swapfile.c revision 72788c385604523422592249c19cba0187021e9b
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/random.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/ksm.h>
26#include <linux/rmap.h>
27#include <linux/security.h>
28#include <linux/backing-dev.h>
29#include <linux/mutex.h>
30#include <linux/capability.h>
31#include <linux/syscalls.h>
32#include <linux/memcontrol.h>
33#include <linux/poll.h>
34#include <linux/oom.h>
35
36#include <asm/pgtable.h>
37#include <asm/tlbflush.h>
38#include <linux/swapops.h>
39#include <linux/page_cgroup.h>
40
41static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
42				 unsigned char);
43static void free_swap_count_continuations(struct swap_info_struct *);
44static sector_t map_swap_entry(swp_entry_t, struct block_device**);
45
46static DEFINE_SPINLOCK(swap_lock);
47static unsigned int nr_swapfiles;
48long nr_swap_pages;
49long total_swap_pages;
50static int least_priority;
51
52static const char Bad_file[] = "Bad swap file entry ";
53static const char Unused_file[] = "Unused swap file entry ";
54static const char Bad_offset[] = "Bad swap offset entry ";
55static const char Unused_offset[] = "Unused swap offset entry ";
56
57static struct swap_list_t swap_list = {-1, -1};
58
59static struct swap_info_struct *swap_info[MAX_SWAPFILES];
60
61static DEFINE_MUTEX(swapon_mutex);
62
63static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
64/* Activity counter to indicate that a swapon or swapoff has occurred */
65static atomic_t proc_poll_event = ATOMIC_INIT(0);
66
67static inline unsigned char swap_count(unsigned char ent)
68{
69	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
70}
71
72/* returns 1 if swap entry is freed */
73static int
74__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
75{
76	swp_entry_t entry = swp_entry(si->type, offset);
77	struct page *page;
78	int ret = 0;
79
80	page = find_get_page(&swapper_space, entry.val);
81	if (!page)
82		return 0;
83	/*
84	 * This function is called from scan_swap_map() and it's called
85	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
86	 * We have to use trylock for avoiding deadlock. This is a special
87	 * case and you should use try_to_free_swap() with explicit lock_page()
88	 * in usual operations.
89	 */
90	if (trylock_page(page)) {
91		ret = try_to_free_swap(page);
92		unlock_page(page);
93	}
94	page_cache_release(page);
95	return ret;
96}
97
98/*
99 * swapon tell device that all the old swap contents can be discarded,
100 * to allow the swap device to optimize its wear-levelling.
101 */
102static int discard_swap(struct swap_info_struct *si)
103{
104	struct swap_extent *se;
105	sector_t start_block;
106	sector_t nr_blocks;
107	int err = 0;
108
109	/* Do not discard the swap header page! */
110	se = &si->first_swap_extent;
111	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
112	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
113	if (nr_blocks) {
114		err = blkdev_issue_discard(si->bdev, start_block,
115				nr_blocks, GFP_KERNEL, 0);
116		if (err)
117			return err;
118		cond_resched();
119	}
120
121	list_for_each_entry(se, &si->first_swap_extent.list, list) {
122		start_block = se->start_block << (PAGE_SHIFT - 9);
123		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
124
125		err = blkdev_issue_discard(si->bdev, start_block,
126				nr_blocks, GFP_KERNEL, 0);
127		if (err)
128			break;
129
130		cond_resched();
131	}
132	return err;		/* That will often be -EOPNOTSUPP */
133}
134
135/*
136 * swap allocation tell device that a cluster of swap can now be discarded,
137 * to allow the swap device to optimize its wear-levelling.
138 */
139static void discard_swap_cluster(struct swap_info_struct *si,
140				 pgoff_t start_page, pgoff_t nr_pages)
141{
142	struct swap_extent *se = si->curr_swap_extent;
143	int found_extent = 0;
144
145	while (nr_pages) {
146		struct list_head *lh;
147
148		if (se->start_page <= start_page &&
149		    start_page < se->start_page + se->nr_pages) {
150			pgoff_t offset = start_page - se->start_page;
151			sector_t start_block = se->start_block + offset;
152			sector_t nr_blocks = se->nr_pages - offset;
153
154			if (nr_blocks > nr_pages)
155				nr_blocks = nr_pages;
156			start_page += nr_blocks;
157			nr_pages -= nr_blocks;
158
159			if (!found_extent++)
160				si->curr_swap_extent = se;
161
162			start_block <<= PAGE_SHIFT - 9;
163			nr_blocks <<= PAGE_SHIFT - 9;
164			if (blkdev_issue_discard(si->bdev, start_block,
165				    nr_blocks, GFP_NOIO, 0))
166				break;
167		}
168
169		lh = se->list.next;
170		se = list_entry(lh, struct swap_extent, list);
171	}
172}
173
174static int wait_for_discard(void *word)
175{
176	schedule();
177	return 0;
178}
179
180#define SWAPFILE_CLUSTER	256
181#define LATENCY_LIMIT		256
182
183static unsigned long scan_swap_map(struct swap_info_struct *si,
184				   unsigned char usage)
185{
186	unsigned long offset;
187	unsigned long scan_base;
188	unsigned long last_in_cluster = 0;
189	int latency_ration = LATENCY_LIMIT;
190	int found_free_cluster = 0;
191
192	/*
193	 * We try to cluster swap pages by allocating them sequentially
194	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
195	 * way, however, we resort to first-free allocation, starting
196	 * a new cluster.  This prevents us from scattering swap pages
197	 * all over the entire swap partition, so that we reduce
198	 * overall disk seek times between swap pages.  -- sct
199	 * But we do now try to find an empty cluster.  -Andrea
200	 * And we let swap pages go all over an SSD partition.  Hugh
201	 */
202
203	si->flags += SWP_SCANNING;
204	scan_base = offset = si->cluster_next;
205
206	if (unlikely(!si->cluster_nr--)) {
207		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
208			si->cluster_nr = SWAPFILE_CLUSTER - 1;
209			goto checks;
210		}
211		if (si->flags & SWP_DISCARDABLE) {
212			/*
213			 * Start range check on racing allocations, in case
214			 * they overlap the cluster we eventually decide on
215			 * (we scan without swap_lock to allow preemption).
216			 * It's hardly conceivable that cluster_nr could be
217			 * wrapped during our scan, but don't depend on it.
218			 */
219			if (si->lowest_alloc)
220				goto checks;
221			si->lowest_alloc = si->max;
222			si->highest_alloc = 0;
223		}
224		spin_unlock(&swap_lock);
225
226		/*
227		 * If seek is expensive, start searching for new cluster from
228		 * start of partition, to minimize the span of allocated swap.
229		 * But if seek is cheap, search from our current position, so
230		 * that swap is allocated from all over the partition: if the
231		 * Flash Translation Layer only remaps within limited zones,
232		 * we don't want to wear out the first zone too quickly.
233		 */
234		if (!(si->flags & SWP_SOLIDSTATE))
235			scan_base = offset = si->lowest_bit;
236		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
237
238		/* Locate the first empty (unaligned) cluster */
239		for (; last_in_cluster <= si->highest_bit; offset++) {
240			if (si->swap_map[offset])
241				last_in_cluster = offset + SWAPFILE_CLUSTER;
242			else if (offset == last_in_cluster) {
243				spin_lock(&swap_lock);
244				offset -= SWAPFILE_CLUSTER - 1;
245				si->cluster_next = offset;
246				si->cluster_nr = SWAPFILE_CLUSTER - 1;
247				found_free_cluster = 1;
248				goto checks;
249			}
250			if (unlikely(--latency_ration < 0)) {
251				cond_resched();
252				latency_ration = LATENCY_LIMIT;
253			}
254		}
255
256		offset = si->lowest_bit;
257		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
258
259		/* Locate the first empty (unaligned) cluster */
260		for (; last_in_cluster < scan_base; offset++) {
261			if (si->swap_map[offset])
262				last_in_cluster = offset + SWAPFILE_CLUSTER;
263			else if (offset == last_in_cluster) {
264				spin_lock(&swap_lock);
265				offset -= SWAPFILE_CLUSTER - 1;
266				si->cluster_next = offset;
267				si->cluster_nr = SWAPFILE_CLUSTER - 1;
268				found_free_cluster = 1;
269				goto checks;
270			}
271			if (unlikely(--latency_ration < 0)) {
272				cond_resched();
273				latency_ration = LATENCY_LIMIT;
274			}
275		}
276
277		offset = scan_base;
278		spin_lock(&swap_lock);
279		si->cluster_nr = SWAPFILE_CLUSTER - 1;
280		si->lowest_alloc = 0;
281	}
282
283checks:
284	if (!(si->flags & SWP_WRITEOK))
285		goto no_page;
286	if (!si->highest_bit)
287		goto no_page;
288	if (offset > si->highest_bit)
289		scan_base = offset = si->lowest_bit;
290
291	/* reuse swap entry of cache-only swap if not busy. */
292	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
293		int swap_was_freed;
294		spin_unlock(&swap_lock);
295		swap_was_freed = __try_to_reclaim_swap(si, offset);
296		spin_lock(&swap_lock);
297		/* entry was freed successfully, try to use this again */
298		if (swap_was_freed)
299			goto checks;
300		goto scan; /* check next one */
301	}
302
303	if (si->swap_map[offset])
304		goto scan;
305
306	if (offset == si->lowest_bit)
307		si->lowest_bit++;
308	if (offset == si->highest_bit)
309		si->highest_bit--;
310	si->inuse_pages++;
311	if (si->inuse_pages == si->pages) {
312		si->lowest_bit = si->max;
313		si->highest_bit = 0;
314	}
315	si->swap_map[offset] = usage;
316	si->cluster_next = offset + 1;
317	si->flags -= SWP_SCANNING;
318
319	if (si->lowest_alloc) {
320		/*
321		 * Only set when SWP_DISCARDABLE, and there's a scan
322		 * for a free cluster in progress or just completed.
323		 */
324		if (found_free_cluster) {
325			/*
326			 * To optimize wear-levelling, discard the
327			 * old data of the cluster, taking care not to
328			 * discard any of its pages that have already
329			 * been allocated by racing tasks (offset has
330			 * already stepped over any at the beginning).
331			 */
332			if (offset < si->highest_alloc &&
333			    si->lowest_alloc <= last_in_cluster)
334				last_in_cluster = si->lowest_alloc - 1;
335			si->flags |= SWP_DISCARDING;
336			spin_unlock(&swap_lock);
337
338			if (offset < last_in_cluster)
339				discard_swap_cluster(si, offset,
340					last_in_cluster - offset + 1);
341
342			spin_lock(&swap_lock);
343			si->lowest_alloc = 0;
344			si->flags &= ~SWP_DISCARDING;
345
346			smp_mb();	/* wake_up_bit advises this */
347			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
348
349		} else if (si->flags & SWP_DISCARDING) {
350			/*
351			 * Delay using pages allocated by racing tasks
352			 * until the whole discard has been issued. We
353			 * could defer that delay until swap_writepage,
354			 * but it's easier to keep this self-contained.
355			 */
356			spin_unlock(&swap_lock);
357			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
358				wait_for_discard, TASK_UNINTERRUPTIBLE);
359			spin_lock(&swap_lock);
360		} else {
361			/*
362			 * Note pages allocated by racing tasks while
363			 * scan for a free cluster is in progress, so
364			 * that its final discard can exclude them.
365			 */
366			if (offset < si->lowest_alloc)
367				si->lowest_alloc = offset;
368			if (offset > si->highest_alloc)
369				si->highest_alloc = offset;
370		}
371	}
372	return offset;
373
374scan:
375	spin_unlock(&swap_lock);
376	while (++offset <= si->highest_bit) {
377		if (!si->swap_map[offset]) {
378			spin_lock(&swap_lock);
379			goto checks;
380		}
381		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
382			spin_lock(&swap_lock);
383			goto checks;
384		}
385		if (unlikely(--latency_ration < 0)) {
386			cond_resched();
387			latency_ration = LATENCY_LIMIT;
388		}
389	}
390	offset = si->lowest_bit;
391	while (++offset < scan_base) {
392		if (!si->swap_map[offset]) {
393			spin_lock(&swap_lock);
394			goto checks;
395		}
396		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
397			spin_lock(&swap_lock);
398			goto checks;
399		}
400		if (unlikely(--latency_ration < 0)) {
401			cond_resched();
402			latency_ration = LATENCY_LIMIT;
403		}
404	}
405	spin_lock(&swap_lock);
406
407no_page:
408	si->flags -= SWP_SCANNING;
409	return 0;
410}
411
412swp_entry_t get_swap_page(void)
413{
414	struct swap_info_struct *si;
415	pgoff_t offset;
416	int type, next;
417	int wrapped = 0;
418
419	spin_lock(&swap_lock);
420	if (nr_swap_pages <= 0)
421		goto noswap;
422	nr_swap_pages--;
423
424	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
425		si = swap_info[type];
426		next = si->next;
427		if (next < 0 ||
428		    (!wrapped && si->prio != swap_info[next]->prio)) {
429			next = swap_list.head;
430			wrapped++;
431		}
432
433		if (!si->highest_bit)
434			continue;
435		if (!(si->flags & SWP_WRITEOK))
436			continue;
437
438		swap_list.next = next;
439		/* This is called for allocating swap entry for cache */
440		offset = scan_swap_map(si, SWAP_HAS_CACHE);
441		if (offset) {
442			spin_unlock(&swap_lock);
443			return swp_entry(type, offset);
444		}
445		next = swap_list.next;
446	}
447
448	nr_swap_pages++;
449noswap:
450	spin_unlock(&swap_lock);
451	return (swp_entry_t) {0};
452}
453
454/* The only caller of this function is now susupend routine */
455swp_entry_t get_swap_page_of_type(int type)
456{
457	struct swap_info_struct *si;
458	pgoff_t offset;
459
460	spin_lock(&swap_lock);
461	si = swap_info[type];
462	if (si && (si->flags & SWP_WRITEOK)) {
463		nr_swap_pages--;
464		/* This is called for allocating swap entry, not cache */
465		offset = scan_swap_map(si, 1);
466		if (offset) {
467			spin_unlock(&swap_lock);
468			return swp_entry(type, offset);
469		}
470		nr_swap_pages++;
471	}
472	spin_unlock(&swap_lock);
473	return (swp_entry_t) {0};
474}
475
476static struct swap_info_struct *swap_info_get(swp_entry_t entry)
477{
478	struct swap_info_struct *p;
479	unsigned long offset, type;
480
481	if (!entry.val)
482		goto out;
483	type = swp_type(entry);
484	if (type >= nr_swapfiles)
485		goto bad_nofile;
486	p = swap_info[type];
487	if (!(p->flags & SWP_USED))
488		goto bad_device;
489	offset = swp_offset(entry);
490	if (offset >= p->max)
491		goto bad_offset;
492	if (!p->swap_map[offset])
493		goto bad_free;
494	spin_lock(&swap_lock);
495	return p;
496
497bad_free:
498	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
499	goto out;
500bad_offset:
501	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
502	goto out;
503bad_device:
504	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
505	goto out;
506bad_nofile:
507	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
508out:
509	return NULL;
510}
511
512static unsigned char swap_entry_free(struct swap_info_struct *p,
513				     swp_entry_t entry, unsigned char usage)
514{
515	unsigned long offset = swp_offset(entry);
516	unsigned char count;
517	unsigned char has_cache;
518
519	count = p->swap_map[offset];
520	has_cache = count & SWAP_HAS_CACHE;
521	count &= ~SWAP_HAS_CACHE;
522
523	if (usage == SWAP_HAS_CACHE) {
524		VM_BUG_ON(!has_cache);
525		has_cache = 0;
526	} else if (count == SWAP_MAP_SHMEM) {
527		/*
528		 * Or we could insist on shmem.c using a special
529		 * swap_shmem_free() and free_shmem_swap_and_cache()...
530		 */
531		count = 0;
532	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
533		if (count == COUNT_CONTINUED) {
534			if (swap_count_continued(p, offset, count))
535				count = SWAP_MAP_MAX | COUNT_CONTINUED;
536			else
537				count = SWAP_MAP_MAX;
538		} else
539			count--;
540	}
541
542	if (!count)
543		mem_cgroup_uncharge_swap(entry);
544
545	usage = count | has_cache;
546	p->swap_map[offset] = usage;
547
548	/* free if no reference */
549	if (!usage) {
550		struct gendisk *disk = p->bdev->bd_disk;
551		if (offset < p->lowest_bit)
552			p->lowest_bit = offset;
553		if (offset > p->highest_bit)
554			p->highest_bit = offset;
555		if (swap_list.next >= 0 &&
556		    p->prio > swap_info[swap_list.next]->prio)
557			swap_list.next = p->type;
558		nr_swap_pages++;
559		p->inuse_pages--;
560		if ((p->flags & SWP_BLKDEV) &&
561				disk->fops->swap_slot_free_notify)
562			disk->fops->swap_slot_free_notify(p->bdev, offset);
563	}
564
565	return usage;
566}
567
568/*
569 * Caller has made sure that the swapdevice corresponding to entry
570 * is still around or has not been recycled.
571 */
572void swap_free(swp_entry_t entry)
573{
574	struct swap_info_struct *p;
575
576	p = swap_info_get(entry);
577	if (p) {
578		swap_entry_free(p, entry, 1);
579		spin_unlock(&swap_lock);
580	}
581}
582
583/*
584 * Called after dropping swapcache to decrease refcnt to swap entries.
585 */
586void swapcache_free(swp_entry_t entry, struct page *page)
587{
588	struct swap_info_struct *p;
589	unsigned char count;
590
591	p = swap_info_get(entry);
592	if (p) {
593		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
594		if (page)
595			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
596		spin_unlock(&swap_lock);
597	}
598}
599
600/*
601 * How many references to page are currently swapped out?
602 * This does not give an exact answer when swap count is continued,
603 * but does include the high COUNT_CONTINUED flag to allow for that.
604 */
605static inline int page_swapcount(struct page *page)
606{
607	int count = 0;
608	struct swap_info_struct *p;
609	swp_entry_t entry;
610
611	entry.val = page_private(page);
612	p = swap_info_get(entry);
613	if (p) {
614		count = swap_count(p->swap_map[swp_offset(entry)]);
615		spin_unlock(&swap_lock);
616	}
617	return count;
618}
619
620/*
621 * We can write to an anon page without COW if there are no other references
622 * to it.  And as a side-effect, free up its swap: because the old content
623 * on disk will never be read, and seeking back there to write new content
624 * later would only waste time away from clustering.
625 */
626int reuse_swap_page(struct page *page)
627{
628	int count;
629
630	VM_BUG_ON(!PageLocked(page));
631	if (unlikely(PageKsm(page)))
632		return 0;
633	count = page_mapcount(page);
634	if (count <= 1 && PageSwapCache(page)) {
635		count += page_swapcount(page);
636		if (count == 1 && !PageWriteback(page)) {
637			delete_from_swap_cache(page);
638			SetPageDirty(page);
639		}
640	}
641	return count <= 1;
642}
643
644/*
645 * If swap is getting full, or if there are no more mappings of this page,
646 * then try_to_free_swap is called to free its swap space.
647 */
648int try_to_free_swap(struct page *page)
649{
650	VM_BUG_ON(!PageLocked(page));
651
652	if (!PageSwapCache(page))
653		return 0;
654	if (PageWriteback(page))
655		return 0;
656	if (page_swapcount(page))
657		return 0;
658
659	/*
660	 * Once hibernation has begun to create its image of memory,
661	 * there's a danger that one of the calls to try_to_free_swap()
662	 * - most probably a call from __try_to_reclaim_swap() while
663	 * hibernation is allocating its own swap pages for the image,
664	 * but conceivably even a call from memory reclaim - will free
665	 * the swap from a page which has already been recorded in the
666	 * image as a clean swapcache page, and then reuse its swap for
667	 * another page of the image.  On waking from hibernation, the
668	 * original page might be freed under memory pressure, then
669	 * later read back in from swap, now with the wrong data.
670	 *
671	 * Hibernation clears bits from gfp_allowed_mask to prevent
672	 * memory reclaim from writing to disk, so check that here.
673	 */
674	if (!(gfp_allowed_mask & __GFP_IO))
675		return 0;
676
677	delete_from_swap_cache(page);
678	SetPageDirty(page);
679	return 1;
680}
681
682/*
683 * Free the swap entry like above, but also try to
684 * free the page cache entry if it is the last user.
685 */
686int free_swap_and_cache(swp_entry_t entry)
687{
688	struct swap_info_struct *p;
689	struct page *page = NULL;
690
691	if (non_swap_entry(entry))
692		return 1;
693
694	p = swap_info_get(entry);
695	if (p) {
696		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
697			page = find_get_page(&swapper_space, entry.val);
698			if (page && !trylock_page(page)) {
699				page_cache_release(page);
700				page = NULL;
701			}
702		}
703		spin_unlock(&swap_lock);
704	}
705	if (page) {
706		/*
707		 * Not mapped elsewhere, or swap space full? Free it!
708		 * Also recheck PageSwapCache now page is locked (above).
709		 */
710		if (PageSwapCache(page) && !PageWriteback(page) &&
711				(!page_mapped(page) || vm_swap_full())) {
712			delete_from_swap_cache(page);
713			SetPageDirty(page);
714		}
715		unlock_page(page);
716		page_cache_release(page);
717	}
718	return p != NULL;
719}
720
721#ifdef CONFIG_CGROUP_MEM_RES_CTLR
722/**
723 * mem_cgroup_count_swap_user - count the user of a swap entry
724 * @ent: the swap entry to be checked
725 * @pagep: the pointer for the swap cache page of the entry to be stored
726 *
727 * Returns the number of the user of the swap entry. The number is valid only
728 * for swaps of anonymous pages.
729 * If the entry is found on swap cache, the page is stored to pagep with
730 * refcount of it being incremented.
731 */
732int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
733{
734	struct page *page;
735	struct swap_info_struct *p;
736	int count = 0;
737
738	page = find_get_page(&swapper_space, ent.val);
739	if (page)
740		count += page_mapcount(page);
741	p = swap_info_get(ent);
742	if (p) {
743		count += swap_count(p->swap_map[swp_offset(ent)]);
744		spin_unlock(&swap_lock);
745	}
746
747	*pagep = page;
748	return count;
749}
750#endif
751
752#ifdef CONFIG_HIBERNATION
753/*
754 * Find the swap type that corresponds to given device (if any).
755 *
756 * @offset - number of the PAGE_SIZE-sized block of the device, starting
757 * from 0, in which the swap header is expected to be located.
758 *
759 * This is needed for the suspend to disk (aka swsusp).
760 */
761int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
762{
763	struct block_device *bdev = NULL;
764	int type;
765
766	if (device)
767		bdev = bdget(device);
768
769	spin_lock(&swap_lock);
770	for (type = 0; type < nr_swapfiles; type++) {
771		struct swap_info_struct *sis = swap_info[type];
772
773		if (!(sis->flags & SWP_WRITEOK))
774			continue;
775
776		if (!bdev) {
777			if (bdev_p)
778				*bdev_p = bdgrab(sis->bdev);
779
780			spin_unlock(&swap_lock);
781			return type;
782		}
783		if (bdev == sis->bdev) {
784			struct swap_extent *se = &sis->first_swap_extent;
785
786			if (se->start_block == offset) {
787				if (bdev_p)
788					*bdev_p = bdgrab(sis->bdev);
789
790				spin_unlock(&swap_lock);
791				bdput(bdev);
792				return type;
793			}
794		}
795	}
796	spin_unlock(&swap_lock);
797	if (bdev)
798		bdput(bdev);
799
800	return -ENODEV;
801}
802
803/*
804 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
805 * corresponding to given index in swap_info (swap type).
806 */
807sector_t swapdev_block(int type, pgoff_t offset)
808{
809	struct block_device *bdev;
810
811	if ((unsigned int)type >= nr_swapfiles)
812		return 0;
813	if (!(swap_info[type]->flags & SWP_WRITEOK))
814		return 0;
815	return map_swap_entry(swp_entry(type, offset), &bdev);
816}
817
818/*
819 * Return either the total number of swap pages of given type, or the number
820 * of free pages of that type (depending on @free)
821 *
822 * This is needed for software suspend
823 */
824unsigned int count_swap_pages(int type, int free)
825{
826	unsigned int n = 0;
827
828	spin_lock(&swap_lock);
829	if ((unsigned int)type < nr_swapfiles) {
830		struct swap_info_struct *sis = swap_info[type];
831
832		if (sis->flags & SWP_WRITEOK) {
833			n = sis->pages;
834			if (free)
835				n -= sis->inuse_pages;
836		}
837	}
838	spin_unlock(&swap_lock);
839	return n;
840}
841#endif /* CONFIG_HIBERNATION */
842
843/*
844 * No need to decide whether this PTE shares the swap entry with others,
845 * just let do_wp_page work it out if a write is requested later - to
846 * force COW, vm_page_prot omits write permission from any private vma.
847 */
848static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
849		unsigned long addr, swp_entry_t entry, struct page *page)
850{
851	struct mem_cgroup *ptr;
852	spinlock_t *ptl;
853	pte_t *pte;
854	int ret = 1;
855
856	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
857		ret = -ENOMEM;
858		goto out_nolock;
859	}
860
861	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
862	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
863		if (ret > 0)
864			mem_cgroup_cancel_charge_swapin(ptr);
865		ret = 0;
866		goto out;
867	}
868
869	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
870	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
871	get_page(page);
872	set_pte_at(vma->vm_mm, addr, pte,
873		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
874	page_add_anon_rmap(page, vma, addr);
875	mem_cgroup_commit_charge_swapin(page, ptr);
876	swap_free(entry);
877	/*
878	 * Move the page to the active list so it is not
879	 * immediately swapped out again after swapon.
880	 */
881	activate_page(page);
882out:
883	pte_unmap_unlock(pte, ptl);
884out_nolock:
885	return ret;
886}
887
888static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
889				unsigned long addr, unsigned long end,
890				swp_entry_t entry, struct page *page)
891{
892	pte_t swp_pte = swp_entry_to_pte(entry);
893	pte_t *pte;
894	int ret = 0;
895
896	/*
897	 * We don't actually need pte lock while scanning for swp_pte: since
898	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
899	 * page table while we're scanning; though it could get zapped, and on
900	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
901	 * of unmatched parts which look like swp_pte, so unuse_pte must
902	 * recheck under pte lock.  Scanning without pte lock lets it be
903	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
904	 */
905	pte = pte_offset_map(pmd, addr);
906	do {
907		/*
908		 * swapoff spends a _lot_ of time in this loop!
909		 * Test inline before going to call unuse_pte.
910		 */
911		if (unlikely(pte_same(*pte, swp_pte))) {
912			pte_unmap(pte);
913			ret = unuse_pte(vma, pmd, addr, entry, page);
914			if (ret)
915				goto out;
916			pte = pte_offset_map(pmd, addr);
917		}
918	} while (pte++, addr += PAGE_SIZE, addr != end);
919	pte_unmap(pte - 1);
920out:
921	return ret;
922}
923
924static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
925				unsigned long addr, unsigned long end,
926				swp_entry_t entry, struct page *page)
927{
928	pmd_t *pmd;
929	unsigned long next;
930	int ret;
931
932	pmd = pmd_offset(pud, addr);
933	do {
934		next = pmd_addr_end(addr, end);
935		if (unlikely(pmd_trans_huge(*pmd)))
936			continue;
937		if (pmd_none_or_clear_bad(pmd))
938			continue;
939		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
940		if (ret)
941			return ret;
942	} while (pmd++, addr = next, addr != end);
943	return 0;
944}
945
946static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
947				unsigned long addr, unsigned long end,
948				swp_entry_t entry, struct page *page)
949{
950	pud_t *pud;
951	unsigned long next;
952	int ret;
953
954	pud = pud_offset(pgd, addr);
955	do {
956		next = pud_addr_end(addr, end);
957		if (pud_none_or_clear_bad(pud))
958			continue;
959		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
960		if (ret)
961			return ret;
962	} while (pud++, addr = next, addr != end);
963	return 0;
964}
965
966static int unuse_vma(struct vm_area_struct *vma,
967				swp_entry_t entry, struct page *page)
968{
969	pgd_t *pgd;
970	unsigned long addr, end, next;
971	int ret;
972
973	if (page_anon_vma(page)) {
974		addr = page_address_in_vma(page, vma);
975		if (addr == -EFAULT)
976			return 0;
977		else
978			end = addr + PAGE_SIZE;
979	} else {
980		addr = vma->vm_start;
981		end = vma->vm_end;
982	}
983
984	pgd = pgd_offset(vma->vm_mm, addr);
985	do {
986		next = pgd_addr_end(addr, end);
987		if (pgd_none_or_clear_bad(pgd))
988			continue;
989		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
990		if (ret)
991			return ret;
992	} while (pgd++, addr = next, addr != end);
993	return 0;
994}
995
996static int unuse_mm(struct mm_struct *mm,
997				swp_entry_t entry, struct page *page)
998{
999	struct vm_area_struct *vma;
1000	int ret = 0;
1001
1002	if (!down_read_trylock(&mm->mmap_sem)) {
1003		/*
1004		 * Activate page so shrink_inactive_list is unlikely to unmap
1005		 * its ptes while lock is dropped, so swapoff can make progress.
1006		 */
1007		activate_page(page);
1008		unlock_page(page);
1009		down_read(&mm->mmap_sem);
1010		lock_page(page);
1011	}
1012	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1013		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1014			break;
1015	}
1016	up_read(&mm->mmap_sem);
1017	return (ret < 0)? ret: 0;
1018}
1019
1020/*
1021 * Scan swap_map from current position to next entry still in use.
1022 * Recycle to start on reaching the end, returning 0 when empty.
1023 */
1024static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1025					unsigned int prev)
1026{
1027	unsigned int max = si->max;
1028	unsigned int i = prev;
1029	unsigned char count;
1030
1031	/*
1032	 * No need for swap_lock here: we're just looking
1033	 * for whether an entry is in use, not modifying it; false
1034	 * hits are okay, and sys_swapoff() has already prevented new
1035	 * allocations from this area (while holding swap_lock).
1036	 */
1037	for (;;) {
1038		if (++i >= max) {
1039			if (!prev) {
1040				i = 0;
1041				break;
1042			}
1043			/*
1044			 * No entries in use at top of swap_map,
1045			 * loop back to start and recheck there.
1046			 */
1047			max = prev + 1;
1048			prev = 0;
1049			i = 1;
1050		}
1051		count = si->swap_map[i];
1052		if (count && swap_count(count) != SWAP_MAP_BAD)
1053			break;
1054	}
1055	return i;
1056}
1057
1058/*
1059 * We completely avoid races by reading each swap page in advance,
1060 * and then search for the process using it.  All the necessary
1061 * page table adjustments can then be made atomically.
1062 */
1063static int try_to_unuse(unsigned int type)
1064{
1065	struct swap_info_struct *si = swap_info[type];
1066	struct mm_struct *start_mm;
1067	unsigned char *swap_map;
1068	unsigned char swcount;
1069	struct page *page;
1070	swp_entry_t entry;
1071	unsigned int i = 0;
1072	int retval = 0;
1073
1074	/*
1075	 * When searching mms for an entry, a good strategy is to
1076	 * start at the first mm we freed the previous entry from
1077	 * (though actually we don't notice whether we or coincidence
1078	 * freed the entry).  Initialize this start_mm with a hold.
1079	 *
1080	 * A simpler strategy would be to start at the last mm we
1081	 * freed the previous entry from; but that would take less
1082	 * advantage of mmlist ordering, which clusters forked mms
1083	 * together, child after parent.  If we race with dup_mmap(), we
1084	 * prefer to resolve parent before child, lest we miss entries
1085	 * duplicated after we scanned child: using last mm would invert
1086	 * that.
1087	 */
1088	start_mm = &init_mm;
1089	atomic_inc(&init_mm.mm_users);
1090
1091	/*
1092	 * Keep on scanning until all entries have gone.  Usually,
1093	 * one pass through swap_map is enough, but not necessarily:
1094	 * there are races when an instance of an entry might be missed.
1095	 */
1096	while ((i = find_next_to_unuse(si, i)) != 0) {
1097		if (signal_pending(current)) {
1098			retval = -EINTR;
1099			break;
1100		}
1101
1102		/*
1103		 * Get a page for the entry, using the existing swap
1104		 * cache page if there is one.  Otherwise, get a clean
1105		 * page and read the swap into it.
1106		 */
1107		swap_map = &si->swap_map[i];
1108		entry = swp_entry(type, i);
1109		page = read_swap_cache_async(entry,
1110					GFP_HIGHUSER_MOVABLE, NULL, 0);
1111		if (!page) {
1112			/*
1113			 * Either swap_duplicate() failed because entry
1114			 * has been freed independently, and will not be
1115			 * reused since sys_swapoff() already disabled
1116			 * allocation from here, or alloc_page() failed.
1117			 */
1118			if (!*swap_map)
1119				continue;
1120			retval = -ENOMEM;
1121			break;
1122		}
1123
1124		/*
1125		 * Don't hold on to start_mm if it looks like exiting.
1126		 */
1127		if (atomic_read(&start_mm->mm_users) == 1) {
1128			mmput(start_mm);
1129			start_mm = &init_mm;
1130			atomic_inc(&init_mm.mm_users);
1131		}
1132
1133		/*
1134		 * Wait for and lock page.  When do_swap_page races with
1135		 * try_to_unuse, do_swap_page can handle the fault much
1136		 * faster than try_to_unuse can locate the entry.  This
1137		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1138		 * defer to do_swap_page in such a case - in some tests,
1139		 * do_swap_page and try_to_unuse repeatedly compete.
1140		 */
1141		wait_on_page_locked(page);
1142		wait_on_page_writeback(page);
1143		lock_page(page);
1144		wait_on_page_writeback(page);
1145
1146		/*
1147		 * Remove all references to entry.
1148		 */
1149		swcount = *swap_map;
1150		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1151			retval = shmem_unuse(entry, page);
1152			/* page has already been unlocked and released */
1153			if (retval < 0)
1154				break;
1155			continue;
1156		}
1157		if (swap_count(swcount) && start_mm != &init_mm)
1158			retval = unuse_mm(start_mm, entry, page);
1159
1160		if (swap_count(*swap_map)) {
1161			int set_start_mm = (*swap_map >= swcount);
1162			struct list_head *p = &start_mm->mmlist;
1163			struct mm_struct *new_start_mm = start_mm;
1164			struct mm_struct *prev_mm = start_mm;
1165			struct mm_struct *mm;
1166
1167			atomic_inc(&new_start_mm->mm_users);
1168			atomic_inc(&prev_mm->mm_users);
1169			spin_lock(&mmlist_lock);
1170			while (swap_count(*swap_map) && !retval &&
1171					(p = p->next) != &start_mm->mmlist) {
1172				mm = list_entry(p, struct mm_struct, mmlist);
1173				if (!atomic_inc_not_zero(&mm->mm_users))
1174					continue;
1175				spin_unlock(&mmlist_lock);
1176				mmput(prev_mm);
1177				prev_mm = mm;
1178
1179				cond_resched();
1180
1181				swcount = *swap_map;
1182				if (!swap_count(swcount)) /* any usage ? */
1183					;
1184				else if (mm == &init_mm)
1185					set_start_mm = 1;
1186				else
1187					retval = unuse_mm(mm, entry, page);
1188
1189				if (set_start_mm && *swap_map < swcount) {
1190					mmput(new_start_mm);
1191					atomic_inc(&mm->mm_users);
1192					new_start_mm = mm;
1193					set_start_mm = 0;
1194				}
1195				spin_lock(&mmlist_lock);
1196			}
1197			spin_unlock(&mmlist_lock);
1198			mmput(prev_mm);
1199			mmput(start_mm);
1200			start_mm = new_start_mm;
1201		}
1202		if (retval) {
1203			unlock_page(page);
1204			page_cache_release(page);
1205			break;
1206		}
1207
1208		/*
1209		 * If a reference remains (rare), we would like to leave
1210		 * the page in the swap cache; but try_to_unmap could
1211		 * then re-duplicate the entry once we drop page lock,
1212		 * so we might loop indefinitely; also, that page could
1213		 * not be swapped out to other storage meanwhile.  So:
1214		 * delete from cache even if there's another reference,
1215		 * after ensuring that the data has been saved to disk -
1216		 * since if the reference remains (rarer), it will be
1217		 * read from disk into another page.  Splitting into two
1218		 * pages would be incorrect if swap supported "shared
1219		 * private" pages, but they are handled by tmpfs files.
1220		 *
1221		 * Given how unuse_vma() targets one particular offset
1222		 * in an anon_vma, once the anon_vma has been determined,
1223		 * this splitting happens to be just what is needed to
1224		 * handle where KSM pages have been swapped out: re-reading
1225		 * is unnecessarily slow, but we can fix that later on.
1226		 */
1227		if (swap_count(*swap_map) &&
1228		     PageDirty(page) && PageSwapCache(page)) {
1229			struct writeback_control wbc = {
1230				.sync_mode = WB_SYNC_NONE,
1231			};
1232
1233			swap_writepage(page, &wbc);
1234			lock_page(page);
1235			wait_on_page_writeback(page);
1236		}
1237
1238		/*
1239		 * It is conceivable that a racing task removed this page from
1240		 * swap cache just before we acquired the page lock at the top,
1241		 * or while we dropped it in unuse_mm().  The page might even
1242		 * be back in swap cache on another swap area: that we must not
1243		 * delete, since it may not have been written out to swap yet.
1244		 */
1245		if (PageSwapCache(page) &&
1246		    likely(page_private(page) == entry.val))
1247			delete_from_swap_cache(page);
1248
1249		/*
1250		 * So we could skip searching mms once swap count went
1251		 * to 1, we did not mark any present ptes as dirty: must
1252		 * mark page dirty so shrink_page_list will preserve it.
1253		 */
1254		SetPageDirty(page);
1255		unlock_page(page);
1256		page_cache_release(page);
1257
1258		/*
1259		 * Make sure that we aren't completely killing
1260		 * interactive performance.
1261		 */
1262		cond_resched();
1263	}
1264
1265	mmput(start_mm);
1266	return retval;
1267}
1268
1269/*
1270 * After a successful try_to_unuse, if no swap is now in use, we know
1271 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1272 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1273 * added to the mmlist just after page_duplicate - before would be racy.
1274 */
1275static void drain_mmlist(void)
1276{
1277	struct list_head *p, *next;
1278	unsigned int type;
1279
1280	for (type = 0; type < nr_swapfiles; type++)
1281		if (swap_info[type]->inuse_pages)
1282			return;
1283	spin_lock(&mmlist_lock);
1284	list_for_each_safe(p, next, &init_mm.mmlist)
1285		list_del_init(p);
1286	spin_unlock(&mmlist_lock);
1287}
1288
1289/*
1290 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1291 * corresponds to page offset for the specified swap entry.
1292 * Note that the type of this function is sector_t, but it returns page offset
1293 * into the bdev, not sector offset.
1294 */
1295static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1296{
1297	struct swap_info_struct *sis;
1298	struct swap_extent *start_se;
1299	struct swap_extent *se;
1300	pgoff_t offset;
1301
1302	sis = swap_info[swp_type(entry)];
1303	*bdev = sis->bdev;
1304
1305	offset = swp_offset(entry);
1306	start_se = sis->curr_swap_extent;
1307	se = start_se;
1308
1309	for ( ; ; ) {
1310		struct list_head *lh;
1311
1312		if (se->start_page <= offset &&
1313				offset < (se->start_page + se->nr_pages)) {
1314			return se->start_block + (offset - se->start_page);
1315		}
1316		lh = se->list.next;
1317		se = list_entry(lh, struct swap_extent, list);
1318		sis->curr_swap_extent = se;
1319		BUG_ON(se == start_se);		/* It *must* be present */
1320	}
1321}
1322
1323/*
1324 * Returns the page offset into bdev for the specified page's swap entry.
1325 */
1326sector_t map_swap_page(struct page *page, struct block_device **bdev)
1327{
1328	swp_entry_t entry;
1329	entry.val = page_private(page);
1330	return map_swap_entry(entry, bdev);
1331}
1332
1333/*
1334 * Free all of a swapdev's extent information
1335 */
1336static void destroy_swap_extents(struct swap_info_struct *sis)
1337{
1338	while (!list_empty(&sis->first_swap_extent.list)) {
1339		struct swap_extent *se;
1340
1341		se = list_entry(sis->first_swap_extent.list.next,
1342				struct swap_extent, list);
1343		list_del(&se->list);
1344		kfree(se);
1345	}
1346}
1347
1348/*
1349 * Add a block range (and the corresponding page range) into this swapdev's
1350 * extent list.  The extent list is kept sorted in page order.
1351 *
1352 * This function rather assumes that it is called in ascending page order.
1353 */
1354static int
1355add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1356		unsigned long nr_pages, sector_t start_block)
1357{
1358	struct swap_extent *se;
1359	struct swap_extent *new_se;
1360	struct list_head *lh;
1361
1362	if (start_page == 0) {
1363		se = &sis->first_swap_extent;
1364		sis->curr_swap_extent = se;
1365		se->start_page = 0;
1366		se->nr_pages = nr_pages;
1367		se->start_block = start_block;
1368		return 1;
1369	} else {
1370		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1371		se = list_entry(lh, struct swap_extent, list);
1372		BUG_ON(se->start_page + se->nr_pages != start_page);
1373		if (se->start_block + se->nr_pages == start_block) {
1374			/* Merge it */
1375			se->nr_pages += nr_pages;
1376			return 0;
1377		}
1378	}
1379
1380	/*
1381	 * No merge.  Insert a new extent, preserving ordering.
1382	 */
1383	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1384	if (new_se == NULL)
1385		return -ENOMEM;
1386	new_se->start_page = start_page;
1387	new_se->nr_pages = nr_pages;
1388	new_se->start_block = start_block;
1389
1390	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1391	return 1;
1392}
1393
1394/*
1395 * A `swap extent' is a simple thing which maps a contiguous range of pages
1396 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1397 * is built at swapon time and is then used at swap_writepage/swap_readpage
1398 * time for locating where on disk a page belongs.
1399 *
1400 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1401 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1402 * swap files identically.
1403 *
1404 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1405 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1406 * swapfiles are handled *identically* after swapon time.
1407 *
1408 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1409 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1410 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1411 * requirements, they are simply tossed out - we will never use those blocks
1412 * for swapping.
1413 *
1414 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1415 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1416 * which will scribble on the fs.
1417 *
1418 * The amount of disk space which a single swap extent represents varies.
1419 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1420 * extents in the list.  To avoid much list walking, we cache the previous
1421 * search location in `curr_swap_extent', and start new searches from there.
1422 * This is extremely effective.  The average number of iterations in
1423 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1424 */
1425static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1426{
1427	struct inode *inode;
1428	unsigned blocks_per_page;
1429	unsigned long page_no;
1430	unsigned blkbits;
1431	sector_t probe_block;
1432	sector_t last_block;
1433	sector_t lowest_block = -1;
1434	sector_t highest_block = 0;
1435	int nr_extents = 0;
1436	int ret;
1437
1438	inode = sis->swap_file->f_mapping->host;
1439	if (S_ISBLK(inode->i_mode)) {
1440		ret = add_swap_extent(sis, 0, sis->max, 0);
1441		*span = sis->pages;
1442		goto out;
1443	}
1444
1445	blkbits = inode->i_blkbits;
1446	blocks_per_page = PAGE_SIZE >> blkbits;
1447
1448	/*
1449	 * Map all the blocks into the extent list.  This code doesn't try
1450	 * to be very smart.
1451	 */
1452	probe_block = 0;
1453	page_no = 0;
1454	last_block = i_size_read(inode) >> blkbits;
1455	while ((probe_block + blocks_per_page) <= last_block &&
1456			page_no < sis->max) {
1457		unsigned block_in_page;
1458		sector_t first_block;
1459
1460		first_block = bmap(inode, probe_block);
1461		if (first_block == 0)
1462			goto bad_bmap;
1463
1464		/*
1465		 * It must be PAGE_SIZE aligned on-disk
1466		 */
1467		if (first_block & (blocks_per_page - 1)) {
1468			probe_block++;
1469			goto reprobe;
1470		}
1471
1472		for (block_in_page = 1; block_in_page < blocks_per_page;
1473					block_in_page++) {
1474			sector_t block;
1475
1476			block = bmap(inode, probe_block + block_in_page);
1477			if (block == 0)
1478				goto bad_bmap;
1479			if (block != first_block + block_in_page) {
1480				/* Discontiguity */
1481				probe_block++;
1482				goto reprobe;
1483			}
1484		}
1485
1486		first_block >>= (PAGE_SHIFT - blkbits);
1487		if (page_no) {	/* exclude the header page */
1488			if (first_block < lowest_block)
1489				lowest_block = first_block;
1490			if (first_block > highest_block)
1491				highest_block = first_block;
1492		}
1493
1494		/*
1495		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1496		 */
1497		ret = add_swap_extent(sis, page_no, 1, first_block);
1498		if (ret < 0)
1499			goto out;
1500		nr_extents += ret;
1501		page_no++;
1502		probe_block += blocks_per_page;
1503reprobe:
1504		continue;
1505	}
1506	ret = nr_extents;
1507	*span = 1 + highest_block - lowest_block;
1508	if (page_no == 0)
1509		page_no = 1;	/* force Empty message */
1510	sis->max = page_no;
1511	sis->pages = page_no - 1;
1512	sis->highest_bit = page_no - 1;
1513out:
1514	return ret;
1515bad_bmap:
1516	printk(KERN_ERR "swapon: swapfile has holes\n");
1517	ret = -EINVAL;
1518	goto out;
1519}
1520
1521static void enable_swap_info(struct swap_info_struct *p, int prio,
1522				unsigned char *swap_map)
1523{
1524	int i, prev;
1525
1526	spin_lock(&swap_lock);
1527	if (prio >= 0)
1528		p->prio = prio;
1529	else
1530		p->prio = --least_priority;
1531	p->swap_map = swap_map;
1532	p->flags |= SWP_WRITEOK;
1533	nr_swap_pages += p->pages;
1534	total_swap_pages += p->pages;
1535
1536	/* insert swap space into swap_list: */
1537	prev = -1;
1538	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1539		if (p->prio >= swap_info[i]->prio)
1540			break;
1541		prev = i;
1542	}
1543	p->next = i;
1544	if (prev < 0)
1545		swap_list.head = swap_list.next = p->type;
1546	else
1547		swap_info[prev]->next = p->type;
1548	spin_unlock(&swap_lock);
1549}
1550
1551SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1552{
1553	struct swap_info_struct *p = NULL;
1554	unsigned char *swap_map;
1555	struct file *swap_file, *victim;
1556	struct address_space *mapping;
1557	struct inode *inode;
1558	char *pathname;
1559	int oom_score_adj;
1560	int i, type, prev;
1561	int err;
1562
1563	if (!capable(CAP_SYS_ADMIN))
1564		return -EPERM;
1565
1566	pathname = getname(specialfile);
1567	err = PTR_ERR(pathname);
1568	if (IS_ERR(pathname))
1569		goto out;
1570
1571	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1572	putname(pathname);
1573	err = PTR_ERR(victim);
1574	if (IS_ERR(victim))
1575		goto out;
1576
1577	mapping = victim->f_mapping;
1578	prev = -1;
1579	spin_lock(&swap_lock);
1580	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1581		p = swap_info[type];
1582		if (p->flags & SWP_WRITEOK) {
1583			if (p->swap_file->f_mapping == mapping)
1584				break;
1585		}
1586		prev = type;
1587	}
1588	if (type < 0) {
1589		err = -EINVAL;
1590		spin_unlock(&swap_lock);
1591		goto out_dput;
1592	}
1593	if (!security_vm_enough_memory(p->pages))
1594		vm_unacct_memory(p->pages);
1595	else {
1596		err = -ENOMEM;
1597		spin_unlock(&swap_lock);
1598		goto out_dput;
1599	}
1600	if (prev < 0)
1601		swap_list.head = p->next;
1602	else
1603		swap_info[prev]->next = p->next;
1604	if (type == swap_list.next) {
1605		/* just pick something that's safe... */
1606		swap_list.next = swap_list.head;
1607	}
1608	if (p->prio < 0) {
1609		for (i = p->next; i >= 0; i = swap_info[i]->next)
1610			swap_info[i]->prio = p->prio--;
1611		least_priority++;
1612	}
1613	nr_swap_pages -= p->pages;
1614	total_swap_pages -= p->pages;
1615	p->flags &= ~SWP_WRITEOK;
1616	spin_unlock(&swap_lock);
1617
1618	oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1619	err = try_to_unuse(type);
1620	test_set_oom_score_adj(oom_score_adj);
1621
1622	if (err) {
1623		/*
1624		 * reading p->prio and p->swap_map outside the lock is
1625		 * safe here because only sys_swapon and sys_swapoff
1626		 * change them, and there can be no other sys_swapon or
1627		 * sys_swapoff for this swap_info_struct at this point.
1628		 */
1629		/* re-insert swap space back into swap_list */
1630		enable_swap_info(p, p->prio, p->swap_map);
1631		goto out_dput;
1632	}
1633
1634	destroy_swap_extents(p);
1635	if (p->flags & SWP_CONTINUED)
1636		free_swap_count_continuations(p);
1637
1638	mutex_lock(&swapon_mutex);
1639	spin_lock(&swap_lock);
1640	drain_mmlist();
1641
1642	/* wait for anyone still in scan_swap_map */
1643	p->highest_bit = 0;		/* cuts scans short */
1644	while (p->flags >= SWP_SCANNING) {
1645		spin_unlock(&swap_lock);
1646		schedule_timeout_uninterruptible(1);
1647		spin_lock(&swap_lock);
1648	}
1649
1650	swap_file = p->swap_file;
1651	p->swap_file = NULL;
1652	p->max = 0;
1653	swap_map = p->swap_map;
1654	p->swap_map = NULL;
1655	p->flags = 0;
1656	spin_unlock(&swap_lock);
1657	mutex_unlock(&swapon_mutex);
1658	vfree(swap_map);
1659	/* Destroy swap account informatin */
1660	swap_cgroup_swapoff(type);
1661
1662	inode = mapping->host;
1663	if (S_ISBLK(inode->i_mode)) {
1664		struct block_device *bdev = I_BDEV(inode);
1665		set_blocksize(bdev, p->old_block_size);
1666		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1667	} else {
1668		mutex_lock(&inode->i_mutex);
1669		inode->i_flags &= ~S_SWAPFILE;
1670		mutex_unlock(&inode->i_mutex);
1671	}
1672	filp_close(swap_file, NULL);
1673	err = 0;
1674	atomic_inc(&proc_poll_event);
1675	wake_up_interruptible(&proc_poll_wait);
1676
1677out_dput:
1678	filp_close(victim, NULL);
1679out:
1680	return err;
1681}
1682
1683#ifdef CONFIG_PROC_FS
1684struct proc_swaps {
1685	struct seq_file seq;
1686	int event;
1687};
1688
1689static unsigned swaps_poll(struct file *file, poll_table *wait)
1690{
1691	struct proc_swaps *s = file->private_data;
1692
1693	poll_wait(file, &proc_poll_wait, wait);
1694
1695	if (s->event != atomic_read(&proc_poll_event)) {
1696		s->event = atomic_read(&proc_poll_event);
1697		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1698	}
1699
1700	return POLLIN | POLLRDNORM;
1701}
1702
1703/* iterator */
1704static void *swap_start(struct seq_file *swap, loff_t *pos)
1705{
1706	struct swap_info_struct *si;
1707	int type;
1708	loff_t l = *pos;
1709
1710	mutex_lock(&swapon_mutex);
1711
1712	if (!l)
1713		return SEQ_START_TOKEN;
1714
1715	for (type = 0; type < nr_swapfiles; type++) {
1716		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1717		si = swap_info[type];
1718		if (!(si->flags & SWP_USED) || !si->swap_map)
1719			continue;
1720		if (!--l)
1721			return si;
1722	}
1723
1724	return NULL;
1725}
1726
1727static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1728{
1729	struct swap_info_struct *si = v;
1730	int type;
1731
1732	if (v == SEQ_START_TOKEN)
1733		type = 0;
1734	else
1735		type = si->type + 1;
1736
1737	for (; type < nr_swapfiles; type++) {
1738		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1739		si = swap_info[type];
1740		if (!(si->flags & SWP_USED) || !si->swap_map)
1741			continue;
1742		++*pos;
1743		return si;
1744	}
1745
1746	return NULL;
1747}
1748
1749static void swap_stop(struct seq_file *swap, void *v)
1750{
1751	mutex_unlock(&swapon_mutex);
1752}
1753
1754static int swap_show(struct seq_file *swap, void *v)
1755{
1756	struct swap_info_struct *si = v;
1757	struct file *file;
1758	int len;
1759
1760	if (si == SEQ_START_TOKEN) {
1761		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1762		return 0;
1763	}
1764
1765	file = si->swap_file;
1766	len = seq_path(swap, &file->f_path, " \t\n\\");
1767	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1768			len < 40 ? 40 - len : 1, " ",
1769			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1770				"partition" : "file\t",
1771			si->pages << (PAGE_SHIFT - 10),
1772			si->inuse_pages << (PAGE_SHIFT - 10),
1773			si->prio);
1774	return 0;
1775}
1776
1777static const struct seq_operations swaps_op = {
1778	.start =	swap_start,
1779	.next =		swap_next,
1780	.stop =		swap_stop,
1781	.show =		swap_show
1782};
1783
1784static int swaps_open(struct inode *inode, struct file *file)
1785{
1786	struct proc_swaps *s;
1787	int ret;
1788
1789	s = kmalloc(sizeof(struct proc_swaps), GFP_KERNEL);
1790	if (!s)
1791		return -ENOMEM;
1792
1793	file->private_data = s;
1794
1795	ret = seq_open(file, &swaps_op);
1796	if (ret) {
1797		kfree(s);
1798		return ret;
1799	}
1800
1801	s->seq.private = s;
1802	s->event = atomic_read(&proc_poll_event);
1803	return ret;
1804}
1805
1806static const struct file_operations proc_swaps_operations = {
1807	.open		= swaps_open,
1808	.read		= seq_read,
1809	.llseek		= seq_lseek,
1810	.release	= seq_release,
1811	.poll		= swaps_poll,
1812};
1813
1814static int __init procswaps_init(void)
1815{
1816	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1817	return 0;
1818}
1819__initcall(procswaps_init);
1820#endif /* CONFIG_PROC_FS */
1821
1822#ifdef MAX_SWAPFILES_CHECK
1823static int __init max_swapfiles_check(void)
1824{
1825	MAX_SWAPFILES_CHECK();
1826	return 0;
1827}
1828late_initcall(max_swapfiles_check);
1829#endif
1830
1831static struct swap_info_struct *alloc_swap_info(void)
1832{
1833	struct swap_info_struct *p;
1834	unsigned int type;
1835
1836	p = kzalloc(sizeof(*p), GFP_KERNEL);
1837	if (!p)
1838		return ERR_PTR(-ENOMEM);
1839
1840	spin_lock(&swap_lock);
1841	for (type = 0; type < nr_swapfiles; type++) {
1842		if (!(swap_info[type]->flags & SWP_USED))
1843			break;
1844	}
1845	if (type >= MAX_SWAPFILES) {
1846		spin_unlock(&swap_lock);
1847		kfree(p);
1848		return ERR_PTR(-EPERM);
1849	}
1850	if (type >= nr_swapfiles) {
1851		p->type = type;
1852		swap_info[type] = p;
1853		/*
1854		 * Write swap_info[type] before nr_swapfiles, in case a
1855		 * racing procfs swap_start() or swap_next() is reading them.
1856		 * (We never shrink nr_swapfiles, we never free this entry.)
1857		 */
1858		smp_wmb();
1859		nr_swapfiles++;
1860	} else {
1861		kfree(p);
1862		p = swap_info[type];
1863		/*
1864		 * Do not memset this entry: a racing procfs swap_next()
1865		 * would be relying on p->type to remain valid.
1866		 */
1867	}
1868	INIT_LIST_HEAD(&p->first_swap_extent.list);
1869	p->flags = SWP_USED;
1870	p->next = -1;
1871	spin_unlock(&swap_lock);
1872
1873	return p;
1874}
1875
1876static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1877{
1878	int error;
1879
1880	if (S_ISBLK(inode->i_mode)) {
1881		p->bdev = bdgrab(I_BDEV(inode));
1882		error = blkdev_get(p->bdev,
1883				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1884				   sys_swapon);
1885		if (error < 0) {
1886			p->bdev = NULL;
1887			return -EINVAL;
1888		}
1889		p->old_block_size = block_size(p->bdev);
1890		error = set_blocksize(p->bdev, PAGE_SIZE);
1891		if (error < 0)
1892			return error;
1893		p->flags |= SWP_BLKDEV;
1894	} else if (S_ISREG(inode->i_mode)) {
1895		p->bdev = inode->i_sb->s_bdev;
1896		mutex_lock(&inode->i_mutex);
1897		if (IS_SWAPFILE(inode))
1898			return -EBUSY;
1899	} else
1900		return -EINVAL;
1901
1902	return 0;
1903}
1904
1905static unsigned long read_swap_header(struct swap_info_struct *p,
1906					union swap_header *swap_header,
1907					struct inode *inode)
1908{
1909	int i;
1910	unsigned long maxpages;
1911	unsigned long swapfilepages;
1912
1913	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1914		printk(KERN_ERR "Unable to find swap-space signature\n");
1915		return 0;
1916	}
1917
1918	/* swap partition endianess hack... */
1919	if (swab32(swap_header->info.version) == 1) {
1920		swab32s(&swap_header->info.version);
1921		swab32s(&swap_header->info.last_page);
1922		swab32s(&swap_header->info.nr_badpages);
1923		for (i = 0; i < swap_header->info.nr_badpages; i++)
1924			swab32s(&swap_header->info.badpages[i]);
1925	}
1926	/* Check the swap header's sub-version */
1927	if (swap_header->info.version != 1) {
1928		printk(KERN_WARNING
1929		       "Unable to handle swap header version %d\n",
1930		       swap_header->info.version);
1931		return 0;
1932	}
1933
1934	p->lowest_bit  = 1;
1935	p->cluster_next = 1;
1936	p->cluster_nr = 0;
1937
1938	/*
1939	 * Find out how many pages are allowed for a single swap
1940	 * device. There are two limiting factors: 1) the number of
1941	 * bits for the swap offset in the swp_entry_t type and
1942	 * 2) the number of bits in the a swap pte as defined by
1943	 * the different architectures. In order to find the
1944	 * largest possible bit mask a swap entry with swap type 0
1945	 * and swap offset ~0UL is created, encoded to a swap pte,
1946	 * decoded to a swp_entry_t again and finally the swap
1947	 * offset is extracted. This will mask all the bits from
1948	 * the initial ~0UL mask that can't be encoded in either
1949	 * the swp_entry_t or the architecture definition of a
1950	 * swap pte.
1951	 */
1952	maxpages = swp_offset(pte_to_swp_entry(
1953			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1954	if (maxpages > swap_header->info.last_page) {
1955		maxpages = swap_header->info.last_page + 1;
1956		/* p->max is an unsigned int: don't overflow it */
1957		if ((unsigned int)maxpages == 0)
1958			maxpages = UINT_MAX;
1959	}
1960	p->highest_bit = maxpages - 1;
1961
1962	if (!maxpages)
1963		return 0;
1964	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1965	if (swapfilepages && maxpages > swapfilepages) {
1966		printk(KERN_WARNING
1967		       "Swap area shorter than signature indicates\n");
1968		return 0;
1969	}
1970	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1971		return 0;
1972	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1973		return 0;
1974
1975	return maxpages;
1976}
1977
1978static int setup_swap_map_and_extents(struct swap_info_struct *p,
1979					union swap_header *swap_header,
1980					unsigned char *swap_map,
1981					unsigned long maxpages,
1982					sector_t *span)
1983{
1984	int i;
1985	unsigned int nr_good_pages;
1986	int nr_extents;
1987
1988	nr_good_pages = maxpages - 1;	/* omit header page */
1989
1990	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1991		unsigned int page_nr = swap_header->info.badpages[i];
1992		if (page_nr == 0 || page_nr > swap_header->info.last_page)
1993			return -EINVAL;
1994		if (page_nr < maxpages) {
1995			swap_map[page_nr] = SWAP_MAP_BAD;
1996			nr_good_pages--;
1997		}
1998	}
1999
2000	if (nr_good_pages) {
2001		swap_map[0] = SWAP_MAP_BAD;
2002		p->max = maxpages;
2003		p->pages = nr_good_pages;
2004		nr_extents = setup_swap_extents(p, span);
2005		if (nr_extents < 0)
2006			return nr_extents;
2007		nr_good_pages = p->pages;
2008	}
2009	if (!nr_good_pages) {
2010		printk(KERN_WARNING "Empty swap-file\n");
2011		return -EINVAL;
2012	}
2013
2014	return nr_extents;
2015}
2016
2017SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2018{
2019	struct swap_info_struct *p;
2020	char *name;
2021	struct file *swap_file = NULL;
2022	struct address_space *mapping;
2023	int i;
2024	int prio;
2025	int error;
2026	union swap_header *swap_header;
2027	int nr_extents;
2028	sector_t span;
2029	unsigned long maxpages;
2030	unsigned char *swap_map = NULL;
2031	struct page *page = NULL;
2032	struct inode *inode = NULL;
2033
2034	if (!capable(CAP_SYS_ADMIN))
2035		return -EPERM;
2036
2037	p = alloc_swap_info();
2038	if (IS_ERR(p))
2039		return PTR_ERR(p);
2040
2041	name = getname(specialfile);
2042	if (IS_ERR(name)) {
2043		error = PTR_ERR(name);
2044		name = NULL;
2045		goto bad_swap;
2046	}
2047	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2048	if (IS_ERR(swap_file)) {
2049		error = PTR_ERR(swap_file);
2050		swap_file = NULL;
2051		goto bad_swap;
2052	}
2053
2054	p->swap_file = swap_file;
2055	mapping = swap_file->f_mapping;
2056
2057	for (i = 0; i < nr_swapfiles; i++) {
2058		struct swap_info_struct *q = swap_info[i];
2059
2060		if (q == p || !q->swap_file)
2061			continue;
2062		if (mapping == q->swap_file->f_mapping) {
2063			error = -EBUSY;
2064			goto bad_swap;
2065		}
2066	}
2067
2068	inode = mapping->host;
2069	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2070	error = claim_swapfile(p, inode);
2071	if (unlikely(error))
2072		goto bad_swap;
2073
2074	/*
2075	 * Read the swap header.
2076	 */
2077	if (!mapping->a_ops->readpage) {
2078		error = -EINVAL;
2079		goto bad_swap;
2080	}
2081	page = read_mapping_page(mapping, 0, swap_file);
2082	if (IS_ERR(page)) {
2083		error = PTR_ERR(page);
2084		goto bad_swap;
2085	}
2086	swap_header = kmap(page);
2087
2088	maxpages = read_swap_header(p, swap_header, inode);
2089	if (unlikely(!maxpages)) {
2090		error = -EINVAL;
2091		goto bad_swap;
2092	}
2093
2094	/* OK, set up the swap map and apply the bad block list */
2095	swap_map = vzalloc(maxpages);
2096	if (!swap_map) {
2097		error = -ENOMEM;
2098		goto bad_swap;
2099	}
2100
2101	error = swap_cgroup_swapon(p->type, maxpages);
2102	if (error)
2103		goto bad_swap;
2104
2105	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2106		maxpages, &span);
2107	if (unlikely(nr_extents < 0)) {
2108		error = nr_extents;
2109		goto bad_swap;
2110	}
2111
2112	if (p->bdev) {
2113		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2114			p->flags |= SWP_SOLIDSTATE;
2115			p->cluster_next = 1 + (random32() % p->highest_bit);
2116		}
2117		if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2118			p->flags |= SWP_DISCARDABLE;
2119	}
2120
2121	mutex_lock(&swapon_mutex);
2122	prio = -1;
2123	if (swap_flags & SWAP_FLAG_PREFER)
2124		prio =
2125		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2126	enable_swap_info(p, prio, swap_map);
2127
2128	printk(KERN_INFO "Adding %uk swap on %s.  "
2129			"Priority:%d extents:%d across:%lluk %s%s\n",
2130		p->pages<<(PAGE_SHIFT-10), name, p->prio,
2131		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2132		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2133		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2134
2135	mutex_unlock(&swapon_mutex);
2136	atomic_inc(&proc_poll_event);
2137	wake_up_interruptible(&proc_poll_wait);
2138
2139	if (S_ISREG(inode->i_mode))
2140		inode->i_flags |= S_SWAPFILE;
2141	error = 0;
2142	goto out;
2143bad_swap:
2144	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2145		set_blocksize(p->bdev, p->old_block_size);
2146		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2147	}
2148	destroy_swap_extents(p);
2149	swap_cgroup_swapoff(p->type);
2150	spin_lock(&swap_lock);
2151	p->swap_file = NULL;
2152	p->flags = 0;
2153	spin_unlock(&swap_lock);
2154	vfree(swap_map);
2155	if (swap_file) {
2156		if (inode && S_ISREG(inode->i_mode)) {
2157			mutex_unlock(&inode->i_mutex);
2158			inode = NULL;
2159		}
2160		filp_close(swap_file, NULL);
2161	}
2162out:
2163	if (page && !IS_ERR(page)) {
2164		kunmap(page);
2165		page_cache_release(page);
2166	}
2167	if (name)
2168		putname(name);
2169	if (inode && S_ISREG(inode->i_mode))
2170		mutex_unlock(&inode->i_mutex);
2171	return error;
2172}
2173
2174void si_swapinfo(struct sysinfo *val)
2175{
2176	unsigned int type;
2177	unsigned long nr_to_be_unused = 0;
2178
2179	spin_lock(&swap_lock);
2180	for (type = 0; type < nr_swapfiles; type++) {
2181		struct swap_info_struct *si = swap_info[type];
2182
2183		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2184			nr_to_be_unused += si->inuse_pages;
2185	}
2186	val->freeswap = nr_swap_pages + nr_to_be_unused;
2187	val->totalswap = total_swap_pages + nr_to_be_unused;
2188	spin_unlock(&swap_lock);
2189}
2190
2191/*
2192 * Verify that a swap entry is valid and increment its swap map count.
2193 *
2194 * Returns error code in following case.
2195 * - success -> 0
2196 * - swp_entry is invalid -> EINVAL
2197 * - swp_entry is migration entry -> EINVAL
2198 * - swap-cache reference is requested but there is already one. -> EEXIST
2199 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2200 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2201 */
2202static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2203{
2204	struct swap_info_struct *p;
2205	unsigned long offset, type;
2206	unsigned char count;
2207	unsigned char has_cache;
2208	int err = -EINVAL;
2209
2210	if (non_swap_entry(entry))
2211		goto out;
2212
2213	type = swp_type(entry);
2214	if (type >= nr_swapfiles)
2215		goto bad_file;
2216	p = swap_info[type];
2217	offset = swp_offset(entry);
2218
2219	spin_lock(&swap_lock);
2220	if (unlikely(offset >= p->max))
2221		goto unlock_out;
2222
2223	count = p->swap_map[offset];
2224	has_cache = count & SWAP_HAS_CACHE;
2225	count &= ~SWAP_HAS_CACHE;
2226	err = 0;
2227
2228	if (usage == SWAP_HAS_CACHE) {
2229
2230		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2231		if (!has_cache && count)
2232			has_cache = SWAP_HAS_CACHE;
2233		else if (has_cache)		/* someone else added cache */
2234			err = -EEXIST;
2235		else				/* no users remaining */
2236			err = -ENOENT;
2237
2238	} else if (count || has_cache) {
2239
2240		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2241			count += usage;
2242		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2243			err = -EINVAL;
2244		else if (swap_count_continued(p, offset, count))
2245			count = COUNT_CONTINUED;
2246		else
2247			err = -ENOMEM;
2248	} else
2249		err = -ENOENT;			/* unused swap entry */
2250
2251	p->swap_map[offset] = count | has_cache;
2252
2253unlock_out:
2254	spin_unlock(&swap_lock);
2255out:
2256	return err;
2257
2258bad_file:
2259	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2260	goto out;
2261}
2262
2263/*
2264 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2265 * (in which case its reference count is never incremented).
2266 */
2267void swap_shmem_alloc(swp_entry_t entry)
2268{
2269	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2270}
2271
2272/*
2273 * Increase reference count of swap entry by 1.
2274 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2275 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2276 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2277 * might occur if a page table entry has got corrupted.
2278 */
2279int swap_duplicate(swp_entry_t entry)
2280{
2281	int err = 0;
2282
2283	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2284		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2285	return err;
2286}
2287
2288/*
2289 * @entry: swap entry for which we allocate swap cache.
2290 *
2291 * Called when allocating swap cache for existing swap entry,
2292 * This can return error codes. Returns 0 at success.
2293 * -EBUSY means there is a swap cache.
2294 * Note: return code is different from swap_duplicate().
2295 */
2296int swapcache_prepare(swp_entry_t entry)
2297{
2298	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2299}
2300
2301/*
2302 * swap_lock prevents swap_map being freed. Don't grab an extra
2303 * reference on the swaphandle, it doesn't matter if it becomes unused.
2304 */
2305int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2306{
2307	struct swap_info_struct *si;
2308	int our_page_cluster = page_cluster;
2309	pgoff_t target, toff;
2310	pgoff_t base, end;
2311	int nr_pages = 0;
2312
2313	if (!our_page_cluster)	/* no readahead */
2314		return 0;
2315
2316	si = swap_info[swp_type(entry)];
2317	target = swp_offset(entry);
2318	base = (target >> our_page_cluster) << our_page_cluster;
2319	end = base + (1 << our_page_cluster);
2320	if (!base)		/* first page is swap header */
2321		base++;
2322
2323	spin_lock(&swap_lock);
2324	if (end > si->max)	/* don't go beyond end of map */
2325		end = si->max;
2326
2327	/* Count contiguous allocated slots above our target */
2328	for (toff = target; ++toff < end; nr_pages++) {
2329		/* Don't read in free or bad pages */
2330		if (!si->swap_map[toff])
2331			break;
2332		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2333			break;
2334	}
2335	/* Count contiguous allocated slots below our target */
2336	for (toff = target; --toff >= base; nr_pages++) {
2337		/* Don't read in free or bad pages */
2338		if (!si->swap_map[toff])
2339			break;
2340		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2341			break;
2342	}
2343	spin_unlock(&swap_lock);
2344
2345	/*
2346	 * Indicate starting offset, and return number of pages to get:
2347	 * if only 1, say 0, since there's then no readahead to be done.
2348	 */
2349	*offset = ++toff;
2350	return nr_pages? ++nr_pages: 0;
2351}
2352
2353/*
2354 * add_swap_count_continuation - called when a swap count is duplicated
2355 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2356 * page of the original vmalloc'ed swap_map, to hold the continuation count
2357 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2358 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2359 *
2360 * These continuation pages are seldom referenced: the common paths all work
2361 * on the original swap_map, only referring to a continuation page when the
2362 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2363 *
2364 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2365 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2366 * can be called after dropping locks.
2367 */
2368int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2369{
2370	struct swap_info_struct *si;
2371	struct page *head;
2372	struct page *page;
2373	struct page *list_page;
2374	pgoff_t offset;
2375	unsigned char count;
2376
2377	/*
2378	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2379	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2380	 */
2381	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2382
2383	si = swap_info_get(entry);
2384	if (!si) {
2385		/*
2386		 * An acceptable race has occurred since the failing
2387		 * __swap_duplicate(): the swap entry has been freed,
2388		 * perhaps even the whole swap_map cleared for swapoff.
2389		 */
2390		goto outer;
2391	}
2392
2393	offset = swp_offset(entry);
2394	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2395
2396	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2397		/*
2398		 * The higher the swap count, the more likely it is that tasks
2399		 * will race to add swap count continuation: we need to avoid
2400		 * over-provisioning.
2401		 */
2402		goto out;
2403	}
2404
2405	if (!page) {
2406		spin_unlock(&swap_lock);
2407		return -ENOMEM;
2408	}
2409
2410	/*
2411	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2412	 * no architecture is using highmem pages for kernel pagetables: so it
2413	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2414	 */
2415	head = vmalloc_to_page(si->swap_map + offset);
2416	offset &= ~PAGE_MASK;
2417
2418	/*
2419	 * Page allocation does not initialize the page's lru field,
2420	 * but it does always reset its private field.
2421	 */
2422	if (!page_private(head)) {
2423		BUG_ON(count & COUNT_CONTINUED);
2424		INIT_LIST_HEAD(&head->lru);
2425		set_page_private(head, SWP_CONTINUED);
2426		si->flags |= SWP_CONTINUED;
2427	}
2428
2429	list_for_each_entry(list_page, &head->lru, lru) {
2430		unsigned char *map;
2431
2432		/*
2433		 * If the previous map said no continuation, but we've found
2434		 * a continuation page, free our allocation and use this one.
2435		 */
2436		if (!(count & COUNT_CONTINUED))
2437			goto out;
2438
2439		map = kmap_atomic(list_page, KM_USER0) + offset;
2440		count = *map;
2441		kunmap_atomic(map, KM_USER0);
2442
2443		/*
2444		 * If this continuation count now has some space in it,
2445		 * free our allocation and use this one.
2446		 */
2447		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2448			goto out;
2449	}
2450
2451	list_add_tail(&page->lru, &head->lru);
2452	page = NULL;			/* now it's attached, don't free it */
2453out:
2454	spin_unlock(&swap_lock);
2455outer:
2456	if (page)
2457		__free_page(page);
2458	return 0;
2459}
2460
2461/*
2462 * swap_count_continued - when the original swap_map count is incremented
2463 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2464 * into, carry if so, or else fail until a new continuation page is allocated;
2465 * when the original swap_map count is decremented from 0 with continuation,
2466 * borrow from the continuation and report whether it still holds more.
2467 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2468 */
2469static bool swap_count_continued(struct swap_info_struct *si,
2470				 pgoff_t offset, unsigned char count)
2471{
2472	struct page *head;
2473	struct page *page;
2474	unsigned char *map;
2475
2476	head = vmalloc_to_page(si->swap_map + offset);
2477	if (page_private(head) != SWP_CONTINUED) {
2478		BUG_ON(count & COUNT_CONTINUED);
2479		return false;		/* need to add count continuation */
2480	}
2481
2482	offset &= ~PAGE_MASK;
2483	page = list_entry(head->lru.next, struct page, lru);
2484	map = kmap_atomic(page, KM_USER0) + offset;
2485
2486	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2487		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2488
2489	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2490		/*
2491		 * Think of how you add 1 to 999
2492		 */
2493		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2494			kunmap_atomic(map, KM_USER0);
2495			page = list_entry(page->lru.next, struct page, lru);
2496			BUG_ON(page == head);
2497			map = kmap_atomic(page, KM_USER0) + offset;
2498		}
2499		if (*map == SWAP_CONT_MAX) {
2500			kunmap_atomic(map, KM_USER0);
2501			page = list_entry(page->lru.next, struct page, lru);
2502			if (page == head)
2503				return false;	/* add count continuation */
2504			map = kmap_atomic(page, KM_USER0) + offset;
2505init_map:		*map = 0;		/* we didn't zero the page */
2506		}
2507		*map += 1;
2508		kunmap_atomic(map, KM_USER0);
2509		page = list_entry(page->lru.prev, struct page, lru);
2510		while (page != head) {
2511			map = kmap_atomic(page, KM_USER0) + offset;
2512			*map = COUNT_CONTINUED;
2513			kunmap_atomic(map, KM_USER0);
2514			page = list_entry(page->lru.prev, struct page, lru);
2515		}
2516		return true;			/* incremented */
2517
2518	} else {				/* decrementing */
2519		/*
2520		 * Think of how you subtract 1 from 1000
2521		 */
2522		BUG_ON(count != COUNT_CONTINUED);
2523		while (*map == COUNT_CONTINUED) {
2524			kunmap_atomic(map, KM_USER0);
2525			page = list_entry(page->lru.next, struct page, lru);
2526			BUG_ON(page == head);
2527			map = kmap_atomic(page, KM_USER0) + offset;
2528		}
2529		BUG_ON(*map == 0);
2530		*map -= 1;
2531		if (*map == 0)
2532			count = 0;
2533		kunmap_atomic(map, KM_USER0);
2534		page = list_entry(page->lru.prev, struct page, lru);
2535		while (page != head) {
2536			map = kmap_atomic(page, KM_USER0) + offset;
2537			*map = SWAP_CONT_MAX | count;
2538			count = COUNT_CONTINUED;
2539			kunmap_atomic(map, KM_USER0);
2540			page = list_entry(page->lru.prev, struct page, lru);
2541		}
2542		return count == COUNT_CONTINUED;
2543	}
2544}
2545
2546/*
2547 * free_swap_count_continuations - swapoff free all the continuation pages
2548 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2549 */
2550static void free_swap_count_continuations(struct swap_info_struct *si)
2551{
2552	pgoff_t offset;
2553
2554	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2555		struct page *head;
2556		head = vmalloc_to_page(si->swap_map + offset);
2557		if (page_private(head)) {
2558			struct list_head *this, *next;
2559			list_for_each_safe(this, next, &head->lru) {
2560				struct page *page;
2561				page = list_entry(this, struct page, lru);
2562				list_del(this);
2563				__free_page(page);
2564			}
2565		}
2566	}
2567}
2568