swapfile.c revision a2c43eed8334e878702fca713b212ae2a11d84b9
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/writeback.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/rmap.h>
25#include <linux/security.h>
26#include <linux/backing-dev.h>
27#include <linux/mutex.h>
28#include <linux/capability.h>
29#include <linux/syscalls.h>
30#include <linux/memcontrol.h>
31
32#include <asm/pgtable.h>
33#include <asm/tlbflush.h>
34#include <linux/swapops.h>
35
36static DEFINE_SPINLOCK(swap_lock);
37static unsigned int nr_swapfiles;
38long total_swap_pages;
39static int swap_overflow;
40static int least_priority;
41
42static const char Bad_file[] = "Bad swap file entry ";
43static const char Unused_file[] = "Unused swap file entry ";
44static const char Bad_offset[] = "Bad swap offset entry ";
45static const char Unused_offset[] = "Unused swap offset entry ";
46
47static struct swap_list_t swap_list = {-1, -1};
48
49static struct swap_info_struct swap_info[MAX_SWAPFILES];
50
51static DEFINE_MUTEX(swapon_mutex);
52
53/*
54 * We need this because the bdev->unplug_fn can sleep and we cannot
55 * hold swap_lock while calling the unplug_fn. And swap_lock
56 * cannot be turned into a mutex.
57 */
58static DECLARE_RWSEM(swap_unplug_sem);
59
60void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
61{
62	swp_entry_t entry;
63
64	down_read(&swap_unplug_sem);
65	entry.val = page_private(page);
66	if (PageSwapCache(page)) {
67		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
68		struct backing_dev_info *bdi;
69
70		/*
71		 * If the page is removed from swapcache from under us (with a
72		 * racy try_to_unuse/swapoff) we need an additional reference
73		 * count to avoid reading garbage from page_private(page) above.
74		 * If the WARN_ON triggers during a swapoff it maybe the race
75		 * condition and it's harmless. However if it triggers without
76		 * swapoff it signals a problem.
77		 */
78		WARN_ON(page_count(page) <= 1);
79
80		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
81		blk_run_backing_dev(bdi, page);
82	}
83	up_read(&swap_unplug_sem);
84}
85
86#define SWAPFILE_CLUSTER	256
87#define LATENCY_LIMIT		256
88
89static inline unsigned long scan_swap_map(struct swap_info_struct *si)
90{
91	unsigned long offset, last_in_cluster;
92	int latency_ration = LATENCY_LIMIT;
93
94	/*
95	 * We try to cluster swap pages by allocating them sequentially
96	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
97	 * way, however, we resort to first-free allocation, starting
98	 * a new cluster.  This prevents us from scattering swap pages
99	 * all over the entire swap partition, so that we reduce
100	 * overall disk seek times between swap pages.  -- sct
101	 * But we do now try to find an empty cluster.  -Andrea
102	 */
103
104	si->flags += SWP_SCANNING;
105	if (unlikely(!si->cluster_nr)) {
106		si->cluster_nr = SWAPFILE_CLUSTER - 1;
107		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
108			goto lowest;
109		spin_unlock(&swap_lock);
110
111		offset = si->lowest_bit;
112		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
113
114		/* Locate the first empty (unaligned) cluster */
115		for (; last_in_cluster <= si->highest_bit; offset++) {
116			if (si->swap_map[offset])
117				last_in_cluster = offset + SWAPFILE_CLUSTER;
118			else if (offset == last_in_cluster) {
119				spin_lock(&swap_lock);
120				si->cluster_next = offset-SWAPFILE_CLUSTER+1;
121				goto cluster;
122			}
123			if (unlikely(--latency_ration < 0)) {
124				cond_resched();
125				latency_ration = LATENCY_LIMIT;
126			}
127		}
128		spin_lock(&swap_lock);
129		goto lowest;
130	}
131
132	si->cluster_nr--;
133cluster:
134	offset = si->cluster_next;
135	if (offset > si->highest_bit)
136lowest:		offset = si->lowest_bit;
137checks:	if (!(si->flags & SWP_WRITEOK))
138		goto no_page;
139	if (!si->highest_bit)
140		goto no_page;
141	if (!si->swap_map[offset]) {
142		if (offset == si->lowest_bit)
143			si->lowest_bit++;
144		if (offset == si->highest_bit)
145			si->highest_bit--;
146		si->inuse_pages++;
147		if (si->inuse_pages == si->pages) {
148			si->lowest_bit = si->max;
149			si->highest_bit = 0;
150		}
151		si->swap_map[offset] = 1;
152		si->cluster_next = offset + 1;
153		si->flags -= SWP_SCANNING;
154		return offset;
155	}
156
157	spin_unlock(&swap_lock);
158	while (++offset <= si->highest_bit) {
159		if (!si->swap_map[offset]) {
160			spin_lock(&swap_lock);
161			goto checks;
162		}
163		if (unlikely(--latency_ration < 0)) {
164			cond_resched();
165			latency_ration = LATENCY_LIMIT;
166		}
167	}
168	spin_lock(&swap_lock);
169	goto lowest;
170
171no_page:
172	si->flags -= SWP_SCANNING;
173	return 0;
174}
175
176swp_entry_t get_swap_page(void)
177{
178	struct swap_info_struct *si;
179	pgoff_t offset;
180	int type, next;
181	int wrapped = 0;
182
183	spin_lock(&swap_lock);
184	if (nr_swap_pages <= 0)
185		goto noswap;
186	nr_swap_pages--;
187
188	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
189		si = swap_info + type;
190		next = si->next;
191		if (next < 0 ||
192		    (!wrapped && si->prio != swap_info[next].prio)) {
193			next = swap_list.head;
194			wrapped++;
195		}
196
197		if (!si->highest_bit)
198			continue;
199		if (!(si->flags & SWP_WRITEOK))
200			continue;
201
202		swap_list.next = next;
203		offset = scan_swap_map(si);
204		if (offset) {
205			spin_unlock(&swap_lock);
206			return swp_entry(type, offset);
207		}
208		next = swap_list.next;
209	}
210
211	nr_swap_pages++;
212noswap:
213	spin_unlock(&swap_lock);
214	return (swp_entry_t) {0};
215}
216
217swp_entry_t get_swap_page_of_type(int type)
218{
219	struct swap_info_struct *si;
220	pgoff_t offset;
221
222	spin_lock(&swap_lock);
223	si = swap_info + type;
224	if (si->flags & SWP_WRITEOK) {
225		nr_swap_pages--;
226		offset = scan_swap_map(si);
227		if (offset) {
228			spin_unlock(&swap_lock);
229			return swp_entry(type, offset);
230		}
231		nr_swap_pages++;
232	}
233	spin_unlock(&swap_lock);
234	return (swp_entry_t) {0};
235}
236
237static struct swap_info_struct * swap_info_get(swp_entry_t entry)
238{
239	struct swap_info_struct * p;
240	unsigned long offset, type;
241
242	if (!entry.val)
243		goto out;
244	type = swp_type(entry);
245	if (type >= nr_swapfiles)
246		goto bad_nofile;
247	p = & swap_info[type];
248	if (!(p->flags & SWP_USED))
249		goto bad_device;
250	offset = swp_offset(entry);
251	if (offset >= p->max)
252		goto bad_offset;
253	if (!p->swap_map[offset])
254		goto bad_free;
255	spin_lock(&swap_lock);
256	return p;
257
258bad_free:
259	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
260	goto out;
261bad_offset:
262	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
263	goto out;
264bad_device:
265	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
266	goto out;
267bad_nofile:
268	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
269out:
270	return NULL;
271}
272
273static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
274{
275	int count = p->swap_map[offset];
276
277	if (count < SWAP_MAP_MAX) {
278		count--;
279		p->swap_map[offset] = count;
280		if (!count) {
281			if (offset < p->lowest_bit)
282				p->lowest_bit = offset;
283			if (offset > p->highest_bit)
284				p->highest_bit = offset;
285			if (p->prio > swap_info[swap_list.next].prio)
286				swap_list.next = p - swap_info;
287			nr_swap_pages++;
288			p->inuse_pages--;
289		}
290	}
291	return count;
292}
293
294/*
295 * Caller has made sure that the swapdevice corresponding to entry
296 * is still around or has not been recycled.
297 */
298void swap_free(swp_entry_t entry)
299{
300	struct swap_info_struct * p;
301
302	p = swap_info_get(entry);
303	if (p) {
304		swap_entry_free(p, swp_offset(entry));
305		spin_unlock(&swap_lock);
306	}
307}
308
309/*
310 * How many references to page are currently swapped out?
311 */
312static inline int page_swapcount(struct page *page)
313{
314	int count = 0;
315	struct swap_info_struct *p;
316	swp_entry_t entry;
317
318	entry.val = page_private(page);
319	p = swap_info_get(entry);
320	if (p) {
321		/* Subtract the 1 for the swap cache itself */
322		count = p->swap_map[swp_offset(entry)] - 1;
323		spin_unlock(&swap_lock);
324	}
325	return count;
326}
327
328/*
329 * We can write to an anon page without COW if there are no other references
330 * to it.  And as a side-effect, free up its swap: because the old content
331 * on disk will never be read, and seeking back there to write new content
332 * later would only waste time away from clustering.
333 */
334int reuse_swap_page(struct page *page)
335{
336	int count;
337
338	VM_BUG_ON(!PageLocked(page));
339	count = page_mapcount(page);
340	if (count <= 1 && PageSwapCache(page)) {
341		count += page_swapcount(page);
342		if (count == 1 && !PageWriteback(page)) {
343			delete_from_swap_cache(page);
344			SetPageDirty(page);
345		}
346	}
347	return count == 1;
348}
349
350/*
351 * If swap is getting full, or if there are no more mappings of this page,
352 * then try_to_free_swap is called to free its swap space.
353 */
354int try_to_free_swap(struct page *page)
355{
356	VM_BUG_ON(!PageLocked(page));
357
358	if (!PageSwapCache(page))
359		return 0;
360	if (PageWriteback(page))
361		return 0;
362	if (page_swapcount(page))
363		return 0;
364
365	delete_from_swap_cache(page);
366	SetPageDirty(page);
367	return 1;
368}
369
370/*
371 * Free the swap entry like above, but also try to
372 * free the page cache entry if it is the last user.
373 */
374void free_swap_and_cache(swp_entry_t entry)
375{
376	struct swap_info_struct * p;
377	struct page *page = NULL;
378
379	if (is_migration_entry(entry))
380		return;
381
382	p = swap_info_get(entry);
383	if (p) {
384		if (swap_entry_free(p, swp_offset(entry)) == 1) {
385			page = find_get_page(&swapper_space, entry.val);
386			if (page && !trylock_page(page)) {
387				page_cache_release(page);
388				page = NULL;
389			}
390		}
391		spin_unlock(&swap_lock);
392	}
393	if (page) {
394		/*
395		 * Not mapped elsewhere, or swap space full? Free it!
396		 * Also recheck PageSwapCache now page is locked (above).
397		 */
398		if (PageSwapCache(page) && !PageWriteback(page) &&
399				(!page_mapped(page) || vm_swap_full())) {
400			delete_from_swap_cache(page);
401			SetPageDirty(page);
402		}
403		unlock_page(page);
404		page_cache_release(page);
405	}
406}
407
408#ifdef CONFIG_HIBERNATION
409/*
410 * Find the swap type that corresponds to given device (if any).
411 *
412 * @offset - number of the PAGE_SIZE-sized block of the device, starting
413 * from 0, in which the swap header is expected to be located.
414 *
415 * This is needed for the suspend to disk (aka swsusp).
416 */
417int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
418{
419	struct block_device *bdev = NULL;
420	int i;
421
422	if (device)
423		bdev = bdget(device);
424
425	spin_lock(&swap_lock);
426	for (i = 0; i < nr_swapfiles; i++) {
427		struct swap_info_struct *sis = swap_info + i;
428
429		if (!(sis->flags & SWP_WRITEOK))
430			continue;
431
432		if (!bdev) {
433			if (bdev_p)
434				*bdev_p = sis->bdev;
435
436			spin_unlock(&swap_lock);
437			return i;
438		}
439		if (bdev == sis->bdev) {
440			struct swap_extent *se;
441
442			se = list_entry(sis->extent_list.next,
443					struct swap_extent, list);
444			if (se->start_block == offset) {
445				if (bdev_p)
446					*bdev_p = sis->bdev;
447
448				spin_unlock(&swap_lock);
449				bdput(bdev);
450				return i;
451			}
452		}
453	}
454	spin_unlock(&swap_lock);
455	if (bdev)
456		bdput(bdev);
457
458	return -ENODEV;
459}
460
461/*
462 * Return either the total number of swap pages of given type, or the number
463 * of free pages of that type (depending on @free)
464 *
465 * This is needed for software suspend
466 */
467unsigned int count_swap_pages(int type, int free)
468{
469	unsigned int n = 0;
470
471	if (type < nr_swapfiles) {
472		spin_lock(&swap_lock);
473		if (swap_info[type].flags & SWP_WRITEOK) {
474			n = swap_info[type].pages;
475			if (free)
476				n -= swap_info[type].inuse_pages;
477		}
478		spin_unlock(&swap_lock);
479	}
480	return n;
481}
482#endif
483
484/*
485 * No need to decide whether this PTE shares the swap entry with others,
486 * just let do_wp_page work it out if a write is requested later - to
487 * force COW, vm_page_prot omits write permission from any private vma.
488 */
489static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
490		unsigned long addr, swp_entry_t entry, struct page *page)
491{
492	spinlock_t *ptl;
493	pte_t *pte;
494	int ret = 1;
495
496	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
497		ret = -ENOMEM;
498
499	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
500	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
501		if (ret > 0)
502			mem_cgroup_uncharge_page(page);
503		ret = 0;
504		goto out;
505	}
506
507	inc_mm_counter(vma->vm_mm, anon_rss);
508	get_page(page);
509	set_pte_at(vma->vm_mm, addr, pte,
510		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
511	page_add_anon_rmap(page, vma, addr);
512	swap_free(entry);
513	/*
514	 * Move the page to the active list so it is not
515	 * immediately swapped out again after swapon.
516	 */
517	activate_page(page);
518out:
519	pte_unmap_unlock(pte, ptl);
520	return ret;
521}
522
523static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
524				unsigned long addr, unsigned long end,
525				swp_entry_t entry, struct page *page)
526{
527	pte_t swp_pte = swp_entry_to_pte(entry);
528	pte_t *pte;
529	int ret = 0;
530
531	/*
532	 * We don't actually need pte lock while scanning for swp_pte: since
533	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
534	 * page table while we're scanning; though it could get zapped, and on
535	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
536	 * of unmatched parts which look like swp_pte, so unuse_pte must
537	 * recheck under pte lock.  Scanning without pte lock lets it be
538	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
539	 */
540	pte = pte_offset_map(pmd, addr);
541	do {
542		/*
543		 * swapoff spends a _lot_ of time in this loop!
544		 * Test inline before going to call unuse_pte.
545		 */
546		if (unlikely(pte_same(*pte, swp_pte))) {
547			pte_unmap(pte);
548			ret = unuse_pte(vma, pmd, addr, entry, page);
549			if (ret)
550				goto out;
551			pte = pte_offset_map(pmd, addr);
552		}
553	} while (pte++, addr += PAGE_SIZE, addr != end);
554	pte_unmap(pte - 1);
555out:
556	return ret;
557}
558
559static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
560				unsigned long addr, unsigned long end,
561				swp_entry_t entry, struct page *page)
562{
563	pmd_t *pmd;
564	unsigned long next;
565	int ret;
566
567	pmd = pmd_offset(pud, addr);
568	do {
569		next = pmd_addr_end(addr, end);
570		if (pmd_none_or_clear_bad(pmd))
571			continue;
572		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
573		if (ret)
574			return ret;
575	} while (pmd++, addr = next, addr != end);
576	return 0;
577}
578
579static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
580				unsigned long addr, unsigned long end,
581				swp_entry_t entry, struct page *page)
582{
583	pud_t *pud;
584	unsigned long next;
585	int ret;
586
587	pud = pud_offset(pgd, addr);
588	do {
589		next = pud_addr_end(addr, end);
590		if (pud_none_or_clear_bad(pud))
591			continue;
592		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
593		if (ret)
594			return ret;
595	} while (pud++, addr = next, addr != end);
596	return 0;
597}
598
599static int unuse_vma(struct vm_area_struct *vma,
600				swp_entry_t entry, struct page *page)
601{
602	pgd_t *pgd;
603	unsigned long addr, end, next;
604	int ret;
605
606	if (page->mapping) {
607		addr = page_address_in_vma(page, vma);
608		if (addr == -EFAULT)
609			return 0;
610		else
611			end = addr + PAGE_SIZE;
612	} else {
613		addr = vma->vm_start;
614		end = vma->vm_end;
615	}
616
617	pgd = pgd_offset(vma->vm_mm, addr);
618	do {
619		next = pgd_addr_end(addr, end);
620		if (pgd_none_or_clear_bad(pgd))
621			continue;
622		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
623		if (ret)
624			return ret;
625	} while (pgd++, addr = next, addr != end);
626	return 0;
627}
628
629static int unuse_mm(struct mm_struct *mm,
630				swp_entry_t entry, struct page *page)
631{
632	struct vm_area_struct *vma;
633	int ret = 0;
634
635	if (!down_read_trylock(&mm->mmap_sem)) {
636		/*
637		 * Activate page so shrink_inactive_list is unlikely to unmap
638		 * its ptes while lock is dropped, so swapoff can make progress.
639		 */
640		activate_page(page);
641		unlock_page(page);
642		down_read(&mm->mmap_sem);
643		lock_page(page);
644	}
645	for (vma = mm->mmap; vma; vma = vma->vm_next) {
646		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
647			break;
648	}
649	up_read(&mm->mmap_sem);
650	return (ret < 0)? ret: 0;
651}
652
653/*
654 * Scan swap_map from current position to next entry still in use.
655 * Recycle to start on reaching the end, returning 0 when empty.
656 */
657static unsigned int find_next_to_unuse(struct swap_info_struct *si,
658					unsigned int prev)
659{
660	unsigned int max = si->max;
661	unsigned int i = prev;
662	int count;
663
664	/*
665	 * No need for swap_lock here: we're just looking
666	 * for whether an entry is in use, not modifying it; false
667	 * hits are okay, and sys_swapoff() has already prevented new
668	 * allocations from this area (while holding swap_lock).
669	 */
670	for (;;) {
671		if (++i >= max) {
672			if (!prev) {
673				i = 0;
674				break;
675			}
676			/*
677			 * No entries in use at top of swap_map,
678			 * loop back to start and recheck there.
679			 */
680			max = prev + 1;
681			prev = 0;
682			i = 1;
683		}
684		count = si->swap_map[i];
685		if (count && count != SWAP_MAP_BAD)
686			break;
687	}
688	return i;
689}
690
691/*
692 * We completely avoid races by reading each swap page in advance,
693 * and then search for the process using it.  All the necessary
694 * page table adjustments can then be made atomically.
695 */
696static int try_to_unuse(unsigned int type)
697{
698	struct swap_info_struct * si = &swap_info[type];
699	struct mm_struct *start_mm;
700	unsigned short *swap_map;
701	unsigned short swcount;
702	struct page *page;
703	swp_entry_t entry;
704	unsigned int i = 0;
705	int retval = 0;
706	int reset_overflow = 0;
707	int shmem;
708
709	/*
710	 * When searching mms for an entry, a good strategy is to
711	 * start at the first mm we freed the previous entry from
712	 * (though actually we don't notice whether we or coincidence
713	 * freed the entry).  Initialize this start_mm with a hold.
714	 *
715	 * A simpler strategy would be to start at the last mm we
716	 * freed the previous entry from; but that would take less
717	 * advantage of mmlist ordering, which clusters forked mms
718	 * together, child after parent.  If we race with dup_mmap(), we
719	 * prefer to resolve parent before child, lest we miss entries
720	 * duplicated after we scanned child: using last mm would invert
721	 * that.  Though it's only a serious concern when an overflowed
722	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
723	 */
724	start_mm = &init_mm;
725	atomic_inc(&init_mm.mm_users);
726
727	/*
728	 * Keep on scanning until all entries have gone.  Usually,
729	 * one pass through swap_map is enough, but not necessarily:
730	 * there are races when an instance of an entry might be missed.
731	 */
732	while ((i = find_next_to_unuse(si, i)) != 0) {
733		if (signal_pending(current)) {
734			retval = -EINTR;
735			break;
736		}
737
738		/*
739		 * Get a page for the entry, using the existing swap
740		 * cache page if there is one.  Otherwise, get a clean
741		 * page and read the swap into it.
742		 */
743		swap_map = &si->swap_map[i];
744		entry = swp_entry(type, i);
745		page = read_swap_cache_async(entry,
746					GFP_HIGHUSER_MOVABLE, NULL, 0);
747		if (!page) {
748			/*
749			 * Either swap_duplicate() failed because entry
750			 * has been freed independently, and will not be
751			 * reused since sys_swapoff() already disabled
752			 * allocation from here, or alloc_page() failed.
753			 */
754			if (!*swap_map)
755				continue;
756			retval = -ENOMEM;
757			break;
758		}
759
760		/*
761		 * Don't hold on to start_mm if it looks like exiting.
762		 */
763		if (atomic_read(&start_mm->mm_users) == 1) {
764			mmput(start_mm);
765			start_mm = &init_mm;
766			atomic_inc(&init_mm.mm_users);
767		}
768
769		/*
770		 * Wait for and lock page.  When do_swap_page races with
771		 * try_to_unuse, do_swap_page can handle the fault much
772		 * faster than try_to_unuse can locate the entry.  This
773		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
774		 * defer to do_swap_page in such a case - in some tests,
775		 * do_swap_page and try_to_unuse repeatedly compete.
776		 */
777		wait_on_page_locked(page);
778		wait_on_page_writeback(page);
779		lock_page(page);
780		wait_on_page_writeback(page);
781
782		/*
783		 * Remove all references to entry.
784		 * Whenever we reach init_mm, there's no address space
785		 * to search, but use it as a reminder to search shmem.
786		 */
787		shmem = 0;
788		swcount = *swap_map;
789		if (swcount > 1) {
790			if (start_mm == &init_mm)
791				shmem = shmem_unuse(entry, page);
792			else
793				retval = unuse_mm(start_mm, entry, page);
794		}
795		if (*swap_map > 1) {
796			int set_start_mm = (*swap_map >= swcount);
797			struct list_head *p = &start_mm->mmlist;
798			struct mm_struct *new_start_mm = start_mm;
799			struct mm_struct *prev_mm = start_mm;
800			struct mm_struct *mm;
801
802			atomic_inc(&new_start_mm->mm_users);
803			atomic_inc(&prev_mm->mm_users);
804			spin_lock(&mmlist_lock);
805			while (*swap_map > 1 && !retval && !shmem &&
806					(p = p->next) != &start_mm->mmlist) {
807				mm = list_entry(p, struct mm_struct, mmlist);
808				if (!atomic_inc_not_zero(&mm->mm_users))
809					continue;
810				spin_unlock(&mmlist_lock);
811				mmput(prev_mm);
812				prev_mm = mm;
813
814				cond_resched();
815
816				swcount = *swap_map;
817				if (swcount <= 1)
818					;
819				else if (mm == &init_mm) {
820					set_start_mm = 1;
821					shmem = shmem_unuse(entry, page);
822				} else
823					retval = unuse_mm(mm, entry, page);
824				if (set_start_mm && *swap_map < swcount) {
825					mmput(new_start_mm);
826					atomic_inc(&mm->mm_users);
827					new_start_mm = mm;
828					set_start_mm = 0;
829				}
830				spin_lock(&mmlist_lock);
831			}
832			spin_unlock(&mmlist_lock);
833			mmput(prev_mm);
834			mmput(start_mm);
835			start_mm = new_start_mm;
836		}
837		if (shmem) {
838			/* page has already been unlocked and released */
839			if (shmem > 0)
840				continue;
841			retval = shmem;
842			break;
843		}
844		if (retval) {
845			unlock_page(page);
846			page_cache_release(page);
847			break;
848		}
849
850		/*
851		 * How could swap count reach 0x7fff when the maximum
852		 * pid is 0x7fff, and there's no way to repeat a swap
853		 * page within an mm (except in shmem, where it's the
854		 * shared object which takes the reference count)?
855		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
856		 *
857		 * If that's wrong, then we should worry more about
858		 * exit_mmap() and do_munmap() cases described above:
859		 * we might be resetting SWAP_MAP_MAX too early here.
860		 * We know "Undead"s can happen, they're okay, so don't
861		 * report them; but do report if we reset SWAP_MAP_MAX.
862		 */
863		if (*swap_map == SWAP_MAP_MAX) {
864			spin_lock(&swap_lock);
865			*swap_map = 1;
866			spin_unlock(&swap_lock);
867			reset_overflow = 1;
868		}
869
870		/*
871		 * If a reference remains (rare), we would like to leave
872		 * the page in the swap cache; but try_to_unmap could
873		 * then re-duplicate the entry once we drop page lock,
874		 * so we might loop indefinitely; also, that page could
875		 * not be swapped out to other storage meanwhile.  So:
876		 * delete from cache even if there's another reference,
877		 * after ensuring that the data has been saved to disk -
878		 * since if the reference remains (rarer), it will be
879		 * read from disk into another page.  Splitting into two
880		 * pages would be incorrect if swap supported "shared
881		 * private" pages, but they are handled by tmpfs files.
882		 */
883		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
884			struct writeback_control wbc = {
885				.sync_mode = WB_SYNC_NONE,
886			};
887
888			swap_writepage(page, &wbc);
889			lock_page(page);
890			wait_on_page_writeback(page);
891		}
892		if (PageSwapCache(page))
893			delete_from_swap_cache(page);
894
895		/*
896		 * So we could skip searching mms once swap count went
897		 * to 1, we did not mark any present ptes as dirty: must
898		 * mark page dirty so shrink_page_list will preserve it.
899		 */
900		SetPageDirty(page);
901		unlock_page(page);
902		page_cache_release(page);
903
904		/*
905		 * Make sure that we aren't completely killing
906		 * interactive performance.
907		 */
908		cond_resched();
909	}
910
911	mmput(start_mm);
912	if (reset_overflow) {
913		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
914		swap_overflow = 0;
915	}
916	return retval;
917}
918
919/*
920 * After a successful try_to_unuse, if no swap is now in use, we know
921 * we can empty the mmlist.  swap_lock must be held on entry and exit.
922 * Note that mmlist_lock nests inside swap_lock, and an mm must be
923 * added to the mmlist just after page_duplicate - before would be racy.
924 */
925static void drain_mmlist(void)
926{
927	struct list_head *p, *next;
928	unsigned int i;
929
930	for (i = 0; i < nr_swapfiles; i++)
931		if (swap_info[i].inuse_pages)
932			return;
933	spin_lock(&mmlist_lock);
934	list_for_each_safe(p, next, &init_mm.mmlist)
935		list_del_init(p);
936	spin_unlock(&mmlist_lock);
937}
938
939/*
940 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
941 * corresponds to page offset `offset'.
942 */
943sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
944{
945	struct swap_extent *se = sis->curr_swap_extent;
946	struct swap_extent *start_se = se;
947
948	for ( ; ; ) {
949		struct list_head *lh;
950
951		if (se->start_page <= offset &&
952				offset < (se->start_page + se->nr_pages)) {
953			return se->start_block + (offset - se->start_page);
954		}
955		lh = se->list.next;
956		if (lh == &sis->extent_list)
957			lh = lh->next;
958		se = list_entry(lh, struct swap_extent, list);
959		sis->curr_swap_extent = se;
960		BUG_ON(se == start_se);		/* It *must* be present */
961	}
962}
963
964#ifdef CONFIG_HIBERNATION
965/*
966 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
967 * corresponding to given index in swap_info (swap type).
968 */
969sector_t swapdev_block(int swap_type, pgoff_t offset)
970{
971	struct swap_info_struct *sis;
972
973	if (swap_type >= nr_swapfiles)
974		return 0;
975
976	sis = swap_info + swap_type;
977	return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
978}
979#endif /* CONFIG_HIBERNATION */
980
981/*
982 * Free all of a swapdev's extent information
983 */
984static void destroy_swap_extents(struct swap_info_struct *sis)
985{
986	while (!list_empty(&sis->extent_list)) {
987		struct swap_extent *se;
988
989		se = list_entry(sis->extent_list.next,
990				struct swap_extent, list);
991		list_del(&se->list);
992		kfree(se);
993	}
994}
995
996/*
997 * Add a block range (and the corresponding page range) into this swapdev's
998 * extent list.  The extent list is kept sorted in page order.
999 *
1000 * This function rather assumes that it is called in ascending page order.
1001 */
1002static int
1003add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1004		unsigned long nr_pages, sector_t start_block)
1005{
1006	struct swap_extent *se;
1007	struct swap_extent *new_se;
1008	struct list_head *lh;
1009
1010	lh = sis->extent_list.prev;	/* The highest page extent */
1011	if (lh != &sis->extent_list) {
1012		se = list_entry(lh, struct swap_extent, list);
1013		BUG_ON(se->start_page + se->nr_pages != start_page);
1014		if (se->start_block + se->nr_pages == start_block) {
1015			/* Merge it */
1016			se->nr_pages += nr_pages;
1017			return 0;
1018		}
1019	}
1020
1021	/*
1022	 * No merge.  Insert a new extent, preserving ordering.
1023	 */
1024	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1025	if (new_se == NULL)
1026		return -ENOMEM;
1027	new_se->start_page = start_page;
1028	new_se->nr_pages = nr_pages;
1029	new_se->start_block = start_block;
1030
1031	list_add_tail(&new_se->list, &sis->extent_list);
1032	return 1;
1033}
1034
1035/*
1036 * A `swap extent' is a simple thing which maps a contiguous range of pages
1037 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1038 * is built at swapon time and is then used at swap_writepage/swap_readpage
1039 * time for locating where on disk a page belongs.
1040 *
1041 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1042 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1043 * swap files identically.
1044 *
1045 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1046 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1047 * swapfiles are handled *identically* after swapon time.
1048 *
1049 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1050 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1051 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1052 * requirements, they are simply tossed out - we will never use those blocks
1053 * for swapping.
1054 *
1055 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1056 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1057 * which will scribble on the fs.
1058 *
1059 * The amount of disk space which a single swap extent represents varies.
1060 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1061 * extents in the list.  To avoid much list walking, we cache the previous
1062 * search location in `curr_swap_extent', and start new searches from there.
1063 * This is extremely effective.  The average number of iterations in
1064 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1065 */
1066static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1067{
1068	struct inode *inode;
1069	unsigned blocks_per_page;
1070	unsigned long page_no;
1071	unsigned blkbits;
1072	sector_t probe_block;
1073	sector_t last_block;
1074	sector_t lowest_block = -1;
1075	sector_t highest_block = 0;
1076	int nr_extents = 0;
1077	int ret;
1078
1079	inode = sis->swap_file->f_mapping->host;
1080	if (S_ISBLK(inode->i_mode)) {
1081		ret = add_swap_extent(sis, 0, sis->max, 0);
1082		*span = sis->pages;
1083		goto done;
1084	}
1085
1086	blkbits = inode->i_blkbits;
1087	blocks_per_page = PAGE_SIZE >> blkbits;
1088
1089	/*
1090	 * Map all the blocks into the extent list.  This code doesn't try
1091	 * to be very smart.
1092	 */
1093	probe_block = 0;
1094	page_no = 0;
1095	last_block = i_size_read(inode) >> blkbits;
1096	while ((probe_block + blocks_per_page) <= last_block &&
1097			page_no < sis->max) {
1098		unsigned block_in_page;
1099		sector_t first_block;
1100
1101		first_block = bmap(inode, probe_block);
1102		if (first_block == 0)
1103			goto bad_bmap;
1104
1105		/*
1106		 * It must be PAGE_SIZE aligned on-disk
1107		 */
1108		if (first_block & (blocks_per_page - 1)) {
1109			probe_block++;
1110			goto reprobe;
1111		}
1112
1113		for (block_in_page = 1; block_in_page < blocks_per_page;
1114					block_in_page++) {
1115			sector_t block;
1116
1117			block = bmap(inode, probe_block + block_in_page);
1118			if (block == 0)
1119				goto bad_bmap;
1120			if (block != first_block + block_in_page) {
1121				/* Discontiguity */
1122				probe_block++;
1123				goto reprobe;
1124			}
1125		}
1126
1127		first_block >>= (PAGE_SHIFT - blkbits);
1128		if (page_no) {	/* exclude the header page */
1129			if (first_block < lowest_block)
1130				lowest_block = first_block;
1131			if (first_block > highest_block)
1132				highest_block = first_block;
1133		}
1134
1135		/*
1136		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1137		 */
1138		ret = add_swap_extent(sis, page_no, 1, first_block);
1139		if (ret < 0)
1140			goto out;
1141		nr_extents += ret;
1142		page_no++;
1143		probe_block += blocks_per_page;
1144reprobe:
1145		continue;
1146	}
1147	ret = nr_extents;
1148	*span = 1 + highest_block - lowest_block;
1149	if (page_no == 0)
1150		page_no = 1;	/* force Empty message */
1151	sis->max = page_no;
1152	sis->pages = page_no - 1;
1153	sis->highest_bit = page_no - 1;
1154done:
1155	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1156					struct swap_extent, list);
1157	goto out;
1158bad_bmap:
1159	printk(KERN_ERR "swapon: swapfile has holes\n");
1160	ret = -EINVAL;
1161out:
1162	return ret;
1163}
1164
1165#if 0	/* We don't need this yet */
1166#include <linux/backing-dev.h>
1167int page_queue_congested(struct page *page)
1168{
1169	struct backing_dev_info *bdi;
1170
1171	VM_BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1172
1173	if (PageSwapCache(page)) {
1174		swp_entry_t entry = { .val = page_private(page) };
1175		struct swap_info_struct *sis;
1176
1177		sis = get_swap_info_struct(swp_type(entry));
1178		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1179	} else
1180		bdi = page->mapping->backing_dev_info;
1181	return bdi_write_congested(bdi);
1182}
1183#endif
1184
1185asmlinkage long sys_swapoff(const char __user * specialfile)
1186{
1187	struct swap_info_struct * p = NULL;
1188	unsigned short *swap_map;
1189	struct file *swap_file, *victim;
1190	struct address_space *mapping;
1191	struct inode *inode;
1192	char * pathname;
1193	int i, type, prev;
1194	int err;
1195
1196	if (!capable(CAP_SYS_ADMIN))
1197		return -EPERM;
1198
1199	pathname = getname(specialfile);
1200	err = PTR_ERR(pathname);
1201	if (IS_ERR(pathname))
1202		goto out;
1203
1204	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1205	putname(pathname);
1206	err = PTR_ERR(victim);
1207	if (IS_ERR(victim))
1208		goto out;
1209
1210	mapping = victim->f_mapping;
1211	prev = -1;
1212	spin_lock(&swap_lock);
1213	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1214		p = swap_info + type;
1215		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1216			if (p->swap_file->f_mapping == mapping)
1217				break;
1218		}
1219		prev = type;
1220	}
1221	if (type < 0) {
1222		err = -EINVAL;
1223		spin_unlock(&swap_lock);
1224		goto out_dput;
1225	}
1226	if (!security_vm_enough_memory(p->pages))
1227		vm_unacct_memory(p->pages);
1228	else {
1229		err = -ENOMEM;
1230		spin_unlock(&swap_lock);
1231		goto out_dput;
1232	}
1233	if (prev < 0) {
1234		swap_list.head = p->next;
1235	} else {
1236		swap_info[prev].next = p->next;
1237	}
1238	if (type == swap_list.next) {
1239		/* just pick something that's safe... */
1240		swap_list.next = swap_list.head;
1241	}
1242	if (p->prio < 0) {
1243		for (i = p->next; i >= 0; i = swap_info[i].next)
1244			swap_info[i].prio = p->prio--;
1245		least_priority++;
1246	}
1247	nr_swap_pages -= p->pages;
1248	total_swap_pages -= p->pages;
1249	p->flags &= ~SWP_WRITEOK;
1250	spin_unlock(&swap_lock);
1251
1252	current->flags |= PF_SWAPOFF;
1253	err = try_to_unuse(type);
1254	current->flags &= ~PF_SWAPOFF;
1255
1256	if (err) {
1257		/* re-insert swap space back into swap_list */
1258		spin_lock(&swap_lock);
1259		if (p->prio < 0)
1260			p->prio = --least_priority;
1261		prev = -1;
1262		for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1263			if (p->prio >= swap_info[i].prio)
1264				break;
1265			prev = i;
1266		}
1267		p->next = i;
1268		if (prev < 0)
1269			swap_list.head = swap_list.next = p - swap_info;
1270		else
1271			swap_info[prev].next = p - swap_info;
1272		nr_swap_pages += p->pages;
1273		total_swap_pages += p->pages;
1274		p->flags |= SWP_WRITEOK;
1275		spin_unlock(&swap_lock);
1276		goto out_dput;
1277	}
1278
1279	/* wait for any unplug function to finish */
1280	down_write(&swap_unplug_sem);
1281	up_write(&swap_unplug_sem);
1282
1283	destroy_swap_extents(p);
1284	mutex_lock(&swapon_mutex);
1285	spin_lock(&swap_lock);
1286	drain_mmlist();
1287
1288	/* wait for anyone still in scan_swap_map */
1289	p->highest_bit = 0;		/* cuts scans short */
1290	while (p->flags >= SWP_SCANNING) {
1291		spin_unlock(&swap_lock);
1292		schedule_timeout_uninterruptible(1);
1293		spin_lock(&swap_lock);
1294	}
1295
1296	swap_file = p->swap_file;
1297	p->swap_file = NULL;
1298	p->max = 0;
1299	swap_map = p->swap_map;
1300	p->swap_map = NULL;
1301	p->flags = 0;
1302	spin_unlock(&swap_lock);
1303	mutex_unlock(&swapon_mutex);
1304	vfree(swap_map);
1305	inode = mapping->host;
1306	if (S_ISBLK(inode->i_mode)) {
1307		struct block_device *bdev = I_BDEV(inode);
1308		set_blocksize(bdev, p->old_block_size);
1309		bd_release(bdev);
1310	} else {
1311		mutex_lock(&inode->i_mutex);
1312		inode->i_flags &= ~S_SWAPFILE;
1313		mutex_unlock(&inode->i_mutex);
1314	}
1315	filp_close(swap_file, NULL);
1316	err = 0;
1317
1318out_dput:
1319	filp_close(victim, NULL);
1320out:
1321	return err;
1322}
1323
1324#ifdef CONFIG_PROC_FS
1325/* iterator */
1326static void *swap_start(struct seq_file *swap, loff_t *pos)
1327{
1328	struct swap_info_struct *ptr = swap_info;
1329	int i;
1330	loff_t l = *pos;
1331
1332	mutex_lock(&swapon_mutex);
1333
1334	if (!l)
1335		return SEQ_START_TOKEN;
1336
1337	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1338		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1339			continue;
1340		if (!--l)
1341			return ptr;
1342	}
1343
1344	return NULL;
1345}
1346
1347static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1348{
1349	struct swap_info_struct *ptr;
1350	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1351
1352	if (v == SEQ_START_TOKEN)
1353		ptr = swap_info;
1354	else {
1355		ptr = v;
1356		ptr++;
1357	}
1358
1359	for (; ptr < endptr; ptr++) {
1360		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1361			continue;
1362		++*pos;
1363		return ptr;
1364	}
1365
1366	return NULL;
1367}
1368
1369static void swap_stop(struct seq_file *swap, void *v)
1370{
1371	mutex_unlock(&swapon_mutex);
1372}
1373
1374static int swap_show(struct seq_file *swap, void *v)
1375{
1376	struct swap_info_struct *ptr = v;
1377	struct file *file;
1378	int len;
1379
1380	if (ptr == SEQ_START_TOKEN) {
1381		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1382		return 0;
1383	}
1384
1385	file = ptr->swap_file;
1386	len = seq_path(swap, &file->f_path, " \t\n\\");
1387	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1388		       len < 40 ? 40 - len : 1, " ",
1389		       S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1390				"partition" : "file\t",
1391		       ptr->pages << (PAGE_SHIFT - 10),
1392		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1393		       ptr->prio);
1394	return 0;
1395}
1396
1397static const struct seq_operations swaps_op = {
1398	.start =	swap_start,
1399	.next =		swap_next,
1400	.stop =		swap_stop,
1401	.show =		swap_show
1402};
1403
1404static int swaps_open(struct inode *inode, struct file *file)
1405{
1406	return seq_open(file, &swaps_op);
1407}
1408
1409static const struct file_operations proc_swaps_operations = {
1410	.open		= swaps_open,
1411	.read		= seq_read,
1412	.llseek		= seq_lseek,
1413	.release	= seq_release,
1414};
1415
1416static int __init procswaps_init(void)
1417{
1418	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1419	return 0;
1420}
1421__initcall(procswaps_init);
1422#endif /* CONFIG_PROC_FS */
1423
1424#ifdef MAX_SWAPFILES_CHECK
1425static int __init max_swapfiles_check(void)
1426{
1427	MAX_SWAPFILES_CHECK();
1428	return 0;
1429}
1430late_initcall(max_swapfiles_check);
1431#endif
1432
1433/*
1434 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1435 *
1436 * The swapon system call
1437 */
1438asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1439{
1440	struct swap_info_struct * p;
1441	char *name = NULL;
1442	struct block_device *bdev = NULL;
1443	struct file *swap_file = NULL;
1444	struct address_space *mapping;
1445	unsigned int type;
1446	int i, prev;
1447	int error;
1448	union swap_header *swap_header = NULL;
1449	int swap_header_version;
1450	unsigned int nr_good_pages = 0;
1451	int nr_extents = 0;
1452	sector_t span;
1453	unsigned long maxpages = 1;
1454	int swapfilesize;
1455	unsigned short *swap_map = NULL;
1456	struct page *page = NULL;
1457	struct inode *inode = NULL;
1458	int did_down = 0;
1459
1460	if (!capable(CAP_SYS_ADMIN))
1461		return -EPERM;
1462	spin_lock(&swap_lock);
1463	p = swap_info;
1464	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1465		if (!(p->flags & SWP_USED))
1466			break;
1467	error = -EPERM;
1468	if (type >= MAX_SWAPFILES) {
1469		spin_unlock(&swap_lock);
1470		goto out;
1471	}
1472	if (type >= nr_swapfiles)
1473		nr_swapfiles = type+1;
1474	memset(p, 0, sizeof(*p));
1475	INIT_LIST_HEAD(&p->extent_list);
1476	p->flags = SWP_USED;
1477	p->next = -1;
1478	spin_unlock(&swap_lock);
1479	name = getname(specialfile);
1480	error = PTR_ERR(name);
1481	if (IS_ERR(name)) {
1482		name = NULL;
1483		goto bad_swap_2;
1484	}
1485	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1486	error = PTR_ERR(swap_file);
1487	if (IS_ERR(swap_file)) {
1488		swap_file = NULL;
1489		goto bad_swap_2;
1490	}
1491
1492	p->swap_file = swap_file;
1493	mapping = swap_file->f_mapping;
1494	inode = mapping->host;
1495
1496	error = -EBUSY;
1497	for (i = 0; i < nr_swapfiles; i++) {
1498		struct swap_info_struct *q = &swap_info[i];
1499
1500		if (i == type || !q->swap_file)
1501			continue;
1502		if (mapping == q->swap_file->f_mapping)
1503			goto bad_swap;
1504	}
1505
1506	error = -EINVAL;
1507	if (S_ISBLK(inode->i_mode)) {
1508		bdev = I_BDEV(inode);
1509		error = bd_claim(bdev, sys_swapon);
1510		if (error < 0) {
1511			bdev = NULL;
1512			error = -EINVAL;
1513			goto bad_swap;
1514		}
1515		p->old_block_size = block_size(bdev);
1516		error = set_blocksize(bdev, PAGE_SIZE);
1517		if (error < 0)
1518			goto bad_swap;
1519		p->bdev = bdev;
1520	} else if (S_ISREG(inode->i_mode)) {
1521		p->bdev = inode->i_sb->s_bdev;
1522		mutex_lock(&inode->i_mutex);
1523		did_down = 1;
1524		if (IS_SWAPFILE(inode)) {
1525			error = -EBUSY;
1526			goto bad_swap;
1527		}
1528	} else {
1529		goto bad_swap;
1530	}
1531
1532	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1533
1534	/*
1535	 * Read the swap header.
1536	 */
1537	if (!mapping->a_ops->readpage) {
1538		error = -EINVAL;
1539		goto bad_swap;
1540	}
1541	page = read_mapping_page(mapping, 0, swap_file);
1542	if (IS_ERR(page)) {
1543		error = PTR_ERR(page);
1544		goto bad_swap;
1545	}
1546	kmap(page);
1547	swap_header = page_address(page);
1548
1549	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1550		swap_header_version = 1;
1551	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1552		swap_header_version = 2;
1553	else {
1554		printk(KERN_ERR "Unable to find swap-space signature\n");
1555		error = -EINVAL;
1556		goto bad_swap;
1557	}
1558
1559	switch (swap_header_version) {
1560	case 1:
1561		printk(KERN_ERR "version 0 swap is no longer supported. "
1562			"Use mkswap -v1 %s\n", name);
1563		error = -EINVAL;
1564		goto bad_swap;
1565	case 2:
1566		/* swap partition endianess hack... */
1567		if (swab32(swap_header->info.version) == 1) {
1568			swab32s(&swap_header->info.version);
1569			swab32s(&swap_header->info.last_page);
1570			swab32s(&swap_header->info.nr_badpages);
1571			for (i = 0; i < swap_header->info.nr_badpages; i++)
1572				swab32s(&swap_header->info.badpages[i]);
1573		}
1574		/* Check the swap header's sub-version and the size of
1575                   the swap file and bad block lists */
1576		if (swap_header->info.version != 1) {
1577			printk(KERN_WARNING
1578			       "Unable to handle swap header version %d\n",
1579			       swap_header->info.version);
1580			error = -EINVAL;
1581			goto bad_swap;
1582		}
1583
1584		p->lowest_bit  = 1;
1585		p->cluster_next = 1;
1586
1587		/*
1588		 * Find out how many pages are allowed for a single swap
1589		 * device. There are two limiting factors: 1) the number of
1590		 * bits for the swap offset in the swp_entry_t type and
1591		 * 2) the number of bits in the a swap pte as defined by
1592		 * the different architectures. In order to find the
1593		 * largest possible bit mask a swap entry with swap type 0
1594		 * and swap offset ~0UL is created, encoded to a swap pte,
1595		 * decoded to a swp_entry_t again and finally the swap
1596		 * offset is extracted. This will mask all the bits from
1597		 * the initial ~0UL mask that can't be encoded in either
1598		 * the swp_entry_t or the architecture definition of a
1599		 * swap pte.
1600		 */
1601		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1602		if (maxpages > swap_header->info.last_page)
1603			maxpages = swap_header->info.last_page;
1604		p->highest_bit = maxpages - 1;
1605
1606		error = -EINVAL;
1607		if (!maxpages)
1608			goto bad_swap;
1609		if (swapfilesize && maxpages > swapfilesize) {
1610			printk(KERN_WARNING
1611			       "Swap area shorter than signature indicates\n");
1612			goto bad_swap;
1613		}
1614		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1615			goto bad_swap;
1616		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1617			goto bad_swap;
1618
1619		/* OK, set up the swap map and apply the bad block list */
1620		swap_map = vmalloc(maxpages * sizeof(short));
1621		if (!swap_map) {
1622			error = -ENOMEM;
1623			goto bad_swap;
1624		}
1625
1626		error = 0;
1627		memset(swap_map, 0, maxpages * sizeof(short));
1628		for (i = 0; i < swap_header->info.nr_badpages; i++) {
1629			int page_nr = swap_header->info.badpages[i];
1630			if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1631				error = -EINVAL;
1632			else
1633				swap_map[page_nr] = SWAP_MAP_BAD;
1634		}
1635		nr_good_pages = swap_header->info.last_page -
1636				swap_header->info.nr_badpages -
1637				1 /* header page */;
1638		if (error)
1639			goto bad_swap;
1640	}
1641
1642	if (nr_good_pages) {
1643		swap_map[0] = SWAP_MAP_BAD;
1644		p->max = maxpages;
1645		p->pages = nr_good_pages;
1646		nr_extents = setup_swap_extents(p, &span);
1647		if (nr_extents < 0) {
1648			error = nr_extents;
1649			goto bad_swap;
1650		}
1651		nr_good_pages = p->pages;
1652	}
1653	if (!nr_good_pages) {
1654		printk(KERN_WARNING "Empty swap-file\n");
1655		error = -EINVAL;
1656		goto bad_swap;
1657	}
1658
1659	mutex_lock(&swapon_mutex);
1660	spin_lock(&swap_lock);
1661	if (swap_flags & SWAP_FLAG_PREFER)
1662		p->prio =
1663		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1664	else
1665		p->prio = --least_priority;
1666	p->swap_map = swap_map;
1667	p->flags = SWP_ACTIVE;
1668	nr_swap_pages += nr_good_pages;
1669	total_swap_pages += nr_good_pages;
1670
1671	printk(KERN_INFO "Adding %uk swap on %s.  "
1672			"Priority:%d extents:%d across:%lluk\n",
1673		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1674		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1675
1676	/* insert swap space into swap_list: */
1677	prev = -1;
1678	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1679		if (p->prio >= swap_info[i].prio) {
1680			break;
1681		}
1682		prev = i;
1683	}
1684	p->next = i;
1685	if (prev < 0) {
1686		swap_list.head = swap_list.next = p - swap_info;
1687	} else {
1688		swap_info[prev].next = p - swap_info;
1689	}
1690	spin_unlock(&swap_lock);
1691	mutex_unlock(&swapon_mutex);
1692	error = 0;
1693	goto out;
1694bad_swap:
1695	if (bdev) {
1696		set_blocksize(bdev, p->old_block_size);
1697		bd_release(bdev);
1698	}
1699	destroy_swap_extents(p);
1700bad_swap_2:
1701	spin_lock(&swap_lock);
1702	p->swap_file = NULL;
1703	p->flags = 0;
1704	spin_unlock(&swap_lock);
1705	vfree(swap_map);
1706	if (swap_file)
1707		filp_close(swap_file, NULL);
1708out:
1709	if (page && !IS_ERR(page)) {
1710		kunmap(page);
1711		page_cache_release(page);
1712	}
1713	if (name)
1714		putname(name);
1715	if (did_down) {
1716		if (!error)
1717			inode->i_flags |= S_SWAPFILE;
1718		mutex_unlock(&inode->i_mutex);
1719	}
1720	return error;
1721}
1722
1723void si_swapinfo(struct sysinfo *val)
1724{
1725	unsigned int i;
1726	unsigned long nr_to_be_unused = 0;
1727
1728	spin_lock(&swap_lock);
1729	for (i = 0; i < nr_swapfiles; i++) {
1730		if (!(swap_info[i].flags & SWP_USED) ||
1731		     (swap_info[i].flags & SWP_WRITEOK))
1732			continue;
1733		nr_to_be_unused += swap_info[i].inuse_pages;
1734	}
1735	val->freeswap = nr_swap_pages + nr_to_be_unused;
1736	val->totalswap = total_swap_pages + nr_to_be_unused;
1737	spin_unlock(&swap_lock);
1738}
1739
1740/*
1741 * Verify that a swap entry is valid and increment its swap map count.
1742 *
1743 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1744 * "permanent", but will be reclaimed by the next swapoff.
1745 */
1746int swap_duplicate(swp_entry_t entry)
1747{
1748	struct swap_info_struct * p;
1749	unsigned long offset, type;
1750	int result = 0;
1751
1752	if (is_migration_entry(entry))
1753		return 1;
1754
1755	type = swp_type(entry);
1756	if (type >= nr_swapfiles)
1757		goto bad_file;
1758	p = type + swap_info;
1759	offset = swp_offset(entry);
1760
1761	spin_lock(&swap_lock);
1762	if (offset < p->max && p->swap_map[offset]) {
1763		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1764			p->swap_map[offset]++;
1765			result = 1;
1766		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1767			if (swap_overflow++ < 5)
1768				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1769			p->swap_map[offset] = SWAP_MAP_MAX;
1770			result = 1;
1771		}
1772	}
1773	spin_unlock(&swap_lock);
1774out:
1775	return result;
1776
1777bad_file:
1778	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1779	goto out;
1780}
1781
1782struct swap_info_struct *
1783get_swap_info_struct(unsigned type)
1784{
1785	return &swap_info[type];
1786}
1787
1788/*
1789 * swap_lock prevents swap_map being freed. Don't grab an extra
1790 * reference on the swaphandle, it doesn't matter if it becomes unused.
1791 */
1792int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1793{
1794	struct swap_info_struct *si;
1795	int our_page_cluster = page_cluster;
1796	pgoff_t target, toff;
1797	pgoff_t base, end;
1798	int nr_pages = 0;
1799
1800	if (!our_page_cluster)	/* no readahead */
1801		return 0;
1802
1803	si = &swap_info[swp_type(entry)];
1804	target = swp_offset(entry);
1805	base = (target >> our_page_cluster) << our_page_cluster;
1806	end = base + (1 << our_page_cluster);
1807	if (!base)		/* first page is swap header */
1808		base++;
1809
1810	spin_lock(&swap_lock);
1811	if (end > si->max)	/* don't go beyond end of map */
1812		end = si->max;
1813
1814	/* Count contiguous allocated slots above our target */
1815	for (toff = target; ++toff < end; nr_pages++) {
1816		/* Don't read in free or bad pages */
1817		if (!si->swap_map[toff])
1818			break;
1819		if (si->swap_map[toff] == SWAP_MAP_BAD)
1820			break;
1821	}
1822	/* Count contiguous allocated slots below our target */
1823	for (toff = target; --toff >= base; nr_pages++) {
1824		/* Don't read in free or bad pages */
1825		if (!si->swap_map[toff])
1826			break;
1827		if (si->swap_map[toff] == SWAP_MAP_BAD)
1828			break;
1829	}
1830	spin_unlock(&swap_lock);
1831
1832	/*
1833	 * Indicate starting offset, and return number of pages to get:
1834	 * if only 1, say 0, since there's then no readahead to be done.
1835	 */
1836	*offset = ++toff;
1837	return nr_pages? ++nr_pages: 0;
1838}
1839