swapfile.c revision c32c2f63a9d6c953aaf168c0b2551da9734f76d2
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/writeback.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/rmap.h>
25#include <linux/security.h>
26#include <linux/backing-dev.h>
27#include <linux/mutex.h>
28#include <linux/capability.h>
29#include <linux/syscalls.h>
30#include <linux/memcontrol.h>
31
32#include <asm/pgtable.h>
33#include <asm/tlbflush.h>
34#include <linux/swapops.h>
35
36DEFINE_SPINLOCK(swap_lock);
37unsigned int nr_swapfiles;
38long total_swap_pages;
39static int swap_overflow;
40
41static const char Bad_file[] = "Bad swap file entry ";
42static const char Unused_file[] = "Unused swap file entry ";
43static const char Bad_offset[] = "Bad swap offset entry ";
44static const char Unused_offset[] = "Unused swap offset entry ";
45
46struct swap_list_t swap_list = {-1, -1};
47
48static struct swap_info_struct swap_info[MAX_SWAPFILES];
49
50static DEFINE_MUTEX(swapon_mutex);
51
52/*
53 * We need this because the bdev->unplug_fn can sleep and we cannot
54 * hold swap_lock while calling the unplug_fn. And swap_lock
55 * cannot be turned into a mutex.
56 */
57static DECLARE_RWSEM(swap_unplug_sem);
58
59void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
60{
61	swp_entry_t entry;
62
63	down_read(&swap_unplug_sem);
64	entry.val = page_private(page);
65	if (PageSwapCache(page)) {
66		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67		struct backing_dev_info *bdi;
68
69		/*
70		 * If the page is removed from swapcache from under us (with a
71		 * racy try_to_unuse/swapoff) we need an additional reference
72		 * count to avoid reading garbage from page_private(page) above.
73		 * If the WARN_ON triggers during a swapoff it maybe the race
74		 * condition and it's harmless. However if it triggers without
75		 * swapoff it signals a problem.
76		 */
77		WARN_ON(page_count(page) <= 1);
78
79		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
80		blk_run_backing_dev(bdi, page);
81	}
82	up_read(&swap_unplug_sem);
83}
84
85#define SWAPFILE_CLUSTER	256
86#define LATENCY_LIMIT		256
87
88static inline unsigned long scan_swap_map(struct swap_info_struct *si)
89{
90	unsigned long offset, last_in_cluster;
91	int latency_ration = LATENCY_LIMIT;
92
93	/*
94	 * We try to cluster swap pages by allocating them sequentially
95	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
96	 * way, however, we resort to first-free allocation, starting
97	 * a new cluster.  This prevents us from scattering swap pages
98	 * all over the entire swap partition, so that we reduce
99	 * overall disk seek times between swap pages.  -- sct
100	 * But we do now try to find an empty cluster.  -Andrea
101	 */
102
103	si->flags += SWP_SCANNING;
104	if (unlikely(!si->cluster_nr)) {
105		si->cluster_nr = SWAPFILE_CLUSTER - 1;
106		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107			goto lowest;
108		spin_unlock(&swap_lock);
109
110		offset = si->lowest_bit;
111		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112
113		/* Locate the first empty (unaligned) cluster */
114		for (; last_in_cluster <= si->highest_bit; offset++) {
115			if (si->swap_map[offset])
116				last_in_cluster = offset + SWAPFILE_CLUSTER;
117			else if (offset == last_in_cluster) {
118				spin_lock(&swap_lock);
119				si->cluster_next = offset-SWAPFILE_CLUSTER+1;
120				goto cluster;
121			}
122			if (unlikely(--latency_ration < 0)) {
123				cond_resched();
124				latency_ration = LATENCY_LIMIT;
125			}
126		}
127		spin_lock(&swap_lock);
128		goto lowest;
129	}
130
131	si->cluster_nr--;
132cluster:
133	offset = si->cluster_next;
134	if (offset > si->highest_bit)
135lowest:		offset = si->lowest_bit;
136checks:	if (!(si->flags & SWP_WRITEOK))
137		goto no_page;
138	if (!si->highest_bit)
139		goto no_page;
140	if (!si->swap_map[offset]) {
141		if (offset == si->lowest_bit)
142			si->lowest_bit++;
143		if (offset == si->highest_bit)
144			si->highest_bit--;
145		si->inuse_pages++;
146		if (si->inuse_pages == si->pages) {
147			si->lowest_bit = si->max;
148			si->highest_bit = 0;
149		}
150		si->swap_map[offset] = 1;
151		si->cluster_next = offset + 1;
152		si->flags -= SWP_SCANNING;
153		return offset;
154	}
155
156	spin_unlock(&swap_lock);
157	while (++offset <= si->highest_bit) {
158		if (!si->swap_map[offset]) {
159			spin_lock(&swap_lock);
160			goto checks;
161		}
162		if (unlikely(--latency_ration < 0)) {
163			cond_resched();
164			latency_ration = LATENCY_LIMIT;
165		}
166	}
167	spin_lock(&swap_lock);
168	goto lowest;
169
170no_page:
171	si->flags -= SWP_SCANNING;
172	return 0;
173}
174
175swp_entry_t get_swap_page(void)
176{
177	struct swap_info_struct *si;
178	pgoff_t offset;
179	int type, next;
180	int wrapped = 0;
181
182	spin_lock(&swap_lock);
183	if (nr_swap_pages <= 0)
184		goto noswap;
185	nr_swap_pages--;
186
187	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188		si = swap_info + type;
189		next = si->next;
190		if (next < 0 ||
191		    (!wrapped && si->prio != swap_info[next].prio)) {
192			next = swap_list.head;
193			wrapped++;
194		}
195
196		if (!si->highest_bit)
197			continue;
198		if (!(si->flags & SWP_WRITEOK))
199			continue;
200
201		swap_list.next = next;
202		offset = scan_swap_map(si);
203		if (offset) {
204			spin_unlock(&swap_lock);
205			return swp_entry(type, offset);
206		}
207		next = swap_list.next;
208	}
209
210	nr_swap_pages++;
211noswap:
212	spin_unlock(&swap_lock);
213	return (swp_entry_t) {0};
214}
215
216swp_entry_t get_swap_page_of_type(int type)
217{
218	struct swap_info_struct *si;
219	pgoff_t offset;
220
221	spin_lock(&swap_lock);
222	si = swap_info + type;
223	if (si->flags & SWP_WRITEOK) {
224		nr_swap_pages--;
225		offset = scan_swap_map(si);
226		if (offset) {
227			spin_unlock(&swap_lock);
228			return swp_entry(type, offset);
229		}
230		nr_swap_pages++;
231	}
232	spin_unlock(&swap_lock);
233	return (swp_entry_t) {0};
234}
235
236static struct swap_info_struct * swap_info_get(swp_entry_t entry)
237{
238	struct swap_info_struct * p;
239	unsigned long offset, type;
240
241	if (!entry.val)
242		goto out;
243	type = swp_type(entry);
244	if (type >= nr_swapfiles)
245		goto bad_nofile;
246	p = & swap_info[type];
247	if (!(p->flags & SWP_USED))
248		goto bad_device;
249	offset = swp_offset(entry);
250	if (offset >= p->max)
251		goto bad_offset;
252	if (!p->swap_map[offset])
253		goto bad_free;
254	spin_lock(&swap_lock);
255	return p;
256
257bad_free:
258	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
259	goto out;
260bad_offset:
261	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
262	goto out;
263bad_device:
264	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
265	goto out;
266bad_nofile:
267	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
268out:
269	return NULL;
270}
271
272static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
273{
274	int count = p->swap_map[offset];
275
276	if (count < SWAP_MAP_MAX) {
277		count--;
278		p->swap_map[offset] = count;
279		if (!count) {
280			if (offset < p->lowest_bit)
281				p->lowest_bit = offset;
282			if (offset > p->highest_bit)
283				p->highest_bit = offset;
284			if (p->prio > swap_info[swap_list.next].prio)
285				swap_list.next = p - swap_info;
286			nr_swap_pages++;
287			p->inuse_pages--;
288		}
289	}
290	return count;
291}
292
293/*
294 * Caller has made sure that the swapdevice corresponding to entry
295 * is still around or has not been recycled.
296 */
297void swap_free(swp_entry_t entry)
298{
299	struct swap_info_struct * p;
300
301	p = swap_info_get(entry);
302	if (p) {
303		swap_entry_free(p, swp_offset(entry));
304		spin_unlock(&swap_lock);
305	}
306}
307
308/*
309 * How many references to page are currently swapped out?
310 */
311static inline int page_swapcount(struct page *page)
312{
313	int count = 0;
314	struct swap_info_struct *p;
315	swp_entry_t entry;
316
317	entry.val = page_private(page);
318	p = swap_info_get(entry);
319	if (p) {
320		/* Subtract the 1 for the swap cache itself */
321		count = p->swap_map[swp_offset(entry)] - 1;
322		spin_unlock(&swap_lock);
323	}
324	return count;
325}
326
327/*
328 * We can use this swap cache entry directly
329 * if there are no other references to it.
330 */
331int can_share_swap_page(struct page *page)
332{
333	int count;
334
335	BUG_ON(!PageLocked(page));
336	count = page_mapcount(page);
337	if (count <= 1 && PageSwapCache(page))
338		count += page_swapcount(page);
339	return count == 1;
340}
341
342/*
343 * Work out if there are any other processes sharing this
344 * swap cache page. Free it if you can. Return success.
345 */
346int remove_exclusive_swap_page(struct page *page)
347{
348	int retval;
349	struct swap_info_struct * p;
350	swp_entry_t entry;
351
352	BUG_ON(PagePrivate(page));
353	BUG_ON(!PageLocked(page));
354
355	if (!PageSwapCache(page))
356		return 0;
357	if (PageWriteback(page))
358		return 0;
359	if (page_count(page) != 2) /* 2: us + cache */
360		return 0;
361
362	entry.val = page_private(page);
363	p = swap_info_get(entry);
364	if (!p)
365		return 0;
366
367	/* Is the only swap cache user the cache itself? */
368	retval = 0;
369	if (p->swap_map[swp_offset(entry)] == 1) {
370		/* Recheck the page count with the swapcache lock held.. */
371		write_lock_irq(&swapper_space.tree_lock);
372		if ((page_count(page) == 2) && !PageWriteback(page)) {
373			__delete_from_swap_cache(page);
374			SetPageDirty(page);
375			retval = 1;
376		}
377		write_unlock_irq(&swapper_space.tree_lock);
378	}
379	spin_unlock(&swap_lock);
380
381	if (retval) {
382		swap_free(entry);
383		page_cache_release(page);
384	}
385
386	return retval;
387}
388
389/*
390 * Free the swap entry like above, but also try to
391 * free the page cache entry if it is the last user.
392 */
393void free_swap_and_cache(swp_entry_t entry)
394{
395	struct swap_info_struct * p;
396	struct page *page = NULL;
397
398	if (is_migration_entry(entry))
399		return;
400
401	p = swap_info_get(entry);
402	if (p) {
403		if (swap_entry_free(p, swp_offset(entry)) == 1) {
404			page = find_get_page(&swapper_space, entry.val);
405			if (page && unlikely(TestSetPageLocked(page))) {
406				page_cache_release(page);
407				page = NULL;
408			}
409		}
410		spin_unlock(&swap_lock);
411	}
412	if (page) {
413		int one_user;
414
415		BUG_ON(PagePrivate(page));
416		one_user = (page_count(page) == 2);
417		/* Only cache user (+us), or swap space full? Free it! */
418		/* Also recheck PageSwapCache after page is locked (above) */
419		if (PageSwapCache(page) && !PageWriteback(page) &&
420					(one_user || vm_swap_full())) {
421			delete_from_swap_cache(page);
422			SetPageDirty(page);
423		}
424		unlock_page(page);
425		page_cache_release(page);
426	}
427}
428
429#ifdef CONFIG_HIBERNATION
430/*
431 * Find the swap type that corresponds to given device (if any).
432 *
433 * @offset - number of the PAGE_SIZE-sized block of the device, starting
434 * from 0, in which the swap header is expected to be located.
435 *
436 * This is needed for the suspend to disk (aka swsusp).
437 */
438int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
439{
440	struct block_device *bdev = NULL;
441	int i;
442
443	if (device)
444		bdev = bdget(device);
445
446	spin_lock(&swap_lock);
447	for (i = 0; i < nr_swapfiles; i++) {
448		struct swap_info_struct *sis = swap_info + i;
449
450		if (!(sis->flags & SWP_WRITEOK))
451			continue;
452
453		if (!bdev) {
454			if (bdev_p)
455				*bdev_p = sis->bdev;
456
457			spin_unlock(&swap_lock);
458			return i;
459		}
460		if (bdev == sis->bdev) {
461			struct swap_extent *se;
462
463			se = list_entry(sis->extent_list.next,
464					struct swap_extent, list);
465			if (se->start_block == offset) {
466				if (bdev_p)
467					*bdev_p = sis->bdev;
468
469				spin_unlock(&swap_lock);
470				bdput(bdev);
471				return i;
472			}
473		}
474	}
475	spin_unlock(&swap_lock);
476	if (bdev)
477		bdput(bdev);
478
479	return -ENODEV;
480}
481
482/*
483 * Return either the total number of swap pages of given type, or the number
484 * of free pages of that type (depending on @free)
485 *
486 * This is needed for software suspend
487 */
488unsigned int count_swap_pages(int type, int free)
489{
490	unsigned int n = 0;
491
492	if (type < nr_swapfiles) {
493		spin_lock(&swap_lock);
494		if (swap_info[type].flags & SWP_WRITEOK) {
495			n = swap_info[type].pages;
496			if (free)
497				n -= swap_info[type].inuse_pages;
498		}
499		spin_unlock(&swap_lock);
500	}
501	return n;
502}
503#endif
504
505/*
506 * No need to decide whether this PTE shares the swap entry with others,
507 * just let do_wp_page work it out if a write is requested later - to
508 * force COW, vm_page_prot omits write permission from any private vma.
509 */
510static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
511		unsigned long addr, swp_entry_t entry, struct page *page)
512{
513	spinlock_t *ptl;
514	pte_t *pte;
515	int ret = 1;
516
517	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
518		ret = -ENOMEM;
519
520	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
521	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
522		if (ret > 0)
523			mem_cgroup_uncharge_page(page);
524		ret = 0;
525		goto out;
526	}
527
528	inc_mm_counter(vma->vm_mm, anon_rss);
529	get_page(page);
530	set_pte_at(vma->vm_mm, addr, pte,
531		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
532	page_add_anon_rmap(page, vma, addr);
533	swap_free(entry);
534	/*
535	 * Move the page to the active list so it is not
536	 * immediately swapped out again after swapon.
537	 */
538	activate_page(page);
539out:
540	pte_unmap_unlock(pte, ptl);
541	return ret;
542}
543
544static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
545				unsigned long addr, unsigned long end,
546				swp_entry_t entry, struct page *page)
547{
548	pte_t swp_pte = swp_entry_to_pte(entry);
549	pte_t *pte;
550	int ret = 0;
551
552	/*
553	 * We don't actually need pte lock while scanning for swp_pte: since
554	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
555	 * page table while we're scanning; though it could get zapped, and on
556	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
557	 * of unmatched parts which look like swp_pte, so unuse_pte must
558	 * recheck under pte lock.  Scanning without pte lock lets it be
559	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
560	 */
561	pte = pte_offset_map(pmd, addr);
562	do {
563		/*
564		 * swapoff spends a _lot_ of time in this loop!
565		 * Test inline before going to call unuse_pte.
566		 */
567		if (unlikely(pte_same(*pte, swp_pte))) {
568			pte_unmap(pte);
569			ret = unuse_pte(vma, pmd, addr, entry, page);
570			if (ret)
571				goto out;
572			pte = pte_offset_map(pmd, addr);
573		}
574	} while (pte++, addr += PAGE_SIZE, addr != end);
575	pte_unmap(pte - 1);
576out:
577	return ret;
578}
579
580static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
581				unsigned long addr, unsigned long end,
582				swp_entry_t entry, struct page *page)
583{
584	pmd_t *pmd;
585	unsigned long next;
586	int ret;
587
588	pmd = pmd_offset(pud, addr);
589	do {
590		next = pmd_addr_end(addr, end);
591		if (pmd_none_or_clear_bad(pmd))
592			continue;
593		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
594		if (ret)
595			return ret;
596	} while (pmd++, addr = next, addr != end);
597	return 0;
598}
599
600static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
601				unsigned long addr, unsigned long end,
602				swp_entry_t entry, struct page *page)
603{
604	pud_t *pud;
605	unsigned long next;
606	int ret;
607
608	pud = pud_offset(pgd, addr);
609	do {
610		next = pud_addr_end(addr, end);
611		if (pud_none_or_clear_bad(pud))
612			continue;
613		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
614		if (ret)
615			return ret;
616	} while (pud++, addr = next, addr != end);
617	return 0;
618}
619
620static int unuse_vma(struct vm_area_struct *vma,
621				swp_entry_t entry, struct page *page)
622{
623	pgd_t *pgd;
624	unsigned long addr, end, next;
625	int ret;
626
627	if (page->mapping) {
628		addr = page_address_in_vma(page, vma);
629		if (addr == -EFAULT)
630			return 0;
631		else
632			end = addr + PAGE_SIZE;
633	} else {
634		addr = vma->vm_start;
635		end = vma->vm_end;
636	}
637
638	pgd = pgd_offset(vma->vm_mm, addr);
639	do {
640		next = pgd_addr_end(addr, end);
641		if (pgd_none_or_clear_bad(pgd))
642			continue;
643		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
644		if (ret)
645			return ret;
646	} while (pgd++, addr = next, addr != end);
647	return 0;
648}
649
650static int unuse_mm(struct mm_struct *mm,
651				swp_entry_t entry, struct page *page)
652{
653	struct vm_area_struct *vma;
654	int ret = 0;
655
656	if (!down_read_trylock(&mm->mmap_sem)) {
657		/*
658		 * Activate page so shrink_cache is unlikely to unmap its
659		 * ptes while lock is dropped, so swapoff can make progress.
660		 */
661		activate_page(page);
662		unlock_page(page);
663		down_read(&mm->mmap_sem);
664		lock_page(page);
665	}
666	for (vma = mm->mmap; vma; vma = vma->vm_next) {
667		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
668			break;
669	}
670	up_read(&mm->mmap_sem);
671	return (ret < 0)? ret: 0;
672}
673
674/*
675 * Scan swap_map from current position to next entry still in use.
676 * Recycle to start on reaching the end, returning 0 when empty.
677 */
678static unsigned int find_next_to_unuse(struct swap_info_struct *si,
679					unsigned int prev)
680{
681	unsigned int max = si->max;
682	unsigned int i = prev;
683	int count;
684
685	/*
686	 * No need for swap_lock here: we're just looking
687	 * for whether an entry is in use, not modifying it; false
688	 * hits are okay, and sys_swapoff() has already prevented new
689	 * allocations from this area (while holding swap_lock).
690	 */
691	for (;;) {
692		if (++i >= max) {
693			if (!prev) {
694				i = 0;
695				break;
696			}
697			/*
698			 * No entries in use at top of swap_map,
699			 * loop back to start and recheck there.
700			 */
701			max = prev + 1;
702			prev = 0;
703			i = 1;
704		}
705		count = si->swap_map[i];
706		if (count && count != SWAP_MAP_BAD)
707			break;
708	}
709	return i;
710}
711
712/*
713 * We completely avoid races by reading each swap page in advance,
714 * and then search for the process using it.  All the necessary
715 * page table adjustments can then be made atomically.
716 */
717static int try_to_unuse(unsigned int type)
718{
719	struct swap_info_struct * si = &swap_info[type];
720	struct mm_struct *start_mm;
721	unsigned short *swap_map;
722	unsigned short swcount;
723	struct page *page;
724	swp_entry_t entry;
725	unsigned int i = 0;
726	int retval = 0;
727	int reset_overflow = 0;
728	int shmem;
729
730	/*
731	 * When searching mms for an entry, a good strategy is to
732	 * start at the first mm we freed the previous entry from
733	 * (though actually we don't notice whether we or coincidence
734	 * freed the entry).  Initialize this start_mm with a hold.
735	 *
736	 * A simpler strategy would be to start at the last mm we
737	 * freed the previous entry from; but that would take less
738	 * advantage of mmlist ordering, which clusters forked mms
739	 * together, child after parent.  If we race with dup_mmap(), we
740	 * prefer to resolve parent before child, lest we miss entries
741	 * duplicated after we scanned child: using last mm would invert
742	 * that.  Though it's only a serious concern when an overflowed
743	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
744	 */
745	start_mm = &init_mm;
746	atomic_inc(&init_mm.mm_users);
747
748	/*
749	 * Keep on scanning until all entries have gone.  Usually,
750	 * one pass through swap_map is enough, but not necessarily:
751	 * there are races when an instance of an entry might be missed.
752	 */
753	while ((i = find_next_to_unuse(si, i)) != 0) {
754		if (signal_pending(current)) {
755			retval = -EINTR;
756			break;
757		}
758
759		/*
760		 * Get a page for the entry, using the existing swap
761		 * cache page if there is one.  Otherwise, get a clean
762		 * page and read the swap into it.
763		 */
764		swap_map = &si->swap_map[i];
765		entry = swp_entry(type, i);
766		page = read_swap_cache_async(entry,
767					GFP_HIGHUSER_MOVABLE, NULL, 0);
768		if (!page) {
769			/*
770			 * Either swap_duplicate() failed because entry
771			 * has been freed independently, and will not be
772			 * reused since sys_swapoff() already disabled
773			 * allocation from here, or alloc_page() failed.
774			 */
775			if (!*swap_map)
776				continue;
777			retval = -ENOMEM;
778			break;
779		}
780
781		/*
782		 * Don't hold on to start_mm if it looks like exiting.
783		 */
784		if (atomic_read(&start_mm->mm_users) == 1) {
785			mmput(start_mm);
786			start_mm = &init_mm;
787			atomic_inc(&init_mm.mm_users);
788		}
789
790		/*
791		 * Wait for and lock page.  When do_swap_page races with
792		 * try_to_unuse, do_swap_page can handle the fault much
793		 * faster than try_to_unuse can locate the entry.  This
794		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
795		 * defer to do_swap_page in such a case - in some tests,
796		 * do_swap_page and try_to_unuse repeatedly compete.
797		 */
798		wait_on_page_locked(page);
799		wait_on_page_writeback(page);
800		lock_page(page);
801		wait_on_page_writeback(page);
802
803		/*
804		 * Remove all references to entry.
805		 * Whenever we reach init_mm, there's no address space
806		 * to search, but use it as a reminder to search shmem.
807		 */
808		shmem = 0;
809		swcount = *swap_map;
810		if (swcount > 1) {
811			if (start_mm == &init_mm)
812				shmem = shmem_unuse(entry, page);
813			else
814				retval = unuse_mm(start_mm, entry, page);
815		}
816		if (*swap_map > 1) {
817			int set_start_mm = (*swap_map >= swcount);
818			struct list_head *p = &start_mm->mmlist;
819			struct mm_struct *new_start_mm = start_mm;
820			struct mm_struct *prev_mm = start_mm;
821			struct mm_struct *mm;
822
823			atomic_inc(&new_start_mm->mm_users);
824			atomic_inc(&prev_mm->mm_users);
825			spin_lock(&mmlist_lock);
826			while (*swap_map > 1 && !retval && !shmem &&
827					(p = p->next) != &start_mm->mmlist) {
828				mm = list_entry(p, struct mm_struct, mmlist);
829				if (!atomic_inc_not_zero(&mm->mm_users))
830					continue;
831				spin_unlock(&mmlist_lock);
832				mmput(prev_mm);
833				prev_mm = mm;
834
835				cond_resched();
836
837				swcount = *swap_map;
838				if (swcount <= 1)
839					;
840				else if (mm == &init_mm) {
841					set_start_mm = 1;
842					shmem = shmem_unuse(entry, page);
843				} else
844					retval = unuse_mm(mm, entry, page);
845				if (set_start_mm && *swap_map < swcount) {
846					mmput(new_start_mm);
847					atomic_inc(&mm->mm_users);
848					new_start_mm = mm;
849					set_start_mm = 0;
850				}
851				spin_lock(&mmlist_lock);
852			}
853			spin_unlock(&mmlist_lock);
854			mmput(prev_mm);
855			mmput(start_mm);
856			start_mm = new_start_mm;
857		}
858		if (shmem) {
859			/* page has already been unlocked and released */
860			if (shmem > 0)
861				continue;
862			retval = shmem;
863			break;
864		}
865		if (retval) {
866			unlock_page(page);
867			page_cache_release(page);
868			break;
869		}
870
871		/*
872		 * How could swap count reach 0x7fff when the maximum
873		 * pid is 0x7fff, and there's no way to repeat a swap
874		 * page within an mm (except in shmem, where it's the
875		 * shared object which takes the reference count)?
876		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
877		 *
878		 * If that's wrong, then we should worry more about
879		 * exit_mmap() and do_munmap() cases described above:
880		 * we might be resetting SWAP_MAP_MAX too early here.
881		 * We know "Undead"s can happen, they're okay, so don't
882		 * report them; but do report if we reset SWAP_MAP_MAX.
883		 */
884		if (*swap_map == SWAP_MAP_MAX) {
885			spin_lock(&swap_lock);
886			*swap_map = 1;
887			spin_unlock(&swap_lock);
888			reset_overflow = 1;
889		}
890
891		/*
892		 * If a reference remains (rare), we would like to leave
893		 * the page in the swap cache; but try_to_unmap could
894		 * then re-duplicate the entry once we drop page lock,
895		 * so we might loop indefinitely; also, that page could
896		 * not be swapped out to other storage meanwhile.  So:
897		 * delete from cache even if there's another reference,
898		 * after ensuring that the data has been saved to disk -
899		 * since if the reference remains (rarer), it will be
900		 * read from disk into another page.  Splitting into two
901		 * pages would be incorrect if swap supported "shared
902		 * private" pages, but they are handled by tmpfs files.
903		 */
904		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
905			struct writeback_control wbc = {
906				.sync_mode = WB_SYNC_NONE,
907			};
908
909			swap_writepage(page, &wbc);
910			lock_page(page);
911			wait_on_page_writeback(page);
912		}
913		if (PageSwapCache(page))
914			delete_from_swap_cache(page);
915
916		/*
917		 * So we could skip searching mms once swap count went
918		 * to 1, we did not mark any present ptes as dirty: must
919		 * mark page dirty so shrink_page_list will preserve it.
920		 */
921		SetPageDirty(page);
922		unlock_page(page);
923		page_cache_release(page);
924
925		/*
926		 * Make sure that we aren't completely killing
927		 * interactive performance.
928		 */
929		cond_resched();
930	}
931
932	mmput(start_mm);
933	if (reset_overflow) {
934		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
935		swap_overflow = 0;
936	}
937	return retval;
938}
939
940/*
941 * After a successful try_to_unuse, if no swap is now in use, we know
942 * we can empty the mmlist.  swap_lock must be held on entry and exit.
943 * Note that mmlist_lock nests inside swap_lock, and an mm must be
944 * added to the mmlist just after page_duplicate - before would be racy.
945 */
946static void drain_mmlist(void)
947{
948	struct list_head *p, *next;
949	unsigned int i;
950
951	for (i = 0; i < nr_swapfiles; i++)
952		if (swap_info[i].inuse_pages)
953			return;
954	spin_lock(&mmlist_lock);
955	list_for_each_safe(p, next, &init_mm.mmlist)
956		list_del_init(p);
957	spin_unlock(&mmlist_lock);
958}
959
960/*
961 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
962 * corresponds to page offset `offset'.
963 */
964sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
965{
966	struct swap_extent *se = sis->curr_swap_extent;
967	struct swap_extent *start_se = se;
968
969	for ( ; ; ) {
970		struct list_head *lh;
971
972		if (se->start_page <= offset &&
973				offset < (se->start_page + se->nr_pages)) {
974			return se->start_block + (offset - se->start_page);
975		}
976		lh = se->list.next;
977		if (lh == &sis->extent_list)
978			lh = lh->next;
979		se = list_entry(lh, struct swap_extent, list);
980		sis->curr_swap_extent = se;
981		BUG_ON(se == start_se);		/* It *must* be present */
982	}
983}
984
985#ifdef CONFIG_HIBERNATION
986/*
987 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
988 * corresponding to given index in swap_info (swap type).
989 */
990sector_t swapdev_block(int swap_type, pgoff_t offset)
991{
992	struct swap_info_struct *sis;
993
994	if (swap_type >= nr_swapfiles)
995		return 0;
996
997	sis = swap_info + swap_type;
998	return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
999}
1000#endif /* CONFIG_HIBERNATION */
1001
1002/*
1003 * Free all of a swapdev's extent information
1004 */
1005static void destroy_swap_extents(struct swap_info_struct *sis)
1006{
1007	while (!list_empty(&sis->extent_list)) {
1008		struct swap_extent *se;
1009
1010		se = list_entry(sis->extent_list.next,
1011				struct swap_extent, list);
1012		list_del(&se->list);
1013		kfree(se);
1014	}
1015}
1016
1017/*
1018 * Add a block range (and the corresponding page range) into this swapdev's
1019 * extent list.  The extent list is kept sorted in page order.
1020 *
1021 * This function rather assumes that it is called in ascending page order.
1022 */
1023static int
1024add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1025		unsigned long nr_pages, sector_t start_block)
1026{
1027	struct swap_extent *se;
1028	struct swap_extent *new_se;
1029	struct list_head *lh;
1030
1031	lh = sis->extent_list.prev;	/* The highest page extent */
1032	if (lh != &sis->extent_list) {
1033		se = list_entry(lh, struct swap_extent, list);
1034		BUG_ON(se->start_page + se->nr_pages != start_page);
1035		if (se->start_block + se->nr_pages == start_block) {
1036			/* Merge it */
1037			se->nr_pages += nr_pages;
1038			return 0;
1039		}
1040	}
1041
1042	/*
1043	 * No merge.  Insert a new extent, preserving ordering.
1044	 */
1045	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1046	if (new_se == NULL)
1047		return -ENOMEM;
1048	new_se->start_page = start_page;
1049	new_se->nr_pages = nr_pages;
1050	new_se->start_block = start_block;
1051
1052	list_add_tail(&new_se->list, &sis->extent_list);
1053	return 1;
1054}
1055
1056/*
1057 * A `swap extent' is a simple thing which maps a contiguous range of pages
1058 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1059 * is built at swapon time and is then used at swap_writepage/swap_readpage
1060 * time for locating where on disk a page belongs.
1061 *
1062 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1063 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1064 * swap files identically.
1065 *
1066 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1067 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1068 * swapfiles are handled *identically* after swapon time.
1069 *
1070 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1071 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1072 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1073 * requirements, they are simply tossed out - we will never use those blocks
1074 * for swapping.
1075 *
1076 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1077 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1078 * which will scribble on the fs.
1079 *
1080 * The amount of disk space which a single swap extent represents varies.
1081 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1082 * extents in the list.  To avoid much list walking, we cache the previous
1083 * search location in `curr_swap_extent', and start new searches from there.
1084 * This is extremely effective.  The average number of iterations in
1085 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1086 */
1087static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1088{
1089	struct inode *inode;
1090	unsigned blocks_per_page;
1091	unsigned long page_no;
1092	unsigned blkbits;
1093	sector_t probe_block;
1094	sector_t last_block;
1095	sector_t lowest_block = -1;
1096	sector_t highest_block = 0;
1097	int nr_extents = 0;
1098	int ret;
1099
1100	inode = sis->swap_file->f_mapping->host;
1101	if (S_ISBLK(inode->i_mode)) {
1102		ret = add_swap_extent(sis, 0, sis->max, 0);
1103		*span = sis->pages;
1104		goto done;
1105	}
1106
1107	blkbits = inode->i_blkbits;
1108	blocks_per_page = PAGE_SIZE >> blkbits;
1109
1110	/*
1111	 * Map all the blocks into the extent list.  This code doesn't try
1112	 * to be very smart.
1113	 */
1114	probe_block = 0;
1115	page_no = 0;
1116	last_block = i_size_read(inode) >> blkbits;
1117	while ((probe_block + blocks_per_page) <= last_block &&
1118			page_no < sis->max) {
1119		unsigned block_in_page;
1120		sector_t first_block;
1121
1122		first_block = bmap(inode, probe_block);
1123		if (first_block == 0)
1124			goto bad_bmap;
1125
1126		/*
1127		 * It must be PAGE_SIZE aligned on-disk
1128		 */
1129		if (first_block & (blocks_per_page - 1)) {
1130			probe_block++;
1131			goto reprobe;
1132		}
1133
1134		for (block_in_page = 1; block_in_page < blocks_per_page;
1135					block_in_page++) {
1136			sector_t block;
1137
1138			block = bmap(inode, probe_block + block_in_page);
1139			if (block == 0)
1140				goto bad_bmap;
1141			if (block != first_block + block_in_page) {
1142				/* Discontiguity */
1143				probe_block++;
1144				goto reprobe;
1145			}
1146		}
1147
1148		first_block >>= (PAGE_SHIFT - blkbits);
1149		if (page_no) {	/* exclude the header page */
1150			if (first_block < lowest_block)
1151				lowest_block = first_block;
1152			if (first_block > highest_block)
1153				highest_block = first_block;
1154		}
1155
1156		/*
1157		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1158		 */
1159		ret = add_swap_extent(sis, page_no, 1, first_block);
1160		if (ret < 0)
1161			goto out;
1162		nr_extents += ret;
1163		page_no++;
1164		probe_block += blocks_per_page;
1165reprobe:
1166		continue;
1167	}
1168	ret = nr_extents;
1169	*span = 1 + highest_block - lowest_block;
1170	if (page_no == 0)
1171		page_no = 1;	/* force Empty message */
1172	sis->max = page_no;
1173	sis->pages = page_no - 1;
1174	sis->highest_bit = page_no - 1;
1175done:
1176	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1177					struct swap_extent, list);
1178	goto out;
1179bad_bmap:
1180	printk(KERN_ERR "swapon: swapfile has holes\n");
1181	ret = -EINVAL;
1182out:
1183	return ret;
1184}
1185
1186#if 0	/* We don't need this yet */
1187#include <linux/backing-dev.h>
1188int page_queue_congested(struct page *page)
1189{
1190	struct backing_dev_info *bdi;
1191
1192	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1193
1194	if (PageSwapCache(page)) {
1195		swp_entry_t entry = { .val = page_private(page) };
1196		struct swap_info_struct *sis;
1197
1198		sis = get_swap_info_struct(swp_type(entry));
1199		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1200	} else
1201		bdi = page->mapping->backing_dev_info;
1202	return bdi_write_congested(bdi);
1203}
1204#endif
1205
1206asmlinkage long sys_swapoff(const char __user * specialfile)
1207{
1208	struct swap_info_struct * p = NULL;
1209	unsigned short *swap_map;
1210	struct file *swap_file, *victim;
1211	struct address_space *mapping;
1212	struct inode *inode;
1213	char * pathname;
1214	int i, type, prev;
1215	int err;
1216
1217	if (!capable(CAP_SYS_ADMIN))
1218		return -EPERM;
1219
1220	pathname = getname(specialfile);
1221	err = PTR_ERR(pathname);
1222	if (IS_ERR(pathname))
1223		goto out;
1224
1225	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1226	putname(pathname);
1227	err = PTR_ERR(victim);
1228	if (IS_ERR(victim))
1229		goto out;
1230
1231	mapping = victim->f_mapping;
1232	prev = -1;
1233	spin_lock(&swap_lock);
1234	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1235		p = swap_info + type;
1236		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1237			if (p->swap_file->f_mapping == mapping)
1238				break;
1239		}
1240		prev = type;
1241	}
1242	if (type < 0) {
1243		err = -EINVAL;
1244		spin_unlock(&swap_lock);
1245		goto out_dput;
1246	}
1247	if (!security_vm_enough_memory(p->pages))
1248		vm_unacct_memory(p->pages);
1249	else {
1250		err = -ENOMEM;
1251		spin_unlock(&swap_lock);
1252		goto out_dput;
1253	}
1254	if (prev < 0) {
1255		swap_list.head = p->next;
1256	} else {
1257		swap_info[prev].next = p->next;
1258	}
1259	if (type == swap_list.next) {
1260		/* just pick something that's safe... */
1261		swap_list.next = swap_list.head;
1262	}
1263	nr_swap_pages -= p->pages;
1264	total_swap_pages -= p->pages;
1265	p->flags &= ~SWP_WRITEOK;
1266	spin_unlock(&swap_lock);
1267
1268	current->flags |= PF_SWAPOFF;
1269	err = try_to_unuse(type);
1270	current->flags &= ~PF_SWAPOFF;
1271
1272	if (err) {
1273		/* re-insert swap space back into swap_list */
1274		spin_lock(&swap_lock);
1275		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1276			if (p->prio >= swap_info[i].prio)
1277				break;
1278		p->next = i;
1279		if (prev < 0)
1280			swap_list.head = swap_list.next = p - swap_info;
1281		else
1282			swap_info[prev].next = p - swap_info;
1283		nr_swap_pages += p->pages;
1284		total_swap_pages += p->pages;
1285		p->flags |= SWP_WRITEOK;
1286		spin_unlock(&swap_lock);
1287		goto out_dput;
1288	}
1289
1290	/* wait for any unplug function to finish */
1291	down_write(&swap_unplug_sem);
1292	up_write(&swap_unplug_sem);
1293
1294	destroy_swap_extents(p);
1295	mutex_lock(&swapon_mutex);
1296	spin_lock(&swap_lock);
1297	drain_mmlist();
1298
1299	/* wait for anyone still in scan_swap_map */
1300	p->highest_bit = 0;		/* cuts scans short */
1301	while (p->flags >= SWP_SCANNING) {
1302		spin_unlock(&swap_lock);
1303		schedule_timeout_uninterruptible(1);
1304		spin_lock(&swap_lock);
1305	}
1306
1307	swap_file = p->swap_file;
1308	p->swap_file = NULL;
1309	p->max = 0;
1310	swap_map = p->swap_map;
1311	p->swap_map = NULL;
1312	p->flags = 0;
1313	spin_unlock(&swap_lock);
1314	mutex_unlock(&swapon_mutex);
1315	vfree(swap_map);
1316	inode = mapping->host;
1317	if (S_ISBLK(inode->i_mode)) {
1318		struct block_device *bdev = I_BDEV(inode);
1319		set_blocksize(bdev, p->old_block_size);
1320		bd_release(bdev);
1321	} else {
1322		mutex_lock(&inode->i_mutex);
1323		inode->i_flags &= ~S_SWAPFILE;
1324		mutex_unlock(&inode->i_mutex);
1325	}
1326	filp_close(swap_file, NULL);
1327	err = 0;
1328
1329out_dput:
1330	filp_close(victim, NULL);
1331out:
1332	return err;
1333}
1334
1335#ifdef CONFIG_PROC_FS
1336/* iterator */
1337static void *swap_start(struct seq_file *swap, loff_t *pos)
1338{
1339	struct swap_info_struct *ptr = swap_info;
1340	int i;
1341	loff_t l = *pos;
1342
1343	mutex_lock(&swapon_mutex);
1344
1345	if (!l)
1346		return SEQ_START_TOKEN;
1347
1348	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1349		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1350			continue;
1351		if (!--l)
1352			return ptr;
1353	}
1354
1355	return NULL;
1356}
1357
1358static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1359{
1360	struct swap_info_struct *ptr;
1361	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1362
1363	if (v == SEQ_START_TOKEN)
1364		ptr = swap_info;
1365	else {
1366		ptr = v;
1367		ptr++;
1368	}
1369
1370	for (; ptr < endptr; ptr++) {
1371		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1372			continue;
1373		++*pos;
1374		return ptr;
1375	}
1376
1377	return NULL;
1378}
1379
1380static void swap_stop(struct seq_file *swap, void *v)
1381{
1382	mutex_unlock(&swapon_mutex);
1383}
1384
1385static int swap_show(struct seq_file *swap, void *v)
1386{
1387	struct swap_info_struct *ptr = v;
1388	struct file *file;
1389	int len;
1390
1391	if (ptr == SEQ_START_TOKEN) {
1392		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1393		return 0;
1394	}
1395
1396	file = ptr->swap_file;
1397	len = seq_path(swap, &file->f_path, " \t\n\\");
1398	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1399		       len < 40 ? 40 - len : 1, " ",
1400		       S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1401				"partition" : "file\t",
1402		       ptr->pages << (PAGE_SHIFT - 10),
1403		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1404		       ptr->prio);
1405	return 0;
1406}
1407
1408static const struct seq_operations swaps_op = {
1409	.start =	swap_start,
1410	.next =		swap_next,
1411	.stop =		swap_stop,
1412	.show =		swap_show
1413};
1414
1415static int swaps_open(struct inode *inode, struct file *file)
1416{
1417	return seq_open(file, &swaps_op);
1418}
1419
1420static const struct file_operations proc_swaps_operations = {
1421	.open		= swaps_open,
1422	.read		= seq_read,
1423	.llseek		= seq_lseek,
1424	.release	= seq_release,
1425};
1426
1427static int __init procswaps_init(void)
1428{
1429	struct proc_dir_entry *entry;
1430
1431	entry = create_proc_entry("swaps", 0, NULL);
1432	if (entry)
1433		entry->proc_fops = &proc_swaps_operations;
1434	return 0;
1435}
1436__initcall(procswaps_init);
1437#endif /* CONFIG_PROC_FS */
1438
1439/*
1440 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1441 *
1442 * The swapon system call
1443 */
1444asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1445{
1446	struct swap_info_struct * p;
1447	char *name = NULL;
1448	struct block_device *bdev = NULL;
1449	struct file *swap_file = NULL;
1450	struct address_space *mapping;
1451	unsigned int type;
1452	int i, prev;
1453	int error;
1454	static int least_priority;
1455	union swap_header *swap_header = NULL;
1456	int swap_header_version;
1457	unsigned int nr_good_pages = 0;
1458	int nr_extents = 0;
1459	sector_t span;
1460	unsigned long maxpages = 1;
1461	int swapfilesize;
1462	unsigned short *swap_map;
1463	struct page *page = NULL;
1464	struct inode *inode = NULL;
1465	int did_down = 0;
1466
1467	if (!capable(CAP_SYS_ADMIN))
1468		return -EPERM;
1469	spin_lock(&swap_lock);
1470	p = swap_info;
1471	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1472		if (!(p->flags & SWP_USED))
1473			break;
1474	error = -EPERM;
1475	if (type >= MAX_SWAPFILES) {
1476		spin_unlock(&swap_lock);
1477		goto out;
1478	}
1479	if (type >= nr_swapfiles)
1480		nr_swapfiles = type+1;
1481	INIT_LIST_HEAD(&p->extent_list);
1482	p->flags = SWP_USED;
1483	p->swap_file = NULL;
1484	p->old_block_size = 0;
1485	p->swap_map = NULL;
1486	p->lowest_bit = 0;
1487	p->highest_bit = 0;
1488	p->cluster_nr = 0;
1489	p->inuse_pages = 0;
1490	p->next = -1;
1491	if (swap_flags & SWAP_FLAG_PREFER) {
1492		p->prio =
1493		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1494	} else {
1495		p->prio = --least_priority;
1496	}
1497	spin_unlock(&swap_lock);
1498	name = getname(specialfile);
1499	error = PTR_ERR(name);
1500	if (IS_ERR(name)) {
1501		name = NULL;
1502		goto bad_swap_2;
1503	}
1504	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1505	error = PTR_ERR(swap_file);
1506	if (IS_ERR(swap_file)) {
1507		swap_file = NULL;
1508		goto bad_swap_2;
1509	}
1510
1511	p->swap_file = swap_file;
1512	mapping = swap_file->f_mapping;
1513	inode = mapping->host;
1514
1515	error = -EBUSY;
1516	for (i = 0; i < nr_swapfiles; i++) {
1517		struct swap_info_struct *q = &swap_info[i];
1518
1519		if (i == type || !q->swap_file)
1520			continue;
1521		if (mapping == q->swap_file->f_mapping)
1522			goto bad_swap;
1523	}
1524
1525	error = -EINVAL;
1526	if (S_ISBLK(inode->i_mode)) {
1527		bdev = I_BDEV(inode);
1528		error = bd_claim(bdev, sys_swapon);
1529		if (error < 0) {
1530			bdev = NULL;
1531			error = -EINVAL;
1532			goto bad_swap;
1533		}
1534		p->old_block_size = block_size(bdev);
1535		error = set_blocksize(bdev, PAGE_SIZE);
1536		if (error < 0)
1537			goto bad_swap;
1538		p->bdev = bdev;
1539	} else if (S_ISREG(inode->i_mode)) {
1540		p->bdev = inode->i_sb->s_bdev;
1541		mutex_lock(&inode->i_mutex);
1542		did_down = 1;
1543		if (IS_SWAPFILE(inode)) {
1544			error = -EBUSY;
1545			goto bad_swap;
1546		}
1547	} else {
1548		goto bad_swap;
1549	}
1550
1551	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1552
1553	/*
1554	 * Read the swap header.
1555	 */
1556	if (!mapping->a_ops->readpage) {
1557		error = -EINVAL;
1558		goto bad_swap;
1559	}
1560	page = read_mapping_page(mapping, 0, swap_file);
1561	if (IS_ERR(page)) {
1562		error = PTR_ERR(page);
1563		goto bad_swap;
1564	}
1565	kmap(page);
1566	swap_header = page_address(page);
1567
1568	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1569		swap_header_version = 1;
1570	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1571		swap_header_version = 2;
1572	else {
1573		printk(KERN_ERR "Unable to find swap-space signature\n");
1574		error = -EINVAL;
1575		goto bad_swap;
1576	}
1577
1578	switch (swap_header_version) {
1579	case 1:
1580		printk(KERN_ERR "version 0 swap is no longer supported. "
1581			"Use mkswap -v1 %s\n", name);
1582		error = -EINVAL;
1583		goto bad_swap;
1584	case 2:
1585		/* Check the swap header's sub-version and the size of
1586                   the swap file and bad block lists */
1587		if (swap_header->info.version != 1) {
1588			printk(KERN_WARNING
1589			       "Unable to handle swap header version %d\n",
1590			       swap_header->info.version);
1591			error = -EINVAL;
1592			goto bad_swap;
1593		}
1594
1595		p->lowest_bit  = 1;
1596		p->cluster_next = 1;
1597
1598		/*
1599		 * Find out how many pages are allowed for a single swap
1600		 * device. There are two limiting factors: 1) the number of
1601		 * bits for the swap offset in the swp_entry_t type and
1602		 * 2) the number of bits in the a swap pte as defined by
1603		 * the different architectures. In order to find the
1604		 * largest possible bit mask a swap entry with swap type 0
1605		 * and swap offset ~0UL is created, encoded to a swap pte,
1606		 * decoded to a swp_entry_t again and finally the swap
1607		 * offset is extracted. This will mask all the bits from
1608		 * the initial ~0UL mask that can't be encoded in either
1609		 * the swp_entry_t or the architecture definition of a
1610		 * swap pte.
1611		 */
1612		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1613		if (maxpages > swap_header->info.last_page)
1614			maxpages = swap_header->info.last_page;
1615		p->highest_bit = maxpages - 1;
1616
1617		error = -EINVAL;
1618		if (!maxpages)
1619			goto bad_swap;
1620		if (swapfilesize && maxpages > swapfilesize) {
1621			printk(KERN_WARNING
1622			       "Swap area shorter than signature indicates\n");
1623			goto bad_swap;
1624		}
1625		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1626			goto bad_swap;
1627		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1628			goto bad_swap;
1629
1630		/* OK, set up the swap map and apply the bad block list */
1631		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1632			error = -ENOMEM;
1633			goto bad_swap;
1634		}
1635
1636		error = 0;
1637		memset(p->swap_map, 0, maxpages * sizeof(short));
1638		for (i = 0; i < swap_header->info.nr_badpages; i++) {
1639			int page_nr = swap_header->info.badpages[i];
1640			if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1641				error = -EINVAL;
1642			else
1643				p->swap_map[page_nr] = SWAP_MAP_BAD;
1644		}
1645		nr_good_pages = swap_header->info.last_page -
1646				swap_header->info.nr_badpages -
1647				1 /* header page */;
1648		if (error)
1649			goto bad_swap;
1650	}
1651
1652	if (nr_good_pages) {
1653		p->swap_map[0] = SWAP_MAP_BAD;
1654		p->max = maxpages;
1655		p->pages = nr_good_pages;
1656		nr_extents = setup_swap_extents(p, &span);
1657		if (nr_extents < 0) {
1658			error = nr_extents;
1659			goto bad_swap;
1660		}
1661		nr_good_pages = p->pages;
1662	}
1663	if (!nr_good_pages) {
1664		printk(KERN_WARNING "Empty swap-file\n");
1665		error = -EINVAL;
1666		goto bad_swap;
1667	}
1668
1669	mutex_lock(&swapon_mutex);
1670	spin_lock(&swap_lock);
1671	p->flags = SWP_ACTIVE;
1672	nr_swap_pages += nr_good_pages;
1673	total_swap_pages += nr_good_pages;
1674
1675	printk(KERN_INFO "Adding %uk swap on %s.  "
1676			"Priority:%d extents:%d across:%lluk\n",
1677		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1678		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1679
1680	/* insert swap space into swap_list: */
1681	prev = -1;
1682	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1683		if (p->prio >= swap_info[i].prio) {
1684			break;
1685		}
1686		prev = i;
1687	}
1688	p->next = i;
1689	if (prev < 0) {
1690		swap_list.head = swap_list.next = p - swap_info;
1691	} else {
1692		swap_info[prev].next = p - swap_info;
1693	}
1694	spin_unlock(&swap_lock);
1695	mutex_unlock(&swapon_mutex);
1696	error = 0;
1697	goto out;
1698bad_swap:
1699	if (bdev) {
1700		set_blocksize(bdev, p->old_block_size);
1701		bd_release(bdev);
1702	}
1703	destroy_swap_extents(p);
1704bad_swap_2:
1705	spin_lock(&swap_lock);
1706	swap_map = p->swap_map;
1707	p->swap_file = NULL;
1708	p->swap_map = NULL;
1709	p->flags = 0;
1710	if (!(swap_flags & SWAP_FLAG_PREFER))
1711		++least_priority;
1712	spin_unlock(&swap_lock);
1713	vfree(swap_map);
1714	if (swap_file)
1715		filp_close(swap_file, NULL);
1716out:
1717	if (page && !IS_ERR(page)) {
1718		kunmap(page);
1719		page_cache_release(page);
1720	}
1721	if (name)
1722		putname(name);
1723	if (did_down) {
1724		if (!error)
1725			inode->i_flags |= S_SWAPFILE;
1726		mutex_unlock(&inode->i_mutex);
1727	}
1728	return error;
1729}
1730
1731void si_swapinfo(struct sysinfo *val)
1732{
1733	unsigned int i;
1734	unsigned long nr_to_be_unused = 0;
1735
1736	spin_lock(&swap_lock);
1737	for (i = 0; i < nr_swapfiles; i++) {
1738		if (!(swap_info[i].flags & SWP_USED) ||
1739		     (swap_info[i].flags & SWP_WRITEOK))
1740			continue;
1741		nr_to_be_unused += swap_info[i].inuse_pages;
1742	}
1743	val->freeswap = nr_swap_pages + nr_to_be_unused;
1744	val->totalswap = total_swap_pages + nr_to_be_unused;
1745	spin_unlock(&swap_lock);
1746}
1747
1748/*
1749 * Verify that a swap entry is valid and increment its swap map count.
1750 *
1751 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1752 * "permanent", but will be reclaimed by the next swapoff.
1753 */
1754int swap_duplicate(swp_entry_t entry)
1755{
1756	struct swap_info_struct * p;
1757	unsigned long offset, type;
1758	int result = 0;
1759
1760	if (is_migration_entry(entry))
1761		return 1;
1762
1763	type = swp_type(entry);
1764	if (type >= nr_swapfiles)
1765		goto bad_file;
1766	p = type + swap_info;
1767	offset = swp_offset(entry);
1768
1769	spin_lock(&swap_lock);
1770	if (offset < p->max && p->swap_map[offset]) {
1771		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1772			p->swap_map[offset]++;
1773			result = 1;
1774		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1775			if (swap_overflow++ < 5)
1776				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1777			p->swap_map[offset] = SWAP_MAP_MAX;
1778			result = 1;
1779		}
1780	}
1781	spin_unlock(&swap_lock);
1782out:
1783	return result;
1784
1785bad_file:
1786	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1787	goto out;
1788}
1789
1790struct swap_info_struct *
1791get_swap_info_struct(unsigned type)
1792{
1793	return &swap_info[type];
1794}
1795
1796/*
1797 * swap_lock prevents swap_map being freed. Don't grab an extra
1798 * reference on the swaphandle, it doesn't matter if it becomes unused.
1799 */
1800int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1801{
1802	struct swap_info_struct *si;
1803	int our_page_cluster = page_cluster;
1804	pgoff_t target, toff;
1805	pgoff_t base, end;
1806	int nr_pages = 0;
1807
1808	if (!our_page_cluster)	/* no readahead */
1809		return 0;
1810
1811	si = &swap_info[swp_type(entry)];
1812	target = swp_offset(entry);
1813	base = (target >> our_page_cluster) << our_page_cluster;
1814	end = base + (1 << our_page_cluster);
1815	if (!base)		/* first page is swap header */
1816		base++;
1817
1818	spin_lock(&swap_lock);
1819	if (end > si->max)	/* don't go beyond end of map */
1820		end = si->max;
1821
1822	/* Count contiguous allocated slots above our target */
1823	for (toff = target; ++toff < end; nr_pages++) {
1824		/* Don't read in free or bad pages */
1825		if (!si->swap_map[toff])
1826			break;
1827		if (si->swap_map[toff] == SWAP_MAP_BAD)
1828			break;
1829	}
1830	/* Count contiguous allocated slots below our target */
1831	for (toff = target; --toff >= base; nr_pages++) {
1832		/* Don't read in free or bad pages */
1833		if (!si->swap_map[toff])
1834			break;
1835		if (si->swap_map[toff] == SWAP_MAP_BAD)
1836			break;
1837	}
1838	spin_unlock(&swap_lock);
1839
1840	/*
1841	 * Indicate starting offset, and return number of pages to get:
1842	 * if only 1, say 0, since there's then no readahead to be done.
1843	 */
1844	*offset = ++toff;
1845	return nr_pages? ++nr_pages: 0;
1846}
1847