swapfile.c revision 9b65ef59d42a56fa1358958ede77aaa5bac385a8
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/config.h>
9#include <linux/mm.h>
10#include <linux/hugetlb.h>
11#include <linux/mman.h>
12#include <linux/slab.h>
13#include <linux/kernel_stat.h>
14#include <linux/swap.h>
15#include <linux/vmalloc.h>
16#include <linux/pagemap.h>
17#include <linux/namei.h>
18#include <linux/shm.h>
19#include <linux/blkdev.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
28#include <linux/mutex.h>
29#include <linux/capability.h>
30#include <linux/syscalls.h>
31
32#include <asm/pgtable.h>
33#include <asm/tlbflush.h>
34#include <linux/swapops.h>
35
36DEFINE_SPINLOCK(swap_lock);
37unsigned int nr_swapfiles;
38long total_swap_pages;
39static int swap_overflow;
40
41static const char Bad_file[] = "Bad swap file entry ";
42static const char Unused_file[] = "Unused swap file entry ";
43static const char Bad_offset[] = "Bad swap offset entry ";
44static const char Unused_offset[] = "Unused swap offset entry ";
45
46struct swap_list_t swap_list = {-1, -1};
47
48struct swap_info_struct swap_info[MAX_SWAPFILES];
49
50static DEFINE_MUTEX(swapon_mutex);
51
52/*
53 * We need this because the bdev->unplug_fn can sleep and we cannot
54 * hold swap_lock while calling the unplug_fn. And swap_lock
55 * cannot be turned into a mutex.
56 */
57static DECLARE_RWSEM(swap_unplug_sem);
58
59void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
60{
61	swp_entry_t entry;
62
63	down_read(&swap_unplug_sem);
64	entry.val = page_private(page);
65	if (PageSwapCache(page)) {
66		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67		struct backing_dev_info *bdi;
68
69		/*
70		 * If the page is removed from swapcache from under us (with a
71		 * racy try_to_unuse/swapoff) we need an additional reference
72		 * count to avoid reading garbage from page_private(page) above.
73		 * If the WARN_ON triggers during a swapoff it maybe the race
74		 * condition and it's harmless. However if it triggers without
75		 * swapoff it signals a problem.
76		 */
77		WARN_ON(page_count(page) <= 1);
78
79		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
80		blk_run_backing_dev(bdi, page);
81	}
82	up_read(&swap_unplug_sem);
83}
84
85#define SWAPFILE_CLUSTER	256
86#define LATENCY_LIMIT		256
87
88static inline unsigned long scan_swap_map(struct swap_info_struct *si)
89{
90	unsigned long offset, last_in_cluster;
91	int latency_ration = LATENCY_LIMIT;
92
93	/*
94	 * We try to cluster swap pages by allocating them sequentially
95	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
96	 * way, however, we resort to first-free allocation, starting
97	 * a new cluster.  This prevents us from scattering swap pages
98	 * all over the entire swap partition, so that we reduce
99	 * overall disk seek times between swap pages.  -- sct
100	 * But we do now try to find an empty cluster.  -Andrea
101	 */
102
103	si->flags += SWP_SCANNING;
104	if (unlikely(!si->cluster_nr)) {
105		si->cluster_nr = SWAPFILE_CLUSTER - 1;
106		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107			goto lowest;
108		spin_unlock(&swap_lock);
109
110		offset = si->lowest_bit;
111		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112
113		/* Locate the first empty (unaligned) cluster */
114		for (; last_in_cluster <= si->highest_bit; offset++) {
115			if (si->swap_map[offset])
116				last_in_cluster = offset + SWAPFILE_CLUSTER;
117			else if (offset == last_in_cluster) {
118				spin_lock(&swap_lock);
119				si->cluster_next = offset-SWAPFILE_CLUSTER+1;
120				goto cluster;
121			}
122			if (unlikely(--latency_ration < 0)) {
123				cond_resched();
124				latency_ration = LATENCY_LIMIT;
125			}
126		}
127		spin_lock(&swap_lock);
128		goto lowest;
129	}
130
131	si->cluster_nr--;
132cluster:
133	offset = si->cluster_next;
134	if (offset > si->highest_bit)
135lowest:		offset = si->lowest_bit;
136checks:	if (!(si->flags & SWP_WRITEOK))
137		goto no_page;
138	if (!si->highest_bit)
139		goto no_page;
140	if (!si->swap_map[offset]) {
141		if (offset == si->lowest_bit)
142			si->lowest_bit++;
143		if (offset == si->highest_bit)
144			si->highest_bit--;
145		si->inuse_pages++;
146		if (si->inuse_pages == si->pages) {
147			si->lowest_bit = si->max;
148			si->highest_bit = 0;
149		}
150		si->swap_map[offset] = 1;
151		si->cluster_next = offset + 1;
152		si->flags -= SWP_SCANNING;
153		return offset;
154	}
155
156	spin_unlock(&swap_lock);
157	while (++offset <= si->highest_bit) {
158		if (!si->swap_map[offset]) {
159			spin_lock(&swap_lock);
160			goto checks;
161		}
162		if (unlikely(--latency_ration < 0)) {
163			cond_resched();
164			latency_ration = LATENCY_LIMIT;
165		}
166	}
167	spin_lock(&swap_lock);
168	goto lowest;
169
170no_page:
171	si->flags -= SWP_SCANNING;
172	return 0;
173}
174
175swp_entry_t get_swap_page(void)
176{
177	struct swap_info_struct *si;
178	pgoff_t offset;
179	int type, next;
180	int wrapped = 0;
181
182	spin_lock(&swap_lock);
183	if (nr_swap_pages <= 0)
184		goto noswap;
185	nr_swap_pages--;
186
187	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188		si = swap_info + type;
189		next = si->next;
190		if (next < 0 ||
191		    (!wrapped && si->prio != swap_info[next].prio)) {
192			next = swap_list.head;
193			wrapped++;
194		}
195
196		if (!si->highest_bit)
197			continue;
198		if (!(si->flags & SWP_WRITEOK))
199			continue;
200
201		swap_list.next = next;
202		offset = scan_swap_map(si);
203		if (offset) {
204			spin_unlock(&swap_lock);
205			return swp_entry(type, offset);
206		}
207		next = swap_list.next;
208	}
209
210	nr_swap_pages++;
211noswap:
212	spin_unlock(&swap_lock);
213	return (swp_entry_t) {0};
214}
215
216swp_entry_t get_swap_page_of_type(int type)
217{
218	struct swap_info_struct *si;
219	pgoff_t offset;
220
221	spin_lock(&swap_lock);
222	si = swap_info + type;
223	if (si->flags & SWP_WRITEOK) {
224		nr_swap_pages--;
225		offset = scan_swap_map(si);
226		if (offset) {
227			spin_unlock(&swap_lock);
228			return swp_entry(type, offset);
229		}
230		nr_swap_pages++;
231	}
232	spin_unlock(&swap_lock);
233	return (swp_entry_t) {0};
234}
235
236static struct swap_info_struct * swap_info_get(swp_entry_t entry)
237{
238	struct swap_info_struct * p;
239	unsigned long offset, type;
240
241	if (!entry.val)
242		goto out;
243	type = swp_type(entry);
244	if (type >= nr_swapfiles)
245		goto bad_nofile;
246	p = & swap_info[type];
247	if (!(p->flags & SWP_USED))
248		goto bad_device;
249	offset = swp_offset(entry);
250	if (offset >= p->max)
251		goto bad_offset;
252	if (!p->swap_map[offset])
253		goto bad_free;
254	spin_lock(&swap_lock);
255	return p;
256
257bad_free:
258	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
259	goto out;
260bad_offset:
261	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
262	goto out;
263bad_device:
264	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
265	goto out;
266bad_nofile:
267	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
268out:
269	return NULL;
270}
271
272static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
273{
274	int count = p->swap_map[offset];
275
276	if (count < SWAP_MAP_MAX) {
277		count--;
278		p->swap_map[offset] = count;
279		if (!count) {
280			if (offset < p->lowest_bit)
281				p->lowest_bit = offset;
282			if (offset > p->highest_bit)
283				p->highest_bit = offset;
284			if (p->prio > swap_info[swap_list.next].prio)
285				swap_list.next = p - swap_info;
286			nr_swap_pages++;
287			p->inuse_pages--;
288		}
289	}
290	return count;
291}
292
293/*
294 * Caller has made sure that the swapdevice corresponding to entry
295 * is still around or has not been recycled.
296 */
297void swap_free(swp_entry_t entry)
298{
299	struct swap_info_struct * p;
300
301	p = swap_info_get(entry);
302	if (p) {
303		swap_entry_free(p, swp_offset(entry));
304		spin_unlock(&swap_lock);
305	}
306}
307
308/*
309 * How many references to page are currently swapped out?
310 */
311static inline int page_swapcount(struct page *page)
312{
313	int count = 0;
314	struct swap_info_struct *p;
315	swp_entry_t entry;
316
317	entry.val = page_private(page);
318	p = swap_info_get(entry);
319	if (p) {
320		/* Subtract the 1 for the swap cache itself */
321		count = p->swap_map[swp_offset(entry)] - 1;
322		spin_unlock(&swap_lock);
323	}
324	return count;
325}
326
327/*
328 * We can use this swap cache entry directly
329 * if there are no other references to it.
330 */
331int can_share_swap_page(struct page *page)
332{
333	int count;
334
335	BUG_ON(!PageLocked(page));
336	count = page_mapcount(page);
337	if (count <= 1 && PageSwapCache(page))
338		count += page_swapcount(page);
339	return count == 1;
340}
341
342/*
343 * Work out if there are any other processes sharing this
344 * swap cache page. Free it if you can. Return success.
345 */
346int remove_exclusive_swap_page(struct page *page)
347{
348	int retval;
349	struct swap_info_struct * p;
350	swp_entry_t entry;
351
352	BUG_ON(PagePrivate(page));
353	BUG_ON(!PageLocked(page));
354
355	if (!PageSwapCache(page))
356		return 0;
357	if (PageWriteback(page))
358		return 0;
359	if (page_count(page) != 2) /* 2: us + cache */
360		return 0;
361
362	entry.val = page_private(page);
363	p = swap_info_get(entry);
364	if (!p)
365		return 0;
366
367	/* Is the only swap cache user the cache itself? */
368	retval = 0;
369	if (p->swap_map[swp_offset(entry)] == 1) {
370		/* Recheck the page count with the swapcache lock held.. */
371		write_lock_irq(&swapper_space.tree_lock);
372		if ((page_count(page) == 2) && !PageWriteback(page)) {
373			__delete_from_swap_cache(page);
374			SetPageDirty(page);
375			retval = 1;
376		}
377		write_unlock_irq(&swapper_space.tree_lock);
378	}
379	spin_unlock(&swap_lock);
380
381	if (retval) {
382		swap_free(entry);
383		page_cache_release(page);
384	}
385
386	return retval;
387}
388
389/*
390 * Free the swap entry like above, but also try to
391 * free the page cache entry if it is the last user.
392 */
393void free_swap_and_cache(swp_entry_t entry)
394{
395	struct swap_info_struct * p;
396	struct page *page = NULL;
397
398	p = swap_info_get(entry);
399	if (p) {
400		if (swap_entry_free(p, swp_offset(entry)) == 1)
401			page = find_trylock_page(&swapper_space, entry.val);
402		spin_unlock(&swap_lock);
403	}
404	if (page) {
405		int one_user;
406
407		BUG_ON(PagePrivate(page));
408		page_cache_get(page);
409		one_user = (page_count(page) == 2);
410		/* Only cache user (+us), or swap space full? Free it! */
411		if (!PageWriteback(page) && (one_user || vm_swap_full())) {
412			delete_from_swap_cache(page);
413			SetPageDirty(page);
414		}
415		unlock_page(page);
416		page_cache_release(page);
417	}
418}
419
420/*
421 * No need to decide whether this PTE shares the swap entry with others,
422 * just let do_wp_page work it out if a write is requested later - to
423 * force COW, vm_page_prot omits write permission from any private vma.
424 */
425static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
426		unsigned long addr, swp_entry_t entry, struct page *page)
427{
428	inc_mm_counter(vma->vm_mm, anon_rss);
429	get_page(page);
430	set_pte_at(vma->vm_mm, addr, pte,
431		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
432	page_add_anon_rmap(page, vma, addr);
433	swap_free(entry);
434	/*
435	 * Move the page to the active list so it is not
436	 * immediately swapped out again after swapon.
437	 */
438	activate_page(page);
439}
440
441static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
442				unsigned long addr, unsigned long end,
443				swp_entry_t entry, struct page *page)
444{
445	pte_t swp_pte = swp_entry_to_pte(entry);
446	pte_t *pte;
447	spinlock_t *ptl;
448	int found = 0;
449
450	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
451	do {
452		/*
453		 * swapoff spends a _lot_ of time in this loop!
454		 * Test inline before going to call unuse_pte.
455		 */
456		if (unlikely(pte_same(*pte, swp_pte))) {
457			unuse_pte(vma, pte++, addr, entry, page);
458			found = 1;
459			break;
460		}
461	} while (pte++, addr += PAGE_SIZE, addr != end);
462	pte_unmap_unlock(pte - 1, ptl);
463	return found;
464}
465
466static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
467				unsigned long addr, unsigned long end,
468				swp_entry_t entry, struct page *page)
469{
470	pmd_t *pmd;
471	unsigned long next;
472
473	pmd = pmd_offset(pud, addr);
474	do {
475		next = pmd_addr_end(addr, end);
476		if (pmd_none_or_clear_bad(pmd))
477			continue;
478		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
479			return 1;
480	} while (pmd++, addr = next, addr != end);
481	return 0;
482}
483
484static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
485				unsigned long addr, unsigned long end,
486				swp_entry_t entry, struct page *page)
487{
488	pud_t *pud;
489	unsigned long next;
490
491	pud = pud_offset(pgd, addr);
492	do {
493		next = pud_addr_end(addr, end);
494		if (pud_none_or_clear_bad(pud))
495			continue;
496		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
497			return 1;
498	} while (pud++, addr = next, addr != end);
499	return 0;
500}
501
502static int unuse_vma(struct vm_area_struct *vma,
503				swp_entry_t entry, struct page *page)
504{
505	pgd_t *pgd;
506	unsigned long addr, end, next;
507
508	if (page->mapping) {
509		addr = page_address_in_vma(page, vma);
510		if (addr == -EFAULT)
511			return 0;
512		else
513			end = addr + PAGE_SIZE;
514	} else {
515		addr = vma->vm_start;
516		end = vma->vm_end;
517	}
518
519	pgd = pgd_offset(vma->vm_mm, addr);
520	do {
521		next = pgd_addr_end(addr, end);
522		if (pgd_none_or_clear_bad(pgd))
523			continue;
524		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
525			return 1;
526	} while (pgd++, addr = next, addr != end);
527	return 0;
528}
529
530static int unuse_mm(struct mm_struct *mm,
531				swp_entry_t entry, struct page *page)
532{
533	struct vm_area_struct *vma;
534
535	if (!down_read_trylock(&mm->mmap_sem)) {
536		/*
537		 * Activate page so shrink_cache is unlikely to unmap its
538		 * ptes while lock is dropped, so swapoff can make progress.
539		 */
540		activate_page(page);
541		unlock_page(page);
542		down_read(&mm->mmap_sem);
543		lock_page(page);
544	}
545	for (vma = mm->mmap; vma; vma = vma->vm_next) {
546		if (vma->anon_vma && unuse_vma(vma, entry, page))
547			break;
548	}
549	up_read(&mm->mmap_sem);
550	/*
551	 * Currently unuse_mm cannot fail, but leave error handling
552	 * at call sites for now, since we change it from time to time.
553	 */
554	return 0;
555}
556
557#ifdef CONFIG_MIGRATION
558int remove_vma_swap(struct vm_area_struct *vma, struct page *page)
559{
560	swp_entry_t entry = { .val = page_private(page) };
561
562	return unuse_vma(vma, entry, page);
563}
564#endif
565
566/*
567 * Scan swap_map from current position to next entry still in use.
568 * Recycle to start on reaching the end, returning 0 when empty.
569 */
570static unsigned int find_next_to_unuse(struct swap_info_struct *si,
571					unsigned int prev)
572{
573	unsigned int max = si->max;
574	unsigned int i = prev;
575	int count;
576
577	/*
578	 * No need for swap_lock here: we're just looking
579	 * for whether an entry is in use, not modifying it; false
580	 * hits are okay, and sys_swapoff() has already prevented new
581	 * allocations from this area (while holding swap_lock).
582	 */
583	for (;;) {
584		if (++i >= max) {
585			if (!prev) {
586				i = 0;
587				break;
588			}
589			/*
590			 * No entries in use at top of swap_map,
591			 * loop back to start and recheck there.
592			 */
593			max = prev + 1;
594			prev = 0;
595			i = 1;
596		}
597		count = si->swap_map[i];
598		if (count && count != SWAP_MAP_BAD)
599			break;
600	}
601	return i;
602}
603
604/*
605 * We completely avoid races by reading each swap page in advance,
606 * and then search for the process using it.  All the necessary
607 * page table adjustments can then be made atomically.
608 */
609static int try_to_unuse(unsigned int type)
610{
611	struct swap_info_struct * si = &swap_info[type];
612	struct mm_struct *start_mm;
613	unsigned short *swap_map;
614	unsigned short swcount;
615	struct page *page;
616	swp_entry_t entry;
617	unsigned int i = 0;
618	int retval = 0;
619	int reset_overflow = 0;
620	int shmem;
621
622	/*
623	 * When searching mms for an entry, a good strategy is to
624	 * start at the first mm we freed the previous entry from
625	 * (though actually we don't notice whether we or coincidence
626	 * freed the entry).  Initialize this start_mm with a hold.
627	 *
628	 * A simpler strategy would be to start at the last mm we
629	 * freed the previous entry from; but that would take less
630	 * advantage of mmlist ordering, which clusters forked mms
631	 * together, child after parent.  If we race with dup_mmap(), we
632	 * prefer to resolve parent before child, lest we miss entries
633	 * duplicated after we scanned child: using last mm would invert
634	 * that.  Though it's only a serious concern when an overflowed
635	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
636	 */
637	start_mm = &init_mm;
638	atomic_inc(&init_mm.mm_users);
639
640	/*
641	 * Keep on scanning until all entries have gone.  Usually,
642	 * one pass through swap_map is enough, but not necessarily:
643	 * there are races when an instance of an entry might be missed.
644	 */
645	while ((i = find_next_to_unuse(si, i)) != 0) {
646		if (signal_pending(current)) {
647			retval = -EINTR;
648			break;
649		}
650
651		/*
652		 * Get a page for the entry, using the existing swap
653		 * cache page if there is one.  Otherwise, get a clean
654		 * page and read the swap into it.
655		 */
656		swap_map = &si->swap_map[i];
657		entry = swp_entry(type, i);
658again:
659		page = read_swap_cache_async(entry, NULL, 0);
660		if (!page) {
661			/*
662			 * Either swap_duplicate() failed because entry
663			 * has been freed independently, and will not be
664			 * reused since sys_swapoff() already disabled
665			 * allocation from here, or alloc_page() failed.
666			 */
667			if (!*swap_map)
668				continue;
669			retval = -ENOMEM;
670			break;
671		}
672
673		/*
674		 * Don't hold on to start_mm if it looks like exiting.
675		 */
676		if (atomic_read(&start_mm->mm_users) == 1) {
677			mmput(start_mm);
678			start_mm = &init_mm;
679			atomic_inc(&init_mm.mm_users);
680		}
681
682		/*
683		 * Wait for and lock page.  When do_swap_page races with
684		 * try_to_unuse, do_swap_page can handle the fault much
685		 * faster than try_to_unuse can locate the entry.  This
686		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
687		 * defer to do_swap_page in such a case - in some tests,
688		 * do_swap_page and try_to_unuse repeatedly compete.
689		 */
690		wait_on_page_locked(page);
691		wait_on_page_writeback(page);
692		lock_page(page);
693		if (!PageSwapCache(page)) {
694			/* Page migration has occured */
695			unlock_page(page);
696			page_cache_release(page);
697			goto again;
698		}
699		wait_on_page_writeback(page);
700
701		/*
702		 * Remove all references to entry.
703		 * Whenever we reach init_mm, there's no address space
704		 * to search, but use it as a reminder to search shmem.
705		 */
706		shmem = 0;
707		swcount = *swap_map;
708		if (swcount > 1) {
709			if (start_mm == &init_mm)
710				shmem = shmem_unuse(entry, page);
711			else
712				retval = unuse_mm(start_mm, entry, page);
713		}
714		if (*swap_map > 1) {
715			int set_start_mm = (*swap_map >= swcount);
716			struct list_head *p = &start_mm->mmlist;
717			struct mm_struct *new_start_mm = start_mm;
718			struct mm_struct *prev_mm = start_mm;
719			struct mm_struct *mm;
720
721			atomic_inc(&new_start_mm->mm_users);
722			atomic_inc(&prev_mm->mm_users);
723			spin_lock(&mmlist_lock);
724			while (*swap_map > 1 && !retval &&
725					(p = p->next) != &start_mm->mmlist) {
726				mm = list_entry(p, struct mm_struct, mmlist);
727				if (atomic_inc_return(&mm->mm_users) == 1) {
728					atomic_dec(&mm->mm_users);
729					continue;
730				}
731				spin_unlock(&mmlist_lock);
732				mmput(prev_mm);
733				prev_mm = mm;
734
735				cond_resched();
736
737				swcount = *swap_map;
738				if (swcount <= 1)
739					;
740				else if (mm == &init_mm) {
741					set_start_mm = 1;
742					shmem = shmem_unuse(entry, page);
743				} else
744					retval = unuse_mm(mm, entry, page);
745				if (set_start_mm && *swap_map < swcount) {
746					mmput(new_start_mm);
747					atomic_inc(&mm->mm_users);
748					new_start_mm = mm;
749					set_start_mm = 0;
750				}
751				spin_lock(&mmlist_lock);
752			}
753			spin_unlock(&mmlist_lock);
754			mmput(prev_mm);
755			mmput(start_mm);
756			start_mm = new_start_mm;
757		}
758		if (retval) {
759			unlock_page(page);
760			page_cache_release(page);
761			break;
762		}
763
764		/*
765		 * How could swap count reach 0x7fff when the maximum
766		 * pid is 0x7fff, and there's no way to repeat a swap
767		 * page within an mm (except in shmem, where it's the
768		 * shared object which takes the reference count)?
769		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
770		 *
771		 * If that's wrong, then we should worry more about
772		 * exit_mmap() and do_munmap() cases described above:
773		 * we might be resetting SWAP_MAP_MAX too early here.
774		 * We know "Undead"s can happen, they're okay, so don't
775		 * report them; but do report if we reset SWAP_MAP_MAX.
776		 */
777		if (*swap_map == SWAP_MAP_MAX) {
778			spin_lock(&swap_lock);
779			*swap_map = 1;
780			spin_unlock(&swap_lock);
781			reset_overflow = 1;
782		}
783
784		/*
785		 * If a reference remains (rare), we would like to leave
786		 * the page in the swap cache; but try_to_unmap could
787		 * then re-duplicate the entry once we drop page lock,
788		 * so we might loop indefinitely; also, that page could
789		 * not be swapped out to other storage meanwhile.  So:
790		 * delete from cache even if there's another reference,
791		 * after ensuring that the data has been saved to disk -
792		 * since if the reference remains (rarer), it will be
793		 * read from disk into another page.  Splitting into two
794		 * pages would be incorrect if swap supported "shared
795		 * private" pages, but they are handled by tmpfs files.
796		 *
797		 * Note shmem_unuse already deleted a swappage from
798		 * the swap cache, unless the move to filepage failed:
799		 * in which case it left swappage in cache, lowered its
800		 * swap count to pass quickly through the loops above,
801		 * and now we must reincrement count to try again later.
802		 */
803		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
804			struct writeback_control wbc = {
805				.sync_mode = WB_SYNC_NONE,
806			};
807
808			swap_writepage(page, &wbc);
809			lock_page(page);
810			wait_on_page_writeback(page);
811		}
812		if (PageSwapCache(page)) {
813			if (shmem)
814				swap_duplicate(entry);
815			else
816				delete_from_swap_cache(page);
817		}
818
819		/*
820		 * So we could skip searching mms once swap count went
821		 * to 1, we did not mark any present ptes as dirty: must
822		 * mark page dirty so shrink_list will preserve it.
823		 */
824		SetPageDirty(page);
825		unlock_page(page);
826		page_cache_release(page);
827
828		/*
829		 * Make sure that we aren't completely killing
830		 * interactive performance.
831		 */
832		cond_resched();
833	}
834
835	mmput(start_mm);
836	if (reset_overflow) {
837		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
838		swap_overflow = 0;
839	}
840	return retval;
841}
842
843/*
844 * After a successful try_to_unuse, if no swap is now in use, we know
845 * we can empty the mmlist.  swap_lock must be held on entry and exit.
846 * Note that mmlist_lock nests inside swap_lock, and an mm must be
847 * added to the mmlist just after page_duplicate - before would be racy.
848 */
849static void drain_mmlist(void)
850{
851	struct list_head *p, *next;
852	unsigned int i;
853
854	for (i = 0; i < nr_swapfiles; i++)
855		if (swap_info[i].inuse_pages)
856			return;
857	spin_lock(&mmlist_lock);
858	list_for_each_safe(p, next, &init_mm.mmlist)
859		list_del_init(p);
860	spin_unlock(&mmlist_lock);
861}
862
863/*
864 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
865 * corresponds to page offset `offset'.
866 */
867sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
868{
869	struct swap_extent *se = sis->curr_swap_extent;
870	struct swap_extent *start_se = se;
871
872	for ( ; ; ) {
873		struct list_head *lh;
874
875		if (se->start_page <= offset &&
876				offset < (se->start_page + se->nr_pages)) {
877			return se->start_block + (offset - se->start_page);
878		}
879		lh = se->list.next;
880		if (lh == &sis->extent_list)
881			lh = lh->next;
882		se = list_entry(lh, struct swap_extent, list);
883		sis->curr_swap_extent = se;
884		BUG_ON(se == start_se);		/* It *must* be present */
885	}
886}
887
888/*
889 * Free all of a swapdev's extent information
890 */
891static void destroy_swap_extents(struct swap_info_struct *sis)
892{
893	while (!list_empty(&sis->extent_list)) {
894		struct swap_extent *se;
895
896		se = list_entry(sis->extent_list.next,
897				struct swap_extent, list);
898		list_del(&se->list);
899		kfree(se);
900	}
901}
902
903/*
904 * Add a block range (and the corresponding page range) into this swapdev's
905 * extent list.  The extent list is kept sorted in page order.
906 *
907 * This function rather assumes that it is called in ascending page order.
908 */
909static int
910add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
911		unsigned long nr_pages, sector_t start_block)
912{
913	struct swap_extent *se;
914	struct swap_extent *new_se;
915	struct list_head *lh;
916
917	lh = sis->extent_list.prev;	/* The highest page extent */
918	if (lh != &sis->extent_list) {
919		se = list_entry(lh, struct swap_extent, list);
920		BUG_ON(se->start_page + se->nr_pages != start_page);
921		if (se->start_block + se->nr_pages == start_block) {
922			/* Merge it */
923			se->nr_pages += nr_pages;
924			return 0;
925		}
926	}
927
928	/*
929	 * No merge.  Insert a new extent, preserving ordering.
930	 */
931	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
932	if (new_se == NULL)
933		return -ENOMEM;
934	new_se->start_page = start_page;
935	new_se->nr_pages = nr_pages;
936	new_se->start_block = start_block;
937
938	list_add_tail(&new_se->list, &sis->extent_list);
939	return 1;
940}
941
942/*
943 * A `swap extent' is a simple thing which maps a contiguous range of pages
944 * onto a contiguous range of disk blocks.  An ordered list of swap extents
945 * is built at swapon time and is then used at swap_writepage/swap_readpage
946 * time for locating where on disk a page belongs.
947 *
948 * If the swapfile is an S_ISBLK block device, a single extent is installed.
949 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
950 * swap files identically.
951 *
952 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
953 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
954 * swapfiles are handled *identically* after swapon time.
955 *
956 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
957 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
958 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
959 * requirements, they are simply tossed out - we will never use those blocks
960 * for swapping.
961 *
962 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
963 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
964 * which will scribble on the fs.
965 *
966 * The amount of disk space which a single swap extent represents varies.
967 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
968 * extents in the list.  To avoid much list walking, we cache the previous
969 * search location in `curr_swap_extent', and start new searches from there.
970 * This is extremely effective.  The average number of iterations in
971 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
972 */
973static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
974{
975	struct inode *inode;
976	unsigned blocks_per_page;
977	unsigned long page_no;
978	unsigned blkbits;
979	sector_t probe_block;
980	sector_t last_block;
981	sector_t lowest_block = -1;
982	sector_t highest_block = 0;
983	int nr_extents = 0;
984	int ret;
985
986	inode = sis->swap_file->f_mapping->host;
987	if (S_ISBLK(inode->i_mode)) {
988		ret = add_swap_extent(sis, 0, sis->max, 0);
989		*span = sis->pages;
990		goto done;
991	}
992
993	blkbits = inode->i_blkbits;
994	blocks_per_page = PAGE_SIZE >> blkbits;
995
996	/*
997	 * Map all the blocks into the extent list.  This code doesn't try
998	 * to be very smart.
999	 */
1000	probe_block = 0;
1001	page_no = 0;
1002	last_block = i_size_read(inode) >> blkbits;
1003	while ((probe_block + blocks_per_page) <= last_block &&
1004			page_no < sis->max) {
1005		unsigned block_in_page;
1006		sector_t first_block;
1007
1008		first_block = bmap(inode, probe_block);
1009		if (first_block == 0)
1010			goto bad_bmap;
1011
1012		/*
1013		 * It must be PAGE_SIZE aligned on-disk
1014		 */
1015		if (first_block & (blocks_per_page - 1)) {
1016			probe_block++;
1017			goto reprobe;
1018		}
1019
1020		for (block_in_page = 1; block_in_page < blocks_per_page;
1021					block_in_page++) {
1022			sector_t block;
1023
1024			block = bmap(inode, probe_block + block_in_page);
1025			if (block == 0)
1026				goto bad_bmap;
1027			if (block != first_block + block_in_page) {
1028				/* Discontiguity */
1029				probe_block++;
1030				goto reprobe;
1031			}
1032		}
1033
1034		first_block >>= (PAGE_SHIFT - blkbits);
1035		if (page_no) {	/* exclude the header page */
1036			if (first_block < lowest_block)
1037				lowest_block = first_block;
1038			if (first_block > highest_block)
1039				highest_block = first_block;
1040		}
1041
1042		/*
1043		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1044		 */
1045		ret = add_swap_extent(sis, page_no, 1, first_block);
1046		if (ret < 0)
1047			goto out;
1048		nr_extents += ret;
1049		page_no++;
1050		probe_block += blocks_per_page;
1051reprobe:
1052		continue;
1053	}
1054	ret = nr_extents;
1055	*span = 1 + highest_block - lowest_block;
1056	if (page_no == 0)
1057		page_no = 1;	/* force Empty message */
1058	sis->max = page_no;
1059	sis->pages = page_no - 1;
1060	sis->highest_bit = page_no - 1;
1061done:
1062	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1063					struct swap_extent, list);
1064	goto out;
1065bad_bmap:
1066	printk(KERN_ERR "swapon: swapfile has holes\n");
1067	ret = -EINVAL;
1068out:
1069	return ret;
1070}
1071
1072#if 0	/* We don't need this yet */
1073#include <linux/backing-dev.h>
1074int page_queue_congested(struct page *page)
1075{
1076	struct backing_dev_info *bdi;
1077
1078	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1079
1080	if (PageSwapCache(page)) {
1081		swp_entry_t entry = { .val = page_private(page) };
1082		struct swap_info_struct *sis;
1083
1084		sis = get_swap_info_struct(swp_type(entry));
1085		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1086	} else
1087		bdi = page->mapping->backing_dev_info;
1088	return bdi_write_congested(bdi);
1089}
1090#endif
1091
1092asmlinkage long sys_swapoff(const char __user * specialfile)
1093{
1094	struct swap_info_struct * p = NULL;
1095	unsigned short *swap_map;
1096	struct file *swap_file, *victim;
1097	struct address_space *mapping;
1098	struct inode *inode;
1099	char * pathname;
1100	int i, type, prev;
1101	int err;
1102
1103	if (!capable(CAP_SYS_ADMIN))
1104		return -EPERM;
1105
1106	pathname = getname(specialfile);
1107	err = PTR_ERR(pathname);
1108	if (IS_ERR(pathname))
1109		goto out;
1110
1111	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1112	putname(pathname);
1113	err = PTR_ERR(victim);
1114	if (IS_ERR(victim))
1115		goto out;
1116
1117	mapping = victim->f_mapping;
1118	prev = -1;
1119	spin_lock(&swap_lock);
1120	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1121		p = swap_info + type;
1122		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1123			if (p->swap_file->f_mapping == mapping)
1124				break;
1125		}
1126		prev = type;
1127	}
1128	if (type < 0) {
1129		err = -EINVAL;
1130		spin_unlock(&swap_lock);
1131		goto out_dput;
1132	}
1133	if (!security_vm_enough_memory(p->pages))
1134		vm_unacct_memory(p->pages);
1135	else {
1136		err = -ENOMEM;
1137		spin_unlock(&swap_lock);
1138		goto out_dput;
1139	}
1140	if (prev < 0) {
1141		swap_list.head = p->next;
1142	} else {
1143		swap_info[prev].next = p->next;
1144	}
1145	if (type == swap_list.next) {
1146		/* just pick something that's safe... */
1147		swap_list.next = swap_list.head;
1148	}
1149	nr_swap_pages -= p->pages;
1150	total_swap_pages -= p->pages;
1151	p->flags &= ~SWP_WRITEOK;
1152	spin_unlock(&swap_lock);
1153
1154	current->flags |= PF_SWAPOFF;
1155	err = try_to_unuse(type);
1156	current->flags &= ~PF_SWAPOFF;
1157
1158	if (err) {
1159		/* re-insert swap space back into swap_list */
1160		spin_lock(&swap_lock);
1161		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1162			if (p->prio >= swap_info[i].prio)
1163				break;
1164		p->next = i;
1165		if (prev < 0)
1166			swap_list.head = swap_list.next = p - swap_info;
1167		else
1168			swap_info[prev].next = p - swap_info;
1169		nr_swap_pages += p->pages;
1170		total_swap_pages += p->pages;
1171		p->flags |= SWP_WRITEOK;
1172		spin_unlock(&swap_lock);
1173		goto out_dput;
1174	}
1175
1176	/* wait for any unplug function to finish */
1177	down_write(&swap_unplug_sem);
1178	up_write(&swap_unplug_sem);
1179
1180	destroy_swap_extents(p);
1181	mutex_lock(&swapon_mutex);
1182	spin_lock(&swap_lock);
1183	drain_mmlist();
1184
1185	/* wait for anyone still in scan_swap_map */
1186	p->highest_bit = 0;		/* cuts scans short */
1187	while (p->flags >= SWP_SCANNING) {
1188		spin_unlock(&swap_lock);
1189		schedule_timeout_uninterruptible(1);
1190		spin_lock(&swap_lock);
1191	}
1192
1193	swap_file = p->swap_file;
1194	p->swap_file = NULL;
1195	p->max = 0;
1196	swap_map = p->swap_map;
1197	p->swap_map = NULL;
1198	p->flags = 0;
1199	spin_unlock(&swap_lock);
1200	mutex_unlock(&swapon_mutex);
1201	vfree(swap_map);
1202	inode = mapping->host;
1203	if (S_ISBLK(inode->i_mode)) {
1204		struct block_device *bdev = I_BDEV(inode);
1205		set_blocksize(bdev, p->old_block_size);
1206		bd_release(bdev);
1207	} else {
1208		mutex_lock(&inode->i_mutex);
1209		inode->i_flags &= ~S_SWAPFILE;
1210		mutex_unlock(&inode->i_mutex);
1211	}
1212	filp_close(swap_file, NULL);
1213	err = 0;
1214
1215out_dput:
1216	filp_close(victim, NULL);
1217out:
1218	return err;
1219}
1220
1221#ifdef CONFIG_PROC_FS
1222/* iterator */
1223static void *swap_start(struct seq_file *swap, loff_t *pos)
1224{
1225	struct swap_info_struct *ptr = swap_info;
1226	int i;
1227	loff_t l = *pos;
1228
1229	mutex_lock(&swapon_mutex);
1230
1231	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1232		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1233			continue;
1234		if (!l--)
1235			return ptr;
1236	}
1237
1238	return NULL;
1239}
1240
1241static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1242{
1243	struct swap_info_struct *ptr = v;
1244	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1245
1246	for (++ptr; ptr < endptr; ptr++) {
1247		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1248			continue;
1249		++*pos;
1250		return ptr;
1251	}
1252
1253	return NULL;
1254}
1255
1256static void swap_stop(struct seq_file *swap, void *v)
1257{
1258	mutex_unlock(&swapon_mutex);
1259}
1260
1261static int swap_show(struct seq_file *swap, void *v)
1262{
1263	struct swap_info_struct *ptr = v;
1264	struct file *file;
1265	int len;
1266
1267	if (v == swap_info)
1268		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1269
1270	file = ptr->swap_file;
1271	len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1272	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1273		       len < 40 ? 40 - len : 1, " ",
1274		       S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1275				"partition" : "file\t",
1276		       ptr->pages << (PAGE_SHIFT - 10),
1277		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1278		       ptr->prio);
1279	return 0;
1280}
1281
1282static struct seq_operations swaps_op = {
1283	.start =	swap_start,
1284	.next =		swap_next,
1285	.stop =		swap_stop,
1286	.show =		swap_show
1287};
1288
1289static int swaps_open(struct inode *inode, struct file *file)
1290{
1291	return seq_open(file, &swaps_op);
1292}
1293
1294static struct file_operations proc_swaps_operations = {
1295	.open		= swaps_open,
1296	.read		= seq_read,
1297	.llseek		= seq_lseek,
1298	.release	= seq_release,
1299};
1300
1301static int __init procswaps_init(void)
1302{
1303	struct proc_dir_entry *entry;
1304
1305	entry = create_proc_entry("swaps", 0, NULL);
1306	if (entry)
1307		entry->proc_fops = &proc_swaps_operations;
1308	return 0;
1309}
1310__initcall(procswaps_init);
1311#endif /* CONFIG_PROC_FS */
1312
1313/*
1314 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1315 *
1316 * The swapon system call
1317 */
1318asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1319{
1320	struct swap_info_struct * p;
1321	char *name = NULL;
1322	struct block_device *bdev = NULL;
1323	struct file *swap_file = NULL;
1324	struct address_space *mapping;
1325	unsigned int type;
1326	int i, prev;
1327	int error;
1328	static int least_priority;
1329	union swap_header *swap_header = NULL;
1330	int swap_header_version;
1331	unsigned int nr_good_pages = 0;
1332	int nr_extents = 0;
1333	sector_t span;
1334	unsigned long maxpages = 1;
1335	int swapfilesize;
1336	unsigned short *swap_map;
1337	struct page *page = NULL;
1338	struct inode *inode = NULL;
1339	int did_down = 0;
1340
1341	if (!capable(CAP_SYS_ADMIN))
1342		return -EPERM;
1343	spin_lock(&swap_lock);
1344	p = swap_info;
1345	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1346		if (!(p->flags & SWP_USED))
1347			break;
1348	error = -EPERM;
1349	/*
1350	 * Test if adding another swap device is possible. There are
1351	 * two limiting factors: 1) the number of bits for the swap
1352	 * type swp_entry_t definition and 2) the number of bits for
1353	 * the swap type in the swap ptes as defined by the different
1354	 * architectures. To honor both limitations a swap entry
1355	 * with swap offset 0 and swap type ~0UL is created, encoded
1356	 * to a swap pte, decoded to a swp_entry_t again and finally
1357	 * the swap type part is extracted. This will mask all bits
1358	 * from the initial ~0UL that can't be encoded in either the
1359	 * swp_entry_t or the architecture definition of a swap pte.
1360	 */
1361	if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1362		spin_unlock(&swap_lock);
1363		goto out;
1364	}
1365	if (type >= nr_swapfiles)
1366		nr_swapfiles = type+1;
1367	INIT_LIST_HEAD(&p->extent_list);
1368	p->flags = SWP_USED;
1369	p->swap_file = NULL;
1370	p->old_block_size = 0;
1371	p->swap_map = NULL;
1372	p->lowest_bit = 0;
1373	p->highest_bit = 0;
1374	p->cluster_nr = 0;
1375	p->inuse_pages = 0;
1376	p->next = -1;
1377	if (swap_flags & SWAP_FLAG_PREFER) {
1378		p->prio =
1379		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1380	} else {
1381		p->prio = --least_priority;
1382	}
1383	spin_unlock(&swap_lock);
1384	name = getname(specialfile);
1385	error = PTR_ERR(name);
1386	if (IS_ERR(name)) {
1387		name = NULL;
1388		goto bad_swap_2;
1389	}
1390	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1391	error = PTR_ERR(swap_file);
1392	if (IS_ERR(swap_file)) {
1393		swap_file = NULL;
1394		goto bad_swap_2;
1395	}
1396
1397	p->swap_file = swap_file;
1398	mapping = swap_file->f_mapping;
1399	inode = mapping->host;
1400
1401	error = -EBUSY;
1402	for (i = 0; i < nr_swapfiles; i++) {
1403		struct swap_info_struct *q = &swap_info[i];
1404
1405		if (i == type || !q->swap_file)
1406			continue;
1407		if (mapping == q->swap_file->f_mapping)
1408			goto bad_swap;
1409	}
1410
1411	error = -EINVAL;
1412	if (S_ISBLK(inode->i_mode)) {
1413		bdev = I_BDEV(inode);
1414		error = bd_claim(bdev, sys_swapon);
1415		if (error < 0) {
1416			bdev = NULL;
1417			error = -EINVAL;
1418			goto bad_swap;
1419		}
1420		p->old_block_size = block_size(bdev);
1421		error = set_blocksize(bdev, PAGE_SIZE);
1422		if (error < 0)
1423			goto bad_swap;
1424		p->bdev = bdev;
1425	} else if (S_ISREG(inode->i_mode)) {
1426		p->bdev = inode->i_sb->s_bdev;
1427		mutex_lock(&inode->i_mutex);
1428		did_down = 1;
1429		if (IS_SWAPFILE(inode)) {
1430			error = -EBUSY;
1431			goto bad_swap;
1432		}
1433	} else {
1434		goto bad_swap;
1435	}
1436
1437	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1438
1439	/*
1440	 * Read the swap header.
1441	 */
1442	if (!mapping->a_ops->readpage) {
1443		error = -EINVAL;
1444		goto bad_swap;
1445	}
1446	page = read_cache_page(mapping, 0,
1447			(filler_t *)mapping->a_ops->readpage, swap_file);
1448	if (IS_ERR(page)) {
1449		error = PTR_ERR(page);
1450		goto bad_swap;
1451	}
1452	wait_on_page_locked(page);
1453	if (!PageUptodate(page))
1454		goto bad_swap;
1455	kmap(page);
1456	swap_header = page_address(page);
1457
1458	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1459		swap_header_version = 1;
1460	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1461		swap_header_version = 2;
1462	else {
1463		printk(KERN_ERR "Unable to find swap-space signature\n");
1464		error = -EINVAL;
1465		goto bad_swap;
1466	}
1467
1468	switch (swap_header_version) {
1469	case 1:
1470		printk(KERN_ERR "version 0 swap is no longer supported. "
1471			"Use mkswap -v1 %s\n", name);
1472		error = -EINVAL;
1473		goto bad_swap;
1474	case 2:
1475		/* Check the swap header's sub-version and the size of
1476                   the swap file and bad block lists */
1477		if (swap_header->info.version != 1) {
1478			printk(KERN_WARNING
1479			       "Unable to handle swap header version %d\n",
1480			       swap_header->info.version);
1481			error = -EINVAL;
1482			goto bad_swap;
1483		}
1484
1485		p->lowest_bit  = 1;
1486		p->cluster_next = 1;
1487
1488		/*
1489		 * Find out how many pages are allowed for a single swap
1490		 * device. There are two limiting factors: 1) the number of
1491		 * bits for the swap offset in the swp_entry_t type and
1492		 * 2) the number of bits in the a swap pte as defined by
1493		 * the different architectures. In order to find the
1494		 * largest possible bit mask a swap entry with swap type 0
1495		 * and swap offset ~0UL is created, encoded to a swap pte,
1496		 * decoded to a swp_entry_t again and finally the swap
1497		 * offset is extracted. This will mask all the bits from
1498		 * the initial ~0UL mask that can't be encoded in either
1499		 * the swp_entry_t or the architecture definition of a
1500		 * swap pte.
1501		 */
1502		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1503		if (maxpages > swap_header->info.last_page)
1504			maxpages = swap_header->info.last_page;
1505		p->highest_bit = maxpages - 1;
1506
1507		error = -EINVAL;
1508		if (!maxpages)
1509			goto bad_swap;
1510		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1511			goto bad_swap;
1512		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1513			goto bad_swap;
1514
1515		/* OK, set up the swap map and apply the bad block list */
1516		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1517			error = -ENOMEM;
1518			goto bad_swap;
1519		}
1520
1521		error = 0;
1522		memset(p->swap_map, 0, maxpages * sizeof(short));
1523		for (i = 0; i < swap_header->info.nr_badpages; i++) {
1524			int page_nr = swap_header->info.badpages[i];
1525			if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1526				error = -EINVAL;
1527			else
1528				p->swap_map[page_nr] = SWAP_MAP_BAD;
1529		}
1530		nr_good_pages = swap_header->info.last_page -
1531				swap_header->info.nr_badpages -
1532				1 /* header page */;
1533		if (error)
1534			goto bad_swap;
1535	}
1536
1537	if (swapfilesize && maxpages > swapfilesize) {
1538		printk(KERN_WARNING
1539		       "Swap area shorter than signature indicates\n");
1540		error = -EINVAL;
1541		goto bad_swap;
1542	}
1543	if (nr_good_pages) {
1544		p->swap_map[0] = SWAP_MAP_BAD;
1545		p->max = maxpages;
1546		p->pages = nr_good_pages;
1547		nr_extents = setup_swap_extents(p, &span);
1548		if (nr_extents < 0) {
1549			error = nr_extents;
1550			goto bad_swap;
1551		}
1552		nr_good_pages = p->pages;
1553	}
1554	if (!nr_good_pages) {
1555		printk(KERN_WARNING "Empty swap-file\n");
1556		error = -EINVAL;
1557		goto bad_swap;
1558	}
1559
1560	mutex_lock(&swapon_mutex);
1561	spin_lock(&swap_lock);
1562	p->flags = SWP_ACTIVE;
1563	nr_swap_pages += nr_good_pages;
1564	total_swap_pages += nr_good_pages;
1565
1566	printk(KERN_INFO "Adding %uk swap on %s.  "
1567			"Priority:%d extents:%d across:%lluk\n",
1568		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1569		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1570
1571	/* insert swap space into swap_list: */
1572	prev = -1;
1573	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1574		if (p->prio >= swap_info[i].prio) {
1575			break;
1576		}
1577		prev = i;
1578	}
1579	p->next = i;
1580	if (prev < 0) {
1581		swap_list.head = swap_list.next = p - swap_info;
1582	} else {
1583		swap_info[prev].next = p - swap_info;
1584	}
1585	spin_unlock(&swap_lock);
1586	mutex_unlock(&swapon_mutex);
1587	error = 0;
1588	goto out;
1589bad_swap:
1590	if (bdev) {
1591		set_blocksize(bdev, p->old_block_size);
1592		bd_release(bdev);
1593	}
1594	destroy_swap_extents(p);
1595bad_swap_2:
1596	spin_lock(&swap_lock);
1597	swap_map = p->swap_map;
1598	p->swap_file = NULL;
1599	p->swap_map = NULL;
1600	p->flags = 0;
1601	if (!(swap_flags & SWAP_FLAG_PREFER))
1602		++least_priority;
1603	spin_unlock(&swap_lock);
1604	vfree(swap_map);
1605	if (swap_file)
1606		filp_close(swap_file, NULL);
1607out:
1608	if (page && !IS_ERR(page)) {
1609		kunmap(page);
1610		page_cache_release(page);
1611	}
1612	if (name)
1613		putname(name);
1614	if (did_down) {
1615		if (!error)
1616			inode->i_flags |= S_SWAPFILE;
1617		mutex_unlock(&inode->i_mutex);
1618	}
1619	return error;
1620}
1621
1622void si_swapinfo(struct sysinfo *val)
1623{
1624	unsigned int i;
1625	unsigned long nr_to_be_unused = 0;
1626
1627	spin_lock(&swap_lock);
1628	for (i = 0; i < nr_swapfiles; i++) {
1629		if (!(swap_info[i].flags & SWP_USED) ||
1630		     (swap_info[i].flags & SWP_WRITEOK))
1631			continue;
1632		nr_to_be_unused += swap_info[i].inuse_pages;
1633	}
1634	val->freeswap = nr_swap_pages + nr_to_be_unused;
1635	val->totalswap = total_swap_pages + nr_to_be_unused;
1636	spin_unlock(&swap_lock);
1637}
1638
1639/*
1640 * Verify that a swap entry is valid and increment its swap map count.
1641 *
1642 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1643 * "permanent", but will be reclaimed by the next swapoff.
1644 */
1645int swap_duplicate(swp_entry_t entry)
1646{
1647	struct swap_info_struct * p;
1648	unsigned long offset, type;
1649	int result = 0;
1650
1651	type = swp_type(entry);
1652	if (type >= nr_swapfiles)
1653		goto bad_file;
1654	p = type + swap_info;
1655	offset = swp_offset(entry);
1656
1657	spin_lock(&swap_lock);
1658	if (offset < p->max && p->swap_map[offset]) {
1659		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1660			p->swap_map[offset]++;
1661			result = 1;
1662		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1663			if (swap_overflow++ < 5)
1664				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1665			p->swap_map[offset] = SWAP_MAP_MAX;
1666			result = 1;
1667		}
1668	}
1669	spin_unlock(&swap_lock);
1670out:
1671	return result;
1672
1673bad_file:
1674	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1675	goto out;
1676}
1677
1678struct swap_info_struct *
1679get_swap_info_struct(unsigned type)
1680{
1681	return &swap_info[type];
1682}
1683
1684/*
1685 * swap_lock prevents swap_map being freed. Don't grab an extra
1686 * reference on the swaphandle, it doesn't matter if it becomes unused.
1687 */
1688int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1689{
1690	int ret = 0, i = 1 << page_cluster;
1691	unsigned long toff;
1692	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1693
1694	if (!page_cluster)	/* no readahead */
1695		return 0;
1696	toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1697	if (!toff)		/* first page is swap header */
1698		toff++, i--;
1699	*offset = toff;
1700
1701	spin_lock(&swap_lock);
1702	do {
1703		/* Don't read-ahead past the end of the swap area */
1704		if (toff >= swapdev->max)
1705			break;
1706		/* Don't read in free or bad pages */
1707		if (!swapdev->swap_map[toff])
1708			break;
1709		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1710			break;
1711		toff++;
1712		ret++;
1713	} while (--i);
1714	spin_unlock(&swap_lock);
1715	return ret;
1716}
1717