swapfile.c revision f90ac3982a78d36f894824636beeef13361d7c59
1/*
2 *  linux/mm/swapfile.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 *  Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shmem_fs.h>
18#include <linux/blkdev.h>
19#include <linux/random.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
28#include <linux/mutex.h>
29#include <linux/capability.h>
30#include <linux/syscalls.h>
31#include <linux/memcontrol.h>
32#include <linux/poll.h>
33#include <linux/oom.h>
34
35#include <asm/pgtable.h>
36#include <asm/tlbflush.h>
37#include <linux/swapops.h>
38#include <linux/page_cgroup.h>
39
40static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41				 unsigned char);
42static void free_swap_count_continuations(struct swap_info_struct *);
43static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44
45static DEFINE_SPINLOCK(swap_lock);
46static unsigned int nr_swapfiles;
47long nr_swap_pages;
48long total_swap_pages;
49static int least_priority;
50
51static const char Bad_file[] = "Bad swap file entry ";
52static const char Unused_file[] = "Unused swap file entry ";
53static const char Bad_offset[] = "Bad swap offset entry ";
54static const char Unused_offset[] = "Unused swap offset entry ";
55
56static struct swap_list_t swap_list = {-1, -1};
57
58static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59
60static DEFINE_MUTEX(swapon_mutex);
61
62static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63/* Activity counter to indicate that a swapon or swapoff has occurred */
64static atomic_t proc_poll_event = ATOMIC_INIT(0);
65
66static inline unsigned char swap_count(unsigned char ent)
67{
68	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
69}
70
71/* returns 1 if swap entry is freed */
72static int
73__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
74{
75	swp_entry_t entry = swp_entry(si->type, offset);
76	struct page *page;
77	int ret = 0;
78
79	page = find_get_page(&swapper_space, entry.val);
80	if (!page)
81		return 0;
82	/*
83	 * This function is called from scan_swap_map() and it's called
84	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85	 * We have to use trylock for avoiding deadlock. This is a special
86	 * case and you should use try_to_free_swap() with explicit lock_page()
87	 * in usual operations.
88	 */
89	if (trylock_page(page)) {
90		ret = try_to_free_swap(page);
91		unlock_page(page);
92	}
93	page_cache_release(page);
94	return ret;
95}
96
97/*
98 * swapon tell device that all the old swap contents can be discarded,
99 * to allow the swap device to optimize its wear-levelling.
100 */
101static int discard_swap(struct swap_info_struct *si)
102{
103	struct swap_extent *se;
104	sector_t start_block;
105	sector_t nr_blocks;
106	int err = 0;
107
108	/* Do not discard the swap header page! */
109	se = &si->first_swap_extent;
110	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
111	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
112	if (nr_blocks) {
113		err = blkdev_issue_discard(si->bdev, start_block,
114				nr_blocks, GFP_KERNEL, 0);
115		if (err)
116			return err;
117		cond_resched();
118	}
119
120	list_for_each_entry(se, &si->first_swap_extent.list, list) {
121		start_block = se->start_block << (PAGE_SHIFT - 9);
122		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
123
124		err = blkdev_issue_discard(si->bdev, start_block,
125				nr_blocks, GFP_KERNEL, 0);
126		if (err)
127			break;
128
129		cond_resched();
130	}
131	return err;		/* That will often be -EOPNOTSUPP */
132}
133
134/*
135 * swap allocation tell device that a cluster of swap can now be discarded,
136 * to allow the swap device to optimize its wear-levelling.
137 */
138static void discard_swap_cluster(struct swap_info_struct *si,
139				 pgoff_t start_page, pgoff_t nr_pages)
140{
141	struct swap_extent *se = si->curr_swap_extent;
142	int found_extent = 0;
143
144	while (nr_pages) {
145		struct list_head *lh;
146
147		if (se->start_page <= start_page &&
148		    start_page < se->start_page + se->nr_pages) {
149			pgoff_t offset = start_page - se->start_page;
150			sector_t start_block = se->start_block + offset;
151			sector_t nr_blocks = se->nr_pages - offset;
152
153			if (nr_blocks > nr_pages)
154				nr_blocks = nr_pages;
155			start_page += nr_blocks;
156			nr_pages -= nr_blocks;
157
158			if (!found_extent++)
159				si->curr_swap_extent = se;
160
161			start_block <<= PAGE_SHIFT - 9;
162			nr_blocks <<= PAGE_SHIFT - 9;
163			if (blkdev_issue_discard(si->bdev, start_block,
164				    nr_blocks, GFP_NOIO, 0))
165				break;
166		}
167
168		lh = se->list.next;
169		se = list_entry(lh, struct swap_extent, list);
170	}
171}
172
173static int wait_for_discard(void *word)
174{
175	schedule();
176	return 0;
177}
178
179#define SWAPFILE_CLUSTER	256
180#define LATENCY_LIMIT		256
181
182static unsigned long scan_swap_map(struct swap_info_struct *si,
183				   unsigned char usage)
184{
185	unsigned long offset;
186	unsigned long scan_base;
187	unsigned long last_in_cluster = 0;
188	int latency_ration = LATENCY_LIMIT;
189	int found_free_cluster = 0;
190
191	/*
192	 * We try to cluster swap pages by allocating them sequentially
193	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
194	 * way, however, we resort to first-free allocation, starting
195	 * a new cluster.  This prevents us from scattering swap pages
196	 * all over the entire swap partition, so that we reduce
197	 * overall disk seek times between swap pages.  -- sct
198	 * But we do now try to find an empty cluster.  -Andrea
199	 * And we let swap pages go all over an SSD partition.  Hugh
200	 */
201
202	si->flags += SWP_SCANNING;
203	scan_base = offset = si->cluster_next;
204
205	if (unlikely(!si->cluster_nr--)) {
206		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
207			si->cluster_nr = SWAPFILE_CLUSTER - 1;
208			goto checks;
209		}
210		if (si->flags & SWP_DISCARDABLE) {
211			/*
212			 * Start range check on racing allocations, in case
213			 * they overlap the cluster we eventually decide on
214			 * (we scan without swap_lock to allow preemption).
215			 * It's hardly conceivable that cluster_nr could be
216			 * wrapped during our scan, but don't depend on it.
217			 */
218			if (si->lowest_alloc)
219				goto checks;
220			si->lowest_alloc = si->max;
221			si->highest_alloc = 0;
222		}
223		spin_unlock(&swap_lock);
224
225		/*
226		 * If seek is expensive, start searching for new cluster from
227		 * start of partition, to minimize the span of allocated swap.
228		 * But if seek is cheap, search from our current position, so
229		 * that swap is allocated from all over the partition: if the
230		 * Flash Translation Layer only remaps within limited zones,
231		 * we don't want to wear out the first zone too quickly.
232		 */
233		if (!(si->flags & SWP_SOLIDSTATE))
234			scan_base = offset = si->lowest_bit;
235		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
236
237		/* Locate the first empty (unaligned) cluster */
238		for (; last_in_cluster <= si->highest_bit; offset++) {
239			if (si->swap_map[offset])
240				last_in_cluster = offset + SWAPFILE_CLUSTER;
241			else if (offset == last_in_cluster) {
242				spin_lock(&swap_lock);
243				offset -= SWAPFILE_CLUSTER - 1;
244				si->cluster_next = offset;
245				si->cluster_nr = SWAPFILE_CLUSTER - 1;
246				found_free_cluster = 1;
247				goto checks;
248			}
249			if (unlikely(--latency_ration < 0)) {
250				cond_resched();
251				latency_ration = LATENCY_LIMIT;
252			}
253		}
254
255		offset = si->lowest_bit;
256		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
257
258		/* Locate the first empty (unaligned) cluster */
259		for (; last_in_cluster < scan_base; offset++) {
260			if (si->swap_map[offset])
261				last_in_cluster = offset + SWAPFILE_CLUSTER;
262			else if (offset == last_in_cluster) {
263				spin_lock(&swap_lock);
264				offset -= SWAPFILE_CLUSTER - 1;
265				si->cluster_next = offset;
266				si->cluster_nr = SWAPFILE_CLUSTER - 1;
267				found_free_cluster = 1;
268				goto checks;
269			}
270			if (unlikely(--latency_ration < 0)) {
271				cond_resched();
272				latency_ration = LATENCY_LIMIT;
273			}
274		}
275
276		offset = scan_base;
277		spin_lock(&swap_lock);
278		si->cluster_nr = SWAPFILE_CLUSTER - 1;
279		si->lowest_alloc = 0;
280	}
281
282checks:
283	if (!(si->flags & SWP_WRITEOK))
284		goto no_page;
285	if (!si->highest_bit)
286		goto no_page;
287	if (offset > si->highest_bit)
288		scan_base = offset = si->lowest_bit;
289
290	/* reuse swap entry of cache-only swap if not busy. */
291	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
292		int swap_was_freed;
293		spin_unlock(&swap_lock);
294		swap_was_freed = __try_to_reclaim_swap(si, offset);
295		spin_lock(&swap_lock);
296		/* entry was freed successfully, try to use this again */
297		if (swap_was_freed)
298			goto checks;
299		goto scan; /* check next one */
300	}
301
302	if (si->swap_map[offset])
303		goto scan;
304
305	if (offset == si->lowest_bit)
306		si->lowest_bit++;
307	if (offset == si->highest_bit)
308		si->highest_bit--;
309	si->inuse_pages++;
310	if (si->inuse_pages == si->pages) {
311		si->lowest_bit = si->max;
312		si->highest_bit = 0;
313	}
314	si->swap_map[offset] = usage;
315	si->cluster_next = offset + 1;
316	si->flags -= SWP_SCANNING;
317
318	if (si->lowest_alloc) {
319		/*
320		 * Only set when SWP_DISCARDABLE, and there's a scan
321		 * for a free cluster in progress or just completed.
322		 */
323		if (found_free_cluster) {
324			/*
325			 * To optimize wear-levelling, discard the
326			 * old data of the cluster, taking care not to
327			 * discard any of its pages that have already
328			 * been allocated by racing tasks (offset has
329			 * already stepped over any at the beginning).
330			 */
331			if (offset < si->highest_alloc &&
332			    si->lowest_alloc <= last_in_cluster)
333				last_in_cluster = si->lowest_alloc - 1;
334			si->flags |= SWP_DISCARDING;
335			spin_unlock(&swap_lock);
336
337			if (offset < last_in_cluster)
338				discard_swap_cluster(si, offset,
339					last_in_cluster - offset + 1);
340
341			spin_lock(&swap_lock);
342			si->lowest_alloc = 0;
343			si->flags &= ~SWP_DISCARDING;
344
345			smp_mb();	/* wake_up_bit advises this */
346			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
347
348		} else if (si->flags & SWP_DISCARDING) {
349			/*
350			 * Delay using pages allocated by racing tasks
351			 * until the whole discard has been issued. We
352			 * could defer that delay until swap_writepage,
353			 * but it's easier to keep this self-contained.
354			 */
355			spin_unlock(&swap_lock);
356			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
357				wait_for_discard, TASK_UNINTERRUPTIBLE);
358			spin_lock(&swap_lock);
359		} else {
360			/*
361			 * Note pages allocated by racing tasks while
362			 * scan for a free cluster is in progress, so
363			 * that its final discard can exclude them.
364			 */
365			if (offset < si->lowest_alloc)
366				si->lowest_alloc = offset;
367			if (offset > si->highest_alloc)
368				si->highest_alloc = offset;
369		}
370	}
371	return offset;
372
373scan:
374	spin_unlock(&swap_lock);
375	while (++offset <= si->highest_bit) {
376		if (!si->swap_map[offset]) {
377			spin_lock(&swap_lock);
378			goto checks;
379		}
380		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
381			spin_lock(&swap_lock);
382			goto checks;
383		}
384		if (unlikely(--latency_ration < 0)) {
385			cond_resched();
386			latency_ration = LATENCY_LIMIT;
387		}
388	}
389	offset = si->lowest_bit;
390	while (++offset < scan_base) {
391		if (!si->swap_map[offset]) {
392			spin_lock(&swap_lock);
393			goto checks;
394		}
395		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
396			spin_lock(&swap_lock);
397			goto checks;
398		}
399		if (unlikely(--latency_ration < 0)) {
400			cond_resched();
401			latency_ration = LATENCY_LIMIT;
402		}
403	}
404	spin_lock(&swap_lock);
405
406no_page:
407	si->flags -= SWP_SCANNING;
408	return 0;
409}
410
411swp_entry_t get_swap_page(void)
412{
413	struct swap_info_struct *si;
414	pgoff_t offset;
415	int type, next;
416	int wrapped = 0;
417
418	spin_lock(&swap_lock);
419	if (nr_swap_pages <= 0)
420		goto noswap;
421	nr_swap_pages--;
422
423	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
424		si = swap_info[type];
425		next = si->next;
426		if (next < 0 ||
427		    (!wrapped && si->prio != swap_info[next]->prio)) {
428			next = swap_list.head;
429			wrapped++;
430		}
431
432		if (!si->highest_bit)
433			continue;
434		if (!(si->flags & SWP_WRITEOK))
435			continue;
436
437		swap_list.next = next;
438		/* This is called for allocating swap entry for cache */
439		offset = scan_swap_map(si, SWAP_HAS_CACHE);
440		if (offset) {
441			spin_unlock(&swap_lock);
442			return swp_entry(type, offset);
443		}
444		next = swap_list.next;
445	}
446
447	nr_swap_pages++;
448noswap:
449	spin_unlock(&swap_lock);
450	return (swp_entry_t) {0};
451}
452
453/* The only caller of this function is now susupend routine */
454swp_entry_t get_swap_page_of_type(int type)
455{
456	struct swap_info_struct *si;
457	pgoff_t offset;
458
459	spin_lock(&swap_lock);
460	si = swap_info[type];
461	if (si && (si->flags & SWP_WRITEOK)) {
462		nr_swap_pages--;
463		/* This is called for allocating swap entry, not cache */
464		offset = scan_swap_map(si, 1);
465		if (offset) {
466			spin_unlock(&swap_lock);
467			return swp_entry(type, offset);
468		}
469		nr_swap_pages++;
470	}
471	spin_unlock(&swap_lock);
472	return (swp_entry_t) {0};
473}
474
475static struct swap_info_struct *swap_info_get(swp_entry_t entry)
476{
477	struct swap_info_struct *p;
478	unsigned long offset, type;
479
480	if (!entry.val)
481		goto out;
482	type = swp_type(entry);
483	if (type >= nr_swapfiles)
484		goto bad_nofile;
485	p = swap_info[type];
486	if (!(p->flags & SWP_USED))
487		goto bad_device;
488	offset = swp_offset(entry);
489	if (offset >= p->max)
490		goto bad_offset;
491	if (!p->swap_map[offset])
492		goto bad_free;
493	spin_lock(&swap_lock);
494	return p;
495
496bad_free:
497	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
498	goto out;
499bad_offset:
500	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
501	goto out;
502bad_device:
503	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
504	goto out;
505bad_nofile:
506	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
507out:
508	return NULL;
509}
510
511static unsigned char swap_entry_free(struct swap_info_struct *p,
512				     swp_entry_t entry, unsigned char usage)
513{
514	unsigned long offset = swp_offset(entry);
515	unsigned char count;
516	unsigned char has_cache;
517
518	count = p->swap_map[offset];
519	has_cache = count & SWAP_HAS_CACHE;
520	count &= ~SWAP_HAS_CACHE;
521
522	if (usage == SWAP_HAS_CACHE) {
523		VM_BUG_ON(!has_cache);
524		has_cache = 0;
525	} else if (count == SWAP_MAP_SHMEM) {
526		/*
527		 * Or we could insist on shmem.c using a special
528		 * swap_shmem_free() and free_shmem_swap_and_cache()...
529		 */
530		count = 0;
531	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
532		if (count == COUNT_CONTINUED) {
533			if (swap_count_continued(p, offset, count))
534				count = SWAP_MAP_MAX | COUNT_CONTINUED;
535			else
536				count = SWAP_MAP_MAX;
537		} else
538			count--;
539	}
540
541	if (!count)
542		mem_cgroup_uncharge_swap(entry);
543
544	usage = count | has_cache;
545	p->swap_map[offset] = usage;
546
547	/* free if no reference */
548	if (!usage) {
549		struct gendisk *disk = p->bdev->bd_disk;
550		if (offset < p->lowest_bit)
551			p->lowest_bit = offset;
552		if (offset > p->highest_bit)
553			p->highest_bit = offset;
554		if (swap_list.next >= 0 &&
555		    p->prio > swap_info[swap_list.next]->prio)
556			swap_list.next = p->type;
557		nr_swap_pages++;
558		p->inuse_pages--;
559		if ((p->flags & SWP_BLKDEV) &&
560				disk->fops->swap_slot_free_notify)
561			disk->fops->swap_slot_free_notify(p->bdev, offset);
562	}
563
564	return usage;
565}
566
567/*
568 * Caller has made sure that the swapdevice corresponding to entry
569 * is still around or has not been recycled.
570 */
571void swap_free(swp_entry_t entry)
572{
573	struct swap_info_struct *p;
574
575	p = swap_info_get(entry);
576	if (p) {
577		swap_entry_free(p, entry, 1);
578		spin_unlock(&swap_lock);
579	}
580}
581
582/*
583 * Called after dropping swapcache to decrease refcnt to swap entries.
584 */
585void swapcache_free(swp_entry_t entry, struct page *page)
586{
587	struct swap_info_struct *p;
588	unsigned char count;
589
590	p = swap_info_get(entry);
591	if (p) {
592		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
593		if (page)
594			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
595		spin_unlock(&swap_lock);
596	}
597}
598
599/*
600 * How many references to page are currently swapped out?
601 * This does not give an exact answer when swap count is continued,
602 * but does include the high COUNT_CONTINUED flag to allow for that.
603 */
604static inline int page_swapcount(struct page *page)
605{
606	int count = 0;
607	struct swap_info_struct *p;
608	swp_entry_t entry;
609
610	entry.val = page_private(page);
611	p = swap_info_get(entry);
612	if (p) {
613		count = swap_count(p->swap_map[swp_offset(entry)]);
614		spin_unlock(&swap_lock);
615	}
616	return count;
617}
618
619/*
620 * We can write to an anon page without COW if there are no other references
621 * to it.  And as a side-effect, free up its swap: because the old content
622 * on disk will never be read, and seeking back there to write new content
623 * later would only waste time away from clustering.
624 */
625int reuse_swap_page(struct page *page)
626{
627	int count;
628
629	VM_BUG_ON(!PageLocked(page));
630	if (unlikely(PageKsm(page)))
631		return 0;
632	count = page_mapcount(page);
633	if (count <= 1 && PageSwapCache(page)) {
634		count += page_swapcount(page);
635		if (count == 1 && !PageWriteback(page)) {
636			delete_from_swap_cache(page);
637			SetPageDirty(page);
638		}
639	}
640	return count <= 1;
641}
642
643/*
644 * If swap is getting full, or if there are no more mappings of this page,
645 * then try_to_free_swap is called to free its swap space.
646 */
647int try_to_free_swap(struct page *page)
648{
649	VM_BUG_ON(!PageLocked(page));
650
651	if (!PageSwapCache(page))
652		return 0;
653	if (PageWriteback(page))
654		return 0;
655	if (page_swapcount(page))
656		return 0;
657
658	/*
659	 * Once hibernation has begun to create its image of memory,
660	 * there's a danger that one of the calls to try_to_free_swap()
661	 * - most probably a call from __try_to_reclaim_swap() while
662	 * hibernation is allocating its own swap pages for the image,
663	 * but conceivably even a call from memory reclaim - will free
664	 * the swap from a page which has already been recorded in the
665	 * image as a clean swapcache page, and then reuse its swap for
666	 * another page of the image.  On waking from hibernation, the
667	 * original page might be freed under memory pressure, then
668	 * later read back in from swap, now with the wrong data.
669	 *
670	 * Hibration suspends storage while it is writing the image
671	 * to disk so check that here.
672	 */
673	if (pm_suspended_storage())
674		return 0;
675
676	delete_from_swap_cache(page);
677	SetPageDirty(page);
678	return 1;
679}
680
681/*
682 * Free the swap entry like above, but also try to
683 * free the page cache entry if it is the last user.
684 */
685int free_swap_and_cache(swp_entry_t entry)
686{
687	struct swap_info_struct *p;
688	struct page *page = NULL;
689
690	if (non_swap_entry(entry))
691		return 1;
692
693	p = swap_info_get(entry);
694	if (p) {
695		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
696			page = find_get_page(&swapper_space, entry.val);
697			if (page && !trylock_page(page)) {
698				page_cache_release(page);
699				page = NULL;
700			}
701		}
702		spin_unlock(&swap_lock);
703	}
704	if (page) {
705		/*
706		 * Not mapped elsewhere, or swap space full? Free it!
707		 * Also recheck PageSwapCache now page is locked (above).
708		 */
709		if (PageSwapCache(page) && !PageWriteback(page) &&
710				(!page_mapped(page) || vm_swap_full())) {
711			delete_from_swap_cache(page);
712			SetPageDirty(page);
713		}
714		unlock_page(page);
715		page_cache_release(page);
716	}
717	return p != NULL;
718}
719
720#ifdef CONFIG_CGROUP_MEM_RES_CTLR
721/**
722 * mem_cgroup_count_swap_user - count the user of a swap entry
723 * @ent: the swap entry to be checked
724 * @pagep: the pointer for the swap cache page of the entry to be stored
725 *
726 * Returns the number of the user of the swap entry. The number is valid only
727 * for swaps of anonymous pages.
728 * If the entry is found on swap cache, the page is stored to pagep with
729 * refcount of it being incremented.
730 */
731int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
732{
733	struct page *page;
734	struct swap_info_struct *p;
735	int count = 0;
736
737	page = find_get_page(&swapper_space, ent.val);
738	if (page)
739		count += page_mapcount(page);
740	p = swap_info_get(ent);
741	if (p) {
742		count += swap_count(p->swap_map[swp_offset(ent)]);
743		spin_unlock(&swap_lock);
744	}
745
746	*pagep = page;
747	return count;
748}
749#endif
750
751#ifdef CONFIG_HIBERNATION
752/*
753 * Find the swap type that corresponds to given device (if any).
754 *
755 * @offset - number of the PAGE_SIZE-sized block of the device, starting
756 * from 0, in which the swap header is expected to be located.
757 *
758 * This is needed for the suspend to disk (aka swsusp).
759 */
760int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
761{
762	struct block_device *bdev = NULL;
763	int type;
764
765	if (device)
766		bdev = bdget(device);
767
768	spin_lock(&swap_lock);
769	for (type = 0; type < nr_swapfiles; type++) {
770		struct swap_info_struct *sis = swap_info[type];
771
772		if (!(sis->flags & SWP_WRITEOK))
773			continue;
774
775		if (!bdev) {
776			if (bdev_p)
777				*bdev_p = bdgrab(sis->bdev);
778
779			spin_unlock(&swap_lock);
780			return type;
781		}
782		if (bdev == sis->bdev) {
783			struct swap_extent *se = &sis->first_swap_extent;
784
785			if (se->start_block == offset) {
786				if (bdev_p)
787					*bdev_p = bdgrab(sis->bdev);
788
789				spin_unlock(&swap_lock);
790				bdput(bdev);
791				return type;
792			}
793		}
794	}
795	spin_unlock(&swap_lock);
796	if (bdev)
797		bdput(bdev);
798
799	return -ENODEV;
800}
801
802/*
803 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
804 * corresponding to given index in swap_info (swap type).
805 */
806sector_t swapdev_block(int type, pgoff_t offset)
807{
808	struct block_device *bdev;
809
810	if ((unsigned int)type >= nr_swapfiles)
811		return 0;
812	if (!(swap_info[type]->flags & SWP_WRITEOK))
813		return 0;
814	return map_swap_entry(swp_entry(type, offset), &bdev);
815}
816
817/*
818 * Return either the total number of swap pages of given type, or the number
819 * of free pages of that type (depending on @free)
820 *
821 * This is needed for software suspend
822 */
823unsigned int count_swap_pages(int type, int free)
824{
825	unsigned int n = 0;
826
827	spin_lock(&swap_lock);
828	if ((unsigned int)type < nr_swapfiles) {
829		struct swap_info_struct *sis = swap_info[type];
830
831		if (sis->flags & SWP_WRITEOK) {
832			n = sis->pages;
833			if (free)
834				n -= sis->inuse_pages;
835		}
836	}
837	spin_unlock(&swap_lock);
838	return n;
839}
840#endif /* CONFIG_HIBERNATION */
841
842/*
843 * No need to decide whether this PTE shares the swap entry with others,
844 * just let do_wp_page work it out if a write is requested later - to
845 * force COW, vm_page_prot omits write permission from any private vma.
846 */
847static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
848		unsigned long addr, swp_entry_t entry, struct page *page)
849{
850	struct mem_cgroup *ptr;
851	spinlock_t *ptl;
852	pte_t *pte;
853	int ret = 1;
854
855	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
856		ret = -ENOMEM;
857		goto out_nolock;
858	}
859
860	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
861	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
862		if (ret > 0)
863			mem_cgroup_cancel_charge_swapin(ptr);
864		ret = 0;
865		goto out;
866	}
867
868	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
869	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
870	get_page(page);
871	set_pte_at(vma->vm_mm, addr, pte,
872		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
873	page_add_anon_rmap(page, vma, addr);
874	mem_cgroup_commit_charge_swapin(page, ptr);
875	swap_free(entry);
876	/*
877	 * Move the page to the active list so it is not
878	 * immediately swapped out again after swapon.
879	 */
880	activate_page(page);
881out:
882	pte_unmap_unlock(pte, ptl);
883out_nolock:
884	return ret;
885}
886
887static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
888				unsigned long addr, unsigned long end,
889				swp_entry_t entry, struct page *page)
890{
891	pte_t swp_pte = swp_entry_to_pte(entry);
892	pte_t *pte;
893	int ret = 0;
894
895	/*
896	 * We don't actually need pte lock while scanning for swp_pte: since
897	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
898	 * page table while we're scanning; though it could get zapped, and on
899	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
900	 * of unmatched parts which look like swp_pte, so unuse_pte must
901	 * recheck under pte lock.  Scanning without pte lock lets it be
902	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
903	 */
904	pte = pte_offset_map(pmd, addr);
905	do {
906		/*
907		 * swapoff spends a _lot_ of time in this loop!
908		 * Test inline before going to call unuse_pte.
909		 */
910		if (unlikely(pte_same(*pte, swp_pte))) {
911			pte_unmap(pte);
912			ret = unuse_pte(vma, pmd, addr, entry, page);
913			if (ret)
914				goto out;
915			pte = pte_offset_map(pmd, addr);
916		}
917	} while (pte++, addr += PAGE_SIZE, addr != end);
918	pte_unmap(pte - 1);
919out:
920	return ret;
921}
922
923static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
924				unsigned long addr, unsigned long end,
925				swp_entry_t entry, struct page *page)
926{
927	pmd_t *pmd;
928	unsigned long next;
929	int ret;
930
931	pmd = pmd_offset(pud, addr);
932	do {
933		next = pmd_addr_end(addr, end);
934		if (unlikely(pmd_trans_huge(*pmd)))
935			continue;
936		if (pmd_none_or_clear_bad(pmd))
937			continue;
938		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
939		if (ret)
940			return ret;
941	} while (pmd++, addr = next, addr != end);
942	return 0;
943}
944
945static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
946				unsigned long addr, unsigned long end,
947				swp_entry_t entry, struct page *page)
948{
949	pud_t *pud;
950	unsigned long next;
951	int ret;
952
953	pud = pud_offset(pgd, addr);
954	do {
955		next = pud_addr_end(addr, end);
956		if (pud_none_or_clear_bad(pud))
957			continue;
958		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
959		if (ret)
960			return ret;
961	} while (pud++, addr = next, addr != end);
962	return 0;
963}
964
965static int unuse_vma(struct vm_area_struct *vma,
966				swp_entry_t entry, struct page *page)
967{
968	pgd_t *pgd;
969	unsigned long addr, end, next;
970	int ret;
971
972	if (page_anon_vma(page)) {
973		addr = page_address_in_vma(page, vma);
974		if (addr == -EFAULT)
975			return 0;
976		else
977			end = addr + PAGE_SIZE;
978	} else {
979		addr = vma->vm_start;
980		end = vma->vm_end;
981	}
982
983	pgd = pgd_offset(vma->vm_mm, addr);
984	do {
985		next = pgd_addr_end(addr, end);
986		if (pgd_none_or_clear_bad(pgd))
987			continue;
988		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
989		if (ret)
990			return ret;
991	} while (pgd++, addr = next, addr != end);
992	return 0;
993}
994
995static int unuse_mm(struct mm_struct *mm,
996				swp_entry_t entry, struct page *page)
997{
998	struct vm_area_struct *vma;
999	int ret = 0;
1000
1001	if (!down_read_trylock(&mm->mmap_sem)) {
1002		/*
1003		 * Activate page so shrink_inactive_list is unlikely to unmap
1004		 * its ptes while lock is dropped, so swapoff can make progress.
1005		 */
1006		activate_page(page);
1007		unlock_page(page);
1008		down_read(&mm->mmap_sem);
1009		lock_page(page);
1010	}
1011	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1012		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1013			break;
1014	}
1015	up_read(&mm->mmap_sem);
1016	return (ret < 0)? ret: 0;
1017}
1018
1019/*
1020 * Scan swap_map from current position to next entry still in use.
1021 * Recycle to start on reaching the end, returning 0 when empty.
1022 */
1023static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1024					unsigned int prev)
1025{
1026	unsigned int max = si->max;
1027	unsigned int i = prev;
1028	unsigned char count;
1029
1030	/*
1031	 * No need for swap_lock here: we're just looking
1032	 * for whether an entry is in use, not modifying it; false
1033	 * hits are okay, and sys_swapoff() has already prevented new
1034	 * allocations from this area (while holding swap_lock).
1035	 */
1036	for (;;) {
1037		if (++i >= max) {
1038			if (!prev) {
1039				i = 0;
1040				break;
1041			}
1042			/*
1043			 * No entries in use at top of swap_map,
1044			 * loop back to start and recheck there.
1045			 */
1046			max = prev + 1;
1047			prev = 0;
1048			i = 1;
1049		}
1050		count = si->swap_map[i];
1051		if (count && swap_count(count) != SWAP_MAP_BAD)
1052			break;
1053	}
1054	return i;
1055}
1056
1057/*
1058 * We completely avoid races by reading each swap page in advance,
1059 * and then search for the process using it.  All the necessary
1060 * page table adjustments can then be made atomically.
1061 */
1062static int try_to_unuse(unsigned int type)
1063{
1064	struct swap_info_struct *si = swap_info[type];
1065	struct mm_struct *start_mm;
1066	unsigned char *swap_map;
1067	unsigned char swcount;
1068	struct page *page;
1069	swp_entry_t entry;
1070	unsigned int i = 0;
1071	int retval = 0;
1072
1073	/*
1074	 * When searching mms for an entry, a good strategy is to
1075	 * start at the first mm we freed the previous entry from
1076	 * (though actually we don't notice whether we or coincidence
1077	 * freed the entry).  Initialize this start_mm with a hold.
1078	 *
1079	 * A simpler strategy would be to start at the last mm we
1080	 * freed the previous entry from; but that would take less
1081	 * advantage of mmlist ordering, which clusters forked mms
1082	 * together, child after parent.  If we race with dup_mmap(), we
1083	 * prefer to resolve parent before child, lest we miss entries
1084	 * duplicated after we scanned child: using last mm would invert
1085	 * that.
1086	 */
1087	start_mm = &init_mm;
1088	atomic_inc(&init_mm.mm_users);
1089
1090	/*
1091	 * Keep on scanning until all entries have gone.  Usually,
1092	 * one pass through swap_map is enough, but not necessarily:
1093	 * there are races when an instance of an entry might be missed.
1094	 */
1095	while ((i = find_next_to_unuse(si, i)) != 0) {
1096		if (signal_pending(current)) {
1097			retval = -EINTR;
1098			break;
1099		}
1100
1101		/*
1102		 * Get a page for the entry, using the existing swap
1103		 * cache page if there is one.  Otherwise, get a clean
1104		 * page and read the swap into it.
1105		 */
1106		swap_map = &si->swap_map[i];
1107		entry = swp_entry(type, i);
1108		page = read_swap_cache_async(entry,
1109					GFP_HIGHUSER_MOVABLE, NULL, 0);
1110		if (!page) {
1111			/*
1112			 * Either swap_duplicate() failed because entry
1113			 * has been freed independently, and will not be
1114			 * reused since sys_swapoff() already disabled
1115			 * allocation from here, or alloc_page() failed.
1116			 */
1117			if (!*swap_map)
1118				continue;
1119			retval = -ENOMEM;
1120			break;
1121		}
1122
1123		/*
1124		 * Don't hold on to start_mm if it looks like exiting.
1125		 */
1126		if (atomic_read(&start_mm->mm_users) == 1) {
1127			mmput(start_mm);
1128			start_mm = &init_mm;
1129			atomic_inc(&init_mm.mm_users);
1130		}
1131
1132		/*
1133		 * Wait for and lock page.  When do_swap_page races with
1134		 * try_to_unuse, do_swap_page can handle the fault much
1135		 * faster than try_to_unuse can locate the entry.  This
1136		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1137		 * defer to do_swap_page in such a case - in some tests,
1138		 * do_swap_page and try_to_unuse repeatedly compete.
1139		 */
1140		wait_on_page_locked(page);
1141		wait_on_page_writeback(page);
1142		lock_page(page);
1143		wait_on_page_writeback(page);
1144
1145		/*
1146		 * Remove all references to entry.
1147		 */
1148		swcount = *swap_map;
1149		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1150			retval = shmem_unuse(entry, page);
1151			/* page has already been unlocked and released */
1152			if (retval < 0)
1153				break;
1154			continue;
1155		}
1156		if (swap_count(swcount) && start_mm != &init_mm)
1157			retval = unuse_mm(start_mm, entry, page);
1158
1159		if (swap_count(*swap_map)) {
1160			int set_start_mm = (*swap_map >= swcount);
1161			struct list_head *p = &start_mm->mmlist;
1162			struct mm_struct *new_start_mm = start_mm;
1163			struct mm_struct *prev_mm = start_mm;
1164			struct mm_struct *mm;
1165
1166			atomic_inc(&new_start_mm->mm_users);
1167			atomic_inc(&prev_mm->mm_users);
1168			spin_lock(&mmlist_lock);
1169			while (swap_count(*swap_map) && !retval &&
1170					(p = p->next) != &start_mm->mmlist) {
1171				mm = list_entry(p, struct mm_struct, mmlist);
1172				if (!atomic_inc_not_zero(&mm->mm_users))
1173					continue;
1174				spin_unlock(&mmlist_lock);
1175				mmput(prev_mm);
1176				prev_mm = mm;
1177
1178				cond_resched();
1179
1180				swcount = *swap_map;
1181				if (!swap_count(swcount)) /* any usage ? */
1182					;
1183				else if (mm == &init_mm)
1184					set_start_mm = 1;
1185				else
1186					retval = unuse_mm(mm, entry, page);
1187
1188				if (set_start_mm && *swap_map < swcount) {
1189					mmput(new_start_mm);
1190					atomic_inc(&mm->mm_users);
1191					new_start_mm = mm;
1192					set_start_mm = 0;
1193				}
1194				spin_lock(&mmlist_lock);
1195			}
1196			spin_unlock(&mmlist_lock);
1197			mmput(prev_mm);
1198			mmput(start_mm);
1199			start_mm = new_start_mm;
1200		}
1201		if (retval) {
1202			unlock_page(page);
1203			page_cache_release(page);
1204			break;
1205		}
1206
1207		/*
1208		 * If a reference remains (rare), we would like to leave
1209		 * the page in the swap cache; but try_to_unmap could
1210		 * then re-duplicate the entry once we drop page lock,
1211		 * so we might loop indefinitely; also, that page could
1212		 * not be swapped out to other storage meanwhile.  So:
1213		 * delete from cache even if there's another reference,
1214		 * after ensuring that the data has been saved to disk -
1215		 * since if the reference remains (rarer), it will be
1216		 * read from disk into another page.  Splitting into two
1217		 * pages would be incorrect if swap supported "shared
1218		 * private" pages, but they are handled by tmpfs files.
1219		 *
1220		 * Given how unuse_vma() targets one particular offset
1221		 * in an anon_vma, once the anon_vma has been determined,
1222		 * this splitting happens to be just what is needed to
1223		 * handle where KSM pages have been swapped out: re-reading
1224		 * is unnecessarily slow, but we can fix that later on.
1225		 */
1226		if (swap_count(*swap_map) &&
1227		     PageDirty(page) && PageSwapCache(page)) {
1228			struct writeback_control wbc = {
1229				.sync_mode = WB_SYNC_NONE,
1230			};
1231
1232			swap_writepage(page, &wbc);
1233			lock_page(page);
1234			wait_on_page_writeback(page);
1235		}
1236
1237		/*
1238		 * It is conceivable that a racing task removed this page from
1239		 * swap cache just before we acquired the page lock at the top,
1240		 * or while we dropped it in unuse_mm().  The page might even
1241		 * be back in swap cache on another swap area: that we must not
1242		 * delete, since it may not have been written out to swap yet.
1243		 */
1244		if (PageSwapCache(page) &&
1245		    likely(page_private(page) == entry.val))
1246			delete_from_swap_cache(page);
1247
1248		/*
1249		 * So we could skip searching mms once swap count went
1250		 * to 1, we did not mark any present ptes as dirty: must
1251		 * mark page dirty so shrink_page_list will preserve it.
1252		 */
1253		SetPageDirty(page);
1254		unlock_page(page);
1255		page_cache_release(page);
1256
1257		/*
1258		 * Make sure that we aren't completely killing
1259		 * interactive performance.
1260		 */
1261		cond_resched();
1262	}
1263
1264	mmput(start_mm);
1265	return retval;
1266}
1267
1268/*
1269 * After a successful try_to_unuse, if no swap is now in use, we know
1270 * we can empty the mmlist.  swap_lock must be held on entry and exit.
1271 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1272 * added to the mmlist just after page_duplicate - before would be racy.
1273 */
1274static void drain_mmlist(void)
1275{
1276	struct list_head *p, *next;
1277	unsigned int type;
1278
1279	for (type = 0; type < nr_swapfiles; type++)
1280		if (swap_info[type]->inuse_pages)
1281			return;
1282	spin_lock(&mmlist_lock);
1283	list_for_each_safe(p, next, &init_mm.mmlist)
1284		list_del_init(p);
1285	spin_unlock(&mmlist_lock);
1286}
1287
1288/*
1289 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1290 * corresponds to page offset for the specified swap entry.
1291 * Note that the type of this function is sector_t, but it returns page offset
1292 * into the bdev, not sector offset.
1293 */
1294static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1295{
1296	struct swap_info_struct *sis;
1297	struct swap_extent *start_se;
1298	struct swap_extent *se;
1299	pgoff_t offset;
1300
1301	sis = swap_info[swp_type(entry)];
1302	*bdev = sis->bdev;
1303
1304	offset = swp_offset(entry);
1305	start_se = sis->curr_swap_extent;
1306	se = start_se;
1307
1308	for ( ; ; ) {
1309		struct list_head *lh;
1310
1311		if (se->start_page <= offset &&
1312				offset < (se->start_page + se->nr_pages)) {
1313			return se->start_block + (offset - se->start_page);
1314		}
1315		lh = se->list.next;
1316		se = list_entry(lh, struct swap_extent, list);
1317		sis->curr_swap_extent = se;
1318		BUG_ON(se == start_se);		/* It *must* be present */
1319	}
1320}
1321
1322/*
1323 * Returns the page offset into bdev for the specified page's swap entry.
1324 */
1325sector_t map_swap_page(struct page *page, struct block_device **bdev)
1326{
1327	swp_entry_t entry;
1328	entry.val = page_private(page);
1329	return map_swap_entry(entry, bdev);
1330}
1331
1332/*
1333 * Free all of a swapdev's extent information
1334 */
1335static void destroy_swap_extents(struct swap_info_struct *sis)
1336{
1337	while (!list_empty(&sis->first_swap_extent.list)) {
1338		struct swap_extent *se;
1339
1340		se = list_entry(sis->first_swap_extent.list.next,
1341				struct swap_extent, list);
1342		list_del(&se->list);
1343		kfree(se);
1344	}
1345}
1346
1347/*
1348 * Add a block range (and the corresponding page range) into this swapdev's
1349 * extent list.  The extent list is kept sorted in page order.
1350 *
1351 * This function rather assumes that it is called in ascending page order.
1352 */
1353static int
1354add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1355		unsigned long nr_pages, sector_t start_block)
1356{
1357	struct swap_extent *se;
1358	struct swap_extent *new_se;
1359	struct list_head *lh;
1360
1361	if (start_page == 0) {
1362		se = &sis->first_swap_extent;
1363		sis->curr_swap_extent = se;
1364		se->start_page = 0;
1365		se->nr_pages = nr_pages;
1366		se->start_block = start_block;
1367		return 1;
1368	} else {
1369		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1370		se = list_entry(lh, struct swap_extent, list);
1371		BUG_ON(se->start_page + se->nr_pages != start_page);
1372		if (se->start_block + se->nr_pages == start_block) {
1373			/* Merge it */
1374			se->nr_pages += nr_pages;
1375			return 0;
1376		}
1377	}
1378
1379	/*
1380	 * No merge.  Insert a new extent, preserving ordering.
1381	 */
1382	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1383	if (new_se == NULL)
1384		return -ENOMEM;
1385	new_se->start_page = start_page;
1386	new_se->nr_pages = nr_pages;
1387	new_se->start_block = start_block;
1388
1389	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1390	return 1;
1391}
1392
1393/*
1394 * A `swap extent' is a simple thing which maps a contiguous range of pages
1395 * onto a contiguous range of disk blocks.  An ordered list of swap extents
1396 * is built at swapon time and is then used at swap_writepage/swap_readpage
1397 * time for locating where on disk a page belongs.
1398 *
1399 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1400 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1401 * swap files identically.
1402 *
1403 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1404 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1405 * swapfiles are handled *identically* after swapon time.
1406 *
1407 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1408 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1409 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1410 * requirements, they are simply tossed out - we will never use those blocks
1411 * for swapping.
1412 *
1413 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1414 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1415 * which will scribble on the fs.
1416 *
1417 * The amount of disk space which a single swap extent represents varies.
1418 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1419 * extents in the list.  To avoid much list walking, we cache the previous
1420 * search location in `curr_swap_extent', and start new searches from there.
1421 * This is extremely effective.  The average number of iterations in
1422 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1423 */
1424static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1425{
1426	struct inode *inode;
1427	unsigned blocks_per_page;
1428	unsigned long page_no;
1429	unsigned blkbits;
1430	sector_t probe_block;
1431	sector_t last_block;
1432	sector_t lowest_block = -1;
1433	sector_t highest_block = 0;
1434	int nr_extents = 0;
1435	int ret;
1436
1437	inode = sis->swap_file->f_mapping->host;
1438	if (S_ISBLK(inode->i_mode)) {
1439		ret = add_swap_extent(sis, 0, sis->max, 0);
1440		*span = sis->pages;
1441		goto out;
1442	}
1443
1444	blkbits = inode->i_blkbits;
1445	blocks_per_page = PAGE_SIZE >> blkbits;
1446
1447	/*
1448	 * Map all the blocks into the extent list.  This code doesn't try
1449	 * to be very smart.
1450	 */
1451	probe_block = 0;
1452	page_no = 0;
1453	last_block = i_size_read(inode) >> blkbits;
1454	while ((probe_block + blocks_per_page) <= last_block &&
1455			page_no < sis->max) {
1456		unsigned block_in_page;
1457		sector_t first_block;
1458
1459		first_block = bmap(inode, probe_block);
1460		if (first_block == 0)
1461			goto bad_bmap;
1462
1463		/*
1464		 * It must be PAGE_SIZE aligned on-disk
1465		 */
1466		if (first_block & (blocks_per_page - 1)) {
1467			probe_block++;
1468			goto reprobe;
1469		}
1470
1471		for (block_in_page = 1; block_in_page < blocks_per_page;
1472					block_in_page++) {
1473			sector_t block;
1474
1475			block = bmap(inode, probe_block + block_in_page);
1476			if (block == 0)
1477				goto bad_bmap;
1478			if (block != first_block + block_in_page) {
1479				/* Discontiguity */
1480				probe_block++;
1481				goto reprobe;
1482			}
1483		}
1484
1485		first_block >>= (PAGE_SHIFT - blkbits);
1486		if (page_no) {	/* exclude the header page */
1487			if (first_block < lowest_block)
1488				lowest_block = first_block;
1489			if (first_block > highest_block)
1490				highest_block = first_block;
1491		}
1492
1493		/*
1494		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1495		 */
1496		ret = add_swap_extent(sis, page_no, 1, first_block);
1497		if (ret < 0)
1498			goto out;
1499		nr_extents += ret;
1500		page_no++;
1501		probe_block += blocks_per_page;
1502reprobe:
1503		continue;
1504	}
1505	ret = nr_extents;
1506	*span = 1 + highest_block - lowest_block;
1507	if (page_no == 0)
1508		page_no = 1;	/* force Empty message */
1509	sis->max = page_no;
1510	sis->pages = page_no - 1;
1511	sis->highest_bit = page_no - 1;
1512out:
1513	return ret;
1514bad_bmap:
1515	printk(KERN_ERR "swapon: swapfile has holes\n");
1516	ret = -EINVAL;
1517	goto out;
1518}
1519
1520static void enable_swap_info(struct swap_info_struct *p, int prio,
1521				unsigned char *swap_map)
1522{
1523	int i, prev;
1524
1525	spin_lock(&swap_lock);
1526	if (prio >= 0)
1527		p->prio = prio;
1528	else
1529		p->prio = --least_priority;
1530	p->swap_map = swap_map;
1531	p->flags |= SWP_WRITEOK;
1532	nr_swap_pages += p->pages;
1533	total_swap_pages += p->pages;
1534
1535	/* insert swap space into swap_list: */
1536	prev = -1;
1537	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1538		if (p->prio >= swap_info[i]->prio)
1539			break;
1540		prev = i;
1541	}
1542	p->next = i;
1543	if (prev < 0)
1544		swap_list.head = swap_list.next = p->type;
1545	else
1546		swap_info[prev]->next = p->type;
1547	spin_unlock(&swap_lock);
1548}
1549
1550SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1551{
1552	struct swap_info_struct *p = NULL;
1553	unsigned char *swap_map;
1554	struct file *swap_file, *victim;
1555	struct address_space *mapping;
1556	struct inode *inode;
1557	char *pathname;
1558	int oom_score_adj;
1559	int i, type, prev;
1560	int err;
1561
1562	if (!capable(CAP_SYS_ADMIN))
1563		return -EPERM;
1564
1565	pathname = getname(specialfile);
1566	err = PTR_ERR(pathname);
1567	if (IS_ERR(pathname))
1568		goto out;
1569
1570	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1571	putname(pathname);
1572	err = PTR_ERR(victim);
1573	if (IS_ERR(victim))
1574		goto out;
1575
1576	mapping = victim->f_mapping;
1577	prev = -1;
1578	spin_lock(&swap_lock);
1579	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1580		p = swap_info[type];
1581		if (p->flags & SWP_WRITEOK) {
1582			if (p->swap_file->f_mapping == mapping)
1583				break;
1584		}
1585		prev = type;
1586	}
1587	if (type < 0) {
1588		err = -EINVAL;
1589		spin_unlock(&swap_lock);
1590		goto out_dput;
1591	}
1592	if (!security_vm_enough_memory(p->pages))
1593		vm_unacct_memory(p->pages);
1594	else {
1595		err = -ENOMEM;
1596		spin_unlock(&swap_lock);
1597		goto out_dput;
1598	}
1599	if (prev < 0)
1600		swap_list.head = p->next;
1601	else
1602		swap_info[prev]->next = p->next;
1603	if (type == swap_list.next) {
1604		/* just pick something that's safe... */
1605		swap_list.next = swap_list.head;
1606	}
1607	if (p->prio < 0) {
1608		for (i = p->next; i >= 0; i = swap_info[i]->next)
1609			swap_info[i]->prio = p->prio--;
1610		least_priority++;
1611	}
1612	nr_swap_pages -= p->pages;
1613	total_swap_pages -= p->pages;
1614	p->flags &= ~SWP_WRITEOK;
1615	spin_unlock(&swap_lock);
1616
1617	oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1618	err = try_to_unuse(type);
1619	compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);
1620
1621	if (err) {
1622		/*
1623		 * reading p->prio and p->swap_map outside the lock is
1624		 * safe here because only sys_swapon and sys_swapoff
1625		 * change them, and there can be no other sys_swapon or
1626		 * sys_swapoff for this swap_info_struct at this point.
1627		 */
1628		/* re-insert swap space back into swap_list */
1629		enable_swap_info(p, p->prio, p->swap_map);
1630		goto out_dput;
1631	}
1632
1633	destroy_swap_extents(p);
1634	if (p->flags & SWP_CONTINUED)
1635		free_swap_count_continuations(p);
1636
1637	mutex_lock(&swapon_mutex);
1638	spin_lock(&swap_lock);
1639	drain_mmlist();
1640
1641	/* wait for anyone still in scan_swap_map */
1642	p->highest_bit = 0;		/* cuts scans short */
1643	while (p->flags >= SWP_SCANNING) {
1644		spin_unlock(&swap_lock);
1645		schedule_timeout_uninterruptible(1);
1646		spin_lock(&swap_lock);
1647	}
1648
1649	swap_file = p->swap_file;
1650	p->swap_file = NULL;
1651	p->max = 0;
1652	swap_map = p->swap_map;
1653	p->swap_map = NULL;
1654	p->flags = 0;
1655	spin_unlock(&swap_lock);
1656	mutex_unlock(&swapon_mutex);
1657	vfree(swap_map);
1658	/* Destroy swap account informatin */
1659	swap_cgroup_swapoff(type);
1660
1661	inode = mapping->host;
1662	if (S_ISBLK(inode->i_mode)) {
1663		struct block_device *bdev = I_BDEV(inode);
1664		set_blocksize(bdev, p->old_block_size);
1665		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1666	} else {
1667		mutex_lock(&inode->i_mutex);
1668		inode->i_flags &= ~S_SWAPFILE;
1669		mutex_unlock(&inode->i_mutex);
1670	}
1671	filp_close(swap_file, NULL);
1672	err = 0;
1673	atomic_inc(&proc_poll_event);
1674	wake_up_interruptible(&proc_poll_wait);
1675
1676out_dput:
1677	filp_close(victim, NULL);
1678out:
1679	return err;
1680}
1681
1682#ifdef CONFIG_PROC_FS
1683static unsigned swaps_poll(struct file *file, poll_table *wait)
1684{
1685	struct seq_file *seq = file->private_data;
1686
1687	poll_wait(file, &proc_poll_wait, wait);
1688
1689	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1690		seq->poll_event = atomic_read(&proc_poll_event);
1691		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1692	}
1693
1694	return POLLIN | POLLRDNORM;
1695}
1696
1697/* iterator */
1698static void *swap_start(struct seq_file *swap, loff_t *pos)
1699{
1700	struct swap_info_struct *si;
1701	int type;
1702	loff_t l = *pos;
1703
1704	mutex_lock(&swapon_mutex);
1705
1706	if (!l)
1707		return SEQ_START_TOKEN;
1708
1709	for (type = 0; type < nr_swapfiles; type++) {
1710		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1711		si = swap_info[type];
1712		if (!(si->flags & SWP_USED) || !si->swap_map)
1713			continue;
1714		if (!--l)
1715			return si;
1716	}
1717
1718	return NULL;
1719}
1720
1721static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1722{
1723	struct swap_info_struct *si = v;
1724	int type;
1725
1726	if (v == SEQ_START_TOKEN)
1727		type = 0;
1728	else
1729		type = si->type + 1;
1730
1731	for (; type < nr_swapfiles; type++) {
1732		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1733		si = swap_info[type];
1734		if (!(si->flags & SWP_USED) || !si->swap_map)
1735			continue;
1736		++*pos;
1737		return si;
1738	}
1739
1740	return NULL;
1741}
1742
1743static void swap_stop(struct seq_file *swap, void *v)
1744{
1745	mutex_unlock(&swapon_mutex);
1746}
1747
1748static int swap_show(struct seq_file *swap, void *v)
1749{
1750	struct swap_info_struct *si = v;
1751	struct file *file;
1752	int len;
1753
1754	if (si == SEQ_START_TOKEN) {
1755		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1756		return 0;
1757	}
1758
1759	file = si->swap_file;
1760	len = seq_path(swap, &file->f_path, " \t\n\\");
1761	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1762			len < 40 ? 40 - len : 1, " ",
1763			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1764				"partition" : "file\t",
1765			si->pages << (PAGE_SHIFT - 10),
1766			si->inuse_pages << (PAGE_SHIFT - 10),
1767			si->prio);
1768	return 0;
1769}
1770
1771static const struct seq_operations swaps_op = {
1772	.start =	swap_start,
1773	.next =		swap_next,
1774	.stop =		swap_stop,
1775	.show =		swap_show
1776};
1777
1778static int swaps_open(struct inode *inode, struct file *file)
1779{
1780	struct seq_file *seq;
1781	int ret;
1782
1783	ret = seq_open(file, &swaps_op);
1784	if (ret)
1785		return ret;
1786
1787	seq = file->private_data;
1788	seq->poll_event = atomic_read(&proc_poll_event);
1789	return 0;
1790}
1791
1792static const struct file_operations proc_swaps_operations = {
1793	.open		= swaps_open,
1794	.read		= seq_read,
1795	.llseek		= seq_lseek,
1796	.release	= seq_release,
1797	.poll		= swaps_poll,
1798};
1799
1800static int __init procswaps_init(void)
1801{
1802	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1803	return 0;
1804}
1805__initcall(procswaps_init);
1806#endif /* CONFIG_PROC_FS */
1807
1808#ifdef MAX_SWAPFILES_CHECK
1809static int __init max_swapfiles_check(void)
1810{
1811	MAX_SWAPFILES_CHECK();
1812	return 0;
1813}
1814late_initcall(max_swapfiles_check);
1815#endif
1816
1817static struct swap_info_struct *alloc_swap_info(void)
1818{
1819	struct swap_info_struct *p;
1820	unsigned int type;
1821
1822	p = kzalloc(sizeof(*p), GFP_KERNEL);
1823	if (!p)
1824		return ERR_PTR(-ENOMEM);
1825
1826	spin_lock(&swap_lock);
1827	for (type = 0; type < nr_swapfiles; type++) {
1828		if (!(swap_info[type]->flags & SWP_USED))
1829			break;
1830	}
1831	if (type >= MAX_SWAPFILES) {
1832		spin_unlock(&swap_lock);
1833		kfree(p);
1834		return ERR_PTR(-EPERM);
1835	}
1836	if (type >= nr_swapfiles) {
1837		p->type = type;
1838		swap_info[type] = p;
1839		/*
1840		 * Write swap_info[type] before nr_swapfiles, in case a
1841		 * racing procfs swap_start() or swap_next() is reading them.
1842		 * (We never shrink nr_swapfiles, we never free this entry.)
1843		 */
1844		smp_wmb();
1845		nr_swapfiles++;
1846	} else {
1847		kfree(p);
1848		p = swap_info[type];
1849		/*
1850		 * Do not memset this entry: a racing procfs swap_next()
1851		 * would be relying on p->type to remain valid.
1852		 */
1853	}
1854	INIT_LIST_HEAD(&p->first_swap_extent.list);
1855	p->flags = SWP_USED;
1856	p->next = -1;
1857	spin_unlock(&swap_lock);
1858
1859	return p;
1860}
1861
1862static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1863{
1864	int error;
1865
1866	if (S_ISBLK(inode->i_mode)) {
1867		p->bdev = bdgrab(I_BDEV(inode));
1868		error = blkdev_get(p->bdev,
1869				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1870				   sys_swapon);
1871		if (error < 0) {
1872			p->bdev = NULL;
1873			return -EINVAL;
1874		}
1875		p->old_block_size = block_size(p->bdev);
1876		error = set_blocksize(p->bdev, PAGE_SIZE);
1877		if (error < 0)
1878			return error;
1879		p->flags |= SWP_BLKDEV;
1880	} else if (S_ISREG(inode->i_mode)) {
1881		p->bdev = inode->i_sb->s_bdev;
1882		mutex_lock(&inode->i_mutex);
1883		if (IS_SWAPFILE(inode))
1884			return -EBUSY;
1885	} else
1886		return -EINVAL;
1887
1888	return 0;
1889}
1890
1891static unsigned long read_swap_header(struct swap_info_struct *p,
1892					union swap_header *swap_header,
1893					struct inode *inode)
1894{
1895	int i;
1896	unsigned long maxpages;
1897	unsigned long swapfilepages;
1898
1899	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1900		printk(KERN_ERR "Unable to find swap-space signature\n");
1901		return 0;
1902	}
1903
1904	/* swap partition endianess hack... */
1905	if (swab32(swap_header->info.version) == 1) {
1906		swab32s(&swap_header->info.version);
1907		swab32s(&swap_header->info.last_page);
1908		swab32s(&swap_header->info.nr_badpages);
1909		for (i = 0; i < swap_header->info.nr_badpages; i++)
1910			swab32s(&swap_header->info.badpages[i]);
1911	}
1912	/* Check the swap header's sub-version */
1913	if (swap_header->info.version != 1) {
1914		printk(KERN_WARNING
1915		       "Unable to handle swap header version %d\n",
1916		       swap_header->info.version);
1917		return 0;
1918	}
1919
1920	p->lowest_bit  = 1;
1921	p->cluster_next = 1;
1922	p->cluster_nr = 0;
1923
1924	/*
1925	 * Find out how many pages are allowed for a single swap
1926	 * device. There are three limiting factors: 1) the number
1927	 * of bits for the swap offset in the swp_entry_t type, and
1928	 * 2) the number of bits in the swap pte as defined by the
1929	 * the different architectures, and 3) the number of free bits
1930	 * in an exceptional radix_tree entry. In order to find the
1931	 * largest possible bit mask, a swap entry with swap type 0
1932	 * and swap offset ~0UL is created, encoded to a swap pte,
1933	 * decoded to a swp_entry_t again, and finally the swap
1934	 * offset is extracted. This will mask all the bits from
1935	 * the initial ~0UL mask that can't be encoded in either
1936	 * the swp_entry_t or the architecture definition of a
1937	 * swap pte.  Then the same is done for a radix_tree entry.
1938	 */
1939	maxpages = swp_offset(pte_to_swp_entry(
1940			swp_entry_to_pte(swp_entry(0, ~0UL))));
1941	maxpages = swp_offset(radix_to_swp_entry(
1942			swp_to_radix_entry(swp_entry(0, maxpages)))) + 1;
1943
1944	if (maxpages > swap_header->info.last_page) {
1945		maxpages = swap_header->info.last_page + 1;
1946		/* p->max is an unsigned int: don't overflow it */
1947		if ((unsigned int)maxpages == 0)
1948			maxpages = UINT_MAX;
1949	}
1950	p->highest_bit = maxpages - 1;
1951
1952	if (!maxpages)
1953		return 0;
1954	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1955	if (swapfilepages && maxpages > swapfilepages) {
1956		printk(KERN_WARNING
1957		       "Swap area shorter than signature indicates\n");
1958		return 0;
1959	}
1960	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1961		return 0;
1962	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1963		return 0;
1964
1965	return maxpages;
1966}
1967
1968static int setup_swap_map_and_extents(struct swap_info_struct *p,
1969					union swap_header *swap_header,
1970					unsigned char *swap_map,
1971					unsigned long maxpages,
1972					sector_t *span)
1973{
1974	int i;
1975	unsigned int nr_good_pages;
1976	int nr_extents;
1977
1978	nr_good_pages = maxpages - 1;	/* omit header page */
1979
1980	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1981		unsigned int page_nr = swap_header->info.badpages[i];
1982		if (page_nr == 0 || page_nr > swap_header->info.last_page)
1983			return -EINVAL;
1984		if (page_nr < maxpages) {
1985			swap_map[page_nr] = SWAP_MAP_BAD;
1986			nr_good_pages--;
1987		}
1988	}
1989
1990	if (nr_good_pages) {
1991		swap_map[0] = SWAP_MAP_BAD;
1992		p->max = maxpages;
1993		p->pages = nr_good_pages;
1994		nr_extents = setup_swap_extents(p, span);
1995		if (nr_extents < 0)
1996			return nr_extents;
1997		nr_good_pages = p->pages;
1998	}
1999	if (!nr_good_pages) {
2000		printk(KERN_WARNING "Empty swap-file\n");
2001		return -EINVAL;
2002	}
2003
2004	return nr_extents;
2005}
2006
2007SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2008{
2009	struct swap_info_struct *p;
2010	char *name;
2011	struct file *swap_file = NULL;
2012	struct address_space *mapping;
2013	int i;
2014	int prio;
2015	int error;
2016	union swap_header *swap_header;
2017	int nr_extents;
2018	sector_t span;
2019	unsigned long maxpages;
2020	unsigned char *swap_map = NULL;
2021	struct page *page = NULL;
2022	struct inode *inode = NULL;
2023
2024	if (!capable(CAP_SYS_ADMIN))
2025		return -EPERM;
2026
2027	p = alloc_swap_info();
2028	if (IS_ERR(p))
2029		return PTR_ERR(p);
2030
2031	name = getname(specialfile);
2032	if (IS_ERR(name)) {
2033		error = PTR_ERR(name);
2034		name = NULL;
2035		goto bad_swap;
2036	}
2037	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2038	if (IS_ERR(swap_file)) {
2039		error = PTR_ERR(swap_file);
2040		swap_file = NULL;
2041		goto bad_swap;
2042	}
2043
2044	p->swap_file = swap_file;
2045	mapping = swap_file->f_mapping;
2046
2047	for (i = 0; i < nr_swapfiles; i++) {
2048		struct swap_info_struct *q = swap_info[i];
2049
2050		if (q == p || !q->swap_file)
2051			continue;
2052		if (mapping == q->swap_file->f_mapping) {
2053			error = -EBUSY;
2054			goto bad_swap;
2055		}
2056	}
2057
2058	inode = mapping->host;
2059	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2060	error = claim_swapfile(p, inode);
2061	if (unlikely(error))
2062		goto bad_swap;
2063
2064	/*
2065	 * Read the swap header.
2066	 */
2067	if (!mapping->a_ops->readpage) {
2068		error = -EINVAL;
2069		goto bad_swap;
2070	}
2071	page = read_mapping_page(mapping, 0, swap_file);
2072	if (IS_ERR(page)) {
2073		error = PTR_ERR(page);
2074		goto bad_swap;
2075	}
2076	swap_header = kmap(page);
2077
2078	maxpages = read_swap_header(p, swap_header, inode);
2079	if (unlikely(!maxpages)) {
2080		error = -EINVAL;
2081		goto bad_swap;
2082	}
2083
2084	/* OK, set up the swap map and apply the bad block list */
2085	swap_map = vzalloc(maxpages);
2086	if (!swap_map) {
2087		error = -ENOMEM;
2088		goto bad_swap;
2089	}
2090
2091	error = swap_cgroup_swapon(p->type, maxpages);
2092	if (error)
2093		goto bad_swap;
2094
2095	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2096		maxpages, &span);
2097	if (unlikely(nr_extents < 0)) {
2098		error = nr_extents;
2099		goto bad_swap;
2100	}
2101
2102	if (p->bdev) {
2103		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2104			p->flags |= SWP_SOLIDSTATE;
2105			p->cluster_next = 1 + (random32() % p->highest_bit);
2106		}
2107		if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2108			p->flags |= SWP_DISCARDABLE;
2109	}
2110
2111	mutex_lock(&swapon_mutex);
2112	prio = -1;
2113	if (swap_flags & SWAP_FLAG_PREFER)
2114		prio =
2115		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2116	enable_swap_info(p, prio, swap_map);
2117
2118	printk(KERN_INFO "Adding %uk swap on %s.  "
2119			"Priority:%d extents:%d across:%lluk %s%s\n",
2120		p->pages<<(PAGE_SHIFT-10), name, p->prio,
2121		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2122		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2123		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2124
2125	mutex_unlock(&swapon_mutex);
2126	atomic_inc(&proc_poll_event);
2127	wake_up_interruptible(&proc_poll_wait);
2128
2129	if (S_ISREG(inode->i_mode))
2130		inode->i_flags |= S_SWAPFILE;
2131	error = 0;
2132	goto out;
2133bad_swap:
2134	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2135		set_blocksize(p->bdev, p->old_block_size);
2136		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2137	}
2138	destroy_swap_extents(p);
2139	swap_cgroup_swapoff(p->type);
2140	spin_lock(&swap_lock);
2141	p->swap_file = NULL;
2142	p->flags = 0;
2143	spin_unlock(&swap_lock);
2144	vfree(swap_map);
2145	if (swap_file) {
2146		if (inode && S_ISREG(inode->i_mode)) {
2147			mutex_unlock(&inode->i_mutex);
2148			inode = NULL;
2149		}
2150		filp_close(swap_file, NULL);
2151	}
2152out:
2153	if (page && !IS_ERR(page)) {
2154		kunmap(page);
2155		page_cache_release(page);
2156	}
2157	if (name)
2158		putname(name);
2159	if (inode && S_ISREG(inode->i_mode))
2160		mutex_unlock(&inode->i_mutex);
2161	return error;
2162}
2163
2164void si_swapinfo(struct sysinfo *val)
2165{
2166	unsigned int type;
2167	unsigned long nr_to_be_unused = 0;
2168
2169	spin_lock(&swap_lock);
2170	for (type = 0; type < nr_swapfiles; type++) {
2171		struct swap_info_struct *si = swap_info[type];
2172
2173		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2174			nr_to_be_unused += si->inuse_pages;
2175	}
2176	val->freeswap = nr_swap_pages + nr_to_be_unused;
2177	val->totalswap = total_swap_pages + nr_to_be_unused;
2178	spin_unlock(&swap_lock);
2179}
2180
2181/*
2182 * Verify that a swap entry is valid and increment its swap map count.
2183 *
2184 * Returns error code in following case.
2185 * - success -> 0
2186 * - swp_entry is invalid -> EINVAL
2187 * - swp_entry is migration entry -> EINVAL
2188 * - swap-cache reference is requested but there is already one. -> EEXIST
2189 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2190 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2191 */
2192static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2193{
2194	struct swap_info_struct *p;
2195	unsigned long offset, type;
2196	unsigned char count;
2197	unsigned char has_cache;
2198	int err = -EINVAL;
2199
2200	if (non_swap_entry(entry))
2201		goto out;
2202
2203	type = swp_type(entry);
2204	if (type >= nr_swapfiles)
2205		goto bad_file;
2206	p = swap_info[type];
2207	offset = swp_offset(entry);
2208
2209	spin_lock(&swap_lock);
2210	if (unlikely(offset >= p->max))
2211		goto unlock_out;
2212
2213	count = p->swap_map[offset];
2214	has_cache = count & SWAP_HAS_CACHE;
2215	count &= ~SWAP_HAS_CACHE;
2216	err = 0;
2217
2218	if (usage == SWAP_HAS_CACHE) {
2219
2220		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2221		if (!has_cache && count)
2222			has_cache = SWAP_HAS_CACHE;
2223		else if (has_cache)		/* someone else added cache */
2224			err = -EEXIST;
2225		else				/* no users remaining */
2226			err = -ENOENT;
2227
2228	} else if (count || has_cache) {
2229
2230		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2231			count += usage;
2232		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2233			err = -EINVAL;
2234		else if (swap_count_continued(p, offset, count))
2235			count = COUNT_CONTINUED;
2236		else
2237			err = -ENOMEM;
2238	} else
2239		err = -ENOENT;			/* unused swap entry */
2240
2241	p->swap_map[offset] = count | has_cache;
2242
2243unlock_out:
2244	spin_unlock(&swap_lock);
2245out:
2246	return err;
2247
2248bad_file:
2249	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2250	goto out;
2251}
2252
2253/*
2254 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2255 * (in which case its reference count is never incremented).
2256 */
2257void swap_shmem_alloc(swp_entry_t entry)
2258{
2259	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2260}
2261
2262/*
2263 * Increase reference count of swap entry by 1.
2264 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2265 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2266 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2267 * might occur if a page table entry has got corrupted.
2268 */
2269int swap_duplicate(swp_entry_t entry)
2270{
2271	int err = 0;
2272
2273	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2274		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2275	return err;
2276}
2277
2278/*
2279 * @entry: swap entry for which we allocate swap cache.
2280 *
2281 * Called when allocating swap cache for existing swap entry,
2282 * This can return error codes. Returns 0 at success.
2283 * -EBUSY means there is a swap cache.
2284 * Note: return code is different from swap_duplicate().
2285 */
2286int swapcache_prepare(swp_entry_t entry)
2287{
2288	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2289}
2290
2291/*
2292 * swap_lock prevents swap_map being freed. Don't grab an extra
2293 * reference on the swaphandle, it doesn't matter if it becomes unused.
2294 */
2295int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2296{
2297	struct swap_info_struct *si;
2298	int our_page_cluster = page_cluster;
2299	pgoff_t target, toff;
2300	pgoff_t base, end;
2301	int nr_pages = 0;
2302
2303	if (!our_page_cluster)	/* no readahead */
2304		return 0;
2305
2306	si = swap_info[swp_type(entry)];
2307	target = swp_offset(entry);
2308	base = (target >> our_page_cluster) << our_page_cluster;
2309	end = base + (1 << our_page_cluster);
2310	if (!base)		/* first page is swap header */
2311		base++;
2312
2313	spin_lock(&swap_lock);
2314	if (end > si->max)	/* don't go beyond end of map */
2315		end = si->max;
2316
2317	/* Count contiguous allocated slots above our target */
2318	for (toff = target; ++toff < end; nr_pages++) {
2319		/* Don't read in free or bad pages */
2320		if (!si->swap_map[toff])
2321			break;
2322		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2323			break;
2324	}
2325	/* Count contiguous allocated slots below our target */
2326	for (toff = target; --toff >= base; nr_pages++) {
2327		/* Don't read in free or bad pages */
2328		if (!si->swap_map[toff])
2329			break;
2330		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2331			break;
2332	}
2333	spin_unlock(&swap_lock);
2334
2335	/*
2336	 * Indicate starting offset, and return number of pages to get:
2337	 * if only 1, say 0, since there's then no readahead to be done.
2338	 */
2339	*offset = ++toff;
2340	return nr_pages? ++nr_pages: 0;
2341}
2342
2343/*
2344 * add_swap_count_continuation - called when a swap count is duplicated
2345 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2346 * page of the original vmalloc'ed swap_map, to hold the continuation count
2347 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2348 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2349 *
2350 * These continuation pages are seldom referenced: the common paths all work
2351 * on the original swap_map, only referring to a continuation page when the
2352 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2353 *
2354 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2355 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2356 * can be called after dropping locks.
2357 */
2358int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2359{
2360	struct swap_info_struct *si;
2361	struct page *head;
2362	struct page *page;
2363	struct page *list_page;
2364	pgoff_t offset;
2365	unsigned char count;
2366
2367	/*
2368	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2369	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2370	 */
2371	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2372
2373	si = swap_info_get(entry);
2374	if (!si) {
2375		/*
2376		 * An acceptable race has occurred since the failing
2377		 * __swap_duplicate(): the swap entry has been freed,
2378		 * perhaps even the whole swap_map cleared for swapoff.
2379		 */
2380		goto outer;
2381	}
2382
2383	offset = swp_offset(entry);
2384	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2385
2386	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2387		/*
2388		 * The higher the swap count, the more likely it is that tasks
2389		 * will race to add swap count continuation: we need to avoid
2390		 * over-provisioning.
2391		 */
2392		goto out;
2393	}
2394
2395	if (!page) {
2396		spin_unlock(&swap_lock);
2397		return -ENOMEM;
2398	}
2399
2400	/*
2401	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2402	 * no architecture is using highmem pages for kernel pagetables: so it
2403	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2404	 */
2405	head = vmalloc_to_page(si->swap_map + offset);
2406	offset &= ~PAGE_MASK;
2407
2408	/*
2409	 * Page allocation does not initialize the page's lru field,
2410	 * but it does always reset its private field.
2411	 */
2412	if (!page_private(head)) {
2413		BUG_ON(count & COUNT_CONTINUED);
2414		INIT_LIST_HEAD(&head->lru);
2415		set_page_private(head, SWP_CONTINUED);
2416		si->flags |= SWP_CONTINUED;
2417	}
2418
2419	list_for_each_entry(list_page, &head->lru, lru) {
2420		unsigned char *map;
2421
2422		/*
2423		 * If the previous map said no continuation, but we've found
2424		 * a continuation page, free our allocation and use this one.
2425		 */
2426		if (!(count & COUNT_CONTINUED))
2427			goto out;
2428
2429		map = kmap_atomic(list_page, KM_USER0) + offset;
2430		count = *map;
2431		kunmap_atomic(map, KM_USER0);
2432
2433		/*
2434		 * If this continuation count now has some space in it,
2435		 * free our allocation and use this one.
2436		 */
2437		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2438			goto out;
2439	}
2440
2441	list_add_tail(&page->lru, &head->lru);
2442	page = NULL;			/* now it's attached, don't free it */
2443out:
2444	spin_unlock(&swap_lock);
2445outer:
2446	if (page)
2447		__free_page(page);
2448	return 0;
2449}
2450
2451/*
2452 * swap_count_continued - when the original swap_map count is incremented
2453 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2454 * into, carry if so, or else fail until a new continuation page is allocated;
2455 * when the original swap_map count is decremented from 0 with continuation,
2456 * borrow from the continuation and report whether it still holds more.
2457 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2458 */
2459static bool swap_count_continued(struct swap_info_struct *si,
2460				 pgoff_t offset, unsigned char count)
2461{
2462	struct page *head;
2463	struct page *page;
2464	unsigned char *map;
2465
2466	head = vmalloc_to_page(si->swap_map + offset);
2467	if (page_private(head) != SWP_CONTINUED) {
2468		BUG_ON(count & COUNT_CONTINUED);
2469		return false;		/* need to add count continuation */
2470	}
2471
2472	offset &= ~PAGE_MASK;
2473	page = list_entry(head->lru.next, struct page, lru);
2474	map = kmap_atomic(page, KM_USER0) + offset;
2475
2476	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2477		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2478
2479	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2480		/*
2481		 * Think of how you add 1 to 999
2482		 */
2483		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2484			kunmap_atomic(map, KM_USER0);
2485			page = list_entry(page->lru.next, struct page, lru);
2486			BUG_ON(page == head);
2487			map = kmap_atomic(page, KM_USER0) + offset;
2488		}
2489		if (*map == SWAP_CONT_MAX) {
2490			kunmap_atomic(map, KM_USER0);
2491			page = list_entry(page->lru.next, struct page, lru);
2492			if (page == head)
2493				return false;	/* add count continuation */
2494			map = kmap_atomic(page, KM_USER0) + offset;
2495init_map:		*map = 0;		/* we didn't zero the page */
2496		}
2497		*map += 1;
2498		kunmap_atomic(map, KM_USER0);
2499		page = list_entry(page->lru.prev, struct page, lru);
2500		while (page != head) {
2501			map = kmap_atomic(page, KM_USER0) + offset;
2502			*map = COUNT_CONTINUED;
2503			kunmap_atomic(map, KM_USER0);
2504			page = list_entry(page->lru.prev, struct page, lru);
2505		}
2506		return true;			/* incremented */
2507
2508	} else {				/* decrementing */
2509		/*
2510		 * Think of how you subtract 1 from 1000
2511		 */
2512		BUG_ON(count != COUNT_CONTINUED);
2513		while (*map == COUNT_CONTINUED) {
2514			kunmap_atomic(map, KM_USER0);
2515			page = list_entry(page->lru.next, struct page, lru);
2516			BUG_ON(page == head);
2517			map = kmap_atomic(page, KM_USER0) + offset;
2518		}
2519		BUG_ON(*map == 0);
2520		*map -= 1;
2521		if (*map == 0)
2522			count = 0;
2523		kunmap_atomic(map, KM_USER0);
2524		page = list_entry(page->lru.prev, struct page, lru);
2525		while (page != head) {
2526			map = kmap_atomic(page, KM_USER0) + offset;
2527			*map = SWAP_CONT_MAX | count;
2528			count = COUNT_CONTINUED;
2529			kunmap_atomic(map, KM_USER0);
2530			page = list_entry(page->lru.prev, struct page, lru);
2531		}
2532		return count == COUNT_CONTINUED;
2533	}
2534}
2535
2536/*
2537 * free_swap_count_continuations - swapoff free all the continuation pages
2538 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2539 */
2540static void free_swap_count_continuations(struct swap_info_struct *si)
2541{
2542	pgoff_t offset;
2543
2544	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2545		struct page *head;
2546		head = vmalloc_to_page(si->swap_map + offset);
2547		if (page_private(head)) {
2548			struct list_head *this, *next;
2549			list_for_each_safe(this, next, &head->lru) {
2550				struct page *page;
2551				page = list_entry(this, struct page, lru);
2552				list_del(this);
2553				__free_page(page);
2554			}
2555		}
2556	}
2557}
2558