swapfile.c revision b73d7fcecd93dc15eaa3c45c8c587b613f6673c4
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/random.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/ksm.h>
26#include <linux/rmap.h>
27#include <linux/security.h>
28#include <linux/backing-dev.h>
29#include <linux/mutex.h>
30#include <linux/capability.h>
31#include <linux/syscalls.h>
32#include <linux/memcontrol.h>
33
34#include <asm/pgtable.h>
35#include <asm/tlbflush.h>
36#include <linux/swapops.h>
37#include <linux/page_cgroup.h>
38
39static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40				 unsigned char);
41static void free_swap_count_continuations(struct swap_info_struct *);
42static sector_t map_swap_entry(swp_entry_t, struct block_device**);
43
44static DEFINE_SPINLOCK(swap_lock);
45static unsigned int nr_swapfiles;
46long nr_swap_pages;
47long total_swap_pages;
48static int least_priority;
49
50static const char Bad_file[] = "Bad swap file entry ";
51static const char Unused_file[] = "Unused swap file entry ";
52static const char Bad_offset[] = "Bad swap offset entry ";
53static const char Unused_offset[] = "Unused swap offset entry ";
54
55static struct swap_list_t swap_list = {-1, -1};
56
57static struct swap_info_struct *swap_info[MAX_SWAPFILES];
58
59static DEFINE_MUTEX(swapon_mutex);
60
61static inline unsigned char swap_count(unsigned char ent)
62{
63	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
64}
65
66/* returns 1 if swap entry is freed */
67static int
68__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
69{
70	swp_entry_t entry = swp_entry(si->type, offset);
71	struct page *page;
72	int ret = 0;
73
74	page = find_get_page(&swapper_space, entry.val);
75	if (!page)
76		return 0;
77	/*
78	 * This function is called from scan_swap_map() and it's called
79	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80	 * We have to use trylock for avoiding deadlock. This is a special
81	 * case and you should use try_to_free_swap() with explicit lock_page()
82	 * in usual operations.
83	 */
84	if (trylock_page(page)) {
85		ret = try_to_free_swap(page);
86		unlock_page(page);
87	}
88	page_cache_release(page);
89	return ret;
90}
91
92/*
93 * We need this because the bdev->unplug_fn can sleep and we cannot
94 * hold swap_lock while calling the unplug_fn. And swap_lock
95 * cannot be turned into a mutex.
96 */
97static DECLARE_RWSEM(swap_unplug_sem);
98
99void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
100{
101	swp_entry_t entry;
102
103	down_read(&swap_unplug_sem);
104	entry.val = page_private(page);
105	if (PageSwapCache(page)) {
106		struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107		struct backing_dev_info *bdi;
108
109		/*
110		 * If the page is removed from swapcache from under us (with a
111		 * racy try_to_unuse/swapoff) we need an additional reference
112		 * count to avoid reading garbage from page_private(page) above.
113		 * If the WARN_ON triggers during a swapoff it maybe the race
114		 * condition and it's harmless. However if it triggers without
115		 * swapoff it signals a problem.
116		 */
117		WARN_ON(page_count(page) <= 1);
118
119		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120		blk_run_backing_dev(bdi, page);
121	}
122	up_read(&swap_unplug_sem);
123}
124
125/*
126 * swapon tell device that all the old swap contents can be discarded,
127 * to allow the swap device to optimize its wear-levelling.
128 */
129static int discard_swap(struct swap_info_struct *si)
130{
131	struct swap_extent *se;
132	sector_t start_block;
133	sector_t nr_blocks;
134	int err = 0;
135
136	/* Do not discard the swap header page! */
137	se = &si->first_swap_extent;
138	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140	if (nr_blocks) {
141		err = blkdev_issue_discard(si->bdev, start_block,
142				nr_blocks, GFP_KERNEL,
143				BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
144		if (err)
145			return err;
146		cond_resched();
147	}
148
149	list_for_each_entry(se, &si->first_swap_extent.list, list) {
150		start_block = se->start_block << (PAGE_SHIFT - 9);
151		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152
153		err = blkdev_issue_discard(si->bdev, start_block,
154				nr_blocks, GFP_KERNEL,
155				BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
156		if (err)
157			break;
158
159		cond_resched();
160	}
161	return err;		/* That will often be -EOPNOTSUPP */
162}
163
164/*
165 * swap allocation tell device that a cluster of swap can now be discarded,
166 * to allow the swap device to optimize its wear-levelling.
167 */
168static void discard_swap_cluster(struct swap_info_struct *si,
169				 pgoff_t start_page, pgoff_t nr_pages)
170{
171	struct swap_extent *se = si->curr_swap_extent;
172	int found_extent = 0;
173
174	while (nr_pages) {
175		struct list_head *lh;
176
177		if (se->start_page <= start_page &&
178		    start_page < se->start_page + se->nr_pages) {
179			pgoff_t offset = start_page - se->start_page;
180			sector_t start_block = se->start_block + offset;
181			sector_t nr_blocks = se->nr_pages - offset;
182
183			if (nr_blocks > nr_pages)
184				nr_blocks = nr_pages;
185			start_page += nr_blocks;
186			nr_pages -= nr_blocks;
187
188			if (!found_extent++)
189				si->curr_swap_extent = se;
190
191			start_block <<= PAGE_SHIFT - 9;
192			nr_blocks <<= PAGE_SHIFT - 9;
193			if (blkdev_issue_discard(si->bdev, start_block,
194				    nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT |
195							BLKDEV_IFL_BARRIER))
196				break;
197		}
198
199		lh = se->list.next;
200		se = list_entry(lh, struct swap_extent, list);
201	}
202}
203
204static int wait_for_discard(void *word)
205{
206	schedule();
207	return 0;
208}
209
210#define SWAPFILE_CLUSTER	256
211#define LATENCY_LIMIT		256
212
213static inline unsigned long scan_swap_map(struct swap_info_struct *si,
214					  unsigned char usage)
215{
216	unsigned long offset;
217	unsigned long scan_base;
218	unsigned long last_in_cluster = 0;
219	int latency_ration = LATENCY_LIMIT;
220	int found_free_cluster = 0;
221
222	/*
223	 * We try to cluster swap pages by allocating them sequentially
224	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
225	 * way, however, we resort to first-free allocation, starting
226	 * a new cluster.  This prevents us from scattering swap pages
227	 * all over the entire swap partition, so that we reduce
228	 * overall disk seek times between swap pages.  -- sct
229	 * But we do now try to find an empty cluster.  -Andrea
230	 * And we let swap pages go all over an SSD partition.  Hugh
231	 */
232
233	si->flags += SWP_SCANNING;
234	scan_base = offset = si->cluster_next;
235
236	if (unlikely(!si->cluster_nr--)) {
237		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
238			si->cluster_nr = SWAPFILE_CLUSTER - 1;
239			goto checks;
240		}
241		if (si->flags & SWP_DISCARDABLE) {
242			/*
243			 * Start range check on racing allocations, in case
244			 * they overlap the cluster we eventually decide on
245			 * (we scan without swap_lock to allow preemption).
246			 * It's hardly conceivable that cluster_nr could be
247			 * wrapped during our scan, but don't depend on it.
248			 */
249			if (si->lowest_alloc)
250				goto checks;
251			si->lowest_alloc = si->max;
252			si->highest_alloc = 0;
253		}
254		spin_unlock(&swap_lock);
255
256		/*
257		 * If seek is expensive, start searching for new cluster from
258		 * start of partition, to minimize the span of allocated swap.
259		 * But if seek is cheap, search from our current position, so
260		 * that swap is allocated from all over the partition: if the
261		 * Flash Translation Layer only remaps within limited zones,
262		 * we don't want to wear out the first zone too quickly.
263		 */
264		if (!(si->flags & SWP_SOLIDSTATE))
265			scan_base = offset = si->lowest_bit;
266		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
267
268		/* Locate the first empty (unaligned) cluster */
269		for (; last_in_cluster <= si->highest_bit; offset++) {
270			if (si->swap_map[offset])
271				last_in_cluster = offset + SWAPFILE_CLUSTER;
272			else if (offset == last_in_cluster) {
273				spin_lock(&swap_lock);
274				offset -= SWAPFILE_CLUSTER - 1;
275				si->cluster_next = offset;
276				si->cluster_nr = SWAPFILE_CLUSTER - 1;
277				found_free_cluster = 1;
278				goto checks;
279			}
280			if (unlikely(--latency_ration < 0)) {
281				cond_resched();
282				latency_ration = LATENCY_LIMIT;
283			}
284		}
285
286		offset = si->lowest_bit;
287		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
288
289		/* Locate the first empty (unaligned) cluster */
290		for (; last_in_cluster < scan_base; offset++) {
291			if (si->swap_map[offset])
292				last_in_cluster = offset + SWAPFILE_CLUSTER;
293			else if (offset == last_in_cluster) {
294				spin_lock(&swap_lock);
295				offset -= SWAPFILE_CLUSTER - 1;
296				si->cluster_next = offset;
297				si->cluster_nr = SWAPFILE_CLUSTER - 1;
298				found_free_cluster = 1;
299				goto checks;
300			}
301			if (unlikely(--latency_ration < 0)) {
302				cond_resched();
303				latency_ration = LATENCY_LIMIT;
304			}
305		}
306
307		offset = scan_base;
308		spin_lock(&swap_lock);
309		si->cluster_nr = SWAPFILE_CLUSTER - 1;
310		si->lowest_alloc = 0;
311	}
312
313checks:
314	if (!(si->flags & SWP_WRITEOK))
315		goto no_page;
316	if (!si->highest_bit)
317		goto no_page;
318	if (offset > si->highest_bit)
319		scan_base = offset = si->lowest_bit;
320
321	/* reuse swap entry of cache-only swap if not busy. */
322	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
323		int swap_was_freed;
324		spin_unlock(&swap_lock);
325		swap_was_freed = __try_to_reclaim_swap(si, offset);
326		spin_lock(&swap_lock);
327		/* entry was freed successfully, try to use this again */
328		if (swap_was_freed)
329			goto checks;
330		goto scan; /* check next one */
331	}
332
333	if (si->swap_map[offset])
334		goto scan;
335
336	if (offset == si->lowest_bit)
337		si->lowest_bit++;
338	if (offset == si->highest_bit)
339		si->highest_bit--;
340	si->inuse_pages++;
341	if (si->inuse_pages == si->pages) {
342		si->lowest_bit = si->max;
343		si->highest_bit = 0;
344	}
345	si->swap_map[offset] = usage;
346	si->cluster_next = offset + 1;
347	si->flags -= SWP_SCANNING;
348
349	if (si->lowest_alloc) {
350		/*
351		 * Only set when SWP_DISCARDABLE, and there's a scan
352		 * for a free cluster in progress or just completed.
353		 */
354		if (found_free_cluster) {
355			/*
356			 * To optimize wear-levelling, discard the
357			 * old data of the cluster, taking care not to
358			 * discard any of its pages that have already
359			 * been allocated by racing tasks (offset has
360			 * already stepped over any at the beginning).
361			 */
362			if (offset < si->highest_alloc &&
363			    si->lowest_alloc <= last_in_cluster)
364				last_in_cluster = si->lowest_alloc - 1;
365			si->flags |= SWP_DISCARDING;
366			spin_unlock(&swap_lock);
367
368			if (offset < last_in_cluster)
369				discard_swap_cluster(si, offset,
370					last_in_cluster - offset + 1);
371
372			spin_lock(&swap_lock);
373			si->lowest_alloc = 0;
374			si->flags &= ~SWP_DISCARDING;
375
376			smp_mb();	/* wake_up_bit advises this */
377			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
378
379		} else if (si->flags & SWP_DISCARDING) {
380			/*
381			 * Delay using pages allocated by racing tasks
382			 * until the whole discard has been issued. We
383			 * could defer that delay until swap_writepage,
384			 * but it's easier to keep this self-contained.
385			 */
386			spin_unlock(&swap_lock);
387			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
388				wait_for_discard, TASK_UNINTERRUPTIBLE);
389			spin_lock(&swap_lock);
390		} else {
391			/*
392			 * Note pages allocated by racing tasks while
393			 * scan for a free cluster is in progress, so
394			 * that its final discard can exclude them.
395			 */
396			if (offset < si->lowest_alloc)
397				si->lowest_alloc = offset;
398			if (offset > si->highest_alloc)
399				si->highest_alloc = offset;
400		}
401	}
402	return offset;
403
404scan:
405	spin_unlock(&swap_lock);
406	while (++offset <= si->highest_bit) {
407		if (!si->swap_map[offset]) {
408			spin_lock(&swap_lock);
409			goto checks;
410		}
411		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
412			spin_lock(&swap_lock);
413			goto checks;
414		}
415		if (unlikely(--latency_ration < 0)) {
416			cond_resched();
417			latency_ration = LATENCY_LIMIT;
418		}
419	}
420	offset = si->lowest_bit;
421	while (++offset < scan_base) {
422		if (!si->swap_map[offset]) {
423			spin_lock(&swap_lock);
424			goto checks;
425		}
426		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
427			spin_lock(&swap_lock);
428			goto checks;
429		}
430		if (unlikely(--latency_ration < 0)) {
431			cond_resched();
432			latency_ration = LATENCY_LIMIT;
433		}
434	}
435	spin_lock(&swap_lock);
436
437no_page:
438	si->flags -= SWP_SCANNING;
439	return 0;
440}
441
442swp_entry_t get_swap_page(void)
443{
444	struct swap_info_struct *si;
445	pgoff_t offset;
446	int type, next;
447	int wrapped = 0;
448
449	spin_lock(&swap_lock);
450	if (nr_swap_pages <= 0)
451		goto noswap;
452	nr_swap_pages--;
453
454	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
455		si = swap_info[type];
456		next = si->next;
457		if (next < 0 ||
458		    (!wrapped && si->prio != swap_info[next]->prio)) {
459			next = swap_list.head;
460			wrapped++;
461		}
462
463		if (!si->highest_bit)
464			continue;
465		if (!(si->flags & SWP_WRITEOK))
466			continue;
467
468		swap_list.next = next;
469		/* This is called for allocating swap entry for cache */
470		offset = scan_swap_map(si, SWAP_HAS_CACHE);
471		if (offset) {
472			spin_unlock(&swap_lock);
473			return swp_entry(type, offset);
474		}
475		next = swap_list.next;
476	}
477
478	nr_swap_pages++;
479noswap:
480	spin_unlock(&swap_lock);
481	return (swp_entry_t) {0};
482}
483
484/* The only caller of this function is now susupend routine */
485swp_entry_t get_swap_page_of_type(int type)
486{
487	struct swap_info_struct *si;
488	pgoff_t offset;
489
490	spin_lock(&swap_lock);
491	si = swap_info[type];
492	if (si && (si->flags & SWP_WRITEOK)) {
493		nr_swap_pages--;
494		/* This is called for allocating swap entry, not cache */
495		offset = scan_swap_map(si, 1);
496		if (offset) {
497			spin_unlock(&swap_lock);
498			return swp_entry(type, offset);
499		}
500		nr_swap_pages++;
501	}
502	spin_unlock(&swap_lock);
503	return (swp_entry_t) {0};
504}
505
506static struct swap_info_struct *swap_info_get(swp_entry_t entry)
507{
508	struct swap_info_struct *p;
509	unsigned long offset, type;
510
511	if (!entry.val)
512		goto out;
513	type = swp_type(entry);
514	if (type >= nr_swapfiles)
515		goto bad_nofile;
516	p = swap_info[type];
517	if (!(p->flags & SWP_USED))
518		goto bad_device;
519	offset = swp_offset(entry);
520	if (offset >= p->max)
521		goto bad_offset;
522	if (!p->swap_map[offset])
523		goto bad_free;
524	spin_lock(&swap_lock);
525	return p;
526
527bad_free:
528	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
529	goto out;
530bad_offset:
531	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
532	goto out;
533bad_device:
534	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
535	goto out;
536bad_nofile:
537	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
538out:
539	return NULL;
540}
541
542static unsigned char swap_entry_free(struct swap_info_struct *p,
543				     swp_entry_t entry, unsigned char usage)
544{
545	unsigned long offset = swp_offset(entry);
546	unsigned char count;
547	unsigned char has_cache;
548
549	count = p->swap_map[offset];
550	has_cache = count & SWAP_HAS_CACHE;
551	count &= ~SWAP_HAS_CACHE;
552
553	if (usage == SWAP_HAS_CACHE) {
554		VM_BUG_ON(!has_cache);
555		has_cache = 0;
556	} else if (count == SWAP_MAP_SHMEM) {
557		/*
558		 * Or we could insist on shmem.c using a special
559		 * swap_shmem_free() and free_shmem_swap_and_cache()...
560		 */
561		count = 0;
562	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
563		if (count == COUNT_CONTINUED) {
564			if (swap_count_continued(p, offset, count))
565				count = SWAP_MAP_MAX | COUNT_CONTINUED;
566			else
567				count = SWAP_MAP_MAX;
568		} else
569			count--;
570	}
571
572	if (!count)
573		mem_cgroup_uncharge_swap(entry);
574
575	usage = count | has_cache;
576	p->swap_map[offset] = usage;
577
578	/* free if no reference */
579	if (!usage) {
580		struct gendisk *disk = p->bdev->bd_disk;
581		if (offset < p->lowest_bit)
582			p->lowest_bit = offset;
583		if (offset > p->highest_bit)
584			p->highest_bit = offset;
585		if (swap_list.next >= 0 &&
586		    p->prio > swap_info[swap_list.next]->prio)
587			swap_list.next = p->type;
588		nr_swap_pages++;
589		p->inuse_pages--;
590		if ((p->flags & SWP_BLKDEV) &&
591				disk->fops->swap_slot_free_notify)
592			disk->fops->swap_slot_free_notify(p->bdev, offset);
593	}
594
595	return usage;
596}
597
598/*
599 * Caller has made sure that the swapdevice corresponding to entry
600 * is still around or has not been recycled.
601 */
602void swap_free(swp_entry_t entry)
603{
604	struct swap_info_struct *p;
605
606	p = swap_info_get(entry);
607	if (p) {
608		swap_entry_free(p, entry, 1);
609		spin_unlock(&swap_lock);
610	}
611}
612
613/*
614 * Called after dropping swapcache to decrease refcnt to swap entries.
615 */
616void swapcache_free(swp_entry_t entry, struct page *page)
617{
618	struct swap_info_struct *p;
619	unsigned char count;
620
621	p = swap_info_get(entry);
622	if (p) {
623		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
624		if (page)
625			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
626		spin_unlock(&swap_lock);
627	}
628}
629
630/*
631 * How many references to page are currently swapped out?
632 * This does not give an exact answer when swap count is continued,
633 * but does include the high COUNT_CONTINUED flag to allow for that.
634 */
635static inline int page_swapcount(struct page *page)
636{
637	int count = 0;
638	struct swap_info_struct *p;
639	swp_entry_t entry;
640
641	entry.val = page_private(page);
642	p = swap_info_get(entry);
643	if (p) {
644		count = swap_count(p->swap_map[swp_offset(entry)]);
645		spin_unlock(&swap_lock);
646	}
647	return count;
648}
649
650/*
651 * We can write to an anon page without COW if there are no other references
652 * to it.  And as a side-effect, free up its swap: because the old content
653 * on disk will never be read, and seeking back there to write new content
654 * later would only waste time away from clustering.
655 */
656int reuse_swap_page(struct page *page)
657{
658	int count;
659
660	VM_BUG_ON(!PageLocked(page));
661	if (unlikely(PageKsm(page)))
662		return 0;
663	count = page_mapcount(page);
664	if (count <= 1 && PageSwapCache(page)) {
665		count += page_swapcount(page);
666		if (count == 1 && !PageWriteback(page)) {
667			delete_from_swap_cache(page);
668			SetPageDirty(page);
669		}
670	}
671	return count <= 1;
672}
673
674/*
675 * If swap is getting full, or if there are no more mappings of this page,
676 * then try_to_free_swap is called to free its swap space.
677 */
678int try_to_free_swap(struct page *page)
679{
680	VM_BUG_ON(!PageLocked(page));
681
682	if (!PageSwapCache(page))
683		return 0;
684	if (PageWriteback(page))
685		return 0;
686	if (page_swapcount(page))
687		return 0;
688
689	/*
690	 * Once hibernation has begun to create its image of memory,
691	 * there's a danger that one of the calls to try_to_free_swap()
692	 * - most probably a call from __try_to_reclaim_swap() while
693	 * hibernation is allocating its own swap pages for the image,
694	 * but conceivably even a call from memory reclaim - will free
695	 * the swap from a page which has already been recorded in the
696	 * image as a clean swapcache page, and then reuse its swap for
697	 * another page of the image.  On waking from hibernation, the
698	 * original page might be freed under memory pressure, then
699	 * later read back in from swap, now with the wrong data.
700	 *
701	 * Hibernation clears bits from gfp_allowed_mask to prevent
702	 * memory reclaim from writing to disk, so check that here.
703	 */
704	if (!(gfp_allowed_mask & __GFP_IO))
705		return 0;
706
707	delete_from_swap_cache(page);
708	SetPageDirty(page);
709	return 1;
710}
711
712/*
713 * Free the swap entry like above, but also try to
714 * free the page cache entry if it is the last user.
715 */
716int free_swap_and_cache(swp_entry_t entry)
717{
718	struct swap_info_struct *p;
719	struct page *page = NULL;
720
721	if (non_swap_entry(entry))
722		return 1;
723
724	p = swap_info_get(entry);
725	if (p) {
726		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
727			page = find_get_page(&swapper_space, entry.val);
728			if (page && !trylock_page(page)) {
729				page_cache_release(page);
730				page = NULL;
731			}
732		}
733		spin_unlock(&swap_lock);
734	}
735	if (page) {
736		/*
737		 * Not mapped elsewhere, or swap space full? Free it!
738		 * Also recheck PageSwapCache now page is locked (above).
739		 */
740		if (PageSwapCache(page) && !PageWriteback(page) &&
741				(!page_mapped(page) || vm_swap_full())) {
742			delete_from_swap_cache(page);
743			SetPageDirty(page);
744		}
745		unlock_page(page);
746		page_cache_release(page);
747	}
748	return p != NULL;
749}
750
751#ifdef CONFIG_CGROUP_MEM_RES_CTLR
752/**
753 * mem_cgroup_count_swap_user - count the user of a swap entry
754 * @ent: the swap entry to be checked
755 * @pagep: the pointer for the swap cache page of the entry to be stored
756 *
757 * Returns the number of the user of the swap entry. The number is valid only
758 * for swaps of anonymous pages.
759 * If the entry is found on swap cache, the page is stored to pagep with
760 * refcount of it being incremented.
761 */
762int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
763{
764	struct page *page;
765	struct swap_info_struct *p;
766	int count = 0;
767
768	page = find_get_page(&swapper_space, ent.val);
769	if (page)
770		count += page_mapcount(page);
771	p = swap_info_get(ent);
772	if (p) {
773		count += swap_count(p->swap_map[swp_offset(ent)]);
774		spin_unlock(&swap_lock);
775	}
776
777	*pagep = page;
778	return count;
779}
780#endif
781
782#ifdef CONFIG_HIBERNATION
783/*
784 * Find the swap type that corresponds to given device (if any).
785 *
786 * @offset - number of the PAGE_SIZE-sized block of the device, starting
787 * from 0, in which the swap header is expected to be located.
788 *
789 * This is needed for the suspend to disk (aka swsusp).
790 */
791int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
792{
793	struct block_device *bdev = NULL;
794	int type;
795
796	if (device)
797		bdev = bdget(device);
798
799	spin_lock(&swap_lock);
800	for (type = 0; type < nr_swapfiles; type++) {
801		struct swap_info_struct *sis = swap_info[type];
802
803		if (!(sis->flags & SWP_WRITEOK))
804			continue;
805
806		if (!bdev) {
807			if (bdev_p)
808				*bdev_p = bdgrab(sis->bdev);
809
810			spin_unlock(&swap_lock);
811			return type;
812		}
813		if (bdev == sis->bdev) {
814			struct swap_extent *se = &sis->first_swap_extent;
815
816			if (se->start_block == offset) {
817				if (bdev_p)
818					*bdev_p = bdgrab(sis->bdev);
819
820				spin_unlock(&swap_lock);
821				bdput(bdev);
822				return type;
823			}
824		}
825	}
826	spin_unlock(&swap_lock);
827	if (bdev)
828		bdput(bdev);
829
830	return -ENODEV;
831}
832
833/*
834 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
835 * corresponding to given index in swap_info (swap type).
836 */
837sector_t swapdev_block(int type, pgoff_t offset)
838{
839	struct block_device *bdev;
840
841	if ((unsigned int)type >= nr_swapfiles)
842		return 0;
843	if (!(swap_info[type]->flags & SWP_WRITEOK))
844		return 0;
845	return map_swap_entry(swp_entry(type, offset), &bdev);
846}
847
848/*
849 * Return either the total number of swap pages of given type, or the number
850 * of free pages of that type (depending on @free)
851 *
852 * This is needed for software suspend
853 */
854unsigned int count_swap_pages(int type, int free)
855{
856	unsigned int n = 0;
857
858	spin_lock(&swap_lock);
859	if ((unsigned int)type < nr_swapfiles) {
860		struct swap_info_struct *sis = swap_info[type];
861
862		if (sis->flags & SWP_WRITEOK) {
863			n = sis->pages;
864			if (free)
865				n -= sis->inuse_pages;
866		}
867	}
868	spin_unlock(&swap_lock);
869	return n;
870}
871#endif /* CONFIG_HIBERNATION */
872
873/*
874 * No need to decide whether this PTE shares the swap entry with others,
875 * just let do_wp_page work it out if a write is requested later - to
876 * force COW, vm_page_prot omits write permission from any private vma.
877 */
878static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
879		unsigned long addr, swp_entry_t entry, struct page *page)
880{
881	struct mem_cgroup *ptr = NULL;
882	spinlock_t *ptl;
883	pte_t *pte;
884	int ret = 1;
885
886	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
887		ret = -ENOMEM;
888		goto out_nolock;
889	}
890
891	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
892	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
893		if (ret > 0)
894			mem_cgroup_cancel_charge_swapin(ptr);
895		ret = 0;
896		goto out;
897	}
898
899	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
900	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
901	get_page(page);
902	set_pte_at(vma->vm_mm, addr, pte,
903		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
904	page_add_anon_rmap(page, vma, addr);
905	mem_cgroup_commit_charge_swapin(page, ptr);
906	swap_free(entry);
907	/*
908	 * Move the page to the active list so it is not
909	 * immediately swapped out again after swapon.
910	 */
911	activate_page(page);
912out:
913	pte_unmap_unlock(pte, ptl);
914out_nolock:
915	return ret;
916}
917
918static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
919				unsigned long addr, unsigned long end,
920				swp_entry_t entry, struct page *page)
921{
922	pte_t swp_pte = swp_entry_to_pte(entry);
923	pte_t *pte;
924	int ret = 0;
925
926	/*
927	 * We don't actually need pte lock while scanning for swp_pte: since
928	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
929	 * page table while we're scanning; though it could get zapped, and on
930	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
931	 * of unmatched parts which look like swp_pte, so unuse_pte must
932	 * recheck under pte lock.  Scanning without pte lock lets it be
933	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
934	 */
935	pte = pte_offset_map(pmd, addr);
936	do {
937		/*
938		 * swapoff spends a _lot_ of time in this loop!
939		 * Test inline before going to call unuse_pte.
940		 */
941		if (unlikely(pte_same(*pte, swp_pte))) {
942			pte_unmap(pte);
943			ret = unuse_pte(vma, pmd, addr, entry, page);
944			if (ret)
945				goto out;
946			pte = pte_offset_map(pmd, addr);
947		}
948	} while (pte++, addr += PAGE_SIZE, addr != end);
949	pte_unmap(pte - 1);
950out:
951	return ret;
952}
953
954static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
955				unsigned long addr, unsigned long end,
956				swp_entry_t entry, struct page *page)
957{
958	pmd_t *pmd;
959	unsigned long next;
960	int ret;
961
962	pmd = pmd_offset(pud, addr);
963	do {
964		next = pmd_addr_end(addr, end);
965		if (pmd_none_or_clear_bad(pmd))
966			continue;
967		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
968		if (ret)
969			return ret;
970	} while (pmd++, addr = next, addr != end);
971	return 0;
972}
973
974static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
975				unsigned long addr, unsigned long end,
976				swp_entry_t entry, struct page *page)
977{
978	pud_t *pud;
979	unsigned long next;
980	int ret;
981
982	pud = pud_offset(pgd, addr);
983	do {
984		next = pud_addr_end(addr, end);
985		if (pud_none_or_clear_bad(pud))
986			continue;
987		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
988		if (ret)
989			return ret;
990	} while (pud++, addr = next, addr != end);
991	return 0;
992}
993
994static int unuse_vma(struct vm_area_struct *vma,
995				swp_entry_t entry, struct page *page)
996{
997	pgd_t *pgd;
998	unsigned long addr, end, next;
999	int ret;
1000
1001	if (page_anon_vma(page)) {
1002		addr = page_address_in_vma(page, vma);
1003		if (addr == -EFAULT)
1004			return 0;
1005		else
1006			end = addr + PAGE_SIZE;
1007	} else {
1008		addr = vma->vm_start;
1009		end = vma->vm_end;
1010	}
1011
1012	pgd = pgd_offset(vma->vm_mm, addr);
1013	do {
1014		next = pgd_addr_end(addr, end);
1015		if (pgd_none_or_clear_bad(pgd))
1016			continue;
1017		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1018		if (ret)
1019			return ret;
1020	} while (pgd++, addr = next, addr != end);
1021	return 0;
1022}
1023
1024static int unuse_mm(struct mm_struct *mm,
1025				swp_entry_t entry, struct page *page)
1026{
1027	struct vm_area_struct *vma;
1028	int ret = 0;
1029
1030	if (!down_read_trylock(&mm->mmap_sem)) {
1031		/*
1032		 * Activate page so shrink_inactive_list is unlikely to unmap
1033		 * its ptes while lock is dropped, so swapoff can make progress.
1034		 */
1035		activate_page(page);
1036		unlock_page(page);
1037		down_read(&mm->mmap_sem);
1038		lock_page(page);
1039	}
1040	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1041		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1042			break;
1043	}
1044	up_read(&mm->mmap_sem);
1045	return (ret < 0)? ret: 0;
1046}
1047
1048/*
1049 * Scan swap_map from current position to next entry still in use.
1050 * Recycle to start on reaching the end, returning 0 when empty.
1051 */
1052static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1053					unsigned int prev)
1054{
1055	unsigned int max = si->max;
1056	unsigned int i = prev;
1057	unsigned char count;
1058
1059	/*
1060	 * No need for swap_lock here: we're just looking
1061	 * for whether an entry is in use, not modifying it; false
1062	 * hits are okay, and sys_swapoff() has already prevented new
1063	 * allocations from this area (while holding swap_lock).
1064	 */
1065	for (;;) {
1066		if (++i >= max) {
1067			if (!prev) {
1068				i = 0;
1069				break;
1070			}
1071			/*
1072			 * No entries in use at top of swap_map,
1073			 * loop back to start and recheck there.
1074			 */
1075			max = prev + 1;
1076			prev = 0;
1077			i = 1;
1078		}
1079		count = si->swap_map[i];
1080		if (count && swap_count(count) != SWAP_MAP_BAD)
1081			break;
1082	}
1083	return i;
1084}
1085
1086/*
1087 * We completely avoid races by reading each swap page in advance,
1088 * and then search for the process using it.  All the necessary
1089 * page table adjustments can then be made atomically.
1090 */
1091static int try_to_unuse(unsigned int type)
1092{
1093	struct swap_info_struct *si = swap_info[type];
1094	struct mm_struct *start_mm;
1095	unsigned char *swap_map;
1096	unsigned char swcount;
1097	struct page *page;
1098	swp_entry_t entry;
1099	unsigned int i = 0;
1100	int retval = 0;
1101
1102	/*
1103	 * When searching mms for an entry, a good strategy is to
1104	 * start at the first mm we freed the previous entry from
1105	 * (though actually we don't notice whether we or coincidence
1106	 * freed the entry).  Initialize this start_mm with a hold.
1107	 *
1108	 * A simpler strategy would be to start at the last mm we
1109	 * freed the previous entry from; but that would take less
1110	 * advantage of mmlist ordering, which clusters forked mms
1111	 * together, child after parent.  If we race with dup_mmap(), we
1112	 * prefer to resolve parent before child, lest we miss entries
1113	 * duplicated after we scanned child: using last mm would invert
1114	 * that.
1115	 */
1116	start_mm = &init_mm;
1117	atomic_inc(&init_mm.mm_users);
1118
1119	/*
1120	 * Keep on scanning until all entries have gone.  Usually,
1121	 * one pass through swap_map is enough, but not necessarily:
1122	 * there are races when an instance of an entry might be missed.
1123	 */
1124	while ((i = find_next_to_unuse(si, i)) != 0) {
1125		if (signal_pending(current)) {
1126			retval = -EINTR;
1127			break;
1128		}
1129
1130		/*
1131		 * Get a page for the entry, using the existing swap
1132		 * cache page if there is one.  Otherwise, get a clean
1133		 * page and read the swap into it.
1134		 */
1135		swap_map = &si->swap_map[i];
1136		entry = swp_entry(type, i);
1137		page = read_swap_cache_async(entry,
1138					GFP_HIGHUSER_MOVABLE, NULL, 0);
1139		if (!page) {
1140			/*
1141			 * Either swap_duplicate() failed because entry
1142			 * has been freed independently, and will not be
1143			 * reused since sys_swapoff() already disabled
1144			 * allocation from here, or alloc_page() failed.
1145			 */
1146			if (!*swap_map)
1147				continue;
1148			retval = -ENOMEM;
1149			break;
1150		}
1151
1152		/*
1153		 * Don't hold on to start_mm if it looks like exiting.
1154		 */
1155		if (atomic_read(&start_mm->mm_users) == 1) {
1156			mmput(start_mm);
1157			start_mm = &init_mm;
1158			atomic_inc(&init_mm.mm_users);
1159		}
1160
1161		/*
1162		 * Wait for and lock page.  When do_swap_page races with
1163		 * try_to_unuse, do_swap_page can handle the fault much
1164		 * faster than try_to_unuse can locate the entry.  This
1165		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1166		 * defer to do_swap_page in such a case - in some tests,
1167		 * do_swap_page and try_to_unuse repeatedly compete.
1168		 */
1169		wait_on_page_locked(page);
1170		wait_on_page_writeback(page);
1171		lock_page(page);
1172		wait_on_page_writeback(page);
1173
1174		/*
1175		 * Remove all references to entry.
1176		 */
1177		swcount = *swap_map;
1178		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1179			retval = shmem_unuse(entry, page);
1180			/* page has already been unlocked and released */
1181			if (retval < 0)
1182				break;
1183			continue;
1184		}
1185		if (swap_count(swcount) && start_mm != &init_mm)
1186			retval = unuse_mm(start_mm, entry, page);
1187
1188		if (swap_count(*swap_map)) {
1189			int set_start_mm = (*swap_map >= swcount);
1190			struct list_head *p = &start_mm->mmlist;
1191			struct mm_struct *new_start_mm = start_mm;
1192			struct mm_struct *prev_mm = start_mm;
1193			struct mm_struct *mm;
1194
1195			atomic_inc(&new_start_mm->mm_users);
1196			atomic_inc(&prev_mm->mm_users);
1197			spin_lock(&mmlist_lock);
1198			while (swap_count(*swap_map) && !retval &&
1199					(p = p->next) != &start_mm->mmlist) {
1200				mm = list_entry(p, struct mm_struct, mmlist);
1201				if (!atomic_inc_not_zero(&mm->mm_users))
1202					continue;
1203				spin_unlock(&mmlist_lock);
1204				mmput(prev_mm);
1205				prev_mm = mm;
1206
1207				cond_resched();
1208
1209				swcount = *swap_map;
1210				if (!swap_count(swcount)) /* any usage ? */
1211					;
1212				else if (mm == &init_mm)
1213					set_start_mm = 1;
1214				else
1215					retval = unuse_mm(mm, entry, page);
1216
1217				if (set_start_mm && *swap_map < swcount) {
1218					mmput(new_start_mm);
1219					atomic_inc(&mm->mm_users);
1220					new_start_mm = mm;
1221					set_start_mm = 0;
1222				}
1223				spin_lock(&mmlist_lock);
1224			}
1225			spin_unlock(&mmlist_lock);
1226			mmput(prev_mm);
1227			mmput(start_mm);
1228			start_mm = new_start_mm;
1229		}
1230		if (retval) {
1231			unlock_page(page);
1232			page_cache_release(page);
1233			break;
1234		}
1235
1236		/*
1237		 * If a reference remains (rare), we would like to leave
1238		 * the page in the swap cache; but try_to_unmap could
1239		 * then re-duplicate the entry once we drop page lock,
1240		 * so we might loop indefinitely; also, that page could
1241		 * not be swapped out to other storage meanwhile.  So:
1242		 * delete from cache even if there's another reference,
1243		 * after ensuring that the data has been saved to disk -
1244		 * since if the reference remains (rarer), it will be
1245		 * read from disk into another page.  Splitting into two
1246		 * pages would be incorrect if swap supported "shared
1247		 * private" pages, but they are handled by tmpfs files.
1248		 *
1249		 * Given how unuse_vma() targets one particular offset
1250		 * in an anon_vma, once the anon_vma has been determined,
1251		 * this splitting happens to be just what is needed to
1252		 * handle where KSM pages have been swapped out: re-reading
1253		 * is unnecessarily slow, but we can fix that later on.
1254		 */
1255		if (swap_count(*swap_map) &&
1256		     PageDirty(page) && PageSwapCache(page)) {
1257			struct writeback_control wbc = {
1258				.sync_mode = WB_SYNC_NONE,
1259			};
1260
1261			swap_writepage(page, &wbc);
1262			lock_page(page);
1263			wait_on_page_writeback(page);
1264		}
1265
1266		/*
1267		 * It is conceivable that a racing task removed this page from
1268		 * swap cache just before we acquired the page lock at the top,
1269		 * or while we dropped it in unuse_mm().  The page might even
1270		 * be back in swap cache on another swap area: that we must not
1271		 * delete, since it may not have been written out to swap yet.
1272		 */
1273		if (PageSwapCache(page) &&
1274		    likely(page_private(page) == entry.val))
1275			delete_from_swap_cache(page);
1276
1277		/*
1278		 * So we could skip searching mms once swap count went
1279		 * to 1, we did not mark any present ptes as dirty: must
1280		 * mark page dirty so shrink_page_list will preserve it.
1281		 */
1282		SetPageDirty(page);
1283		unlock_page(page);
1284		page_cache_release(page);
1285
1286		/*
1287		 * Make sure that we aren't completely killing
1288		 * interactive performance.
1289		 */
1290		cond_resched();
1291	}
1292
1293	mmput(start_mm);
1294	return retval;
1295}
1296
1297/*
1298 * After a successful try_to_unuse, if no swap is now in use, we know
1299 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1300 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1301 * added to the mmlist just after page_duplicate - before would be racy.
1302 */
1303static void drain_mmlist(void)
1304{
1305	struct list_head *p, *next;
1306	unsigned int type;
1307
1308	for (type = 0; type < nr_swapfiles; type++)
1309		if (swap_info[type]->inuse_pages)
1310			return;
1311	spin_lock(&mmlist_lock);
1312	list_for_each_safe(p, next, &init_mm.mmlist)
1313		list_del_init(p);
1314	spin_unlock(&mmlist_lock);
1315}
1316
1317/*
1318 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1319 * corresponds to page offset for the specified swap entry.
1320 * Note that the type of this function is sector_t, but it returns page offset
1321 * into the bdev, not sector offset.
1322 */
1323static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1324{
1325	struct swap_info_struct *sis;
1326	struct swap_extent *start_se;
1327	struct swap_extent *se;
1328	pgoff_t offset;
1329
1330	sis = swap_info[swp_type(entry)];
1331	*bdev = sis->bdev;
1332
1333	offset = swp_offset(entry);
1334	start_se = sis->curr_swap_extent;
1335	se = start_se;
1336
1337	for ( ; ; ) {
1338		struct list_head *lh;
1339
1340		if (se->start_page <= offset &&
1341				offset < (se->start_page + se->nr_pages)) {
1342			return se->start_block + (offset - se->start_page);
1343		}
1344		lh = se->list.next;
1345		se = list_entry(lh, struct swap_extent, list);
1346		sis->curr_swap_extent = se;
1347		BUG_ON(se == start_se);		/* It *must* be present */
1348	}
1349}
1350
1351/*
1352 * Returns the page offset into bdev for the specified page's swap entry.
1353 */
1354sector_t map_swap_page(struct page *page, struct block_device **bdev)
1355{
1356	swp_entry_t entry;
1357	entry.val = page_private(page);
1358	return map_swap_entry(entry, bdev);
1359}
1360
1361/*
1362 * Free all of a swapdev's extent information
1363 */
1364static void destroy_swap_extents(struct swap_info_struct *sis)
1365{
1366	while (!list_empty(&sis->first_swap_extent.list)) {
1367		struct swap_extent *se;
1368
1369		se = list_entry(sis->first_swap_extent.list.next,
1370				struct swap_extent, list);
1371		list_del(&se->list);
1372		kfree(se);
1373	}
1374}
1375
1376/*
1377 * Add a block range (and the corresponding page range) into this swapdev's
1378 * extent list.  The extent list is kept sorted in page order.
1379 *
1380 * This function rather assumes that it is called in ascending page order.
1381 */
1382static int
1383add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1384		unsigned long nr_pages, sector_t start_block)
1385{
1386	struct swap_extent *se;
1387	struct swap_extent *new_se;
1388	struct list_head *lh;
1389
1390	if (start_page == 0) {
1391		se = &sis->first_swap_extent;
1392		sis->curr_swap_extent = se;
1393		se->start_page = 0;
1394		se->nr_pages = nr_pages;
1395		se->start_block = start_block;
1396		return 1;
1397	} else {
1398		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1399		se = list_entry(lh, struct swap_extent, list);
1400		BUG_ON(se->start_page + se->nr_pages != start_page);
1401		if (se->start_block + se->nr_pages == start_block) {
1402			/* Merge it */
1403			se->nr_pages += nr_pages;
1404			return 0;
1405		}
1406	}
1407
1408	/*
1409	 * No merge.  Insert a new extent, preserving ordering.
1410	 */
1411	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1412	if (new_se == NULL)
1413		return -ENOMEM;
1414	new_se->start_page = start_page;
1415	new_se->nr_pages = nr_pages;
1416	new_se->start_block = start_block;
1417
1418	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1419	return 1;
1420}
1421
1422/*
1423 * A `swap extent' is a simple thing which maps a contiguous range of pages
1424 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1425 * is built at swapon time and is then used at swap_writepage/swap_readpage
1426 * time for locating where on disk a page belongs.
1427 *
1428 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1429 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1430 * swap files identically.
1431 *
1432 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1433 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1434 * swapfiles are handled *identically* after swapon time.
1435 *
1436 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1437 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1438 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1439 * requirements, they are simply tossed out - we will never use those blocks
1440 * for swapping.
1441 *
1442 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1443 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1444 * which will scribble on the fs.
1445 *
1446 * The amount of disk space which a single swap extent represents varies.
1447 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1448 * extents in the list.  To avoid much list walking, we cache the previous
1449 * search location in `curr_swap_extent', and start new searches from there.
1450 * This is extremely effective.  The average number of iterations in
1451 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1452 */
1453static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1454{
1455	struct inode *inode;
1456	unsigned blocks_per_page;
1457	unsigned long page_no;
1458	unsigned blkbits;
1459	sector_t probe_block;
1460	sector_t last_block;
1461	sector_t lowest_block = -1;
1462	sector_t highest_block = 0;
1463	int nr_extents = 0;
1464	int ret;
1465
1466	inode = sis->swap_file->f_mapping->host;
1467	if (S_ISBLK(inode->i_mode)) {
1468		ret = add_swap_extent(sis, 0, sis->max, 0);
1469		*span = sis->pages;
1470		goto out;
1471	}
1472
1473	blkbits = inode->i_blkbits;
1474	blocks_per_page = PAGE_SIZE >> blkbits;
1475
1476	/*
1477	 * Map all the blocks into the extent list.  This code doesn't try
1478	 * to be very smart.
1479	 */
1480	probe_block = 0;
1481	page_no = 0;
1482	last_block = i_size_read(inode) >> blkbits;
1483	while ((probe_block + blocks_per_page) <= last_block &&
1484			page_no < sis->max) {
1485		unsigned block_in_page;
1486		sector_t first_block;
1487
1488		first_block = bmap(inode, probe_block);
1489		if (first_block == 0)
1490			goto bad_bmap;
1491
1492		/*
1493		 * It must be PAGE_SIZE aligned on-disk
1494		 */
1495		if (first_block & (blocks_per_page - 1)) {
1496			probe_block++;
1497			goto reprobe;
1498		}
1499
1500		for (block_in_page = 1; block_in_page < blocks_per_page;
1501					block_in_page++) {
1502			sector_t block;
1503
1504			block = bmap(inode, probe_block + block_in_page);
1505			if (block == 0)
1506				goto bad_bmap;
1507			if (block != first_block + block_in_page) {
1508				/* Discontiguity */
1509				probe_block++;
1510				goto reprobe;
1511			}
1512		}
1513
1514		first_block >>= (PAGE_SHIFT - blkbits);
1515		if (page_no) {	/* exclude the header page */
1516			if (first_block < lowest_block)
1517				lowest_block = first_block;
1518			if (first_block > highest_block)
1519				highest_block = first_block;
1520		}
1521
1522		/*
1523		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1524		 */
1525		ret = add_swap_extent(sis, page_no, 1, first_block);
1526		if (ret < 0)
1527			goto out;
1528		nr_extents += ret;
1529		page_no++;
1530		probe_block += blocks_per_page;
1531reprobe:
1532		continue;
1533	}
1534	ret = nr_extents;
1535	*span = 1 + highest_block - lowest_block;
1536	if (page_no == 0)
1537		page_no = 1;	/* force Empty message */
1538	sis->max = page_no;
1539	sis->pages = page_no - 1;
1540	sis->highest_bit = page_no - 1;
1541out:
1542	return ret;
1543bad_bmap:
1544	printk(KERN_ERR "swapon: swapfile has holes\n");
1545	ret = -EINVAL;
1546	goto out;
1547}
1548
1549SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1550{
1551	struct swap_info_struct *p = NULL;
1552	unsigned char *swap_map;
1553	struct file *swap_file, *victim;
1554	struct address_space *mapping;
1555	struct inode *inode;
1556	char *pathname;
1557	int i, type, prev;
1558	int err;
1559
1560	if (!capable(CAP_SYS_ADMIN))
1561		return -EPERM;
1562
1563	pathname = getname(specialfile);
1564	err = PTR_ERR(pathname);
1565	if (IS_ERR(pathname))
1566		goto out;
1567
1568	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1569	putname(pathname);
1570	err = PTR_ERR(victim);
1571	if (IS_ERR(victim))
1572		goto out;
1573
1574	mapping = victim->f_mapping;
1575	prev = -1;
1576	spin_lock(&swap_lock);
1577	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1578		p = swap_info[type];
1579		if (p->flags & SWP_WRITEOK) {
1580			if (p->swap_file->f_mapping == mapping)
1581				break;
1582		}
1583		prev = type;
1584	}
1585	if (type < 0) {
1586		err = -EINVAL;
1587		spin_unlock(&swap_lock);
1588		goto out_dput;
1589	}
1590	if (!security_vm_enough_memory(p->pages))
1591		vm_unacct_memory(p->pages);
1592	else {
1593		err = -ENOMEM;
1594		spin_unlock(&swap_lock);
1595		goto out_dput;
1596	}
1597	if (prev < 0)
1598		swap_list.head = p->next;
1599	else
1600		swap_info[prev]->next = p->next;
1601	if (type == swap_list.next) {
1602		/* just pick something that's safe... */
1603		swap_list.next = swap_list.head;
1604	}
1605	if (p->prio < 0) {
1606		for (i = p->next; i >= 0; i = swap_info[i]->next)
1607			swap_info[i]->prio = p->prio--;
1608		least_priority++;
1609	}
1610	nr_swap_pages -= p->pages;
1611	total_swap_pages -= p->pages;
1612	p->flags &= ~SWP_WRITEOK;
1613	spin_unlock(&swap_lock);
1614
1615	current->flags |= PF_OOM_ORIGIN;
1616	err = try_to_unuse(type);
1617	current->flags &= ~PF_OOM_ORIGIN;
1618
1619	if (err) {
1620		/* re-insert swap space back into swap_list */
1621		spin_lock(&swap_lock);
1622		if (p->prio < 0)
1623			p->prio = --least_priority;
1624		prev = -1;
1625		for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1626			if (p->prio >= swap_info[i]->prio)
1627				break;
1628			prev = i;
1629		}
1630		p->next = i;
1631		if (prev < 0)
1632			swap_list.head = swap_list.next = type;
1633		else
1634			swap_info[prev]->next = type;
1635		nr_swap_pages += p->pages;
1636		total_swap_pages += p->pages;
1637		p->flags |= SWP_WRITEOK;
1638		spin_unlock(&swap_lock);
1639		goto out_dput;
1640	}
1641
1642	/* wait for any unplug function to finish */
1643	down_write(&swap_unplug_sem);
1644	up_write(&swap_unplug_sem);
1645
1646	destroy_swap_extents(p);
1647	if (p->flags & SWP_CONTINUED)
1648		free_swap_count_continuations(p);
1649
1650	mutex_lock(&swapon_mutex);
1651	spin_lock(&swap_lock);
1652	drain_mmlist();
1653
1654	/* wait for anyone still in scan_swap_map */
1655	p->highest_bit = 0;		/* cuts scans short */
1656	while (p->flags >= SWP_SCANNING) {
1657		spin_unlock(&swap_lock);
1658		schedule_timeout_uninterruptible(1);
1659		spin_lock(&swap_lock);
1660	}
1661
1662	swap_file = p->swap_file;
1663	p->swap_file = NULL;
1664	p->max = 0;
1665	swap_map = p->swap_map;
1666	p->swap_map = NULL;
1667	p->flags = 0;
1668	spin_unlock(&swap_lock);
1669	mutex_unlock(&swapon_mutex);
1670	vfree(swap_map);
1671	/* Destroy swap account informatin */
1672	swap_cgroup_swapoff(type);
1673
1674	inode = mapping->host;
1675	if (S_ISBLK(inode->i_mode)) {
1676		struct block_device *bdev = I_BDEV(inode);
1677		set_blocksize(bdev, p->old_block_size);
1678		bd_release(bdev);
1679	} else {
1680		mutex_lock(&inode->i_mutex);
1681		inode->i_flags &= ~S_SWAPFILE;
1682		mutex_unlock(&inode->i_mutex);
1683	}
1684	filp_close(swap_file, NULL);
1685	err = 0;
1686
1687out_dput:
1688	filp_close(victim, NULL);
1689out:
1690	return err;
1691}
1692
1693#ifdef CONFIG_PROC_FS
1694/* iterator */
1695static void *swap_start(struct seq_file *swap, loff_t *pos)
1696{
1697	struct swap_info_struct *si;
1698	int type;
1699	loff_t l = *pos;
1700
1701	mutex_lock(&swapon_mutex);
1702
1703	if (!l)
1704		return SEQ_START_TOKEN;
1705
1706	for (type = 0; type < nr_swapfiles; type++) {
1707		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1708		si = swap_info[type];
1709		if (!(si->flags & SWP_USED) || !si->swap_map)
1710			continue;
1711		if (!--l)
1712			return si;
1713	}
1714
1715	return NULL;
1716}
1717
1718static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1719{
1720	struct swap_info_struct *si = v;
1721	int type;
1722
1723	if (v == SEQ_START_TOKEN)
1724		type = 0;
1725	else
1726		type = si->type + 1;
1727
1728	for (; type < nr_swapfiles; type++) {
1729		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1730		si = swap_info[type];
1731		if (!(si->flags & SWP_USED) || !si->swap_map)
1732			continue;
1733		++*pos;
1734		return si;
1735	}
1736
1737	return NULL;
1738}
1739
1740static void swap_stop(struct seq_file *swap, void *v)
1741{
1742	mutex_unlock(&swapon_mutex);
1743}
1744
1745static int swap_show(struct seq_file *swap, void *v)
1746{
1747	struct swap_info_struct *si = v;
1748	struct file *file;
1749	int len;
1750
1751	if (si == SEQ_START_TOKEN) {
1752		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1753		return 0;
1754	}
1755
1756	file = si->swap_file;
1757	len = seq_path(swap, &file->f_path, " \t\n\\");
1758	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1759			len < 40 ? 40 - len : 1, " ",
1760			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1761				"partition" : "file\t",
1762			si->pages << (PAGE_SHIFT - 10),
1763			si->inuse_pages << (PAGE_SHIFT - 10),
1764			si->prio);
1765	return 0;
1766}
1767
1768static const struct seq_operations swaps_op = {
1769	.start =	swap_start,
1770	.next =		swap_next,
1771	.stop =		swap_stop,
1772	.show =		swap_show
1773};
1774
1775static int swaps_open(struct inode *inode, struct file *file)
1776{
1777	return seq_open(file, &swaps_op);
1778}
1779
1780static const struct file_operations proc_swaps_operations = {
1781	.open		= swaps_open,
1782	.read		= seq_read,
1783	.llseek		= seq_lseek,
1784	.release	= seq_release,
1785};
1786
1787static int __init procswaps_init(void)
1788{
1789	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1790	return 0;
1791}
1792__initcall(procswaps_init);
1793#endif /* CONFIG_PROC_FS */
1794
1795#ifdef MAX_SWAPFILES_CHECK
1796static int __init max_swapfiles_check(void)
1797{
1798	MAX_SWAPFILES_CHECK();
1799	return 0;
1800}
1801late_initcall(max_swapfiles_check);
1802#endif
1803
1804/*
1805 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1806 *
1807 * The swapon system call
1808 */
1809SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1810{
1811	struct swap_info_struct *p;
1812	char *name = NULL;
1813	struct block_device *bdev = NULL;
1814	struct file *swap_file = NULL;
1815	struct address_space *mapping;
1816	unsigned int type;
1817	int i, prev;
1818	int error;
1819	union swap_header *swap_header;
1820	unsigned int nr_good_pages;
1821	int nr_extents = 0;
1822	sector_t span;
1823	unsigned long maxpages;
1824	unsigned long swapfilepages;
1825	unsigned char *swap_map = NULL;
1826	struct page *page = NULL;
1827	struct inode *inode = NULL;
1828	int did_down = 0;
1829
1830	if (!capable(CAP_SYS_ADMIN))
1831		return -EPERM;
1832
1833	p = kzalloc(sizeof(*p), GFP_KERNEL);
1834	if (!p)
1835		return -ENOMEM;
1836
1837	spin_lock(&swap_lock);
1838	for (type = 0; type < nr_swapfiles; type++) {
1839		if (!(swap_info[type]->flags & SWP_USED))
1840			break;
1841	}
1842	error = -EPERM;
1843	if (type >= MAX_SWAPFILES) {
1844		spin_unlock(&swap_lock);
1845		kfree(p);
1846		goto out;
1847	}
1848	if (type >= nr_swapfiles) {
1849		p->type = type;
1850		swap_info[type] = p;
1851		/*
1852		 * Write swap_info[type] before nr_swapfiles, in case a
1853		 * racing procfs swap_start() or swap_next() is reading them.
1854		 * (We never shrink nr_swapfiles, we never free this entry.)
1855		 */
1856		smp_wmb();
1857		nr_swapfiles++;
1858	} else {
1859		kfree(p);
1860		p = swap_info[type];
1861		/*
1862		 * Do not memset this entry: a racing procfs swap_next()
1863		 * would be relying on p->type to remain valid.
1864		 */
1865	}
1866	INIT_LIST_HEAD(&p->first_swap_extent.list);
1867	p->flags = SWP_USED;
1868	p->next = -1;
1869	spin_unlock(&swap_lock);
1870
1871	name = getname(specialfile);
1872	error = PTR_ERR(name);
1873	if (IS_ERR(name)) {
1874		name = NULL;
1875		goto bad_swap_2;
1876	}
1877	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1878	error = PTR_ERR(swap_file);
1879	if (IS_ERR(swap_file)) {
1880		swap_file = NULL;
1881		goto bad_swap_2;
1882	}
1883
1884	p->swap_file = swap_file;
1885	mapping = swap_file->f_mapping;
1886	inode = mapping->host;
1887
1888	error = -EBUSY;
1889	for (i = 0; i < nr_swapfiles; i++) {
1890		struct swap_info_struct *q = swap_info[i];
1891
1892		if (i == type || !q->swap_file)
1893			continue;
1894		if (mapping == q->swap_file->f_mapping)
1895			goto bad_swap;
1896	}
1897
1898	error = -EINVAL;
1899	if (S_ISBLK(inode->i_mode)) {
1900		bdev = I_BDEV(inode);
1901		error = bd_claim(bdev, sys_swapon);
1902		if (error < 0) {
1903			bdev = NULL;
1904			error = -EINVAL;
1905			goto bad_swap;
1906		}
1907		p->old_block_size = block_size(bdev);
1908		error = set_blocksize(bdev, PAGE_SIZE);
1909		if (error < 0)
1910			goto bad_swap;
1911		p->bdev = bdev;
1912		p->flags |= SWP_BLKDEV;
1913	} else if (S_ISREG(inode->i_mode)) {
1914		p->bdev = inode->i_sb->s_bdev;
1915		mutex_lock(&inode->i_mutex);
1916		did_down = 1;
1917		if (IS_SWAPFILE(inode)) {
1918			error = -EBUSY;
1919			goto bad_swap;
1920		}
1921	} else {
1922		goto bad_swap;
1923	}
1924
1925	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1926
1927	/*
1928	 * Read the swap header.
1929	 */
1930	if (!mapping->a_ops->readpage) {
1931		error = -EINVAL;
1932		goto bad_swap;
1933	}
1934	page = read_mapping_page(mapping, 0, swap_file);
1935	if (IS_ERR(page)) {
1936		error = PTR_ERR(page);
1937		goto bad_swap;
1938	}
1939	swap_header = kmap(page);
1940
1941	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1942		printk(KERN_ERR "Unable to find swap-space signature\n");
1943		error = -EINVAL;
1944		goto bad_swap;
1945	}
1946
1947	/* swap partition endianess hack... */
1948	if (swab32(swap_header->info.version) == 1) {
1949		swab32s(&swap_header->info.version);
1950		swab32s(&swap_header->info.last_page);
1951		swab32s(&swap_header->info.nr_badpages);
1952		for (i = 0; i < swap_header->info.nr_badpages; i++)
1953			swab32s(&swap_header->info.badpages[i]);
1954	}
1955	/* Check the swap header's sub-version */
1956	if (swap_header->info.version != 1) {
1957		printk(KERN_WARNING
1958		       "Unable to handle swap header version %d\n",
1959		       swap_header->info.version);
1960		error = -EINVAL;
1961		goto bad_swap;
1962	}
1963
1964	p->lowest_bit  = 1;
1965	p->cluster_next = 1;
1966	p->cluster_nr = 0;
1967
1968	/*
1969	 * Find out how many pages are allowed for a single swap
1970	 * device. There are two limiting factors: 1) the number of
1971	 * bits for the swap offset in the swp_entry_t type and
1972	 * 2) the number of bits in the a swap pte as defined by
1973	 * the different architectures. In order to find the
1974	 * largest possible bit mask a swap entry with swap type 0
1975	 * and swap offset ~0UL is created, encoded to a swap pte,
1976	 * decoded to a swp_entry_t again and finally the swap
1977	 * offset is extracted. This will mask all the bits from
1978	 * the initial ~0UL mask that can't be encoded in either
1979	 * the swp_entry_t or the architecture definition of a
1980	 * swap pte.
1981	 */
1982	maxpages = swp_offset(pte_to_swp_entry(
1983			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1984	if (maxpages > swap_header->info.last_page) {
1985		maxpages = swap_header->info.last_page + 1;
1986		/* p->max is an unsigned int: don't overflow it */
1987		if ((unsigned int)maxpages == 0)
1988			maxpages = UINT_MAX;
1989	}
1990	p->highest_bit = maxpages - 1;
1991
1992	error = -EINVAL;
1993	if (!maxpages)
1994		goto bad_swap;
1995	if (swapfilepages && maxpages > swapfilepages) {
1996		printk(KERN_WARNING
1997		       "Swap area shorter than signature indicates\n");
1998		goto bad_swap;
1999	}
2000	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2001		goto bad_swap;
2002	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2003		goto bad_swap;
2004
2005	/* OK, set up the swap map and apply the bad block list */
2006	swap_map = vmalloc(maxpages);
2007	if (!swap_map) {
2008		error = -ENOMEM;
2009		goto bad_swap;
2010	}
2011
2012	memset(swap_map, 0, maxpages);
2013	nr_good_pages = maxpages - 1;	/* omit header page */
2014
2015	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2016		unsigned int page_nr = swap_header->info.badpages[i];
2017		if (page_nr == 0 || page_nr > swap_header->info.last_page) {
2018			error = -EINVAL;
2019			goto bad_swap;
2020		}
2021		if (page_nr < maxpages) {
2022			swap_map[page_nr] = SWAP_MAP_BAD;
2023			nr_good_pages--;
2024		}
2025	}
2026
2027	error = swap_cgroup_swapon(type, maxpages);
2028	if (error)
2029		goto bad_swap;
2030
2031	if (nr_good_pages) {
2032		swap_map[0] = SWAP_MAP_BAD;
2033		p->max = maxpages;
2034		p->pages = nr_good_pages;
2035		nr_extents = setup_swap_extents(p, &span);
2036		if (nr_extents < 0) {
2037			error = nr_extents;
2038			goto bad_swap;
2039		}
2040		nr_good_pages = p->pages;
2041	}
2042	if (!nr_good_pages) {
2043		printk(KERN_WARNING "Empty swap-file\n");
2044		error = -EINVAL;
2045		goto bad_swap;
2046	}
2047
2048	if (p->bdev) {
2049		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2050			p->flags |= SWP_SOLIDSTATE;
2051			p->cluster_next = 1 + (random32() % p->highest_bit);
2052		}
2053		if (discard_swap(p) == 0)
2054			p->flags |= SWP_DISCARDABLE;
2055	}
2056
2057	mutex_lock(&swapon_mutex);
2058	spin_lock(&swap_lock);
2059	if (swap_flags & SWAP_FLAG_PREFER)
2060		p->prio =
2061		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2062	else
2063		p->prio = --least_priority;
2064	p->swap_map = swap_map;
2065	p->flags |= SWP_WRITEOK;
2066	nr_swap_pages += nr_good_pages;
2067	total_swap_pages += nr_good_pages;
2068
2069	printk(KERN_INFO "Adding %uk swap on %s.  "
2070			"Priority:%d extents:%d across:%lluk %s%s\n",
2071		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2072		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2073		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2074		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2075
2076	/* insert swap space into swap_list: */
2077	prev = -1;
2078	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2079		if (p->prio >= swap_info[i]->prio)
2080			break;
2081		prev = i;
2082	}
2083	p->next = i;
2084	if (prev < 0)
2085		swap_list.head = swap_list.next = type;
2086	else
2087		swap_info[prev]->next = type;
2088	spin_unlock(&swap_lock);
2089	mutex_unlock(&swapon_mutex);
2090	error = 0;
2091	goto out;
2092bad_swap:
2093	if (bdev) {
2094		set_blocksize(bdev, p->old_block_size);
2095		bd_release(bdev);
2096	}
2097	destroy_swap_extents(p);
2098	swap_cgroup_swapoff(type);
2099bad_swap_2:
2100	spin_lock(&swap_lock);
2101	p->swap_file = NULL;
2102	p->flags = 0;
2103	spin_unlock(&swap_lock);
2104	vfree(swap_map);
2105	if (swap_file)
2106		filp_close(swap_file, NULL);
2107out:
2108	if (page && !IS_ERR(page)) {
2109		kunmap(page);
2110		page_cache_release(page);
2111	}
2112	if (name)
2113		putname(name);
2114	if (did_down) {
2115		if (!error)
2116			inode->i_flags |= S_SWAPFILE;
2117		mutex_unlock(&inode->i_mutex);
2118	}
2119	return error;
2120}
2121
2122void si_swapinfo(struct sysinfo *val)
2123{
2124	unsigned int type;
2125	unsigned long nr_to_be_unused = 0;
2126
2127	spin_lock(&swap_lock);
2128	for (type = 0; type < nr_swapfiles; type++) {
2129		struct swap_info_struct *si = swap_info[type];
2130
2131		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2132			nr_to_be_unused += si->inuse_pages;
2133	}
2134	val->freeswap = nr_swap_pages + nr_to_be_unused;
2135	val->totalswap = total_swap_pages + nr_to_be_unused;
2136	spin_unlock(&swap_lock);
2137}
2138
2139/*
2140 * Verify that a swap entry is valid and increment its swap map count.
2141 *
2142 * Returns error code in following case.
2143 * - success -> 0
2144 * - swp_entry is invalid -> EINVAL
2145 * - swp_entry is migration entry -> EINVAL
2146 * - swap-cache reference is requested but there is already one. -> EEXIST
2147 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2148 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2149 */
2150static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2151{
2152	struct swap_info_struct *p;
2153	unsigned long offset, type;
2154	unsigned char count;
2155	unsigned char has_cache;
2156	int err = -EINVAL;
2157
2158	if (non_swap_entry(entry))
2159		goto out;
2160
2161	type = swp_type(entry);
2162	if (type >= nr_swapfiles)
2163		goto bad_file;
2164	p = swap_info[type];
2165	offset = swp_offset(entry);
2166
2167	spin_lock(&swap_lock);
2168	if (unlikely(offset >= p->max))
2169		goto unlock_out;
2170
2171	count = p->swap_map[offset];
2172	has_cache = count & SWAP_HAS_CACHE;
2173	count &= ~SWAP_HAS_CACHE;
2174	err = 0;
2175
2176	if (usage == SWAP_HAS_CACHE) {
2177
2178		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2179		if (!has_cache && count)
2180			has_cache = SWAP_HAS_CACHE;
2181		else if (has_cache)		/* someone else added cache */
2182			err = -EEXIST;
2183		else				/* no users remaining */
2184			err = -ENOENT;
2185
2186	} else if (count || has_cache) {
2187
2188		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2189			count += usage;
2190		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2191			err = -EINVAL;
2192		else if (swap_count_continued(p, offset, count))
2193			count = COUNT_CONTINUED;
2194		else
2195			err = -ENOMEM;
2196	} else
2197		err = -ENOENT;			/* unused swap entry */
2198
2199	p->swap_map[offset] = count | has_cache;
2200
2201unlock_out:
2202	spin_unlock(&swap_lock);
2203out:
2204	return err;
2205
2206bad_file:
2207	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2208	goto out;
2209}
2210
2211/*
2212 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2213 * (in which case its reference count is never incremented).
2214 */
2215void swap_shmem_alloc(swp_entry_t entry)
2216{
2217	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2218}
2219
2220/*
2221 * Increase reference count of swap entry by 1.
2222 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2223 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2224 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2225 * might occur if a page table entry has got corrupted.
2226 */
2227int swap_duplicate(swp_entry_t entry)
2228{
2229	int err = 0;
2230
2231	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2232		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2233	return err;
2234}
2235
2236/*
2237 * @entry: swap entry for which we allocate swap cache.
2238 *
2239 * Called when allocating swap cache for existing swap entry,
2240 * This can return error codes. Returns 0 at success.
2241 * -EBUSY means there is a swap cache.
2242 * Note: return code is different from swap_duplicate().
2243 */
2244int swapcache_prepare(swp_entry_t entry)
2245{
2246	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2247}
2248
2249/*
2250 * swap_lock prevents swap_map being freed. Don't grab an extra
2251 * reference on the swaphandle, it doesn't matter if it becomes unused.
2252 */
2253int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2254{
2255	struct swap_info_struct *si;
2256	int our_page_cluster = page_cluster;
2257	pgoff_t target, toff;
2258	pgoff_t base, end;
2259	int nr_pages = 0;
2260
2261	if (!our_page_cluster)	/* no readahead */
2262		return 0;
2263
2264	si = swap_info[swp_type(entry)];
2265	target = swp_offset(entry);
2266	base = (target >> our_page_cluster) << our_page_cluster;
2267	end = base + (1 << our_page_cluster);
2268	if (!base)		/* first page is swap header */
2269		base++;
2270
2271	spin_lock(&swap_lock);
2272	if (end > si->max)	/* don't go beyond end of map */
2273		end = si->max;
2274
2275	/* Count contiguous allocated slots above our target */
2276	for (toff = target; ++toff < end; nr_pages++) {
2277		/* Don't read in free or bad pages */
2278		if (!si->swap_map[toff])
2279			break;
2280		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2281			break;
2282	}
2283	/* Count contiguous allocated slots below our target */
2284	for (toff = target; --toff >= base; nr_pages++) {
2285		/* Don't read in free or bad pages */
2286		if (!si->swap_map[toff])
2287			break;
2288		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2289			break;
2290	}
2291	spin_unlock(&swap_lock);
2292
2293	/*
2294	 * Indicate starting offset, and return number of pages to get:
2295	 * if only 1, say 0, since there's then no readahead to be done.
2296	 */
2297	*offset = ++toff;
2298	return nr_pages? ++nr_pages: 0;
2299}
2300
2301/*
2302 * add_swap_count_continuation - called when a swap count is duplicated
2303 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2304 * page of the original vmalloc'ed swap_map, to hold the continuation count
2305 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2306 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2307 *
2308 * These continuation pages are seldom referenced: the common paths all work
2309 * on the original swap_map, only referring to a continuation page when the
2310 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2311 *
2312 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2313 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2314 * can be called after dropping locks.
2315 */
2316int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2317{
2318	struct swap_info_struct *si;
2319	struct page *head;
2320	struct page *page;
2321	struct page *list_page;
2322	pgoff_t offset;
2323	unsigned char count;
2324
2325	/*
2326	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2327	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2328	 */
2329	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2330
2331	si = swap_info_get(entry);
2332	if (!si) {
2333		/*
2334		 * An acceptable race has occurred since the failing
2335		 * __swap_duplicate(): the swap entry has been freed,
2336		 * perhaps even the whole swap_map cleared for swapoff.
2337		 */
2338		goto outer;
2339	}
2340
2341	offset = swp_offset(entry);
2342	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2343
2344	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2345		/*
2346		 * The higher the swap count, the more likely it is that tasks
2347		 * will race to add swap count continuation: we need to avoid
2348		 * over-provisioning.
2349		 */
2350		goto out;
2351	}
2352
2353	if (!page) {
2354		spin_unlock(&swap_lock);
2355		return -ENOMEM;
2356	}
2357
2358	/*
2359	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2360	 * no architecture is using highmem pages for kernel pagetables: so it
2361	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2362	 */
2363	head = vmalloc_to_page(si->swap_map + offset);
2364	offset &= ~PAGE_MASK;
2365
2366	/*
2367	 * Page allocation does not initialize the page's lru field,
2368	 * but it does always reset its private field.
2369	 */
2370	if (!page_private(head)) {
2371		BUG_ON(count & COUNT_CONTINUED);
2372		INIT_LIST_HEAD(&head->lru);
2373		set_page_private(head, SWP_CONTINUED);
2374		si->flags |= SWP_CONTINUED;
2375	}
2376
2377	list_for_each_entry(list_page, &head->lru, lru) {
2378		unsigned char *map;
2379
2380		/*
2381		 * If the previous map said no continuation, but we've found
2382		 * a continuation page, free our allocation and use this one.
2383		 */
2384		if (!(count & COUNT_CONTINUED))
2385			goto out;
2386
2387		map = kmap_atomic(list_page, KM_USER0) + offset;
2388		count = *map;
2389		kunmap_atomic(map, KM_USER0);
2390
2391		/*
2392		 * If this continuation count now has some space in it,
2393		 * free our allocation and use this one.
2394		 */
2395		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2396			goto out;
2397	}
2398
2399	list_add_tail(&page->lru, &head->lru);
2400	page = NULL;			/* now it's attached, don't free it */
2401out:
2402	spin_unlock(&swap_lock);
2403outer:
2404	if (page)
2405		__free_page(page);
2406	return 0;
2407}
2408
2409/*
2410 * swap_count_continued - when the original swap_map count is incremented
2411 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2412 * into, carry if so, or else fail until a new continuation page is allocated;
2413 * when the original swap_map count is decremented from 0 with continuation,
2414 * borrow from the continuation and report whether it still holds more.
2415 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2416 */
2417static bool swap_count_continued(struct swap_info_struct *si,
2418				 pgoff_t offset, unsigned char count)
2419{
2420	struct page *head;
2421	struct page *page;
2422	unsigned char *map;
2423
2424	head = vmalloc_to_page(si->swap_map + offset);
2425	if (page_private(head) != SWP_CONTINUED) {
2426		BUG_ON(count & COUNT_CONTINUED);
2427		return false;		/* need to add count continuation */
2428	}
2429
2430	offset &= ~PAGE_MASK;
2431	page = list_entry(head->lru.next, struct page, lru);
2432	map = kmap_atomic(page, KM_USER0) + offset;
2433
2434	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2435		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2436
2437	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2438		/*
2439		 * Think of how you add 1 to 999
2440		 */
2441		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2442			kunmap_atomic(map, KM_USER0);
2443			page = list_entry(page->lru.next, struct page, lru);
2444			BUG_ON(page == head);
2445			map = kmap_atomic(page, KM_USER0) + offset;
2446		}
2447		if (*map == SWAP_CONT_MAX) {
2448			kunmap_atomic(map, KM_USER0);
2449			page = list_entry(page->lru.next, struct page, lru);
2450			if (page == head)
2451				return false;	/* add count continuation */
2452			map = kmap_atomic(page, KM_USER0) + offset;
2453init_map:		*map = 0;		/* we didn't zero the page */
2454		}
2455		*map += 1;
2456		kunmap_atomic(map, KM_USER0);
2457		page = list_entry(page->lru.prev, struct page, lru);
2458		while (page != head) {
2459			map = kmap_atomic(page, KM_USER0) + offset;
2460			*map = COUNT_CONTINUED;
2461			kunmap_atomic(map, KM_USER0);
2462			page = list_entry(page->lru.prev, struct page, lru);
2463		}
2464		return true;			/* incremented */
2465
2466	} else {				/* decrementing */
2467		/*
2468		 * Think of how you subtract 1 from 1000
2469		 */
2470		BUG_ON(count != COUNT_CONTINUED);
2471		while (*map == COUNT_CONTINUED) {
2472			kunmap_atomic(map, KM_USER0);
2473			page = list_entry(page->lru.next, struct page, lru);
2474			BUG_ON(page == head);
2475			map = kmap_atomic(page, KM_USER0) + offset;
2476		}
2477		BUG_ON(*map == 0);
2478		*map -= 1;
2479		if (*map == 0)
2480			count = 0;
2481		kunmap_atomic(map, KM_USER0);
2482		page = list_entry(page->lru.prev, struct page, lru);
2483		while (page != head) {
2484			map = kmap_atomic(page, KM_USER0) + offset;
2485			*map = SWAP_CONT_MAX | count;
2486			count = COUNT_CONTINUED;
2487			kunmap_atomic(map, KM_USER0);
2488			page = list_entry(page->lru.prev, struct page, lru);
2489		}
2490		return count == COUNT_CONTINUED;
2491	}
2492}
2493
2494/*
2495 * free_swap_count_continuations - swapoff free all the continuation pages
2496 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2497 */
2498static void free_swap_count_continuations(struct swap_info_struct *si)
2499{
2500	pgoff_t offset;
2501
2502	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2503		struct page *head;
2504		head = vmalloc_to_page(si->swap_map + offset);
2505		if (page_private(head)) {
2506			struct list_head *this, *next;
2507			list_for_each_safe(this, next, &head->lru) {
2508				struct page *page;
2509				page = list_entry(this, struct page, lru);
2510				list_del(this);
2511				__free_page(page);
2512			}
2513		}
2514	}
2515}
2516