truncate.c revision 28bc44d7d1d967b8251214dd7a130d523b5ba5ee
1/*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002	akpm@zip.com.au
7 *		Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/backing-dev.h>
12#include <linux/mm.h>
13#include <linux/swap.h>
14#include <linux/module.h>
15#include <linux/pagemap.h>
16#include <linux/highmem.h>
17#include <linux/pagevec.h>
18#include <linux/task_io_accounting_ops.h>
19#include <linux/buffer_head.h>	/* grr. try_to_release_page,
20				   do_invalidatepage */
21
22
23/**
24 * do_invalidatepage - invalidate part or all of a page
25 * @page: the page which is affected
26 * @offset: the index of the truncation point
27 *
28 * do_invalidatepage() is called when all or part of the page has become
29 * invalidated by a truncate operation.
30 *
31 * do_invalidatepage() does not have to release all buffers, but it must
32 * ensure that no dirty buffer is left outside @offset and that no I/O
33 * is underway against any of the blocks which are outside the truncation
34 * point.  Because the caller is about to free (and possibly reuse) those
35 * blocks on-disk.
36 */
37void do_invalidatepage(struct page *page, unsigned long offset)
38{
39	void (*invalidatepage)(struct page *, unsigned long);
40	invalidatepage = page->mapping->a_ops->invalidatepage;
41#ifdef CONFIG_BLOCK
42	if (!invalidatepage)
43		invalidatepage = block_invalidatepage;
44#endif
45	if (invalidatepage)
46		(*invalidatepage)(page, offset);
47}
48
49static inline void truncate_partial_page(struct page *page, unsigned partial)
50{
51	zero_user_page(page, partial, PAGE_CACHE_SIZE - partial, KM_USER0);
52	if (PagePrivate(page))
53		do_invalidatepage(page, partial);
54}
55
56/*
57 * This cancels just the dirty bit on the kernel page itself, it
58 * does NOT actually remove dirty bits on any mmap's that may be
59 * around. It also leaves the page tagged dirty, so any sync
60 * activity will still find it on the dirty lists, and in particular,
61 * clear_page_dirty_for_io() will still look at the dirty bits in
62 * the VM.
63 *
64 * Doing this should *normally* only ever be done when a page
65 * is truncated, and is not actually mapped anywhere at all. However,
66 * fs/buffer.c does this when it notices that somebody has cleaned
67 * out all the buffers on a page without actually doing it through
68 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
69 */
70void cancel_dirty_page(struct page *page, unsigned int account_size)
71{
72	if (TestClearPageDirty(page)) {
73		struct address_space *mapping = page->mapping;
74		if (mapping && mapping_cap_account_dirty(mapping)) {
75			dec_zone_page_state(page, NR_FILE_DIRTY);
76			dec_bdi_stat(mapping->backing_dev_info,
77					BDI_RECLAIMABLE);
78			if (account_size)
79				task_io_account_cancelled_write(account_size);
80		}
81	}
82}
83EXPORT_SYMBOL(cancel_dirty_page);
84
85/*
86 * If truncate cannot remove the fs-private metadata from the page, the page
87 * becomes anonymous.  It will be left on the LRU and may even be mapped into
88 * user pagetables if we're racing with filemap_fault().
89 *
90 * We need to bale out if page->mapping is no longer equal to the original
91 * mapping.  This happens a) when the VM reclaimed the page while we waited on
92 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
93 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
94 */
95static void
96truncate_complete_page(struct address_space *mapping, struct page *page)
97{
98	if (page->mapping != mapping)
99		return;
100
101	cancel_dirty_page(page, PAGE_CACHE_SIZE);
102
103	if (PagePrivate(page))
104		do_invalidatepage(page, 0);
105
106	remove_from_page_cache(page);
107	ClearPageUptodate(page);
108	ClearPageMappedToDisk(page);
109	page_cache_release(page);	/* pagecache ref */
110}
111
112/*
113 * This is for invalidate_mapping_pages().  That function can be called at
114 * any time, and is not supposed to throw away dirty pages.  But pages can
115 * be marked dirty at any time too, so use remove_mapping which safely
116 * discards clean, unused pages.
117 *
118 * Returns non-zero if the page was successfully invalidated.
119 */
120static int
121invalidate_complete_page(struct address_space *mapping, struct page *page)
122{
123	int ret;
124
125	if (page->mapping != mapping)
126		return 0;
127
128	if (PagePrivate(page) && !try_to_release_page(page, 0))
129		return 0;
130
131	ret = remove_mapping(mapping, page);
132
133	return ret;
134}
135
136/**
137 * truncate_inode_pages - truncate range of pages specified by start and
138 * end byte offsets
139 * @mapping: mapping to truncate
140 * @lstart: offset from which to truncate
141 * @lend: offset to which to truncate
142 *
143 * Truncate the page cache, removing the pages that are between
144 * specified offsets (and zeroing out partial page
145 * (if lstart is not page aligned)).
146 *
147 * Truncate takes two passes - the first pass is nonblocking.  It will not
148 * block on page locks and it will not block on writeback.  The second pass
149 * will wait.  This is to prevent as much IO as possible in the affected region.
150 * The first pass will remove most pages, so the search cost of the second pass
151 * is low.
152 *
153 * When looking at page->index outside the page lock we need to be careful to
154 * copy it into a local to avoid races (it could change at any time).
155 *
156 * We pass down the cache-hot hint to the page freeing code.  Even if the
157 * mapping is large, it is probably the case that the final pages are the most
158 * recently touched, and freeing happens in ascending file offset order.
159 */
160void truncate_inode_pages_range(struct address_space *mapping,
161				loff_t lstart, loff_t lend)
162{
163	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
164	pgoff_t end;
165	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
166	struct pagevec pvec;
167	pgoff_t next;
168	int i;
169
170	if (mapping->nrpages == 0)
171		return;
172
173	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
174	end = (lend >> PAGE_CACHE_SHIFT);
175
176	pagevec_init(&pvec, 0);
177	next = start;
178	while (next <= end &&
179	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
180		for (i = 0; i < pagevec_count(&pvec); i++) {
181			struct page *page = pvec.pages[i];
182			pgoff_t page_index = page->index;
183
184			if (page_index > end) {
185				next = page_index;
186				break;
187			}
188
189			if (page_index > next)
190				next = page_index;
191			next++;
192			if (TestSetPageLocked(page))
193				continue;
194			if (PageWriteback(page)) {
195				unlock_page(page);
196				continue;
197			}
198			if (page_mapped(page)) {
199				unmap_mapping_range(mapping,
200				  (loff_t)page_index<<PAGE_CACHE_SHIFT,
201				  PAGE_CACHE_SIZE, 0);
202			}
203			truncate_complete_page(mapping, page);
204			unlock_page(page);
205		}
206		pagevec_release(&pvec);
207		cond_resched();
208	}
209
210	if (partial) {
211		struct page *page = find_lock_page(mapping, start - 1);
212		if (page) {
213			wait_on_page_writeback(page);
214			truncate_partial_page(page, partial);
215			unlock_page(page);
216			page_cache_release(page);
217		}
218	}
219
220	next = start;
221	for ( ; ; ) {
222		cond_resched();
223		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
224			if (next == start)
225				break;
226			next = start;
227			continue;
228		}
229		if (pvec.pages[0]->index > end) {
230			pagevec_release(&pvec);
231			break;
232		}
233		for (i = 0; i < pagevec_count(&pvec); i++) {
234			struct page *page = pvec.pages[i];
235
236			if (page->index > end)
237				break;
238			lock_page(page);
239			wait_on_page_writeback(page);
240			if (page_mapped(page)) {
241				unmap_mapping_range(mapping,
242				  (loff_t)page->index<<PAGE_CACHE_SHIFT,
243				  PAGE_CACHE_SIZE, 0);
244			}
245			if (page->index > next)
246				next = page->index;
247			next++;
248			truncate_complete_page(mapping, page);
249			unlock_page(page);
250		}
251		pagevec_release(&pvec);
252	}
253}
254EXPORT_SYMBOL(truncate_inode_pages_range);
255
256/**
257 * truncate_inode_pages - truncate *all* the pages from an offset
258 * @mapping: mapping to truncate
259 * @lstart: offset from which to truncate
260 *
261 * Called under (and serialised by) inode->i_mutex.
262 */
263void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
264{
265	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
266}
267EXPORT_SYMBOL(truncate_inode_pages);
268
269unsigned long __invalidate_mapping_pages(struct address_space *mapping,
270				pgoff_t start, pgoff_t end, bool be_atomic)
271{
272	struct pagevec pvec;
273	pgoff_t next = start;
274	unsigned long ret = 0;
275	int i;
276
277	pagevec_init(&pvec, 0);
278	while (next <= end &&
279			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
280		for (i = 0; i < pagevec_count(&pvec); i++) {
281			struct page *page = pvec.pages[i];
282			pgoff_t index;
283			int lock_failed;
284
285			lock_failed = TestSetPageLocked(page);
286
287			/*
288			 * We really shouldn't be looking at the ->index of an
289			 * unlocked page.  But we're not allowed to lock these
290			 * pages.  So we rely upon nobody altering the ->index
291			 * of this (pinned-by-us) page.
292			 */
293			index = page->index;
294			if (index > next)
295				next = index;
296			next++;
297			if (lock_failed)
298				continue;
299
300			if (PageDirty(page) || PageWriteback(page))
301				goto unlock;
302			if (page_mapped(page))
303				goto unlock;
304			ret += invalidate_complete_page(mapping, page);
305unlock:
306			unlock_page(page);
307			if (next > end)
308				break;
309		}
310		pagevec_release(&pvec);
311		if (likely(!be_atomic))
312			cond_resched();
313	}
314	return ret;
315}
316
317/**
318 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
319 * @mapping: the address_space which holds the pages to invalidate
320 * @start: the offset 'from' which to invalidate
321 * @end: the offset 'to' which to invalidate (inclusive)
322 *
323 * This function only removes the unlocked pages, if you want to
324 * remove all the pages of one inode, you must call truncate_inode_pages.
325 *
326 * invalidate_mapping_pages() will not block on IO activity. It will not
327 * invalidate pages which are dirty, locked, under writeback or mapped into
328 * pagetables.
329 */
330unsigned long invalidate_mapping_pages(struct address_space *mapping,
331				pgoff_t start, pgoff_t end)
332{
333	return __invalidate_mapping_pages(mapping, start, end, false);
334}
335EXPORT_SYMBOL(invalidate_mapping_pages);
336
337/*
338 * This is like invalidate_complete_page(), except it ignores the page's
339 * refcount.  We do this because invalidate_inode_pages2() needs stronger
340 * invalidation guarantees, and cannot afford to leave pages behind because
341 * shrink_page_list() has a temp ref on them, or because they're transiently
342 * sitting in the lru_cache_add() pagevecs.
343 */
344static int
345invalidate_complete_page2(struct address_space *mapping, struct page *page)
346{
347	if (page->mapping != mapping)
348		return 0;
349
350	if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
351		return 0;
352
353	write_lock_irq(&mapping->tree_lock);
354	if (PageDirty(page))
355		goto failed;
356
357	BUG_ON(PagePrivate(page));
358	__remove_from_page_cache(page);
359	write_unlock_irq(&mapping->tree_lock);
360	ClearPageUptodate(page);
361	page_cache_release(page);	/* pagecache ref */
362	return 1;
363failed:
364	write_unlock_irq(&mapping->tree_lock);
365	return 0;
366}
367
368static int do_launder_page(struct address_space *mapping, struct page *page)
369{
370	if (!PageDirty(page))
371		return 0;
372	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
373		return 0;
374	return mapping->a_ops->launder_page(page);
375}
376
377/**
378 * invalidate_inode_pages2_range - remove range of pages from an address_space
379 * @mapping: the address_space
380 * @start: the page offset 'from' which to invalidate
381 * @end: the page offset 'to' which to invalidate (inclusive)
382 *
383 * Any pages which are found to be mapped into pagetables are unmapped prior to
384 * invalidation.
385 *
386 * Returns -EIO if any pages could not be invalidated.
387 */
388int invalidate_inode_pages2_range(struct address_space *mapping,
389				  pgoff_t start, pgoff_t end)
390{
391	struct pagevec pvec;
392	pgoff_t next;
393	int i;
394	int ret = 0;
395	int did_range_unmap = 0;
396	int wrapped = 0;
397
398	pagevec_init(&pvec, 0);
399	next = start;
400	while (next <= end && !wrapped &&
401		pagevec_lookup(&pvec, mapping, next,
402			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
403		for (i = 0; i < pagevec_count(&pvec); i++) {
404			struct page *page = pvec.pages[i];
405			pgoff_t page_index;
406
407			lock_page(page);
408			if (page->mapping != mapping) {
409				unlock_page(page);
410				continue;
411			}
412			page_index = page->index;
413			next = page_index + 1;
414			if (next == 0)
415				wrapped = 1;
416			if (page_index > end) {
417				unlock_page(page);
418				break;
419			}
420			wait_on_page_writeback(page);
421			if (page_mapped(page)) {
422				if (!did_range_unmap) {
423					/*
424					 * Zap the rest of the file in one hit.
425					 */
426					unmap_mapping_range(mapping,
427					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
428					   (loff_t)(end - page_index + 1)
429							<< PAGE_CACHE_SHIFT,
430					    0);
431					did_range_unmap = 1;
432				} else {
433					/*
434					 * Just zap this page
435					 */
436					unmap_mapping_range(mapping,
437					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
438					  PAGE_CACHE_SIZE, 0);
439				}
440			}
441			BUG_ON(page_mapped(page));
442			ret = do_launder_page(mapping, page);
443			if (ret == 0 && !invalidate_complete_page2(mapping, page))
444				ret = -EIO;
445			unlock_page(page);
446		}
447		pagevec_release(&pvec);
448		cond_resched();
449	}
450	return ret;
451}
452EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
453
454/**
455 * invalidate_inode_pages2 - remove all pages from an address_space
456 * @mapping: the address_space
457 *
458 * Any pages which are found to be mapped into pagetables are unmapped prior to
459 * invalidation.
460 *
461 * Returns -EIO if any pages could not be invalidated.
462 */
463int invalidate_inode_pages2(struct address_space *mapping)
464{
465	return invalidate_inode_pages2_range(mapping, 0, -1);
466}
467EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
468