Unused_file[] = "Unused swap file entry ";
43static const char Bad_offset[] = "Bad swap offset entry ";
44static const char Unused_offset[] = "Unused swap offset entry ";
45
46struct swap_list_t swap_list = {-1, -1};
47
48struct swap_info_struct swap_info[MAX_SWAPFILES];
49
50static DECLARE_MUTEX(swapon_sem);
51
52/*
53 * We need this because the bdev->unplug_fn can sleep and we cannot
54 * hold swap_lock while calling the unplug_fn. And swap_lock
55 * cannot be turned into a semaphore.
56 */
57static DECLARE_RWSEM(swap_unplug_sem);
58
59void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
60{
61	swp_entry_t entry;
62
63	down_read(&swap_unplug_sem);
64	entry.val = page->private;
65	if (PageSwapCache(page)) {
66		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67		struct backing_dev_info *bdi;
68
69		/*
70		 * If the page is removed from swapcache from under us (with a
71		 * racy try_to_unuse/swapoff) we need an additional reference
72		 * count to avoid reading garbage from page->private above. If
73		 * the WARN_ON triggers during a swapoff it maybe the race
74		 * condition and it's harmless. However if it triggers without
75		 * swapoff it signals a problem.
76		 */
77		WARN_ON(page_count(page) <= 1);
78
79		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
80		blk_run_backing_dev(bdi, page);
81	}
82	up_read(&swap_unplug_sem);
83}
84
85#define SWAPFILE_CLUSTER	256
86#define LATENCY_LIMIT		256
87
88static inline unsigned long scan_swap_map(struct swap_info_struct *si)
89{
90	unsigned long offset, last_in_cluster;
91	int latency_ration = LATENCY_LIMIT;
92
93	/*
94	 * We try to cluster swap pages by allocating them sequentially
95	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
96	 * way, however, we resort to first-free allocation, starting
97	 * a new cluster.  This prevents us from scattering swap pages
98	 * all over the entire swap partition, so that we reduce
99	 * overall disk seek times between swap pages.  -- sct
100	 * But we do now try to find an empty cluster.  -Andrea
101	 */
102
103	si->flags += SWP_SCANNING;
104	if (unlikely(!si->cluster_nr)) {
105		si->cluster_nr = SWAPFILE_CLUSTER - 1;
106		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107			goto lowest;
108		spin_unlock(&swap_lock);
109
110		offset = si->lowest_bit;
111		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112
113		/* Locate the first empty (unaligned) cluster */
114		for (; last_in_cluster <= si->highest_bit; offset++) {
115			if (si->swap_map[offset])
116				last_in_cluster = offset + SWAPFILE_CLUSTER;
117			else if (offset == last_in_cluster) {
118				spin_lock(&swap_lock);
119				si->cluster_next = offset-SWAPFILE_CLUSTER-1;
120				goto cluster;
121			}
122			if (unlikely(--latency_ration < 0)) {
123				cond_resched();
124				latency_ration = LATENCY_LIMIT;
125			}
126		}
127		spin_lock(&swap_lock);
128		goto lowest;
129	}
130
131	si->cluster_nr--;
132cluster:
133	offset = si->cluster_next;
134	if (offset > si->highest_bit)
135lowest:		offset = si->lowest_bit;
136checks:	if (!(si->flags & SWP_WRITEOK))
137		goto no_page;
138	if (!si->highest_bit)
139		goto no_page;
140	if (!si->swap_map[offset]) {
141		if (offset == si->lowest_bit)
142			si->lowest_bit++;
143		if (offset == si->highest_bit)
144			si->highest_bit--;
145		si->inuse_pages++;
146		if (si->inuse_pages == si->pages) {
147			si->lowest_bit = si->max;
148			si->highest_bit = 0;
149		}
150		si->swap_map[offset] = 1;
151		si->cluster_next = offset + 1;
152		si->flags -= SWP_SCANNING;
153		return offset;
154	}
155
156	spin_unlock(&swap_lock);
157	while (++offset <= si->highest_bit) {
158		if (!si->swap_map[offset]) {
159			spin_lock(&swap_lock);
160			goto checks;
161		}
162		if (unlikely(--latency_ration < 0)) {
163			cond_resched();
164			latency_ration = LATENCY_LIMIT;
165		}
166	}
167	spin_lock(&swap_lock);
168	goto lowest;
169
170no_page:
171	si->flags -= SWP_SCANNING;
172	return 0;
173}
174
175swp_entry_t get_swap_page(void)
176{
177	struct swap_info_struct *si;
178	pgoff_t offset;
179	int type, next;
180	int wrapped = 0;
181
182	spin_lock(&swap_lock);
183	if (nr_swap_pages <= 0)
184		goto noswap;
185	nr_swap_pages--;
186
187	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188		si = swap_info + type;
189		next = si->next;
190		if (next < 0 ||
191		    (!wrapped && si->prio != swap_info[next].prio)) {
192			next = swap_list.head;
193			wrapped++;
194		}
195
196		if (!si->highest_bit)
197			continue;
198		if (!(si->flags & SWP_WRITEOK))
199			continue;
200
201		swap_list.next = next;
202		offset = scan_swap_map(si);
203		if (offset) {
204			spin_unlock(&swap_lock);
205			return swp_entry(type, offset);
206		}
207		next = swap_list.next;
208	}
209
210	nr_swap_pages++;
211noswap:
212	spin_unlock(&swap_lock);
213	return (swp_entry_t) {0};
214}
215
216static struct swap_info_struct * swap_info_get(swp_entry_t entry)
217{
218	struct swap_info_struct * p;
219	unsigned long offset, type;
220
221	if (!entry.val)
222		goto out;
223	type = swp_type(entry);
224	if (type >= nr_swapfiles)
225		goto bad_nofile;
226	p = & swap_info[type];
227	if (!(p->flags & SWP_USED))
228		goto bad_device;
229	offset = swp_offset(entry);
230	if (offset >= p->max)
231		goto bad_offset;
232	if (!p->swap_map[offset])
233		goto bad_free;
234	spin_lock(&swap_lock);
235	return p;
236
237bad_free:
238	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
239	goto out;
240bad_offset:
241	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
242	goto out;
243bad_device:
244	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
245	goto out;
246bad_nofile:
247	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
248out:
249	return NULL;
250}
251
252static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
253{
254	int count = p->swap_map[offset];
255
256	if (count < SWAP_MAP_MAX) {
257		count--;
258		p->swap_map[offset] = count;
259		if (!count) {
260			if (offset < p->lowest_bit)
261				p->lowest_bit = offset;
262			if (offset > p->highest_bit)
263				p->highest_bit = offset;
264			if (p->prio > swap_info[swap_list.next].prio)
265				swap_list.next = p - swap_info;
266			nr_swap_pages++;
267			p->inuse_pages--;
268		}
269	}
270	return count;
271}
272
273/*
274 * Caller has made sure that the swapdevice corresponding to entry
275 * is still around or has not been recycled.
276 */
277void swap_free(swp_entry_t entry)
278{
279	struct swap_info_struct * p;
280
281	p = swap_info_get(entry);
282	if (p) {
283		swap_entry_free(p, swp_offset(entry));
284		spin_unlock(&swap_lock);
285	}
286}
287
288/*
289 * How many references to page are currently swapped out?
290 */
291static inline int page_swapcount(struct page *page)
292{
293	int count = 0;
294	struct swap_info_struct *p;
295	swp_entry_t entry;
296
297	entry.val = page->private;
298	p = swap_info_get(entry);
299	if (p) {
300		/* Subtract the 1 for the swap cache itself */
301		count = p->swap_map[swp_offset(entry)] - 1;
302		spin_unlock(&swap_lock);
303	}
304	return count;
305}
306
307/*
308 * We can use this swap cache entry directly
309 * if there are no other references to it.
310 */
311int can_share_swap_page(struct page *page)
312{
313	int count;
314
315	BUG_ON(!PageLocked(page));
316	count = page_mapcount(page);
317	if (count <= 1 && PageSwapCache(page))
318		count += page_swapcount(page);
319	return count == 1;
320}
321
322/*
323 * Work out if there are any other processes sharing this
324 * swap cache page. Free it if you can. Return success.
325 */
326int remove_exclusive_swap_page(struct page *page)
327{
328	int retval;
329	struct swap_info_struct * p;
330	swp_entry_t entry;
331
332	BUG_ON(PagePrivate(page));
333	BUG_ON(!PageLocked(page));
334
335	if (!PageSwapCache(page))
336		return 0;
337	if (PageWriteback(page))
338		return 0;
339	if (page_count(page) != 2) /* 2: us + cache */
340		return 0;
341
342	entry.val = page->private;
343	p = swap_info_get(entry);
344	if (!p)
345		return 0;
346
347	/* Is the only swap cache user the cache itself? */
348	retval = 0;
349	if (p->swap_map[swp_offset(entry)] == 1) {
350		/* Recheck the page count with the swapcache lock held.. */
351		write_lock_irq(&swapper_space.tree_lock);
352		if ((page_count(page) == 2) && !PageWriteback(page)) {
353			__delete_from_swap_cache(page);
354			SetPageDirty(page);
355			retval = 1;
356		}
357		write_unlock_irq(&swapper_space.tree_lock);
358	}
359	spin_unlock(&swap_lock);
360
361	if (retval) {
362		swap_free(entry);
363		page_cache_release(page);
364	}
365
366	return retval;
367}
368
369/*
370 * Free the swap entry like above, but also try to
371 * free the page cache entry if it is the last user.
372 */
373void free_swap_and_cache(swp_entry_t entry)
374{
375	struct swap_info_struct * p;
376	struct page *page = NULL;
377
378	p = swap_info_get(entry);
379	if (p) {
380		if (swap_entry_free(p, swp_offset(entry)) == 1)
381			page = find_trylock_page(&swapper_space, entry.val);
382		spin_unlock(&swap_lock);
383	}
384	if (page) {
385		int one_user;
386
387		BUG_ON(PagePrivate(page));
388		page_cache_get(page);
389		one_user = (page_count(page) == 2);
390		/* Only cache user (+us), or swap space full? Free it! */
391		if (!PageWriteback(page) && (one_user || vm_swap_full())) {
392			delete_from_swap_cache(page);
393			SetPageDirty(page);
394		}
395		unlock_page(page);
396		page_cache_release(page);
397	}
398}
399
400/*
401 * No need to decide whether this PTE shares the swap entry with others,
402 * just let do_wp_page work it out if a write is requested later - to
403 * force COW, vm_page_prot omits write permission from any private vma.
404 */
405static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
406		unsigned long addr, swp_entry_t entry, struct page *page)
407{
408	inc_mm_counter(vma->vm_mm, anon_rss);
409	get_page(page);
410	set_pte_at(vma->vm_mm, addr, pte,
411		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
412	page_add_anon_rmap(page, vma, addr);
413	swap_free(entry);
414	/*
415	 * Move the page to the active list so it is not
416	 * immediately swapped out again after swapon.
417	 */
418	activate_page(page);
419}
420
421static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
422				unsigned long addr, unsigned long end,
423				swp_entry_t entry, struct page *page)
424{
425	pte_t swp_pte = swp_entry_to_pte(entry);
426	pte_t *pte;
427	spinlock_t *ptl;
428	int found = 0;
429
430	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
431	do {
432		/*
433		 * swapoff spends a _lot_ of time in this loop!
434		 * Test inline before going to call unuse_pte.
435		 */
436		if (unlikely(pte_same(*pte, swp_pte))) {
437			unuse_pte(vma, pte++, addr, entry, page);
438			found = 1;
439			break;
440		}
441	} while (pte++, addr += PAGE_SIZE, addr != end);
442	pte_unmap_unlock(pte - 1, ptl);
443	return found;
444}
445
446static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
447				unsigned long addr, unsigned long end,
448				swp_entry_t entry, struct page *page)
449{
450	pmd_t *pmd;
451	unsigned long next;
452
453	pmd = pmd_offset(pud, addr);
454	do {
455		next = pmd_addr_end(addr, end);
456		if (pmd_none_or_clear_bad(pmd))
457			continue;
458		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
459			return 1;
460	} while (pmd++, addr = next, addr != end);
461	return 0;
462}
463
464static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
465				unsigned long addr, unsigned long end,
466				swp_entry_t entry, struct page *page)
467{
468	pud_t *pud;
469	unsigned long next;
470
471	pud = pud_offset(pgd, addr);
472	do {
473		next = pud_addr_end(addr, end);
474		if (pud_none_or_clear_bad(pud))
475			continue;
476		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
477			return 1;
478	} while (pud++, addr = next, addr != end);
479	return 0;
480}
481
482static int unuse_vma(struct vm_area_struct *vma,
483				swp_entry_t entry, struct page *page)
484{
485	pgd_t *pgd;
486	unsigned long addr, end, next;
487
488	if (page->mapping) {
489		addr = page_address_in_vma(page, vma);
490		if (addr == -EFAULT)
491			return 0;
492		else
493			end = addr + PAGE_SIZE;
494	} else {
495		addr = vma->vm_start;
496		end = vma->vm_end;
497	}
498
499	pgd = pgd_offset(vma->vm_mm, addr);
500	do {
501		next = pgd_addr_end(addr, end);
502		if (pgd_none_or_clear_bad(pgd))
503			continue;
504		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
505			return 1;
506	} while (pgd++, addr = next, addr != end);
507	return 0;
508}
509
510static int unuse_mm(struct mm_struct *mm,
511				swp_entry_t entry, struct page *page)
512{
513	struct vm_area_struct *vma;
514
515	if (!down_read_trylock(&mm->mmap_sem)) {
516		/*
517		 * Activate page so shrink_cache is unlikely to unmap its
518		 * ptes while lock is dropped, so swapoff can make progress.
519		 */
520		activate_page(page);
521		unlock_page(page);
522		down_read(&mm->mmap_sem);
523		lock_page(page);
524	}
525	for (vma = mm->mmap; vma; vma = vma->vm_next) {
526		if (vma->anon_vma && unuse_vma(vma, entry, page))
527			break;
528	}
529	up_read(&mm->mmap_sem);
530	/*
531	 * Currently unuse_mm cannot fail, but leave error handling
532	 * at call sites for now, since we change it from time to time.
533	 */
534	return 0;
535}
536
537/*
538 * Scan swap_map from current position to next entry still in use.
539 * Recycle to start on reaching the end, returning 0 when empty.
540 */
541static unsigned int find_next_to_unuse(struct swap_info_struct *si,
542					unsigned int prev)
543{
544	unsigned int max = si->max;
545	unsigned int i = prev;
546	int count;
547
548	/*
549	 * No need for swap_lock here: we're just looking
550	 * for whether an entry is in use, not modifying it; false
551	 * hits are okay, and sys_swapoff() has already prevented new
552	 * allocations from this area (while holding swap_lock).
553	 */
554	for (;;) {
555		if (++i >= max) {
556			if (!prev) {
557				i = 0;
558				break;
559			}
560			/*
561			 * No entries in use at top of swap_map,
562			 * loop back to start and recheck there.
563			 */
564			max = prev + 1;
565			prev = 0;
566			i = 1;
567		}
568		count = si->swap_map[i];
569		if (count && count != SWAP_MAP_BAD)
570			break;
571	}
572	return i;
573}
574
575/*
576 * We completely avoid races by reading each swap page in advance,
577 * and then search for the process using it.  All the necessary
578 * page table adjustments can then be made atomically.
579 */
580static int try_to_unuse(unsigned int type)
581{
582	struct swap_info_struct * si = &swap_info[type];
583	struct mm_struct *start_mm;
584	unsigned short *swap_map;
585	unsigned short swcount;
586	struct page *page;
587	swp_entry_t entry;
588	unsigned int i = 0;
589	int retval = 0;
590	int reset_overflow = 0;
591	int shmem;
592
593	/*
594	 * When searching mms for an entry, a good strategy is to
595	 * start at the first mm we freed the previous entry from
596	 * (though actually we don't notice whether we or coincidence
597	 * freed the entry).  Initialize this start_mm with a hold.
598	 *
599	 * A simpler strategy would be to start at the last mm we
600	 * freed the previous entry from; but that would take less
601	 * advantage of mmlist ordering, which clusters forked mms
602	 * together, child after parent.  If we race with dup_mmap(), we
603	 * prefer to resolve parent before child, lest we miss entries
604	 * duplicated after we scanned child: using last mm would invert
605	 * that.  Though it's only a serious concern when an overflowed
606	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
607	 */
608	start_mm = &init_mm;
609	atomic_inc(&init_mm.mm_users);
610
611	/*
612	 * Keep on scanning until all entries have gone.  Usually,
613	 * one pass through swap_map is enough, but not necessarily:
614	 * there are races when an instance of an entry might be missed.
615	 */
616	while ((i = find_next_to_unuse(si, i)) != 0) {
617		if (signal_pending(current)) {
618			retval = -EINTR;
619			break;
620		}
621
622		/*
623		 * Get a page for the entry, using the existing swap
624		 * cache page if there is one.  Otherwise, get a clean
625		 * page and read the swap into it.
626		 */
627		swap_map = &si->swap_map[i];
628		entry = swp_entry(type, i);
629		page = read_swap_cache_async(entry, NULL, 0);
630		if (!page) {
631			/*
632			 * Either swap_duplicate() failed because entry
633			 * has been freed independently, and will not be
634			 * reused since sys_swapoff() already disabled
635			 * allocation from here, or alloc_page() failed.
636			 */
637			if (!*swap_map)
638				continue;
639			retval = -ENOMEM;
640			break;
641		}
642
643		/*
644		 * Don't hold on to start_mm if it looks like exiting.
645		 */
646		if (atomic_read(&start_mm->mm_users) == 1) {
647			mmput(start_mm);
648			start_mm = &init_mm;
649			atomic_inc(&init_mm.mm_users);
650		}
651
652		/*
653		 * Wait for and lock page.  When do_swap_page races with
654		 * try_to_unuse, do_swap_page can handle the fault much
655		 * faster than try_to_unuse can locate the entry.  This
656		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
657		 * defer to do_swap_page in such a case - in some tests,
658		 * do_swap_page and try_to_unuse repeatedly compete.
659		 */
660		wait_on_page_locked(page);
661		wait_on_page_writeback(page);
662		lock_page(page);
663		wait_on_page_writeback(page);
664
665		/*
666		 * Remove all references to entry.
667		 * Whenever we reach init_mm, there's no address space
668		 * to search, but use it as a reminder to search shmem.
669		 */
670		shmem = 0;
671		swcount = *swap_map;
672		if (swcount > 1) {
673			if (start_mm == &init_mm)
674				shmem = shmem_unuse(entry, page);
675			else
676				retval = unuse_mm(start_mm, entry, page);
677		}
678		if (*swap_map > 1) {
679			int set_start_mm = (*swap_map >= swcount);
680			struct list_head *p = &start_mm->mmlist;
681			struct mm_struct *new_start_mm = start_mm;
682			struct mm_struct *prev_mm = start_mm;
683			struct mm_struct *mm;
684
685			atomic_inc(&new_start_mm->mm_users);
686			atomic_inc(&prev_mm->mm_users);
687			spin_lock(&mmlist_lock);
688			while (*swap_map > 1 && !retval &&
689					(p = p->next) != &start_mm->mmlist) {
690				mm = list_entry(p, struct mm_struct, mmlist);
691				if (atomic_inc_return(&mm->mm_users) == 1) {
692					atomic_dec(&mm->mm_users);
693					continue;
694				}
695				spin_unlock(&mmlist_lock);
696				mmput(prev_mm);
697				prev_mm = mm;
698
699				cond_resched();
700
701				swcount = *swap_map;
702				if (swcount <= 1)
703					;
704				else if (mm == &init_mm) {
705					set_start_mm = 1;
706					shmem = shmem_unuse(entry, page);
707				} else
708					retval = unuse_mm(mm, entry, page);
709				if (set_start_mm && *swap_map < swcount) {
710					mmput(new_start_mm);
711					atomic_inc(&mm->mm_users);
712					new_start_mm = mm;
713					set_start_mm = 0;
714				}
715				spin_lock(&mmlist_lock);
716			}
717			spin_unlock(&mmlist_lock);
718			mmput(prev_mm);
719			mmput(start_mm);
720			start_mm = new_start_mm;
721		}
722		if (retval) {
723			unlock_page(page);
724			page_cache_release(page);
725			break;
726		}
727
728		/*
729		 * How could swap count reach 0x7fff when the maximum
730		 * pid is 0x7fff, and there's no way to repeat a swap
731		 * page within an mm (except in shmem, where it's the
732		 * shared object which takes the reference count)?
733		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
734		 *
735		 * If that's wrong, then we should worry more about
736		 * exit_mmap() and do_munmap() cases described above:
737		 * we might be resetting SWAP_MAP_MAX too early here.
738		 * We know "Undead"s can happen, they're okay, so don't
739		 * report them; but do report if we reset SWAP_MAP_MAX.
740		 */
741		if (*swap_map == SWAP_MAP_MAX) {
742			spin_lock(&swap_lock);
743			*swap_map = 1;
744			spin_unlock(&swap_lock);
745			reset_overflow = 1;
746		}
747
748		/*
749		 * If a reference remains (rare), we would like to leave
750		 * the page in the swap cache; but try_to_unmap could
751		 * then re-duplicate the entry once we drop page lock,
752		 * so we might loop indefinitely; also, that page could
753		 * not be swapped out to other storage meanwhile.  So:
754		 * delete from cache even if there's another reference,
755		 * after ensuring that the data has been saved to disk -
756		 * since if the reference remains (rarer), it will be
757		 * read from disk into another page.  Splitting into two
758		 * pages would be incorrect if swap supported "shared
759		 * private" pages, but they are handled by tmpfs files.
760		 *
761		 * Note shmem_unuse already deleted a swappage from
762		 * the swap cache, unless the move to filepage failed:
763		 * in which case it left swappage in cache, lowered its
764		 * swap count to pass quickly through the loops above,
765		 * and now we must reincrement count to try again later.
766		 */
767		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
768			struct writeback_control wbc = {
769				.sync_mode = WB_SYNC_NONE,
770			};
771
772			swap_writepage(page, &wbc);
773			lock_page(page);
774			wait_on_page_writeback(page);
775		}
776		if (PageSwapCache(page)) {
777			if (shmem)
778				swap_duplicate(entry);
779			else
780				delete_from_swap_cache(page);
781		}
782
783		/*
784		 * So we could skip searching mms once swap count went
785		 * to 1, we did not mark any present ptes as dirty: must
786		 * mark page dirty so shrink_list will preserve it.
787		 */
788		SetPageDirty(page);
789		unlock_page(page);
790		page_cache_release(page);
791
792		/*
793		 * Make sure that we aren't completely killing
794		 * interactive performance.
795		 */
796		cond_resched();
797	}
798
799	mmput(start_mm);
800	if (reset_overflow) {
801		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
802		swap_overflow = 0;
803	}
804	return retval;
805}
806
807/*
808 * After a successful try_to_unuse, if no swap is now in use, we know
809 * we can empty the mmlist.  swap_lock must be held on entry and exit.
810 * Note that mmlist_lock nests inside swap_lock, and an mm must be
811 * added to the mmlist just after page_duplicate - before would be racy.
812 */
813static void drain_mmlist(void)
814{
815	struct list_head *p, *next;
816	unsigned int i;
817
818	for (i = 0; i < nr_swapfiles; i++)
819		if (swap_info[i].inuse_pages)
820			return;
821	spin_lock(&mmlist_lock);
822	list_for_each_safe(p, next, &init_mm.mmlist)
823		list_del_init(p);
824	spin_unlock(&mmlist_lock);
825}
826
827/*
828 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
829 * corresponds to page offset `offset'.
830 */
831sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
832{
833	struct swap_extent *se = sis->curr_swap_extent;
834	struct swap_extent *start_se = se;
835
836	for ( ; ; ) {
837		struct list_head *lh;
838
839		if (se->start_page <= offset &&
840				offset < (se->start_page + se->nr_pages)) {
841			return se->start_block + (offset - se->start_page);
842		}
843		lh = se->list.next;
844		if (lh == &sis->extent_list)
845			lh = lh->next;
846		se = list_entry(lh, struct swap_extent, list);
847		sis->curr_swap_extent = se;
848		BUG_ON(se == start_se);		/* It *must* be present */
849	}
850}
851
852/*
853 * Free all of a swapdev's extent information
854 */
855static void destroy_swap_extents(struct swap_info_struct *sis)
856{
857	while (!list_empty(&sis->extent_list)) {
858		struct swap_extent *se;
859
860		se = list_entry(sis->extent_list.next,
861				struct swap_extent, list);
862		list_del(&se->list);
863		kfree(se);
864	}
865}
866
867/*
868 * Add a block range (and the corresponding page range) into this swapdev's
869 * extent list.  The extent list is kept sorted in page order.
870 *
871 * This function rather assumes that it is called in ascending page order.
872 */
873static int
874add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
875		unsigned long nr_pages, sector_t start_block)
876{
877	struct swap_extent *se;
878	struct swap_extent *new_se;
879	struct list_head *lh;
880
881	lh = sis->extent_list.prev;	/* The highest page extent */
882	if (lh != &sis->extent_list) {
883		se = list_entry(lh, struct swap_extent, list);
884		BUG_ON(se->start_page + se->nr_pages != start_page);
885		if (se->start_block + se->nr_pages == start_block) {
886			/* Merge it */
887			se->nr_pages += nr_pages;
888			return 0;
889		}
890	}
891
892	/*
893	 * No merge.  Insert a new extent, preserving ordering.
894	 */
895	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
896	if (new_se == NULL)
897		return -ENOMEM;
898	new_se->start_page = start_page;
899	new_se->nr_pages = nr_pages;
900	new_se->start_block = start_block;
901
902	list_add_tail(&new_se->list, &sis->extent_list);
903	return 1;
904}
905
906/*
907 * A `swap extent' is a simple thing which maps a contiguous range of pages
908 * onto a contiguous range of disk blocks.  An ordered list of swap extents
909 * is built at swapon time and is then used at swap_writepage/swap_readpage
910 * time for locating where on disk a page belongs.
911 *
912 * If the swapfile is an S_ISBLK block device, a single extent is installed.
913 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
914 * swap files identically.
915 *
916 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
917 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
918 * swapfiles are handled *identically* after swapon time.
919 *
920 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
921 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
922 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
923 * requirements, they are simply tossed out - we will never use those blocks
924 * for swapping.
925 *
926 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
927 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
928 * which will scribble on the fs.
929 *
930 * The amount of disk space which a single swap extent represents varies.
931 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
932 * extents in the list.  To avoid much list walking, we cache the previous
933 * search location in `curr_swap_extent', and start new searches from there.
934 * This is extremely effective.  The average number of iterations in
935 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
936 */
937static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
938{
939	struct inode *inode;
940	unsigned blocks_per_page;
941	unsigned long page_no;
942	unsigned blkbits;
943	sector_t probe_block;
944	sector_t last_block;
945	sector_t lowest_block = -1;
946	sector_t highest_block = 0;
947	int nr_extents = 0;
948	int ret;
949
950	inode = sis->swap_file->f_mapping->host;
951	if (S_ISBLK(inode->i_mode)) {
952		ret = add_swap_extent(sis, 0, sis->max, 0);
953		*span = sis->pages;
954		goto done;
955	}
956
957	blkbits = inode->i_blkbits;
958	blocks_per_page = PAGE_SIZE >> blkbits;
959
960	/*
961	 * Map all the blocks into the extent list.  This code doesn't try
962	 * to be very smart.
963	 */
964	probe_block = 0;
965	page_no = 0;
966	last_block = i_size_read(inode) >> blkbits;
967	while ((probe_block + blocks_per_page) <= last_block &&
968			page_no < sis->max) {
969		unsigned block_in_page;
970		sector_t first_block;
971
972		first_block = bmap(inode, probe_block);
973		if (first_block == 0)
974			goto bad_bmap;
975
976		/*
977		 * It must be PAGE_SIZE aligned on-disk
978		 */
979		if (first_block & (blocks_per_page - 1)) {
980			probe_block++;
981			goto reprobe;
982		}
983
984		for (block_in_page = 1; block_in_page < blocks_per_page;
985					block_in_page++) {
986			sector_t block;
987
988			block = bmap(inode, probe_block + block_in_page);
989			if (block == 0)
990				goto bad_bmap;
991			if (block != first_block + block_in_page) {
992				/* Discontiguity */
993				probe_block++;
994				goto reprobe;
995			}
996		}
997
998		first_block >>= (PAGE_SHIFT - blkbits);
999		if (page_no) {	/* exclude the header page */
1000			if (first_block < lowest_block)
1001				lowest_block = first_block;
1002			if (first_block > highest_block)
1003				highest_block = first_block;
1004		}
1005
1006		/*
1007		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1008		 */
1009		ret = add_swap_extent(sis, page_no, 1, first_block);
1010		if (ret < 0)
1011			goto out;
1012		nr_extents += ret;
1013		page_no++;
1014		probe_block += blocks_per_page;
1015reprobe:
1016		continue;
1017	}
1018	ret = nr_extents;
1019	*span = 1 + highest_block - lowest_block;
1020	if (page_no == 0)
1021		page_no = 1;	/* force Empty message */
1022	sis->max = page_no;
1023	sis->pages = page_no - 1;
1024	sis->highest_bit = page_no - 1;
1025done:
1026	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1027					struct swap_extent, list);
1028	goto out;
1029bad_bmap:
1030	printk(KERN_ERR "swapon: swapfile has holes\n");
1031	ret = -EINVAL;
1032out:
1033	return ret;
1034}
1035
1036#if 0	/* We don't need this yet */
1037#include <linux/backing-dev.h>
1038int page_queue_congested(struct page *page)
1039{
1040	struct backing_dev_info *bdi;
1041
1042	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1043
1044	if (PageSwapCache(page)) {
1045		swp_entry_t entry = { .val = page->private };
1046		struct swap_info_struct *sis;
1047
1048		sis = get_swap_info_struct(swp_type(entry));
1049		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1050	} else
1051		bdi = page->mapping->backing_dev_info;
1052	return bdi_write_congested(bdi);
1053}
1054#endif
1055
1056asmlinkage long sys_swapoff(const char __user * specialfile)
1057{
1058	struct swap_info_struct * p = NULL;
1059	unsigned short *swap_map;
1060	struct file *swap_file, *victim;
1061	struct address_space *mapping;
1062	struct inode *inode;
1063	char * pathname;
1064	int i, type, prev;
1065	int err;
1066
1067	if (!capable(CAP_SYS_ADMIN))
1068		return -EPERM;
1069
1070	pathname = getname(specialfile);
1071	err = PTR_ERR(pathname);
1072	if (IS_ERR(pathname))
1073		goto out;
1074
1075	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1076	putname(pathname);
1077	err = PTR_ERR(victim);
1078	if (IS_ERR(victim))
1079		goto out;
1080
1081	mapping = victim->f_mapping;
1082	prev = -1;
1083	spin_lock(&swap_lock);
1084	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1085		p = swap_info + type;
1086		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1087			if (p->swap_file->f_mapping == mapping)
1088				break;
1089		}
1090		prev = type;
1091	}
1092	if (type < 0) {
1093		err = -EINVAL;
1094		spin_unlock(&swap_lock);
1095		goto out_dput;
1096	}
1097	if (!security_vm_enough_memory(p->pages))
1098		vm_unacct_memory(p->pages);
1099	else {
1100		err = -ENOMEM;
1101		spin_unlock(&swap_lock);
1102		goto out_dput;
1103	}
1104	if (prev < 0) {
1105		swap_list.head = p->next;
1106	} else {
1107		swap_info[prev].next = p->next;
1108	}
1109	if (type == swap_list.next) {
1110		/* just pick something that's safe... */
1111		swap_list.next = swap_list.head;
1112	}
1113	nr_swap_pages -= p->pages;
1114	total_swap_pages -= p->pages;
1115	p->flags &= ~SWP_WRITEOK;
1116	spin_unlock(&swap_lock);
1117
1118	current->flags |= PF_SWAPOFF;
1119	err = try_to_unuse(type);
1120	current->flags &= ~PF_SWAPOFF;
1121
1122	if (err) {
1123		/* re-insert swap space back into swap_list */
1124		spin_lock(&swap_lock);
1125		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1126			if (p->prio >= swap_info[i].prio)
1127				break;
1128		p->next = i;
1129		if (prev < 0)
1130			swap_list.head = swap_list.next = p - swap_info;
1131		else
1132			swap_info[prev].next = p - swap_info;
1133		nr_swap_pages += p->pages;
1134		total_swap_pages += p->pages;
1135		p->flags |= SWP_WRITEOK;
1136		spin_unlock(&swap_lock);
1137		goto out_dput;
1138	}
1139
1140	/* wait for any unplug function to finish */
1141	down_write(&swap_unplug_sem);
1142	up_write(&swap_unplug_sem);
1143
1144	destroy_swap_extents(p);
1145	down(&swapon_sem);
1146	spin_lock(&swap_lock);
1147	drain_mmlist();
1148
1149	/* wait for anyone still in scan_swap_map */
1150	p->highest_bit = 0;		/* cuts scans short */
1151	while (p->flags >= SWP_SCANNING) {
1152		spin_unlock(&swap_lock);
1153		schedule_timeout_uninterruptible(1);
1154		spin_lock(&swap_lock);
1155	}
1156
1157	swap_file = p->swap_file;
1158	p->swap_file = NULL;
1159	p->max = 0;
1160	swap_map = p->swap_map;
1161	p->swap_map = NULL;
1162	p->flags = 0;
1163	spin_unlock(&swap_lock);
1164	up(&swapon_sem);
1165	vfree(swap_map);
1166	inode = mapping->host;
1167	if (S_ISBLK(inode->i_mode)) {
1168		struct block_device *bdev = I_BDEV(inode);
1169		set_blocksize(bdev, p->old_block_size);
1170		bd_release(bdev);
1171	} else {
1172		down(&inode->i_sem);
1173		inode->i_flags &= ~S_SWAPFILE;
1174		up(&inode->i_sem);
1175	}
1176	filp_close(swap_file, NULL);
1177	err = 0;
1178
1179out_dput:
1180	filp_close(victim, NULL);
1181out:
1182	return err;
1183}
1184
1185#ifdef CONFIG_PROC_FS
1186/* iterator */
1187static void *swap_start(struct seq_file *swap, loff_t *pos)
1188{
1189	struct swap_info_struct *ptr = swap_info;
1190	int i;
1191	loff_t l = *pos;
1192
1193	down(&swapon_sem);
1194
1195	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1196		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1197			continue;
1198		if (!l--)
1199			return ptr;
1200	}
1201
1202	return NULL;
1203}
1204
1205static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1206{
1207	struct swap_info_struct *ptr = v;
1208	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1209
1210	for (++ptr; ptr < endptr; ptr++) {
1211		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1212			continue;
1213		++*pos;
1214		return ptr;
1215	}
1216
1217	return NULL;
1218}
1219
1220static void swap_stop(struct seq_file *swap, void *v)
1221{
1222	up(&swapon_sem);
1223}
1224
1225static int swap_show(struct seq_file *swap, void *v)
1226{
1227	struct swap_info_struct *ptr = v;
1228	struct file *file;
1229	int len;
1230
1231	if (v == swap_info)
1232		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1233
1234	file = ptr->swap_file;
1235	len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1236	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1237		       len < 40 ? 40 - len : 1, " ",
1238		       S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1239				"partition" : "file\t",
1240		       ptr->pages << (PAGE_SHIFT - 10),
1241		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1242		       ptr->prio);
1243	return 0;
1244}
1245
1246static struct seq_operations swaps_op = {
1247	.start =	swap_start,
1248	.next =		swap_next,
1249	.stop =		swap_stop,
1250	.show =		swap_show
1251};
1252
1253static int swaps_open(struct inode *inode, struct file *file)
1254{
1255	return seq_open(file, &swaps_op);
1256}
1257
1258static struct file_operations proc_swaps_operations = {
1259	.open		= swaps_open,
1260	.read		= seq_read,
1261	.llseek		= seq_lseek,
1262	.release	= seq_release,
1263};
1264
1265static int __init procswaps_init(void)
1266{
1267	struct proc_dir_entry *entry;
1268
1269	entry = create_proc_entry("swaps", 0, NULL);
1270	if (entry)
1271		entry->proc_fops = &proc_swaps_operations;
1272	return 0;
1273}
1274__initcall(procswaps_init);
1275#endif /* CONFIG_PROC_FS */
1276
1277/*
1278 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1279 *
1280 * The swapon system call
1281 */
1282asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1283{
1284	struct swap_info_struct * p;
1285	char *name = NULL;
1286	struct block_device *bdev = NULL;
1287	struct file *swap_file = NULL;
1288	struct address_space *mapping;
1289	unsigned int type;
1290	int i, prev;
1291	int error;
1292	static int least_priority;
1293	union swap_header *swap_header = NULL;
1294	int swap_header_version;
1295	unsigned int nr_good_pages = 0;
1296	int nr_extents = 0;
1297	sector_t span;
1298	unsigned long maxpages = 1;
1299	int swapfilesize;
1300	unsigned short *swap_map;
1301	struct page *page = NULL;
1302	struct inode *inode = NULL;
1303	int did_down = 0;
1304
1305	if (!capable(CAP_SYS_ADMIN))
1306		return -EPERM;
1307	spin_lock(&swap_lock);
1308	p = swap_info;
1309	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1310		if (!(p->flags & SWP_USED))
1311			break;
1312	error = -EPERM;
1313	/*
1314	 * Test if adding another swap device is possible. There are
1315	 * two limiting factors: 1) the number of bits for the swap
1316	 * type swp_entry_t definition and 2) the number of bits for
1317	 * the swap type in the swap ptes as defined by the different
1318	 * architectures. To honor both limitations a swap entry
1319	 * with swap offset 0 and swap type ~0UL is created, encoded
1320	 * to a swap pte, decoded to a swp_entry_t again and finally
1321	 * the swap type part is extracted. This will mask all bits
1322	 * from the initial ~0UL that can't be encoded in either the
1323	 * swp_entry_t or the architecture definition of a swap pte.
1324	 */
1325	if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1326		spin_unlock(&swap_lock);
1327		goto out;
1328	}
1329	if (type >= nr_swapfiles)
1330		nr_swapfiles = type+1;
1331	INIT_LIST_HEAD(&p->extent_list);
1332	p->flags = SWP_USED;
1333	p->swap_file = NULL;
1334	p->old_block_size = 0;
1335	p->swap_map = NULL;
1336	p->lowest_bit = 0;
1337	p->highest_bit = 0;
1338	p->cluster_nr = 0;
1339	p->inuse_pages = 0;
1340	p->next = -1;
1341	if (swap_flags & SWAP_FLAG_PREFER) {
1342		p->prio =
1343		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1344	} else {
1345		p->prio = --least_priority;
1346	}
1347	spin_unlock(&swap_lock);
1348	name = getname(specialfile);
1349	error = PTR_ERR(name);
1350	if (IS_ERR(name)) {
1351		name = NULL;
1352		goto bad_swap_2;
1353	}
1354	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1355	error = PTR_ERR(swap_file);
1356	if (IS_ERR(swap_file)) {
1357		swap_file = NULL;
1358		goto bad_swap_2;
1359	}
1360
1361	p->swap_file = swap_file;
1362	mapping = swap_file->f_mapping;
1363	inode = mapping->host;
1364
1365	error = -EBUSY;
1366	for (i = 0; i < nr_swapfiles; i++) {
1367		struct swap_info_struct *q = &swap_info[i];
1368
1369		if (i == type || !q->swap_file)
1370			continue;
1371		if (mapping == q->swap_file->f_mapping)
1372			goto bad_swap;
1373	}
1374
1375	error = -EINVAL;
1376	if (S_ISBLK(inode->i_mode)) {
1377		bdev = I_BDEV(inode);
1378		error = bd_claim(bdev, sys_swapon);
1379		if (error < 0) {
1380			bdev = NULL;
1381			error = -EINVAL;
1382			goto bad_swap;
1383		}
1384		p->old_block_size = block_size(bdev);
1385		error = set_blocksize(bdev, PAGE_SIZE);
1386		if (error < 0)
1387			goto bad_swap;
1388		p->bdev = bdev;
1389	} else if (S_ISREG(inode->i_mode)) {
1390		p->bdev = inode->i_sb->s_bdev;
1391		down(&inode->i_sem);
1392		did_down = 1;
1393		if (IS_SWAPFILE(inode)) {
1394			error = -EBUSY;
1395			goto bad_swap;
1396		}
1397	} else {
1398		goto bad_swap;
1399	}
1400
1401	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1402
1403	/*
1404	 * Read the swap header.
1405	 */
1406	if (!mapping->a_ops->readpage) {
1407		error = -EINVAL;
1408		goto bad_swap;
1409	}
1410	page = read_cache_page(mapping, 0,
1411			(filler_t *)mapping->a_ops->readpage, swap_file);
1412	if (IS_ERR(page)) {
1413		error = PTR_ERR(page);
1414		goto bad_swap;
1415	}
1416	wait_on_page_locked(page);
1417	if (!PageUptodate(page))
1418		goto bad_swap;
1419	kmap(page);
1420	swap_header = page_address(page);
1421
1422	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1423		swap_header_version = 1;
1424	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1425		swap_header_version = 2;
1426	else {
1427		printk("Unable to find swap-space signature\n");
1428		error = -EINVAL;
1429		goto bad_swap;
1430	}
1431
1432	switch (swap_header_version) {
1433	case 1:
1434		printk(KERN_ERR "version 0 swap is no longer supported. "
1435			"Use mkswap -v1 %s\n", name);
1436		error = -EINVAL;
1437		goto bad_swap;
1438	case 2:
1439		/* Check the swap header's sub-version and the size of
1440                   the swap file and bad block lists */
1441		if (swap_header->info.version != 1) {
1442			printk(KERN_WARNING
1443			       "Unable to handle swap header version %d\n",
1444			       swap_header->info.version);
1445			error = -EINVAL;
1446			goto bad_swap;
1447		}
1448
1449		p->lowest_bit  = 1;
1450		p->cluster_next = 1;
1451
1452		/*
1453		 * Find out how many pages are allowed for a single swap
1454		 * device. There are two limiting factors: 1) the number of
1455		 * bits for the swap offset in the swp_entry_t type and
1456		 * 2) the number of bits in the a swap pte as defined by
1457		 * the different architectures. In order to find the
1458		 * largest possible bit mask a swap entry with swap type 0
1459		 * and swap offset ~0UL is created, encoded to a swap pte,
1460		 * decoded to a swp_entry_t again and finally the swap
1461		 * offset is extracted. This will mask all the bits from
1462		 * the initial ~0UL mask that can't be encoded in either
1463		 * the swp_entry_t or the architecture definition of a
1464		 * swap pte.
1465		 */
1466		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1467		if (maxpages > swap_header->info.last_page)
1468			maxpages = swap_header->info.last_page;
1469		p->highest_bit = maxpages - 1;
1470
1471		error = -EINVAL;
1472		if (!maxpages)
1473			goto bad_swap;
1474		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1475			goto bad_swap;
1476		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1477			goto bad_swap;
1478
1479		/* OK, set up the swap map and apply the bad block list */
1480		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1481			error = -ENOMEM;
1482			goto bad_swap;
1483		}
1484
1485		error = 0;
1486		memset(p->swap_map, 0, maxpages * sizeof(short));
1487		for (i=0; i<swap_header->info.nr_badpages; i++) {
1488			int page = swap_header->info.badpages[i];
1489			if (page <= 0 || page >= swap_header->info.last_page)
1490				error = -EINVAL;
1491			else
1492				p->swap_map[page] = SWAP_MAP_BAD;
1493		}
1494		nr_good_pages = swap_header->info.last_page -
1495				swap_header->info.nr_badpages -
1496				1 /* header page */;
1497		if (error)
1498			goto bad_swap;
1499	}
1500
1501	if (swapfilesize && maxpages > swapfilesize) {
1502		printk(KERN_WARNING
1503		       "Swap area shorter than signature indicates\n");
1504		error = -EINVAL;
1505		goto bad_swap;
1506	}
1507	if (nr_good_pages) {
1508		p->swap_map[0] = SWAP_MAP_BAD;
1509		p->max = maxpages;
1510		p->pages = nr_good_pages;
1511		nr_extents = setup_swap_extents(p, &span);
1512		if (nr_extents < 0) {
1513			error = nr_extents;
1514			goto bad_swap;
1515		}
1516		nr_good_pages = p->pages;
1517	}
1518	if (!nr_good_pages) {
1519		printk(KERN_WARNING "Empty swap-file\n");
1520		error = -EINVAL;
1521		goto bad_swap;
1522	}
1523
1524	down(&swapon_sem);
1525	spin_lock(&swap_lock);
1526	p->flags = SWP_ACTIVE;
1527	nr_swap_pages += nr_good_pages;
1528	total_swap_pages += nr_good_pages;
1529
1530	printk(KERN_INFO "Adding %uk swap on %s.  "
1531			"Priority:%d extents:%d across:%lluk\n",
1532		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1533		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1534
1535	/* insert swap space into swap_list: */
1536	prev = -1;
1537	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1538		if (p->prio >= swap_info[i].prio) {
1539			break;
1540		}
1541		prev = i;
1542	}
1543	p->next = i;
1544	if (prev < 0) {
1545		swap_list.head = swap_list.next = p - swap_info;
1546	} else {
1547		swap_info[prev].next = p - swap_info;
1548	}
1549	spin_unlock(&swap_lock);
1550	up(&swapon_sem);
1551	error = 0;
1552	goto out;
1553bad_swap:
1554	if (bdev) {
1555		set_blocksize(bdev, p->old_block_size);
1556		bd_release(bdev);
1557	}
1558	destroy_swap_extents(p);
1559bad_swap_2:
1560	spin_lock(&swap_lock);
1561	swap_map = p->swap_map;
1562	p->swap_file = NULL;
1563	p->swap_map = NULL;
1564	p->flags = 0;
1565	if (!(swap_flags & SWAP_FLAG_PREFER))
1566		++least_priority;
1567	spin_unlock(&swap_lock);
1568	vfree(swap_map);
1569	if (swap_file)
1570		filp_close(swap_file, NULL);
1571out:
1572	if (page && !IS_ERR(page)) {
1573		kunmap(page);
1574		page_cache_release(page);
1575	}
1576	if (name)
1577		putname(name);
1578	if (did_down) {
1579		if (!error)
1580			inode->i_flags |= S_SWAPFILE;
1581		up(&inode->i_sem);
1582	}
1583	return error;
1584}
1585
1586void si_swapinfo(struct sysinfo *val)
1587{
1588	unsigned int i;
1589	unsigned long nr_to_be_unused = 0;
1590
1591	spin_lock(&swap_lock);
1592	for (i = 0; i < nr_swapfiles; i++) {
1593		if (!(swap_info[i].flags & SWP_USED) ||
1594		     (swap_info[i].flags & SWP_WRITEOK))
1595			continue;
1596		nr_to_be_unused += swap_info[i].inuse_pages;
1597	}
1598	val->freeswap = nr_swap_pages + nr_to_be_unused;
1599	val->totalswap = total_swap_pages + nr_to_be_unused;
1600	spin_unlock(&swap_lock);
1601}
1602
1603/*
1604 * Verify that a swap entry is valid and increment its swap map count.
1605 *
1606 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1607 * "permanent", but will be reclaimed by the next swapoff.
1608 */
1609int swap_duplicate(swp_entry_t entry)
1610{
1611	struct swap_info_struct * p;
1612	unsigned long offset, type;
1613	int result = 0;
1614
1615	type = swp_type(entry);
1616	if (type >= nr_swapfiles)
1617		goto bad_file;
1618	p = type + swap_info;
1619	offset = swp_offset(entry);
1620
1621	spin_lock(&swap_lock);
1622	if (offset < p->max && p->swap_map[offset]) {
1623		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1624			p->swap_map[offset]++;
1625			result = 1;
1626		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1627			if (swap_overflow++ < 5)
1628				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1629			p->swap_map[offset] = SWAP_MAP_MAX;
1630			result = 1;
1631		}
1632	}
1633	spin_unlock(&swap_lock);
1634out:
1635	return result;
1636
1637bad_file:
1638	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1639	goto out;
1640}
1641
1642struct swap_info_struct *
1643get_swap_info_struct(unsigned type)
1644{
1645	return &swap_info[type];
1646}
1647
1648/*
1649 * swap_lock prevents swap_map being freed. Don't grab an extra
1650 * reference on the swaphandle, it doesn't matter if it becomes unused.
1651 */
1652int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1653{
1654	int ret = 0, i = 1 << page_cluster;
1655	unsigned long toff;
1656	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1657
1658	if (!page_cluster)	/* no readahead */
1659		return 0;
1660	toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1661	if (!toff)		/* first page is swap header */
1662		toff++, i--;
1663	*offset = toff;
1664
1665	spin_lock(&swap_lock);
1666	do {
1667		/* Don't read-ahead past the end of the swap area */
1668		if (toff >= swapdev->max)
1669			break;
1670		/* Don't read in free or bad pages */
1671		if (!swapdev->swap_map[toff])
1672			break;
1673		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1674			break;
1675		toff++;
1676		ret++;
1677	} while (--i);
1678	spin_unlock(&swap_lock);
1679	return ret;
1680}
1681