swapfile.c revision f29ad6a99b596b8169744d107bf088e8be9e8d0d
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/random.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
28#include <linux/mutex.h>
29#include <linux/capability.h>
30#include <linux/syscalls.h>
31#include <linux/memcontrol.h>
32
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <linux/swapops.h>
36#include <linux/page_cgroup.h>
37
38static DEFINE_SPINLOCK(swap_lock);
39static unsigned int nr_swapfiles;
40long nr_swap_pages;
41long total_swap_pages;
42static int swap_overflow;
43static int least_priority;
44
45static const char Bad_file[] = "Bad swap file entry ";
46static const char Unused_file[] = "Unused swap file entry ";
47static const char Bad_offset[] = "Bad swap offset entry ";
48static const char Unused_offset[] = "Unused swap offset entry ";
49
50static struct swap_list_t swap_list = {-1, -1};
51
52static struct swap_info_struct swap_info[MAX_SWAPFILES];
53
54static DEFINE_MUTEX(swapon_mutex);
55
56/* For reference count accounting in swap_map */
57/* enum for swap_map[] handling. internal use only */
58enum {
59	SWAP_MAP = 0,	/* ops for reference from swap users */
60	SWAP_CACHE,	/* ops for reference from swap cache */
61};
62
63static inline int swap_count(unsigned short ent)
64{
65	return ent & SWAP_COUNT_MASK;
66}
67
68static inline bool swap_has_cache(unsigned short ent)
69{
70	return !!(ent & SWAP_HAS_CACHE);
71}
72
73static inline unsigned short encode_swapmap(int count, bool has_cache)
74{
75	unsigned short ret = count;
76
77	if (has_cache)
78		return SWAP_HAS_CACHE | ret;
79	return ret;
80}
81
82/* returnes 1 if swap entry is freed */
83static int
84__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
85{
86	int type = si - swap_info;
87	swp_entry_t entry = swp_entry(type, offset);
88	struct page *page;
89	int ret = 0;
90
91	page = find_get_page(&swapper_space, entry.val);
92	if (!page)
93		return 0;
94	/*
95	 * This function is called from scan_swap_map() and it's called
96	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
97	 * We have to use trylock for avoiding deadlock. This is a special
98	 * case and you should use try_to_free_swap() with explicit lock_page()
99	 * in usual operations.
100	 */
101	if (trylock_page(page)) {
102		ret = try_to_free_swap(page);
103		unlock_page(page);
104	}
105	page_cache_release(page);
106	return ret;
107}
108
109/*
110 * We need this because the bdev->unplug_fn can sleep and we cannot
111 * hold swap_lock while calling the unplug_fn. And swap_lock
112 * cannot be turned into a mutex.
113 */
114static DECLARE_RWSEM(swap_unplug_sem);
115
116void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
117{
118	swp_entry_t entry;
119
120	down_read(&swap_unplug_sem);
121	entry.val = page_private(page);
122	if (PageSwapCache(page)) {
123		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
124		struct backing_dev_info *bdi;
125
126		/*
127		 * If the page is removed from swapcache from under us (with a
128		 * racy try_to_unuse/swapoff) we need an additional reference
129		 * count to avoid reading garbage from page_private(page) above.
130		 * If the WARN_ON triggers during a swapoff it maybe the race
131		 * condition and it's harmless. However if it triggers without
132		 * swapoff it signals a problem.
133		 */
134		WARN_ON(page_count(page) <= 1);
135
136		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
137		blk_run_backing_dev(bdi, page);
138	}
139	up_read(&swap_unplug_sem);
140}
141
142/*
143 * swapon tell device that all the old swap contents can be discarded,
144 * to allow the swap device to optimize its wear-levelling.
145 */
146static int discard_swap(struct swap_info_struct *si)
147{
148	struct swap_extent *se;
149	int err = 0;
150
151	list_for_each_entry(se, &si->extent_list, list) {
152		sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
153		sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
154
155		if (se->start_page == 0) {
156			/* Do not discard the swap header page! */
157			start_block += 1 << (PAGE_SHIFT - 9);
158			nr_blocks -= 1 << (PAGE_SHIFT - 9);
159			if (!nr_blocks)
160				continue;
161		}
162
163		err = blkdev_issue_discard(si->bdev, start_block,
164						nr_blocks, GFP_KERNEL,
165						DISCARD_FL_BARRIER);
166		if (err)
167			break;
168
169		cond_resched();
170	}
171	return err;		/* That will often be -EOPNOTSUPP */
172}
173
174/*
175 * swap allocation tell device that a cluster of swap can now be discarded,
176 * to allow the swap device to optimize its wear-levelling.
177 */
178static void discard_swap_cluster(struct swap_info_struct *si,
179				 pgoff_t start_page, pgoff_t nr_pages)
180{
181	struct swap_extent *se = si->curr_swap_extent;
182	int found_extent = 0;
183
184	while (nr_pages) {
185		struct list_head *lh;
186
187		if (se->start_page <= start_page &&
188		    start_page < se->start_page + se->nr_pages) {
189			pgoff_t offset = start_page - se->start_page;
190			sector_t start_block = se->start_block + offset;
191			sector_t nr_blocks = se->nr_pages - offset;
192
193			if (nr_blocks > nr_pages)
194				nr_blocks = nr_pages;
195			start_page += nr_blocks;
196			nr_pages -= nr_blocks;
197
198			if (!found_extent++)
199				si->curr_swap_extent = se;
200
201			start_block <<= PAGE_SHIFT - 9;
202			nr_blocks <<= PAGE_SHIFT - 9;
203			if (blkdev_issue_discard(si->bdev, start_block,
204							nr_blocks, GFP_NOIO,
205							DISCARD_FL_BARRIER))
206				break;
207		}
208
209		lh = se->list.next;
210		if (lh == &si->extent_list)
211			lh = lh->next;
212		se = list_entry(lh, struct swap_extent, list);
213	}
214}
215
216static int wait_for_discard(void *word)
217{
218	schedule();
219	return 0;
220}
221
222#define SWAPFILE_CLUSTER	256
223#define LATENCY_LIMIT		256
224
225static inline unsigned long scan_swap_map(struct swap_info_struct *si,
226					  int cache)
227{
228	unsigned long offset;
229	unsigned long scan_base;
230	unsigned long last_in_cluster = 0;
231	int latency_ration = LATENCY_LIMIT;
232	int found_free_cluster = 0;
233
234	/*
235	 * We try to cluster swap pages by allocating them sequentially
236	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
237	 * way, however, we resort to first-free allocation, starting
238	 * a new cluster.  This prevents us from scattering swap pages
239	 * all over the entire swap partition, so that we reduce
240	 * overall disk seek times between swap pages.  -- sct
241	 * But we do now try to find an empty cluster.  -Andrea
242	 * And we let swap pages go all over an SSD partition.  Hugh
243	 */
244
245	si->flags += SWP_SCANNING;
246	scan_base = offset = si->cluster_next;
247
248	if (unlikely(!si->cluster_nr--)) {
249		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
250			si->cluster_nr = SWAPFILE_CLUSTER - 1;
251			goto checks;
252		}
253		if (si->flags & SWP_DISCARDABLE) {
254			/*
255			 * Start range check on racing allocations, in case
256			 * they overlap the cluster we eventually decide on
257			 * (we scan without swap_lock to allow preemption).
258			 * It's hardly conceivable that cluster_nr could be
259			 * wrapped during our scan, but don't depend on it.
260			 */
261			if (si->lowest_alloc)
262				goto checks;
263			si->lowest_alloc = si->max;
264			si->highest_alloc = 0;
265		}
266		spin_unlock(&swap_lock);
267
268		/*
269		 * If seek is expensive, start searching for new cluster from
270		 * start of partition, to minimize the span of allocated swap.
271		 * But if seek is cheap, search from our current position, so
272		 * that swap is allocated from all over the partition: if the
273		 * Flash Translation Layer only remaps within limited zones,
274		 * we don't want to wear out the first zone too quickly.
275		 */
276		if (!(si->flags & SWP_SOLIDSTATE))
277			scan_base = offset = si->lowest_bit;
278		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
279
280		/* Locate the first empty (unaligned) cluster */
281		for (; last_in_cluster <= si->highest_bit; offset++) {
282			if (si->swap_map[offset])
283				last_in_cluster = offset + SWAPFILE_CLUSTER;
284			else if (offset == last_in_cluster) {
285				spin_lock(&swap_lock);
286				offset -= SWAPFILE_CLUSTER - 1;
287				si->cluster_next = offset;
288				si->cluster_nr = SWAPFILE_CLUSTER - 1;
289				found_free_cluster = 1;
290				goto checks;
291			}
292			if (unlikely(--latency_ration < 0)) {
293				cond_resched();
294				latency_ration = LATENCY_LIMIT;
295			}
296		}
297
298		offset = si->lowest_bit;
299		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
300
301		/* Locate the first empty (unaligned) cluster */
302		for (; last_in_cluster < scan_base; offset++) {
303			if (si->swap_map[offset])
304				last_in_cluster = offset + SWAPFILE_CLUSTER;
305			else if (offset == last_in_cluster) {
306				spin_lock(&swap_lock);
307				offset -= SWAPFILE_CLUSTER - 1;
308				si->cluster_next = offset;
309				si->cluster_nr = SWAPFILE_CLUSTER - 1;
310				found_free_cluster = 1;
311				goto checks;
312			}
313			if (unlikely(--latency_ration < 0)) {
314				cond_resched();
315				latency_ration = LATENCY_LIMIT;
316			}
317		}
318
319		offset = scan_base;
320		spin_lock(&swap_lock);
321		si->cluster_nr = SWAPFILE_CLUSTER - 1;
322		si->lowest_alloc = 0;
323	}
324
325checks:
326	if (!(si->flags & SWP_WRITEOK))
327		goto no_page;
328	if (!si->highest_bit)
329		goto no_page;
330	if (offset > si->highest_bit)
331		scan_base = offset = si->lowest_bit;
332
333	/* reuse swap entry of cache-only swap if not busy. */
334	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
335		int swap_was_freed;
336		spin_unlock(&swap_lock);
337		swap_was_freed = __try_to_reclaim_swap(si, offset);
338		spin_lock(&swap_lock);
339		/* entry was freed successfully, try to use this again */
340		if (swap_was_freed)
341			goto checks;
342		goto scan; /* check next one */
343	}
344
345	if (si->swap_map[offset])
346		goto scan;
347
348	if (offset == si->lowest_bit)
349		si->lowest_bit++;
350	if (offset == si->highest_bit)
351		si->highest_bit--;
352	si->inuse_pages++;
353	if (si->inuse_pages == si->pages) {
354		si->lowest_bit = si->max;
355		si->highest_bit = 0;
356	}
357	if (cache == SWAP_CACHE) /* at usual swap-out via vmscan.c */
358		si->swap_map[offset] = encode_swapmap(0, true);
359	else /* at suspend */
360		si->swap_map[offset] = encode_swapmap(1, false);
361	si->cluster_next = offset + 1;
362	si->flags -= SWP_SCANNING;
363
364	if (si->lowest_alloc) {
365		/*
366		 * Only set when SWP_DISCARDABLE, and there's a scan
367		 * for a free cluster in progress or just completed.
368		 */
369		if (found_free_cluster) {
370			/*
371			 * To optimize wear-levelling, discard the
372			 * old data of the cluster, taking care not to
373			 * discard any of its pages that have already
374			 * been allocated by racing tasks (offset has
375			 * already stepped over any at the beginning).
376			 */
377			if (offset < si->highest_alloc &&
378			    si->lowest_alloc <= last_in_cluster)
379				last_in_cluster = si->lowest_alloc - 1;
380			si->flags |= SWP_DISCARDING;
381			spin_unlock(&swap_lock);
382
383			if (offset < last_in_cluster)
384				discard_swap_cluster(si, offset,
385					last_in_cluster - offset + 1);
386
387			spin_lock(&swap_lock);
388			si->lowest_alloc = 0;
389			si->flags &= ~SWP_DISCARDING;
390
391			smp_mb();	/* wake_up_bit advises this */
392			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
393
394		} else if (si->flags & SWP_DISCARDING) {
395			/*
396			 * Delay using pages allocated by racing tasks
397			 * until the whole discard has been issued. We
398			 * could defer that delay until swap_writepage,
399			 * but it's easier to keep this self-contained.
400			 */
401			spin_unlock(&swap_lock);
402			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
403				wait_for_discard, TASK_UNINTERRUPTIBLE);
404			spin_lock(&swap_lock);
405		} else {
406			/*
407			 * Note pages allocated by racing tasks while
408			 * scan for a free cluster is in progress, so
409			 * that its final discard can exclude them.
410			 */
411			if (offset < si->lowest_alloc)
412				si->lowest_alloc = offset;
413			if (offset > si->highest_alloc)
414				si->highest_alloc = offset;
415		}
416	}
417	return offset;
418
419scan:
420	spin_unlock(&swap_lock);
421	while (++offset <= si->highest_bit) {
422		if (!si->swap_map[offset]) {
423			spin_lock(&swap_lock);
424			goto checks;
425		}
426		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
427			spin_lock(&swap_lock);
428			goto checks;
429		}
430		if (unlikely(--latency_ration < 0)) {
431			cond_resched();
432			latency_ration = LATENCY_LIMIT;
433		}
434	}
435	offset = si->lowest_bit;
436	while (++offset < scan_base) {
437		if (!si->swap_map[offset]) {
438			spin_lock(&swap_lock);
439			goto checks;
440		}
441		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
442			spin_lock(&swap_lock);
443			goto checks;
444		}
445		if (unlikely(--latency_ration < 0)) {
446			cond_resched();
447			latency_ration = LATENCY_LIMIT;
448		}
449	}
450	spin_lock(&swap_lock);
451
452no_page:
453	si->flags -= SWP_SCANNING;
454	return 0;
455}
456
457swp_entry_t get_swap_page(void)
458{
459	struct swap_info_struct *si;
460	pgoff_t offset;
461	int type, next;
462	int wrapped = 0;
463
464	spin_lock(&swap_lock);
465	if (nr_swap_pages <= 0)
466		goto noswap;
467	nr_swap_pages--;
468
469	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
470		si = swap_info + type;
471		next = si->next;
472		if (next < 0 ||
473		    (!wrapped && si->prio != swap_info[next].prio)) {
474			next = swap_list.head;
475			wrapped++;
476		}
477
478		if (!si->highest_bit)
479			continue;
480		if (!(si->flags & SWP_WRITEOK))
481			continue;
482
483		swap_list.next = next;
484		/* This is called for allocating swap entry for cache */
485		offset = scan_swap_map(si, SWAP_CACHE);
486		if (offset) {
487			spin_unlock(&swap_lock);
488			return swp_entry(type, offset);
489		}
490		next = swap_list.next;
491	}
492
493	nr_swap_pages++;
494noswap:
495	spin_unlock(&swap_lock);
496	return (swp_entry_t) {0};
497}
498
499/* The only caller of this function is now susupend routine */
500swp_entry_t get_swap_page_of_type(int type)
501{
502	struct swap_info_struct *si;
503	pgoff_t offset;
504
505	spin_lock(&swap_lock);
506	si = swap_info + type;
507	if (si->flags & SWP_WRITEOK) {
508		nr_swap_pages--;
509		/* This is called for allocating swap entry, not cache */
510		offset = scan_swap_map(si, SWAP_MAP);
511		if (offset) {
512			spin_unlock(&swap_lock);
513			return swp_entry(type, offset);
514		}
515		nr_swap_pages++;
516	}
517	spin_unlock(&swap_lock);
518	return (swp_entry_t) {0};
519}
520
521static struct swap_info_struct * swap_info_get(swp_entry_t entry)
522{
523	struct swap_info_struct * p;
524	unsigned long offset, type;
525
526	if (!entry.val)
527		goto out;
528	type = swp_type(entry);
529	if (type >= nr_swapfiles)
530		goto bad_nofile;
531	p = & swap_info[type];
532	if (!(p->flags & SWP_USED))
533		goto bad_device;
534	offset = swp_offset(entry);
535	if (offset >= p->max)
536		goto bad_offset;
537	if (!p->swap_map[offset])
538		goto bad_free;
539	spin_lock(&swap_lock);
540	return p;
541
542bad_free:
543	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
544	goto out;
545bad_offset:
546	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
547	goto out;
548bad_device:
549	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
550	goto out;
551bad_nofile:
552	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
553out:
554	return NULL;
555}
556
557static int swap_entry_free(struct swap_info_struct *p,
558			   swp_entry_t ent, int cache)
559{
560	unsigned long offset = swp_offset(ent);
561	int count = swap_count(p->swap_map[offset]);
562	bool has_cache;
563
564	has_cache = swap_has_cache(p->swap_map[offset]);
565
566	if (cache == SWAP_MAP) { /* dropping usage count of swap */
567		if (count < SWAP_MAP_MAX) {
568			count--;
569			p->swap_map[offset] = encode_swapmap(count, has_cache);
570		}
571	} else { /* dropping swap cache flag */
572		VM_BUG_ON(!has_cache);
573		p->swap_map[offset] = encode_swapmap(count, false);
574
575	}
576	/* return code. */
577	count = p->swap_map[offset];
578	/* free if no reference */
579	if (!count) {
580		if (offset < p->lowest_bit)
581			p->lowest_bit = offset;
582		if (offset > p->highest_bit)
583			p->highest_bit = offset;
584		if (p->prio > swap_info[swap_list.next].prio)
585			swap_list.next = p - swap_info;
586		nr_swap_pages++;
587		p->inuse_pages--;
588	}
589	if (!swap_count(count))
590		mem_cgroup_uncharge_swap(ent);
591	return count;
592}
593
594/*
595 * Caller has made sure that the swapdevice corresponding to entry
596 * is still around or has not been recycled.
597 */
598void swap_free(swp_entry_t entry)
599{
600	struct swap_info_struct * p;
601
602	p = swap_info_get(entry);
603	if (p) {
604		swap_entry_free(p, entry, SWAP_MAP);
605		spin_unlock(&swap_lock);
606	}
607}
608
609/*
610 * Called after dropping swapcache to decrease refcnt to swap entries.
611 */
612void swapcache_free(swp_entry_t entry, struct page *page)
613{
614	struct swap_info_struct *p;
615	int ret;
616
617	p = swap_info_get(entry);
618	if (p) {
619		ret = swap_entry_free(p, entry, SWAP_CACHE);
620		if (page) {
621			bool swapout;
622			if (ret)
623				swapout = true; /* the end of swap out */
624			else
625				swapout = false; /* no more swap users! */
626			mem_cgroup_uncharge_swapcache(page, entry, swapout);
627		}
628		spin_unlock(&swap_lock);
629	}
630	return;
631}
632
633/*
634 * How many references to page are currently swapped out?
635 */
636static inline int page_swapcount(struct page *page)
637{
638	int count = 0;
639	struct swap_info_struct *p;
640	swp_entry_t entry;
641
642	entry.val = page_private(page);
643	p = swap_info_get(entry);
644	if (p) {
645		count = swap_count(p->swap_map[swp_offset(entry)]);
646		spin_unlock(&swap_lock);
647	}
648	return count;
649}
650
651/*
652 * We can write to an anon page without COW if there are no other references
653 * to it.  And as a side-effect, free up its swap: because the old content
654 * on disk will never be read, and seeking back there to write new content
655 * later would only waste time away from clustering.
656 */
657int reuse_swap_page(struct page *page)
658{
659	int count;
660
661	VM_BUG_ON(!PageLocked(page));
662	count = page_mapcount(page);
663	if (count <= 1 && PageSwapCache(page)) {
664		count += page_swapcount(page);
665		if (count == 1 && !PageWriteback(page)) {
666			delete_from_swap_cache(page);
667			SetPageDirty(page);
668		}
669	}
670	return count == 1;
671}
672
673/*
674 * If swap is getting full, or if there are no more mappings of this page,
675 * then try_to_free_swap is called to free its swap space.
676 */
677int try_to_free_swap(struct page *page)
678{
679	VM_BUG_ON(!PageLocked(page));
680
681	if (!PageSwapCache(page))
682		return 0;
683	if (PageWriteback(page))
684		return 0;
685	if (page_swapcount(page))
686		return 0;
687
688	delete_from_swap_cache(page);
689	SetPageDirty(page);
690	return 1;
691}
692
693/*
694 * Free the swap entry like above, but also try to
695 * free the page cache entry if it is the last user.
696 */
697int free_swap_and_cache(swp_entry_t entry)
698{
699	struct swap_info_struct *p;
700	struct page *page = NULL;
701
702	if (non_swap_entry(entry))
703		return 1;
704
705	p = swap_info_get(entry);
706	if (p) {
707		if (swap_entry_free(p, entry, SWAP_MAP) == SWAP_HAS_CACHE) {
708			page = find_get_page(&swapper_space, entry.val);
709			if (page && !trylock_page(page)) {
710				page_cache_release(page);
711				page = NULL;
712			}
713		}
714		spin_unlock(&swap_lock);
715	}
716	if (page) {
717		/*
718		 * Not mapped elsewhere, or swap space full? Free it!
719		 * Also recheck PageSwapCache now page is locked (above).
720		 */
721		if (PageSwapCache(page) && !PageWriteback(page) &&
722				(!page_mapped(page) || vm_swap_full())) {
723			delete_from_swap_cache(page);
724			SetPageDirty(page);
725		}
726		unlock_page(page);
727		page_cache_release(page);
728	}
729	return p != NULL;
730}
731
732#ifdef CONFIG_HIBERNATION
733/*
734 * Find the swap type that corresponds to given device (if any).
735 *
736 * @offset - number of the PAGE_SIZE-sized block of the device, starting
737 * from 0, in which the swap header is expected to be located.
738 *
739 * This is needed for the suspend to disk (aka swsusp).
740 */
741int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
742{
743	struct block_device *bdev = NULL;
744	int i;
745
746	if (device)
747		bdev = bdget(device);
748
749	spin_lock(&swap_lock);
750	for (i = 0; i < nr_swapfiles; i++) {
751		struct swap_info_struct *sis = swap_info + i;
752
753		if (!(sis->flags & SWP_WRITEOK))
754			continue;
755
756		if (!bdev) {
757			if (bdev_p)
758				*bdev_p = bdgrab(sis->bdev);
759
760			spin_unlock(&swap_lock);
761			return i;
762		}
763		if (bdev == sis->bdev) {
764			struct swap_extent *se;
765
766			se = list_entry(sis->extent_list.next,
767					struct swap_extent, list);
768			if (se->start_block == offset) {
769				if (bdev_p)
770					*bdev_p = bdgrab(sis->bdev);
771
772				spin_unlock(&swap_lock);
773				bdput(bdev);
774				return i;
775			}
776		}
777	}
778	spin_unlock(&swap_lock);
779	if (bdev)
780		bdput(bdev);
781
782	return -ENODEV;
783}
784
785/*
786 * Return either the total number of swap pages of given type, or the number
787 * of free pages of that type (depending on @free)
788 *
789 * This is needed for software suspend
790 */
791unsigned int count_swap_pages(int type, int free)
792{
793	unsigned int n = 0;
794
795	if (type < nr_swapfiles) {
796		spin_lock(&swap_lock);
797		if (swap_info[type].flags & SWP_WRITEOK) {
798			n = swap_info[type].pages;
799			if (free)
800				n -= swap_info[type].inuse_pages;
801		}
802		spin_unlock(&swap_lock);
803	}
804	return n;
805}
806#endif
807
808/*
809 * No need to decide whether this PTE shares the swap entry with others,
810 * just let do_wp_page work it out if a write is requested later - to
811 * force COW, vm_page_prot omits write permission from any private vma.
812 */
813static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
814		unsigned long addr, swp_entry_t entry, struct page *page)
815{
816	struct mem_cgroup *ptr = NULL;
817	spinlock_t *ptl;
818	pte_t *pte;
819	int ret = 1;
820
821	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
822		ret = -ENOMEM;
823		goto out_nolock;
824	}
825
826	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
827	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
828		if (ret > 0)
829			mem_cgroup_cancel_charge_swapin(ptr);
830		ret = 0;
831		goto out;
832	}
833
834	inc_mm_counter(vma->vm_mm, anon_rss);
835	get_page(page);
836	set_pte_at(vma->vm_mm, addr, pte,
837		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
838	page_add_anon_rmap(page, vma, addr);
839	mem_cgroup_commit_charge_swapin(page, ptr);
840	swap_free(entry);
841	/*
842	 * Move the page to the active list so it is not
843	 * immediately swapped out again after swapon.
844	 */
845	activate_page(page);
846out:
847	pte_unmap_unlock(pte, ptl);
848out_nolock:
849	return ret;
850}
851
852static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
853				unsigned long addr, unsigned long end,
854				swp_entry_t entry, struct page *page)
855{
856	pte_t swp_pte = swp_entry_to_pte(entry);
857	pte_t *pte;
858	int ret = 0;
859
860	/*
861	 * We don't actually need pte lock while scanning for swp_pte: since
862	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
863	 * page table while we're scanning; though it could get zapped, and on
864	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
865	 * of unmatched parts which look like swp_pte, so unuse_pte must
866	 * recheck under pte lock.  Scanning without pte lock lets it be
867	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
868	 */
869	pte = pte_offset_map(pmd, addr);
870	do {
871		/*
872		 * swapoff spends a _lot_ of time in this loop!
873		 * Test inline before going to call unuse_pte.
874		 */
875		if (unlikely(pte_same(*pte, swp_pte))) {
876			pte_unmap(pte);
877			ret = unuse_pte(vma, pmd, addr, entry, page);
878			if (ret)
879				goto out;
880			pte = pte_offset_map(pmd, addr);
881		}
882	} while (pte++, addr += PAGE_SIZE, addr != end);
883	pte_unmap(pte - 1);
884out:
885	return ret;
886}
887
888static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
889				unsigned long addr, unsigned long end,
890				swp_entry_t entry, struct page *page)
891{
892	pmd_t *pmd;
893	unsigned long next;
894	int ret;
895
896	pmd = pmd_offset(pud, addr);
897	do {
898		next = pmd_addr_end(addr, end);
899		if (pmd_none_or_clear_bad(pmd))
900			continue;
901		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
902		if (ret)
903			return ret;
904	} while (pmd++, addr = next, addr != end);
905	return 0;
906}
907
908static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
909				unsigned long addr, unsigned long end,
910				swp_entry_t entry, struct page *page)
911{
912	pud_t *pud;
913	unsigned long next;
914	int ret;
915
916	pud = pud_offset(pgd, addr);
917	do {
918		next = pud_addr_end(addr, end);
919		if (pud_none_or_clear_bad(pud))
920			continue;
921		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
922		if (ret)
923			return ret;
924	} while (pud++, addr = next, addr != end);
925	return 0;
926}
927
928static int unuse_vma(struct vm_area_struct *vma,
929				swp_entry_t entry, struct page *page)
930{
931	pgd_t *pgd;
932	unsigned long addr, end, next;
933	int ret;
934
935	if (page->mapping) {
936		addr = page_address_in_vma(page, vma);
937		if (addr == -EFAULT)
938			return 0;
939		else
940			end = addr + PAGE_SIZE;
941	} else {
942		addr = vma->vm_start;
943		end = vma->vm_end;
944	}
945
946	pgd = pgd_offset(vma->vm_mm, addr);
947	do {
948		next = pgd_addr_end(addr, end);
949		if (pgd_none_or_clear_bad(pgd))
950			continue;
951		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
952		if (ret)
953			return ret;
954	} while (pgd++, addr = next, addr != end);
955	return 0;
956}
957
958static int unuse_mm(struct mm_struct *mm,
959				swp_entry_t entry, struct page *page)
960{
961	struct vm_area_struct *vma;
962	int ret = 0;
963
964	if (!down_read_trylock(&mm->mmap_sem)) {
965		/*
966		 * Activate page so shrink_inactive_list is unlikely to unmap
967		 * its ptes while lock is dropped, so swapoff can make progress.
968		 */
969		activate_page(page);
970		unlock_page(page);
971		down_read(&mm->mmap_sem);
972		lock_page(page);
973	}
974	for (vma = mm->mmap; vma; vma = vma->vm_next) {
975		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
976			break;
977	}
978	up_read(&mm->mmap_sem);
979	return (ret < 0)? ret: 0;
980}
981
982/*
983 * Scan swap_map from current position to next entry still in use.
984 * Recycle to start on reaching the end, returning 0 when empty.
985 */
986static unsigned int find_next_to_unuse(struct swap_info_struct *si,
987					unsigned int prev)
988{
989	unsigned int max = si->max;
990	unsigned int i = prev;
991	int count;
992
993	/*
994	 * No need for swap_lock here: we're just looking
995	 * for whether an entry is in use, not modifying it; false
996	 * hits are okay, and sys_swapoff() has already prevented new
997	 * allocations from this area (while holding swap_lock).
998	 */
999	for (;;) {
1000		if (++i >= max) {
1001			if (!prev) {
1002				i = 0;
1003				break;
1004			}
1005			/*
1006			 * No entries in use at top of swap_map,
1007			 * loop back to start and recheck there.
1008			 */
1009			max = prev + 1;
1010			prev = 0;
1011			i = 1;
1012		}
1013		count = si->swap_map[i];
1014		if (count && swap_count(count) != SWAP_MAP_BAD)
1015			break;
1016	}
1017	return i;
1018}
1019
1020/*
1021 * We completely avoid races by reading each swap page in advance,
1022 * and then search for the process using it.  All the necessary
1023 * page table adjustments can then be made atomically.
1024 */
1025static int try_to_unuse(unsigned int type)
1026{
1027	struct swap_info_struct * si = &swap_info[type];
1028	struct mm_struct *start_mm;
1029	unsigned short *swap_map;
1030	unsigned short swcount;
1031	struct page *page;
1032	swp_entry_t entry;
1033	unsigned int i = 0;
1034	int retval = 0;
1035	int reset_overflow = 0;
1036	int shmem;
1037
1038	/*
1039	 * When searching mms for an entry, a good strategy is to
1040	 * start at the first mm we freed the previous entry from
1041	 * (though actually we don't notice whether we or coincidence
1042	 * freed the entry).  Initialize this start_mm with a hold.
1043	 *
1044	 * A simpler strategy would be to start at the last mm we
1045	 * freed the previous entry from; but that would take less
1046	 * advantage of mmlist ordering, which clusters forked mms
1047	 * together, child after parent.  If we race with dup_mmap(), we
1048	 * prefer to resolve parent before child, lest we miss entries
1049	 * duplicated after we scanned child: using last mm would invert
1050	 * that.  Though it's only a serious concern when an overflowed
1051	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1052	 */
1053	start_mm = &init_mm;
1054	atomic_inc(&init_mm.mm_users);
1055
1056	/*
1057	 * Keep on scanning until all entries have gone.  Usually,
1058	 * one pass through swap_map is enough, but not necessarily:
1059	 * there are races when an instance of an entry might be missed.
1060	 */
1061	while ((i = find_next_to_unuse(si, i)) != 0) {
1062		if (signal_pending(current)) {
1063			retval = -EINTR;
1064			break;
1065		}
1066
1067		/*
1068		 * Get a page for the entry, using the existing swap
1069		 * cache page if there is one.  Otherwise, get a clean
1070		 * page and read the swap into it.
1071		 */
1072		swap_map = &si->swap_map[i];
1073		entry = swp_entry(type, i);
1074		page = read_swap_cache_async(entry,
1075					GFP_HIGHUSER_MOVABLE, NULL, 0);
1076		if (!page) {
1077			/*
1078			 * Either swap_duplicate() failed because entry
1079			 * has been freed independently, and will not be
1080			 * reused since sys_swapoff() already disabled
1081			 * allocation from here, or alloc_page() failed.
1082			 */
1083			if (!*swap_map)
1084				continue;
1085			retval = -ENOMEM;
1086			break;
1087		}
1088
1089		/*
1090		 * Don't hold on to start_mm if it looks like exiting.
1091		 */
1092		if (atomic_read(&start_mm->mm_users) == 1) {
1093			mmput(start_mm);
1094			start_mm = &init_mm;
1095			atomic_inc(&init_mm.mm_users);
1096		}
1097
1098		/*
1099		 * Wait for and lock page.  When do_swap_page races with
1100		 * try_to_unuse, do_swap_page can handle the fault much
1101		 * faster than try_to_unuse can locate the entry.  This
1102		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1103		 * defer to do_swap_page in such a case - in some tests,
1104		 * do_swap_page and try_to_unuse repeatedly compete.
1105		 */
1106		wait_on_page_locked(page);
1107		wait_on_page_writeback(page);
1108		lock_page(page);
1109		wait_on_page_writeback(page);
1110
1111		/*
1112		 * Remove all references to entry.
1113		 * Whenever we reach init_mm, there's no address space
1114		 * to search, but use it as a reminder to search shmem.
1115		 */
1116		shmem = 0;
1117		swcount = *swap_map;
1118		if (swap_count(swcount)) {
1119			if (start_mm == &init_mm)
1120				shmem = shmem_unuse(entry, page);
1121			else
1122				retval = unuse_mm(start_mm, entry, page);
1123		}
1124		if (swap_count(*swap_map)) {
1125			int set_start_mm = (*swap_map >= swcount);
1126			struct list_head *p = &start_mm->mmlist;
1127			struct mm_struct *new_start_mm = start_mm;
1128			struct mm_struct *prev_mm = start_mm;
1129			struct mm_struct *mm;
1130
1131			atomic_inc(&new_start_mm->mm_users);
1132			atomic_inc(&prev_mm->mm_users);
1133			spin_lock(&mmlist_lock);
1134			while (swap_count(*swap_map) && !retval && !shmem &&
1135					(p = p->next) != &start_mm->mmlist) {
1136				mm = list_entry(p, struct mm_struct, mmlist);
1137				if (!atomic_inc_not_zero(&mm->mm_users))
1138					continue;
1139				spin_unlock(&mmlist_lock);
1140				mmput(prev_mm);
1141				prev_mm = mm;
1142
1143				cond_resched();
1144
1145				swcount = *swap_map;
1146				if (!swap_count(swcount)) /* any usage ? */
1147					;
1148				else if (mm == &init_mm) {
1149					set_start_mm = 1;
1150					shmem = shmem_unuse(entry, page);
1151				} else
1152					retval = unuse_mm(mm, entry, page);
1153
1154				if (set_start_mm && *swap_map < swcount) {
1155					mmput(new_start_mm);
1156					atomic_inc(&mm->mm_users);
1157					new_start_mm = mm;
1158					set_start_mm = 0;
1159				}
1160				spin_lock(&mmlist_lock);
1161			}
1162			spin_unlock(&mmlist_lock);
1163			mmput(prev_mm);
1164			mmput(start_mm);
1165			start_mm = new_start_mm;
1166		}
1167		if (shmem) {
1168			/* page has already been unlocked and released */
1169			if (shmem > 0)
1170				continue;
1171			retval = shmem;
1172			break;
1173		}
1174		if (retval) {
1175			unlock_page(page);
1176			page_cache_release(page);
1177			break;
1178		}
1179
1180		/*
1181		 * How could swap count reach 0x7ffe ?
1182		 * There's no way to repeat a swap page within an mm
1183		 * (except in shmem, where it's the shared object which takes
1184		 * the reference count)?
1185		 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1186		 * short is too small....)
1187		 * If that's wrong, then we should worry more about
1188		 * exit_mmap() and do_munmap() cases described above:
1189		 * we might be resetting SWAP_MAP_MAX too early here.
1190		 * We know "Undead"s can happen, they're okay, so don't
1191		 * report them; but do report if we reset SWAP_MAP_MAX.
1192		 */
1193		/* We might release the lock_page() in unuse_mm(). */
1194		if (!PageSwapCache(page) || page_private(page) != entry.val)
1195			goto retry;
1196
1197		if (swap_count(*swap_map) == SWAP_MAP_MAX) {
1198			spin_lock(&swap_lock);
1199			*swap_map = encode_swapmap(0, true);
1200			spin_unlock(&swap_lock);
1201			reset_overflow = 1;
1202		}
1203
1204		/*
1205		 * If a reference remains (rare), we would like to leave
1206		 * the page in the swap cache; but try_to_unmap could
1207		 * then re-duplicate the entry once we drop page lock,
1208		 * so we might loop indefinitely; also, that page could
1209		 * not be swapped out to other storage meanwhile.  So:
1210		 * delete from cache even if there's another reference,
1211		 * after ensuring that the data has been saved to disk -
1212		 * since if the reference remains (rarer), it will be
1213		 * read from disk into another page.  Splitting into two
1214		 * pages would be incorrect if swap supported "shared
1215		 * private" pages, but they are handled by tmpfs files.
1216		 */
1217		if (swap_count(*swap_map) &&
1218		     PageDirty(page) && PageSwapCache(page)) {
1219			struct writeback_control wbc = {
1220				.sync_mode = WB_SYNC_NONE,
1221			};
1222
1223			swap_writepage(page, &wbc);
1224			lock_page(page);
1225			wait_on_page_writeback(page);
1226		}
1227
1228		/*
1229		 * It is conceivable that a racing task removed this page from
1230		 * swap cache just before we acquired the page lock at the top,
1231		 * or while we dropped it in unuse_mm().  The page might even
1232		 * be back in swap cache on another swap area: that we must not
1233		 * delete, since it may not have been written out to swap yet.
1234		 */
1235		if (PageSwapCache(page) &&
1236		    likely(page_private(page) == entry.val))
1237			delete_from_swap_cache(page);
1238
1239		/*
1240		 * So we could skip searching mms once swap count went
1241		 * to 1, we did not mark any present ptes as dirty: must
1242		 * mark page dirty so shrink_page_list will preserve it.
1243		 */
1244		SetPageDirty(page);
1245retry:
1246		unlock_page(page);
1247		page_cache_release(page);
1248
1249		/*
1250		 * Make sure that we aren't completely killing
1251		 * interactive performance.
1252		 */
1253		cond_resched();
1254	}
1255
1256	mmput(start_mm);
1257	if (reset_overflow) {
1258		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1259		swap_overflow = 0;
1260	}
1261	return retval;
1262}
1263
1264/*
1265 * After a successful try_to_unuse, if no swap is now in use, we know
1266 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1267 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1268 * added to the mmlist just after page_duplicate - before would be racy.
1269 */
1270static void drain_mmlist(void)
1271{
1272	struct list_head *p, *next;
1273	unsigned int i;
1274
1275	for (i = 0; i < nr_swapfiles; i++)
1276		if (swap_info[i].inuse_pages)
1277			return;
1278	spin_lock(&mmlist_lock);
1279	list_for_each_safe(p, next, &init_mm.mmlist)
1280		list_del_init(p);
1281	spin_unlock(&mmlist_lock);
1282}
1283
1284/*
1285 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1286 * corresponds to page offset `offset'.  Note that the type of this function
1287 * is sector_t, but it returns page offset into the bdev, not sector offset.
1288 */
1289sector_t map_swap_page(swp_entry_t entry, struct block_device **bdev)
1290{
1291	struct swap_info_struct *sis;
1292	struct swap_extent *start_se;
1293	struct swap_extent *se;
1294	pgoff_t offset;
1295
1296	sis = swap_info + swp_type(entry);
1297	*bdev = sis->bdev;
1298
1299	offset = swp_offset(entry);
1300	start_se = sis->curr_swap_extent;
1301	se = start_se;
1302
1303	for ( ; ; ) {
1304		struct list_head *lh;
1305
1306		if (se->start_page <= offset &&
1307				offset < (se->start_page + se->nr_pages)) {
1308			return se->start_block + (offset - se->start_page);
1309		}
1310		lh = se->list.next;
1311		if (lh == &sis->extent_list)
1312			lh = lh->next;
1313		se = list_entry(lh, struct swap_extent, list);
1314		sis->curr_swap_extent = se;
1315		BUG_ON(se == start_se);		/* It *must* be present */
1316	}
1317}
1318
1319#ifdef CONFIG_HIBERNATION
1320/*
1321 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1322 * corresponding to given index in swap_info (swap type).
1323 */
1324sector_t swapdev_block(int swap_type, pgoff_t offset)
1325{
1326	struct swap_info_struct *sis;
1327	struct block_device *bdev;
1328
1329	if (swap_type >= nr_swapfiles)
1330		return 0;
1331
1332	sis = swap_info + swap_type;
1333	return (sis->flags & SWP_WRITEOK) ?
1334		map_swap_page(swp_entry(swap_type, offset), &bdev) : 0;
1335}
1336#endif /* CONFIG_HIBERNATION */
1337
1338/*
1339 * Free all of a swapdev's extent information
1340 */
1341static void destroy_swap_extents(struct swap_info_struct *sis)
1342{
1343	while (!list_empty(&sis->extent_list)) {
1344		struct swap_extent *se;
1345
1346		se = list_entry(sis->extent_list.next,
1347				struct swap_extent, list);
1348		list_del(&se->list);
1349		kfree(se);
1350	}
1351}
1352
1353/*
1354 * Add a block range (and the corresponding page range) into this swapdev's
1355 * extent list.  The extent list is kept sorted in page order.
1356 *
1357 * This function rather assumes that it is called in ascending page order.
1358 */
1359static int
1360add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1361		unsigned long nr_pages, sector_t start_block)
1362{
1363	struct swap_extent *se;
1364	struct swap_extent *new_se;
1365	struct list_head *lh;
1366
1367	lh = sis->extent_list.prev;	/* The highest page extent */
1368	if (lh != &sis->extent_list) {
1369		se = list_entry(lh, struct swap_extent, list);
1370		BUG_ON(se->start_page + se->nr_pages != start_page);
1371		if (se->start_block + se->nr_pages == start_block) {
1372			/* Merge it */
1373			se->nr_pages += nr_pages;
1374			return 0;
1375		}
1376	}
1377
1378	/*
1379	 * No merge.  Insert a new extent, preserving ordering.
1380	 */
1381	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1382	if (new_se == NULL)
1383		return -ENOMEM;
1384	new_se->start_page = start_page;
1385	new_se->nr_pages = nr_pages;
1386	new_se->start_block = start_block;
1387
1388	list_add_tail(&new_se->list, &sis->extent_list);
1389	return 1;
1390}
1391
1392/*
1393 * A `swap extent' is a simple thing which maps a contiguous range of pages
1394 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1395 * is built at swapon time and is then used at swap_writepage/swap_readpage
1396 * time for locating where on disk a page belongs.
1397 *
1398 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1399 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1400 * swap files identically.
1401 *
1402 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1403 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1404 * swapfiles are handled *identically* after swapon time.
1405 *
1406 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1407 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1408 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1409 * requirements, they are simply tossed out - we will never use those blocks
1410 * for swapping.
1411 *
1412 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1413 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1414 * which will scribble on the fs.
1415 *
1416 * The amount of disk space which a single swap extent represents varies.
1417 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1418 * extents in the list.  To avoid much list walking, we cache the previous
1419 * search location in `curr_swap_extent', and start new searches from there.
1420 * This is extremely effective.  The average number of iterations in
1421 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1422 */
1423static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1424{
1425	struct inode *inode;
1426	unsigned blocks_per_page;
1427	unsigned long page_no;
1428	unsigned blkbits;
1429	sector_t probe_block;
1430	sector_t last_block;
1431	sector_t lowest_block = -1;
1432	sector_t highest_block = 0;
1433	int nr_extents = 0;
1434	int ret;
1435
1436	inode = sis->swap_file->f_mapping->host;
1437	if (S_ISBLK(inode->i_mode)) {
1438		ret = add_swap_extent(sis, 0, sis->max, 0);
1439		*span = sis->pages;
1440		goto done;
1441	}
1442
1443	blkbits = inode->i_blkbits;
1444	blocks_per_page = PAGE_SIZE >> blkbits;
1445
1446	/*
1447	 * Map all the blocks into the extent list.  This code doesn't try
1448	 * to be very smart.
1449	 */
1450	probe_block = 0;
1451	page_no = 0;
1452	last_block = i_size_read(inode) >> blkbits;
1453	while ((probe_block + blocks_per_page) <= last_block &&
1454			page_no < sis->max) {
1455		unsigned block_in_page;
1456		sector_t first_block;
1457
1458		first_block = bmap(inode, probe_block);
1459		if (first_block == 0)
1460			goto bad_bmap;
1461
1462		/*
1463		 * It must be PAGE_SIZE aligned on-disk
1464		 */
1465		if (first_block & (blocks_per_page - 1)) {
1466			probe_block++;
1467			goto reprobe;
1468		}
1469
1470		for (block_in_page = 1; block_in_page < blocks_per_page;
1471					block_in_page++) {
1472			sector_t block;
1473
1474			block = bmap(inode, probe_block + block_in_page);
1475			if (block == 0)
1476				goto bad_bmap;
1477			if (block != first_block + block_in_page) {
1478				/* Discontiguity */
1479				probe_block++;
1480				goto reprobe;
1481			}
1482		}
1483
1484		first_block >>= (PAGE_SHIFT - blkbits);
1485		if (page_no) {	/* exclude the header page */
1486			if (first_block < lowest_block)
1487				lowest_block = first_block;
1488			if (first_block > highest_block)
1489				highest_block = first_block;
1490		}
1491
1492		/*
1493		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1494		 */
1495		ret = add_swap_extent(sis, page_no, 1, first_block);
1496		if (ret < 0)
1497			goto out;
1498		nr_extents += ret;
1499		page_no++;
1500		probe_block += blocks_per_page;
1501reprobe:
1502		continue;
1503	}
1504	ret = nr_extents;
1505	*span = 1 + highest_block - lowest_block;
1506	if (page_no == 0)
1507		page_no = 1;	/* force Empty message */
1508	sis->max = page_no;
1509	sis->pages = page_no - 1;
1510	sis->highest_bit = page_no - 1;
1511done:
1512	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1513					struct swap_extent, list);
1514	goto out;
1515bad_bmap:
1516	printk(KERN_ERR "swapon: swapfile has holes\n");
1517	ret = -EINVAL;
1518out:
1519	return ret;
1520}
1521
1522SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1523{
1524	struct swap_info_struct * p = NULL;
1525	unsigned short *swap_map;
1526	struct file *swap_file, *victim;
1527	struct address_space *mapping;
1528	struct inode *inode;
1529	char * pathname;
1530	int i, type, prev;
1531	int err;
1532
1533	if (!capable(CAP_SYS_ADMIN))
1534		return -EPERM;
1535
1536	pathname = getname(specialfile);
1537	err = PTR_ERR(pathname);
1538	if (IS_ERR(pathname))
1539		goto out;
1540
1541	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1542	putname(pathname);
1543	err = PTR_ERR(victim);
1544	if (IS_ERR(victim))
1545		goto out;
1546
1547	mapping = victim->f_mapping;
1548	prev = -1;
1549	spin_lock(&swap_lock);
1550	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1551		p = swap_info + type;
1552		if (p->flags & SWP_WRITEOK) {
1553			if (p->swap_file->f_mapping == mapping)
1554				break;
1555		}
1556		prev = type;
1557	}
1558	if (type < 0) {
1559		err = -EINVAL;
1560		spin_unlock(&swap_lock);
1561		goto out_dput;
1562	}
1563	if (!security_vm_enough_memory(p->pages))
1564		vm_unacct_memory(p->pages);
1565	else {
1566		err = -ENOMEM;
1567		spin_unlock(&swap_lock);
1568		goto out_dput;
1569	}
1570	if (prev < 0) {
1571		swap_list.head = p->next;
1572	} else {
1573		swap_info[prev].next = p->next;
1574	}
1575	if (type == swap_list.next) {
1576		/* just pick something that's safe... */
1577		swap_list.next = swap_list.head;
1578	}
1579	if (p->prio < 0) {
1580		for (i = p->next; i >= 0; i = swap_info[i].next)
1581			swap_info[i].prio = p->prio--;
1582		least_priority++;
1583	}
1584	nr_swap_pages -= p->pages;
1585	total_swap_pages -= p->pages;
1586	p->flags &= ~SWP_WRITEOK;
1587	spin_unlock(&swap_lock);
1588
1589	current->flags |= PF_OOM_ORIGIN;
1590	err = try_to_unuse(type);
1591	current->flags &= ~PF_OOM_ORIGIN;
1592
1593	if (err) {
1594		/* re-insert swap space back into swap_list */
1595		spin_lock(&swap_lock);
1596		if (p->prio < 0)
1597			p->prio = --least_priority;
1598		prev = -1;
1599		for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1600			if (p->prio >= swap_info[i].prio)
1601				break;
1602			prev = i;
1603		}
1604		p->next = i;
1605		if (prev < 0)
1606			swap_list.head = swap_list.next = p - swap_info;
1607		else
1608			swap_info[prev].next = p - swap_info;
1609		nr_swap_pages += p->pages;
1610		total_swap_pages += p->pages;
1611		p->flags |= SWP_WRITEOK;
1612		spin_unlock(&swap_lock);
1613		goto out_dput;
1614	}
1615
1616	/* wait for any unplug function to finish */
1617	down_write(&swap_unplug_sem);
1618	up_write(&swap_unplug_sem);
1619
1620	destroy_swap_extents(p);
1621	mutex_lock(&swapon_mutex);
1622	spin_lock(&swap_lock);
1623	drain_mmlist();
1624
1625	/* wait for anyone still in scan_swap_map */
1626	p->highest_bit = 0;		/* cuts scans short */
1627	while (p->flags >= SWP_SCANNING) {
1628		spin_unlock(&swap_lock);
1629		schedule_timeout_uninterruptible(1);
1630		spin_lock(&swap_lock);
1631	}
1632
1633	swap_file = p->swap_file;
1634	p->swap_file = NULL;
1635	p->max = 0;
1636	swap_map = p->swap_map;
1637	p->swap_map = NULL;
1638	p->flags = 0;
1639	spin_unlock(&swap_lock);
1640	mutex_unlock(&swapon_mutex);
1641	vfree(swap_map);
1642	/* Destroy swap account informatin */
1643	swap_cgroup_swapoff(type);
1644
1645	inode = mapping->host;
1646	if (S_ISBLK(inode->i_mode)) {
1647		struct block_device *bdev = I_BDEV(inode);
1648		set_blocksize(bdev, p->old_block_size);
1649		bd_release(bdev);
1650	} else {
1651		mutex_lock(&inode->i_mutex);
1652		inode->i_flags &= ~S_SWAPFILE;
1653		mutex_unlock(&inode->i_mutex);
1654	}
1655	filp_close(swap_file, NULL);
1656	err = 0;
1657
1658out_dput:
1659	filp_close(victim, NULL);
1660out:
1661	return err;
1662}
1663
1664#ifdef CONFIG_PROC_FS
1665/* iterator */
1666static void *swap_start(struct seq_file *swap, loff_t *pos)
1667{
1668	struct swap_info_struct *ptr = swap_info;
1669	int i;
1670	loff_t l = *pos;
1671
1672	mutex_lock(&swapon_mutex);
1673
1674	if (!l)
1675		return SEQ_START_TOKEN;
1676
1677	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1678		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1679			continue;
1680		if (!--l)
1681			return ptr;
1682	}
1683
1684	return NULL;
1685}
1686
1687static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1688{
1689	struct swap_info_struct *ptr;
1690	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1691
1692	if (v == SEQ_START_TOKEN)
1693		ptr = swap_info;
1694	else {
1695		ptr = v;
1696		ptr++;
1697	}
1698
1699	for (; ptr < endptr; ptr++) {
1700		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1701			continue;
1702		++*pos;
1703		return ptr;
1704	}
1705
1706	return NULL;
1707}
1708
1709static void swap_stop(struct seq_file *swap, void *v)
1710{
1711	mutex_unlock(&swapon_mutex);
1712}
1713
1714static int swap_show(struct seq_file *swap, void *v)
1715{
1716	struct swap_info_struct *ptr = v;
1717	struct file *file;
1718	int len;
1719
1720	if (ptr == SEQ_START_TOKEN) {
1721		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1722		return 0;
1723	}
1724
1725	file = ptr->swap_file;
1726	len = seq_path(swap, &file->f_path, " \t\n\\");
1727	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1728			len < 40 ? 40 - len : 1, " ",
1729			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1730				"partition" : "file\t",
1731			ptr->pages << (PAGE_SHIFT - 10),
1732			ptr->inuse_pages << (PAGE_SHIFT - 10),
1733			ptr->prio);
1734	return 0;
1735}
1736
1737static const struct seq_operations swaps_op = {
1738	.start =	swap_start,
1739	.next =		swap_next,
1740	.stop =		swap_stop,
1741	.show =		swap_show
1742};
1743
1744static int swaps_open(struct inode *inode, struct file *file)
1745{
1746	return seq_open(file, &swaps_op);
1747}
1748
1749static const struct file_operations proc_swaps_operations = {
1750	.open		= swaps_open,
1751	.read		= seq_read,
1752	.llseek		= seq_lseek,
1753	.release	= seq_release,
1754};
1755
1756static int __init procswaps_init(void)
1757{
1758	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1759	return 0;
1760}
1761__initcall(procswaps_init);
1762#endif /* CONFIG_PROC_FS */
1763
1764#ifdef MAX_SWAPFILES_CHECK
1765static int __init max_swapfiles_check(void)
1766{
1767	MAX_SWAPFILES_CHECK();
1768	return 0;
1769}
1770late_initcall(max_swapfiles_check);
1771#endif
1772
1773/*
1774 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1775 *
1776 * The swapon system call
1777 */
1778SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1779{
1780	struct swap_info_struct * p;
1781	char *name = NULL;
1782	struct block_device *bdev = NULL;
1783	struct file *swap_file = NULL;
1784	struct address_space *mapping;
1785	unsigned int type;
1786	int i, prev;
1787	int error;
1788	union swap_header *swap_header = NULL;
1789	unsigned int nr_good_pages = 0;
1790	int nr_extents = 0;
1791	sector_t span;
1792	unsigned long maxpages = 1;
1793	unsigned long swapfilepages;
1794	unsigned short *swap_map = NULL;
1795	struct page *page = NULL;
1796	struct inode *inode = NULL;
1797	int did_down = 0;
1798
1799	if (!capable(CAP_SYS_ADMIN))
1800		return -EPERM;
1801	spin_lock(&swap_lock);
1802	p = swap_info;
1803	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1804		if (!(p->flags & SWP_USED))
1805			break;
1806	error = -EPERM;
1807	if (type >= MAX_SWAPFILES) {
1808		spin_unlock(&swap_lock);
1809		goto out;
1810	}
1811	if (type >= nr_swapfiles)
1812		nr_swapfiles = type+1;
1813	memset(p, 0, sizeof(*p));
1814	INIT_LIST_HEAD(&p->extent_list);
1815	p->flags = SWP_USED;
1816	p->next = -1;
1817	spin_unlock(&swap_lock);
1818	name = getname(specialfile);
1819	error = PTR_ERR(name);
1820	if (IS_ERR(name)) {
1821		name = NULL;
1822		goto bad_swap_2;
1823	}
1824	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1825	error = PTR_ERR(swap_file);
1826	if (IS_ERR(swap_file)) {
1827		swap_file = NULL;
1828		goto bad_swap_2;
1829	}
1830
1831	p->swap_file = swap_file;
1832	mapping = swap_file->f_mapping;
1833	inode = mapping->host;
1834
1835	error = -EBUSY;
1836	for (i = 0; i < nr_swapfiles; i++) {
1837		struct swap_info_struct *q = &swap_info[i];
1838
1839		if (i == type || !q->swap_file)
1840			continue;
1841		if (mapping == q->swap_file->f_mapping)
1842			goto bad_swap;
1843	}
1844
1845	error = -EINVAL;
1846	if (S_ISBLK(inode->i_mode)) {
1847		bdev = I_BDEV(inode);
1848		error = bd_claim(bdev, sys_swapon);
1849		if (error < 0) {
1850			bdev = NULL;
1851			error = -EINVAL;
1852			goto bad_swap;
1853		}
1854		p->old_block_size = block_size(bdev);
1855		error = set_blocksize(bdev, PAGE_SIZE);
1856		if (error < 0)
1857			goto bad_swap;
1858		p->bdev = bdev;
1859	} else if (S_ISREG(inode->i_mode)) {
1860		p->bdev = inode->i_sb->s_bdev;
1861		mutex_lock(&inode->i_mutex);
1862		did_down = 1;
1863		if (IS_SWAPFILE(inode)) {
1864			error = -EBUSY;
1865			goto bad_swap;
1866		}
1867	} else {
1868		goto bad_swap;
1869	}
1870
1871	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1872
1873	/*
1874	 * Read the swap header.
1875	 */
1876	if (!mapping->a_ops->readpage) {
1877		error = -EINVAL;
1878		goto bad_swap;
1879	}
1880	page = read_mapping_page(mapping, 0, swap_file);
1881	if (IS_ERR(page)) {
1882		error = PTR_ERR(page);
1883		goto bad_swap;
1884	}
1885	swap_header = kmap(page);
1886
1887	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1888		printk(KERN_ERR "Unable to find swap-space signature\n");
1889		error = -EINVAL;
1890		goto bad_swap;
1891	}
1892
1893	/* swap partition endianess hack... */
1894	if (swab32(swap_header->info.version) == 1) {
1895		swab32s(&swap_header->info.version);
1896		swab32s(&swap_header->info.last_page);
1897		swab32s(&swap_header->info.nr_badpages);
1898		for (i = 0; i < swap_header->info.nr_badpages; i++)
1899			swab32s(&swap_header->info.badpages[i]);
1900	}
1901	/* Check the swap header's sub-version */
1902	if (swap_header->info.version != 1) {
1903		printk(KERN_WARNING
1904		       "Unable to handle swap header version %d\n",
1905		       swap_header->info.version);
1906		error = -EINVAL;
1907		goto bad_swap;
1908	}
1909
1910	p->lowest_bit  = 1;
1911	p->cluster_next = 1;
1912
1913	/*
1914	 * Find out how many pages are allowed for a single swap
1915	 * device. There are two limiting factors: 1) the number of
1916	 * bits for the swap offset in the swp_entry_t type and
1917	 * 2) the number of bits in the a swap pte as defined by
1918	 * the different architectures. In order to find the
1919	 * largest possible bit mask a swap entry with swap type 0
1920	 * and swap offset ~0UL is created, encoded to a swap pte,
1921	 * decoded to a swp_entry_t again and finally the swap
1922	 * offset is extracted. This will mask all the bits from
1923	 * the initial ~0UL mask that can't be encoded in either
1924	 * the swp_entry_t or the architecture definition of a
1925	 * swap pte.
1926	 */
1927	maxpages = swp_offset(pte_to_swp_entry(
1928			swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1929	if (maxpages > swap_header->info.last_page)
1930		maxpages = swap_header->info.last_page;
1931	p->highest_bit = maxpages - 1;
1932
1933	error = -EINVAL;
1934	if (!maxpages)
1935		goto bad_swap;
1936	if (swapfilepages && maxpages > swapfilepages) {
1937		printk(KERN_WARNING
1938		       "Swap area shorter than signature indicates\n");
1939		goto bad_swap;
1940	}
1941	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1942		goto bad_swap;
1943	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1944		goto bad_swap;
1945
1946	/* OK, set up the swap map and apply the bad block list */
1947	swap_map = vmalloc(maxpages * sizeof(short));
1948	if (!swap_map) {
1949		error = -ENOMEM;
1950		goto bad_swap;
1951	}
1952
1953	memset(swap_map, 0, maxpages * sizeof(short));
1954	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1955		int page_nr = swap_header->info.badpages[i];
1956		if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1957			error = -EINVAL;
1958			goto bad_swap;
1959		}
1960		swap_map[page_nr] = SWAP_MAP_BAD;
1961	}
1962
1963	error = swap_cgroup_swapon(type, maxpages);
1964	if (error)
1965		goto bad_swap;
1966
1967	nr_good_pages = swap_header->info.last_page -
1968			swap_header->info.nr_badpages -
1969			1 /* header page */;
1970
1971	if (nr_good_pages) {
1972		swap_map[0] = SWAP_MAP_BAD;
1973		p->max = maxpages;
1974		p->pages = nr_good_pages;
1975		nr_extents = setup_swap_extents(p, &span);
1976		if (nr_extents < 0) {
1977			error = nr_extents;
1978			goto bad_swap;
1979		}
1980		nr_good_pages = p->pages;
1981	}
1982	if (!nr_good_pages) {
1983		printk(KERN_WARNING "Empty swap-file\n");
1984		error = -EINVAL;
1985		goto bad_swap;
1986	}
1987
1988	if (p->bdev) {
1989		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1990			p->flags |= SWP_SOLIDSTATE;
1991			p->cluster_next = 1 + (random32() % p->highest_bit);
1992		}
1993		if (discard_swap(p) == 0)
1994			p->flags |= SWP_DISCARDABLE;
1995	}
1996
1997	mutex_lock(&swapon_mutex);
1998	spin_lock(&swap_lock);
1999	if (swap_flags & SWAP_FLAG_PREFER)
2000		p->prio =
2001		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2002	else
2003		p->prio = --least_priority;
2004	p->swap_map = swap_map;
2005	p->flags |= SWP_WRITEOK;
2006	nr_swap_pages += nr_good_pages;
2007	total_swap_pages += nr_good_pages;
2008
2009	printk(KERN_INFO "Adding %uk swap on %s.  "
2010			"Priority:%d extents:%d across:%lluk %s%s\n",
2011		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2012		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2013		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2014		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2015
2016	/* insert swap space into swap_list: */
2017	prev = -1;
2018	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
2019		if (p->prio >= swap_info[i].prio) {
2020			break;
2021		}
2022		prev = i;
2023	}
2024	p->next = i;
2025	if (prev < 0) {
2026		swap_list.head = swap_list.next = p - swap_info;
2027	} else {
2028		swap_info[prev].next = p - swap_info;
2029	}
2030	spin_unlock(&swap_lock);
2031	mutex_unlock(&swapon_mutex);
2032	error = 0;
2033	goto out;
2034bad_swap:
2035	if (bdev) {
2036		set_blocksize(bdev, p->old_block_size);
2037		bd_release(bdev);
2038	}
2039	destroy_swap_extents(p);
2040	swap_cgroup_swapoff(type);
2041bad_swap_2:
2042	spin_lock(&swap_lock);
2043	p->swap_file = NULL;
2044	p->flags = 0;
2045	spin_unlock(&swap_lock);
2046	vfree(swap_map);
2047	if (swap_file)
2048		filp_close(swap_file, NULL);
2049out:
2050	if (page && !IS_ERR(page)) {
2051		kunmap(page);
2052		page_cache_release(page);
2053	}
2054	if (name)
2055		putname(name);
2056	if (did_down) {
2057		if (!error)
2058			inode->i_flags |= S_SWAPFILE;
2059		mutex_unlock(&inode->i_mutex);
2060	}
2061	return error;
2062}
2063
2064void si_swapinfo(struct sysinfo *val)
2065{
2066	unsigned int i;
2067	unsigned long nr_to_be_unused = 0;
2068
2069	spin_lock(&swap_lock);
2070	for (i = 0; i < nr_swapfiles; i++) {
2071		if (!(swap_info[i].flags & SWP_USED) ||
2072		     (swap_info[i].flags & SWP_WRITEOK))
2073			continue;
2074		nr_to_be_unused += swap_info[i].inuse_pages;
2075	}
2076	val->freeswap = nr_swap_pages + nr_to_be_unused;
2077	val->totalswap = total_swap_pages + nr_to_be_unused;
2078	spin_unlock(&swap_lock);
2079}
2080
2081/*
2082 * Verify that a swap entry is valid and increment its swap map count.
2083 *
2084 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2085 * "permanent", but will be reclaimed by the next swapoff.
2086 * Returns error code in following case.
2087 * - success -> 0
2088 * - swp_entry is invalid -> EINVAL
2089 * - swp_entry is migration entry -> EINVAL
2090 * - swap-cache reference is requested but there is already one. -> EEXIST
2091 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2092 */
2093static int __swap_duplicate(swp_entry_t entry, bool cache)
2094{
2095	struct swap_info_struct * p;
2096	unsigned long offset, type;
2097	int result = -EINVAL;
2098	int count;
2099	bool has_cache;
2100
2101	if (non_swap_entry(entry))
2102		return -EINVAL;
2103
2104	type = swp_type(entry);
2105	if (type >= nr_swapfiles)
2106		goto bad_file;
2107	p = type + swap_info;
2108	offset = swp_offset(entry);
2109
2110	spin_lock(&swap_lock);
2111
2112	if (unlikely(offset >= p->max))
2113		goto unlock_out;
2114
2115	count = swap_count(p->swap_map[offset]);
2116	has_cache = swap_has_cache(p->swap_map[offset]);
2117
2118	if (cache == SWAP_CACHE) { /* called for swapcache/swapin-readahead */
2119
2120		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2121		if (!has_cache && count) {
2122			p->swap_map[offset] = encode_swapmap(count, true);
2123			result = 0;
2124		} else if (has_cache) /* someone added cache */
2125			result = -EEXIST;
2126		else if (!count) /* no users */
2127			result = -ENOENT;
2128
2129	} else if (count || has_cache) {
2130		if (count < SWAP_MAP_MAX - 1) {
2131			p->swap_map[offset] = encode_swapmap(count + 1,
2132							     has_cache);
2133			result = 0;
2134		} else if (count <= SWAP_MAP_MAX) {
2135			if (swap_overflow++ < 5)
2136				printk(KERN_WARNING
2137				       "swap_dup: swap entry overflow\n");
2138			p->swap_map[offset] = encode_swapmap(SWAP_MAP_MAX,
2139							      has_cache);
2140			result = 0;
2141		}
2142	} else
2143		result = -ENOENT; /* unused swap entry */
2144unlock_out:
2145	spin_unlock(&swap_lock);
2146out:
2147	return result;
2148
2149bad_file:
2150	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2151	goto out;
2152}
2153/*
2154 * increase reference count of swap entry by 1.
2155 */
2156void swap_duplicate(swp_entry_t entry)
2157{
2158	__swap_duplicate(entry, SWAP_MAP);
2159}
2160
2161/*
2162 * @entry: swap entry for which we allocate swap cache.
2163 *
2164 * Called when allocating swap cache for exising swap entry,
2165 * This can return error codes. Returns 0 at success.
2166 * -EBUSY means there is a swap cache.
2167 * Note: return code is different from swap_duplicate().
2168 */
2169int swapcache_prepare(swp_entry_t entry)
2170{
2171	return __swap_duplicate(entry, SWAP_CACHE);
2172}
2173
2174/*
2175 * swap_lock prevents swap_map being freed. Don't grab an extra
2176 * reference on the swaphandle, it doesn't matter if it becomes unused.
2177 */
2178int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2179{
2180	struct swap_info_struct *si;
2181	int our_page_cluster = page_cluster;
2182	pgoff_t target, toff;
2183	pgoff_t base, end;
2184	int nr_pages = 0;
2185
2186	if (!our_page_cluster)	/* no readahead */
2187		return 0;
2188
2189	si = &swap_info[swp_type(entry)];
2190	target = swp_offset(entry);
2191	base = (target >> our_page_cluster) << our_page_cluster;
2192	end = base + (1 << our_page_cluster);
2193	if (!base)		/* first page is swap header */
2194		base++;
2195
2196	spin_lock(&swap_lock);
2197	if (end > si->max)	/* don't go beyond end of map */
2198		end = si->max;
2199
2200	/* Count contiguous allocated slots above our target */
2201	for (toff = target; ++toff < end; nr_pages++) {
2202		/* Don't read in free or bad pages */
2203		if (!si->swap_map[toff])
2204			break;
2205		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2206			break;
2207	}
2208	/* Count contiguous allocated slots below our target */
2209	for (toff = target; --toff >= base; nr_pages++) {
2210		/* Don't read in free or bad pages */
2211		if (!si->swap_map[toff])
2212			break;
2213		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2214			break;
2215	}
2216	spin_unlock(&swap_lock);
2217
2218	/*
2219	 * Indicate starting offset, and return number of pages to get:
2220	 * if only 1, say 0, since there's then no readahead to be done.
2221	 */
2222	*offset = ++toff;
2223	return nr_pages? ++nr_pages: 0;
2224}
2225